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Abstract

We extend a multimodal transport model to simulate an increase of the
market share of electric vehicles. The model, which is described in detail
in Kilani et al. [1], covers the North of France and includes both urban
and intercity trips. It is a multi-agents simulation based on the MAT-
sim framework and calibrated on observed traffic flows. We find that
the decrease in emissions of pollutant gases decreases in comparable pro-
portion to the market share of the electric vehicles. When only users
with shorter trips switch to electric vehicles the impact is limited and
demand for charging stations is small since most users will charge by
night at home. When the government is able to target users with longer
trips, the impact can be higher by more than a factor of two. But, in
this case, our model shows that it is important to increase the number
of charging stations with an optimized deployment for their accessibility.
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1 Introduction

The first prototypes of electric vehicles were developed and used in the nine-
teenth centuries, but their market share remained negligible until recently. In
fact, electric vehicles in France currently represent a small share of the mar-
ket with 0.85% but when we look at registrations over the past two years, we
observe on an exponential curve (see Figure 1, data is limited to October 2021
from Avere.org).

Fig. 1: Evolution of electric vehicle registrations in France.

The charging time of the batteries and their low autonomy are thought to
be the main features that have prevented large scale deployment of electric
cars (See Rouhana [2]). During the last decades, several important techno-
logical advances has been made to produce much more efficient batteries and
propose faster charging equipment. At the same time, several regions and gov-
ernments are investing to improve the deployment of charging stations. During
the pandemic, the sales of electric vehicles recorded important increase in sev-
eral European countries and worldwide. This trend is expected to continue in
the future as several governments are targeting the progressive elimination of
combustion engines.

The support for electric vehicles is based on their zero emissions (green-
house gases and particulate matters) during use. While some skepticism is
pointed out with respect to the production of batteries and electric engines,
which are based on materials whose extraction is polluting, local policies gen-
erally focusing on local pollution where electric cars perform very well. In this
paper, we adhere to this view, focus on local impacts, and do not consider the
whole life cycle of electric cars and batteries.

https://www.avere-france.org/publication/barometre-malgre-la-crise-les-vehicules-electriques-et-hybrides-rechargeables-poursuivent-leur-progression/


Springer Nature 2021 LATEX template

Increasing the market share of electric vehicles 3

Our objective is to evaluate the environmental impacts and energy con-
sumption when the market share of the electric cars increases. Our analysis
is based on a multimodal transport simulation framework described in Kilani
et al. [1]. The model includes four modes “walk” “bike”, “car” and “public
transport” and covers the North of France. We consider a base-case scenario,
corresponding to the actual observed situation, and compare with several other
configurations by varying the market share of the electric cars. We are partic-
ularly interested by the spatial deployment of charging stations and the extent
to which it may affect polluting gases emissions and energy consumption. We
then distinguish between a scenario (a) where the charging stations follow the
observed actual locations and an other scenario (b) where the deployment is
optimized to improve accessibility to these stations.

Our analysis highlights the importance of (i) the traveled distance made by
the users who switch to electric vehicles, and (ii) the optimal deployment of
charging stations. Switching to electric cars reduces the emissions of pollutant
gases (and fuel consumption) and the magnitude of this impact depends on
the travel distance made by the cars that switch to electric energy. When
only users with smaller distances switch to electric vehicles, the impact on
emissions, as well as the demand for charging stations, is limited. Indeed, in
this case most users can charge by night at home and do not need further
energy for their daily trips. When the government is able to set incentives
to target users with longer daily traveled distances, the impact on emissions
can be much more important, but at the same time, the demand for charging
stations increases significantly. The waiting time to access charging facilities
are high and several users need to run extra trips to find charging stations.
These trips are new sources of external costs. Our model shows that it is then
important to increase the number of charging stations, and the geographical
locations of these stations should be optimized to improve their accessibility.
Otherwise, our model shows that congestion increases and the emissions of
other vehicles also increase.

To find the optimal locations of charging stations we formulate and solve
a simplified network optimization problem using Cplex, a solver developed by
IBM that implements the Simplex and the branch and bound method in the C
language (See Anand [3]) The objective of the problem is to minimize the total
distance to charging stations and the constraints reflects realistic requirements
in the process (each car should find a charging station, the number of charging
stations is limited).

The paper is organized as follows. Section 2 reviews others studies that
have considered electric cars and the optimal deployment of charging stations.
Section 3 briefly describes the multimodal transport model we use as a frame-
work (See Kilani et al. [1]) and describes how electric vehicles are taken into
account in our transport model. The results of our analysis are reported in
Section 4. Finally, we conclude in Section 5.
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2 Literature review

Mathematical models, for optimal deployment of charging stations, are advanc-
ing rapidly in this decade. In addition to considering the optimal location of
charging stations in an area, the latest optimization models have also deter-
mined the number of charging outlets per station, which is necessary to allow
for maximizing the service levels of electric vehicles (See Xi et al. [4]). After sub-
dividing the Ohio region into sub-regions, which can correspond to communes
in the case of the North of France, Xi et al. [4] adopted a 3-steps approach.
First, they determine the probability of owning an electric vehicle for an agent
based on sociodemographic and macroeconomic data for the subregion. Sec-
ond, they determine the flows of electric vehicles between the subregions. Then,
they develop a simulation model of the vehicles that are likely to be charged at
potential charging stations based on the numbers of outlets. Finally, they use
a linear programming model to determine the location and size of the charging
stations.

Models on energy transition scenarios are more and more considered by
policy makers. They can be used as valuable tools to evaluate the effectiveness
in the reduction of negative externalities. For example, the Greater Berlin
model has shown that population exposure to road traffic noise depends largely
on intra-day travel patterns of the citizens (See Kaddoura et al. [5]). The
combination of these transport models with vehicle emission models can be
used to identify relevant policies that can be used by local authorities (See
Kickhöfer [6]). The model used in MATsim and adopted in our anlysis is based
on the Handbook on Emission Factors for Road Transport (HBEFA). More
details on the implementation of the model are reported in Kickhöfer et al. [7].

Agent-based models operate at the level of the individual who chooses
its transport mode, its route between the origin-destinations pairs and its
departure time. These agents are allowed to change their decisions when they
are offered better alternatives. Since all trips informations are available, it
is straightforward to use energy and environmental models to evaluate fuel
consumption and pollution under each scenario.

Including electric vehicles does not raise any particular challenges, but to
be useful in practice and to fall in the scope of energy transition objectives,
distinctive attributes of these vehicles should be taken into account. In partic-
ular, they should take into account the charging process and the limitation in
travel distances that electric vehicles provide by comparison with vehicles that
run on fossil energies. One of the most elaborated case studies that has con-
sidered electric mobility in Sweden is reported in Bischoff et al. [8]. The model
considers freight and person transport. The data are collected from GTFS
(General Transit Feed Specification) and OSM (OpenStreetMap) data files.

In general, the automotive industry is expanding to satisfy the human
addiction to the private car. As far as electric vehicles are concerned, there has
been several major innovations in the recent years, even the progress in the
main challenge for more efficient batteries has progressed at slower pace. Issues
with respect the autonomy of the batteries (autonomy and charging time) has
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been for a long time blocking points. A large research effort has been deployed
with respect to these issues (See Rouhana [2]).

There exist three main charging technologies (See Xi et al [4]). Level 1
batteries use a standard wall outlet producing a 110V/15A connexion. The
power provided by these batteries varies from 16 to 25 kWh, and full charging
time varies from 12 to 18 hours. Level 2 batteries use more powerful circuits,
generally based on 220V between 15 and 30A. Level 3 quick charge uses a con-
tinuous electricity under high voltage system (400 to 500V), and full charging
time can take less than half an hour. This charging system is based on a rela-
tively sophisticated equipment and cannot be deployed in residential locations
due to technical problems about high voltage. On the other hand, at home, the
recharging time is not a problem because the vehicles can stay for a sufficient
time at night to recharge on a slow plug.

For example, for a Lithium-Ion battery with capacity 22 kWh, the charging
duration is between 3 and 8 hours in single phase alternating current with
power 3.7 kW and voltage 230V, 16 to 32 A. With three-phases current, the
charging time drops to 1 to 2.5 hours with a voltage of 400 V, and could even
be with 20 to 30 mins with 63 A. The performances in this case are almost
similar to those provided by continuous current with charging power 50 kW
and voltage 400 V/100 A.

In general, full charging requires 13 hours, but 80% charging could take
about 30 mins using the most advanced technologies (See De Wolf [9]).

Charging stations are either private, generally located at hotels and shop-
ping malls, or public as those located in motorways, in particular the quick
charging stations. The accessibility of a charging station is an main factor to
improve its usage. The optimal location of a given charging station will depend
on its performance and charging time, in particular. Clearly, slow charging sta-
tion will be not used at a satisfactory level when they are not accessible. With
slow charging stations users will generally prefer partial charging (See Xi et al.
[4]). Slow charging stations are well convenient when located at home, where
charging of the private car is processed at night, but requires that the houses
are equipped with a private parking space. One of the main challenges related
to the deployment of slow charging stations in urban areas is the management
of the difficult trade-off between the supply of charging time and parking space.

The location of fast charging stations shows a concentration in wealthy res-
idential areas in the North of France. This pattern in the deployment of fast
charging station is explained by the fact that it is mainly conducted by pri-
vate operators. The spatial distribution of existing stations can be observed in
Figure 8 (green points), and a more detailed discussion of the relation between
this distribution and households’ welfare is given in Frotey et al. [10].

A further difficulty in the deployment of charging stations is the interoper-
ability of the used equipments. If each operator uses a specific and non standard
system of plugin, the attractiveness of the charging stations will be limited.
Broadly speaking, this will not favour the transition to electric vehicles.
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Our simulation framework is based on the deployment of charging stations
setted up by Bouygues Energies et Services (60%) and Driveco (31%).
The powerful charging stations (22 kVA) are more frequent (78%) and the fast
public charging stations haven’t gained a large market share (2.6%). Notice
that this small value should yield a higher contribution to charging services.

A proposal for the distribution of charging stations would allow the selec-
tion of the most suitable locations. It could be based on a more equitable
distribution, on the one hand, between city centers and the countryside and,
on the other hand, between high and low income people. The study case of an
electric cab fleet in Beijing showed that an optimal deployment of public charg-
ing stations can increase the electric cab fleet by 59% for the slow charging
stations and 88% for the fast charging stations (See Shahraki et al [11]).

Mathematical models for optimal deployment of charging stations are
advancing rapidly in this decade. In addition to considering the optimal loca-
tion of charging stations, the latest models also determine the number of
charging outlets per station needed in order to maximize the service level (See
Xi el al [12]). These authors adopted a three-step approach, after subdividing
the Ohio region into sub-regions, which may correspond to communes in the
case of the North of France. Their methodology consisted of:

• First, they determine, for an agent, the probability of having an electric
vehicle on the base of socio-demographic and macroeconomic data for the
sub-region. Then they determine electric vehicles flows between the sub-
regions.

• Then, they develop a simulation model of the vehicles likely to be recharged
at potential charging stations according to the number of slots.

• Finally, they use an integer linear programming model to determine the
location and size of charging stations.

The model for locating charging infrastructure in the Seattle area was also
based on a linear program (See Chen et al [13]). The objective is to minimize
the costs of access to these infrastructures computed by the distance traveled.

Li et al. [14] integrate the monitoring of the state of charge of vehicles
into the charging station location model. Moreso [15] applies this model in
South Carolina assuming the knowledge of the origin-destination matrix of
the population’s trips. The same author develops a model for a cab fleet in
Montreal based on various assumptions. The study perimeter is divided into
different areas that may or not receive a charging station. The charging stations
are located at the ends of the trips (origin or destination).

By taking into account the fleet of electric vehicles in the transport model
we can evaluate the environmental benefits concerning the reduction in GHG
and fine particles, and the decrease in consumption of fossil fuel energy. The
evaluation of these impacts is based on the traveled distances, vehicles speeds
and the emissions profiles of the existing vehicles (See Márquez-Fernández
[16]), and the information on the vehicles entering and exiting the network
links. This allows us to evaluate the energy consumption of all the vehicles,
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and update the battery charge levels of the electric vehicles. The details of
these computations are handled within the MATSim framwork.

3 The transport model

We start by briefly describing the simulation framework (subsection 3.1) and
then we discuss how electric vehicles are taken into account (subsection 3.2).

3.1 The basic setup and calibration

This research is based on a multimodal transport model that we have developed
for the North of France. The total population in this region is about four
million inhabitants. The North of France connects northern Europe to Paris
Metropolitan area and to southern Europe. A detailed description of this model
is given in Kilani et al. [1]. Several policies have been considered to alleviate
congestion and reduce the emissions of polluting gases. Several steps have
been made to develop attractive public transport and reduce the usage of the
private car. For example, Lille was the first city worldwide to implement a fully
automated metro line in early eighties of the last century, and Dunkerque is
now the largest agglomeration in France where public transport is free.

Lille is a metropolitan area with more than 1.1 million inhabitants. Other
major cities include Valenciennes, Dunkerque, Calais, Boulogne-sur-Mer and
Arras (See Figure 2). The historical mining activities explain part of the trip
patterns observed between the mining area and other cities, Lille, in particular.

Fig. 2: The Nord Pas de Calais.
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Motorways around this city are severely congested during the peak hours.
Also, the “A1” motorway, linking Lille to Paris, is a main connection for freight
transport between northern Europe, Paris region and other southern cities in
the south of France and Spain. The study area is a main place for logistics
activities, including warehousing, since it connects several ports (Dunkerque,
Calais and Boulogne-sur-Mer) and multimodal platforms (for example, Dourge
which is located in the south of of Lille).

As previously said, the model includes four modes “walk”, “bike”, “car”
and “public transport”, and allows for their combinations (to some extent). For
instance, the model does not include shared mobility, but we plan to include
this feature, at least partially, in the near future. Both urban and intercity
trips are condidered. Survey data from the Regional Household survey of 2016
is used to build daily trips (See Figure 3 for a agent’s typical sequence of
activities).
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Fig. 3: Example of an agent’s sequence of activities in a normal situation (car
and bus journeys).

The usage of the private car is the dominant mode, and most short trips,
less than one kilometer, are made by walk. Public transport modes are used for
urban (bus and metro) and intercity (train) trips. Other modes, like intercity
buses, have a very small share and are not reported here. The data we use
covers all trips departing and arriving inside the study region, but also inflows
and outflows with other regions in France. Our simulation model includes all
these trips. As we explain below, the model is complemented, at the calibration
stage, by the census data, to include cross-border traffic and freight transport.

For each trip, the survey data reports several activities as the trip pur-
pose, at the origin or at the destination. The most frequent ones are “home”,
“work”, “shopping” and “accompaniment” (See Figure 3 for a typical sequence
of activities). These values are reported for the whole population and should,
of course, significantly differ when we focus on specific group with respect to
age or jobs qualification.

To obtain realistic traffic flows we need to add cross-border trips and freight
transport. Unfortunately, there are no comprehensive datasets available to use
for this purpose. Cross-border trips are important since the study region is
adjacent to Belgium and cross-border commuting is central to several regional
policies focusing on the development of European metropolitan areas.
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To overcome the lack of available information on cross-border traffic flows,
we use census data for home-to-work trips, which is available at the scale
of the “commune”. The database reports only flows departing from France
to Belgium and not trips in the opposite direction. We assume a symmetric
distribution of the trips and generate a random flow from Belgium to the study
region in France. At the destination, these trips are directed towards most
important agglomerations, i.e. activity zones.

Freight transport is not yet fully implemented in our model. The main rea-
son is again the lack of an available database for these trips. Freight transport
remains an important part of traffic flows since several logistic activities are
taking place in the North of France. This region is crossed by the A1 motorway
that connects the countries in the North (Netherlands, Belgium) to Paris and
southern regions in Europe. To include representative traffic flows we produce
freight transport, along the motorways crossing the study region, that matches
counting data for trucks running on the corresponding links. We check that
the calibrated model produces realistic patterns of congestion.

To run large-scale simulations, it is difficult to include the whole pop-
ulation. Each iteration would need a long time, and the calibration, which
requires a large number of iterations, becomes unpractical. It is a usual prac-
tice, including in MATSim,1 to work with a synthetic population instead of the
whole population (See Ben-Dor et al. [18]). The idea is to consider only a pro-
portion of the population, uniformly drawn from the initial population, and
scale down the network capacity, so that traffic congestion and public trans-
port flows remain consistent. Several sampling levels, ranging from less than
1% to 50%, were used in the simulations (See Kilani et al [1]). With a very
small population, the simulations can be run quickly but it does not produce
very representative outputs. At this level, the simulation were mainly designed
for testing and checking the code. Large samples produce realistic traffic flows
but require more time to run. The results reported here are produced with a
10%.

For the road network, we have used the open database provided by Insti-
tut Géographique National2, which is derived from OpenStreetMap databases
with some corrections and standard formatting. This database provides the
attributes of each link (speed limit, capacity, number of lanes, etc.) and is
globally satisfactory for the road network. The road network has a large num-
ber of links that are grouped with respect to their importance (motorways,
main links, secondary roads, etc.). The main limitation in this database is the
incomplete rail network which is composed of a dozen of service lines. We have
then manually added the train lines, and the corresponding stations, directly
in the MATSim format.

Public transport includes several urban bus networks, the TER (and
TERGV) network, metro and tramway in Lille. The public transport fleet
consists of 14 748 vehicles spread over the conurbations of Lille, Dunkerque,

1MATSim is a large scale simulator that has been used for several cities around the world (https:
//www.matsim.org/). A general reference for this simulation framework is [17].

2https://geoservices.ign.fr/ consulted on March 2020)

https://www.matsim.org/
https://www.matsim.org/
https://geoservices.ign.fr/


Springer Nature 2021 LATEX template

10 Increasing the market share of electric vehicles

Boulogne sur Mer, Calais, Valenciennes and Saint Omer (See Figure 2), in
addition to the region’s rail network.

Public transport services include buses, operating at the urban and sub-
urban areas, tramways, in Lille and Valenciennes, the two automated metro
lines in Lille and the regional trains connecting the main agglomerations. Fast
train lines also connect Lille to Dunkerque and Boulogne-sur-Mer. Most bus
services are available in GTFS files provided by local operators (the latest ver-
sion of this data is dated March 2020). Some small local operators have not
yet published the timetables of their services (Cambrai, Lens, Douai, Arras),
but this does not have an important impact on simulated traffic given the
relatively small size of these flows. The model will be updated when the cor-
responding data will be available. The completed network (including roads
and public transports) reflects the actual situation and is composed of 218 438
nodes and 485 072 links.

A topic issue in traffic modeling is the calibration of the model. The objec-
tive of the simulation is to produce realistic traffic flows over the study region
and with respect to the set of transport modes considered. We focus on mode
shares and optimize modes specific constants so that after several iterations
the model converges to observed mode shares (See Kilani et al. [1]). A plan
is a sequence of activities, each one except the last, is followed by a trip (See
Figure 3).

In the utility function, a constant is attached to each mode. An increase
in the value of the constant increases the share of the corresponding mode
and vice versa. The utility related to an activity depends on its duration and
the schedule delay cost if the user arrives early or late to the activity. Several
formulations are possible to reflect the interactions between these variables.

The calibration’s objective is to adjust the parameters of the model so
that it replicates observed traffic flows. Usually, we focus on mode shares and
travel duration. With several modes, the calibration may not be straightfor-
ward since several parameters must be adjusted smoothly and each iteration
is time consuming.

The idea here is to increase (resp. decrease) the value of the shift parameter
when mode m is underused (resp. overused) in the output of the last completed
iteration. More sophisticated techniques to find the best values of the shift
parameters can be used. We intend to improve this step in future research.

When the model produces a distribution of mode shares close to the
observed distribution, we check if traffic flow and travel times reflects realis-
tic trends. In our case, the calibration process was satisfactory with respect
to this test. It displays traffic flows for cars and public transport modes, and
shows an important congestion on the main road links (See Figure 4 for the
traffic at 7 hour and Figure 5 for the traffic at 7:45).

3.2 Electric vehicles and charging stations

In our previous model, to simulate the daily transport in the North of France
(See Kilani [1]), the data for electric mobility were not taken into account.
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Fig. 5: Congestion in main roads

In the present model, we have added the supply of charging stations and the
demand for electric vehicles.

The electrical supply is materialized by the chargers defined on the network
links. They include attributes on their power and the number of plugs. On the
other hand, the demand lists the vehicles to be charged among the cars of the
initial demand whose daily travel plans remain unchanged. The electric vehicles
are also characterized by an initial state of charge, the battery capacity, and
by the type of charging to be assigned to them. Once the data is generated,
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the configuration parameters of the simulation will be adapted to take into
account the electric vehicles that were not included in the initial model.

Depending on the network characteristics, we need to set a minimum charg-
ing time before a vehicle continues its journey. We set this value to 25 minutes
that corresponds to currently available technologies. The optimization of the
location of charging stations performed in the present model is based on the
origin-destination matrix of car trips in the network at the regional level, that
we denote as trips(i, j). The objective of the model is to minimize the total
travel distance of the cars from their origin area i to the potential charging
site k.

Let S denote the set of potential areas for locating a charging station and
by A, the Area’s set which correspond is the set of communes in the study. This
implies that S ⊂ A. We impose a maximum number of sites where the stations
can be deployed. We compute the distance between a potential location k ∈ S
and an origin or destination i ∈ A as follow :

dist(k, i) =

{
mean distance for the cars traveling between i and k if i 6= k
mean distance for the cars traveling inside i if i = k

We define y(k, i) a binary variable indicating if station k is used by cars
starting from area i or arriving to area i. The distance is weighted by the total
number of inter-zone trips starting from i or arriving to i. The considered zones
represent the set of municipalities generating or receiving flows. We obtain
thus the following objective function:

min z =
∑
k∈S

∑
(i,j)∈A×A

trips[i, j] + trips[j, i]

2
dist(k, i)y(k, i)

The number of charging stations is set to 10% of the total number of electric
vehicles, in accordance with European recommendations.3

The present model will have to integrate the existing fast and slow charging
stations. It will simulate two different scenarios for each market share of electric
vehicles. The first scenario (a) will deal with the existing charging stations and
the previsional number of vehicles in circulation in the study area. The second
scenario (b) is based on the previsional number of electric vehicles and on the
number of charging stations optimized to satisfy the demand (See Table 1).
Note that we have added 100 new stations for the electric vehicles share of
0.85%, 3% and 5% to allow the model to define locations which are better than
the locations of the existing stations.

Regarding the choice of the 1 175 vehicles that switch to electricity, we
initially chose them randomly. Obviously with the 1 079 charging stations
available, even if they are not optimally located, no queues are formed at these
charging stations since most trips are less than the autonomy of the batteries

3See European Directive at https://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=
CELEX:32014L0094&rid=1

https://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:32014L0094\&rid=1
https://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:32014L0094\&rid=1
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Electric vehicles share 0.85% 3% 5% 10% 20% 100%

Electric vehicles 1175 4 144 6 906 13 813 27 439 138 130

(a) Current stations 1 079 1 079 1 079 1 079 1 079 1 079

+ New stations 100 100 100 400 1 800 13 000

(b) Stations simulated 1 179 1 179 1 179 1 479 2 879 14 079

Table 1: Basic scenario (a) and scenario with optimized number of charging
stations (b).

of the vehicles. In this case, charging at home by night is generally sufficient
for the daily trips. Also, in order to force the use of charging stations by new
electric vehicles, we have decided to allocate electric vehicles to agents with
the greatest travel distances. So when we say 10% of electric vehicles in Table
1, we mean the 10% with the greatest travel distance switch to electricity.

4 Results

In this section we report the main results of our simulations. The actual situa-
tion is considered as a base-case scenario (subsection 4.1). We then consider an
increase in the market share of electric vehicles in subsection 4.2 and optimized
deployment of charging stations in subsection 4.3.

4.1 The base-case

The basic scenario of the electric model incorporates, in addition to combustion
engine cars, 1 175 electric vehicles. As said here above, the sample is not gener-
ated randomly from the number of cars in the previous model, but we choose
the agents with the greatest travel distances. Indeed, 0.85 % of the car fleet
in the Hauts-de-France are composed of electric vehicles and plug-in hybrids
in January 2021.4 The current location of 1 079 electric vehicle charging sta-
tions is available at Open-data Rseaux-energies5. The data also provides useful
information on the number of slots and charging power, which are very impor-
tant for the simulation of electric vehicles. The charging stations are assigned
to links in the network where car traffic is possible. The assignment is based
on the proximity between the charging point and the link. For the Nord-Pas-
de-Calais, 1 079 charging stations are assigned to the network, of which 90 are
located in the European Metropolis of Lille.

4See Statistiques du Dveloppement Durable at https://www.statistiques.
developpement-durable.gouv.fr/donnees-sur-le-parc-automobile-francais-au-1er-janvier-2021

5https://opendata.reseaux-energies.fr

https://www.statistiques.developpement-durable.gouv.fr/donnees-sur-le-parc-automobile-francais-au-1er-janvier-2021
https://www.statistiques.developpement-durable.gouv.fr/donnees-sur-le-parc-automobile-francais-au-1er-janvier-2021
https://opendata.reseaux-energies.fr
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4.2 Expanding market share of VE

By integrating the actual number of electric vehicles into the transportation
network, the environmental benefits are relatively small. Indeed, the modal
share of electric vehicles is too low (less than 1 %) to have a significant impact
on pollutant emissions. The inclusion of these electric cars reduces the carbon
emissions of the other vehicles (diesel and engine car) by 2,26 % since their
number has decreased (See Table 2). Recall that the multiplicative effect is due
to our choice of agents with the greatest travel distances. This explains why, for
example, 0,85% of electric vehicles allows more than 2% of CO2 reduction. The
multiplicative effect obviously comes from the fact that the vehicles emitting
the most CO2 are chosen. In addition, the current location of the charging
stations does not allow for optimal charging process of electric vehicles. Indeed,
many vehicles are waiting for available charging stations, especially during
morning and evening rush hours (See Figure 6). Increasing the market share of
electric vehicles to 5% while keeping the same number of charging stations (See
Figure 7) yields 12,45 % decrease in CO2 emissions, which is more significant.
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Fig. 6: Occupation of charging stations for 0.85% electric vehicles.

4.3 Optimal deployment of charging stations

We will now show that it is important that the deployment of new charging
stations takes into account existing traffic flows. Indeed, as we observed in
the previous simulation, the number of waiting cars can be large making the
whole charging process time consuming and tedious. In such situations, some
users may drive to far away charging stations generating a supplementary
traffic, inducing high external costs, that can be controlled and limited if the
charging stations are located efficiently. Considering the impact of congestion
on pollutant emissions, a better distribution of charging stations, in sufficient
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Fig. 7: Occupation of charging stations for 5% electric vehicles.

quantity (See Figure 8 for a electric vehicles share of 10%), will reduce waiting
times and the environmental consequences of combustion engine vehicles.

Fig. 8: Optimal charging stations proposed vs current deployed.

One of the main results of our simulation is quite surprising. The instal-
lation of new charging stations, in addition to the current ones, makes traffic
flow smoother. This means that cars with combustion engines pollute less. For
example, an optimization of the charging stations for the reference situation
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(0.85 % of electric vehicles), results in a 2.31 % decrease in CO2 emmissions
(See Table 2, scenario b).

Recall that the decrease in emissions and fuel consumption is greater as
the penetration of electric vehicles increases due to our particular choice of
agent. Table 2 reports the impacts of the increase in the number of electric
vehicles when the number of charging stations are unchanged (scenario a), and
when new charging stations are deployed with optimized locations (scenario
b). There are several pollutant gases, but their values are generally well cor-
related. For a representative picture, we only report values of carbon dioxide
emissions (CO2), a greenhouse gas, and emissions of particulate matter (PM),
fine particles. We start with a market share of electric vehicles equal to 0.85%,
that corresponds to the actual situation, and then consider several higher val-
ues to evaluate the impact of larger market shares up to 20% (See Table 2).

Impacts in %

CO2 PM FUEL

Electrical vehicles share Scenarios a/b Scenarios a/b Scenarios a/b

0.85% -2.26/-2.31 -2.11/-2.16 -2.24/-2.27

3.0% -8.84/-9.69 -8.21/-8.94 -8.70/-9.49

5.0% -12.45/-14.22 -11.58/-13.15 -12.40/-13.89

10.0% -22.10/-28.46 -20.81/-26.40 -22.00/-27.90

20.0% -33.10/-48.70 -31.11/-45.44 -32.19/-47.82

Table 2: Reduction of CO2 and PM emissions and of fuel consumption when
optimizing the number and locations of charging stations. In each case, the
percentage of replacement targets users with longest travel distances and this
yields the multiplicative impacts.

In each case, Table 2 reports the impacts on emissions and fuel consumption
for Scenario (a) and Scenario (b). We may first notice the high correlation
between CO2 emissions, PM emissions and fuel consumption. This is because
fossil fuels are the main sources of all pollutant gases, not only those reported
in Table 2. When the number of electric vehicles is small, and as expected, the
supply of new charging station and their optimized localization are not that
important as impacts under both scenarios are quite similar. But, as the market
share of electric vehicles increases, the impacts for Scenario (b) are significantly
better than those for Scenario (a). Indeed, even if the deployment of new
charging station does not seem to be a major issue in the actual situation, it
will play a key role in the development of the market of electric vehicles. We
must also remind that value for Table 2 are obtained on the basis that the
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switch to electric vehicles is made by the users who have the longest travel
distances. We did not report here the values for cases where users switch
to electric vehicles independently with their daily travel distances, but the
impacts are of comparable magnitudes to the market share of electric vehicles,
e.g. a 10% market share of electric cars will lead to a reduction of emissions
and fuel consumption to about 10% (unit elasticity). When only short distance
users switch to electric vehicles the impacts are of smaller values, and charging
stations are less used.

In addition to the environmental benefits, the effect of optimizing charging
stations is most felt in the reduction of waiting times for electric vehicles at
free charging stations. In the reference scenario (0.85%), an optimal allocation
of 100 additional charging stations in the North of France halves the morning
peak waiting time and increases the number of vehicles charging (Compare
Figure 9 and Figure 10).
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Fig. 9: Occupation of curent 1 079 charging stations for 0.85% modal share.

The optimization of the location of new charging stations is more significant
when considering the evolution of the modal share of electric vehicles. For
example, with the current location of the charging stations, a simulation of 10%
of electric vehicles results in more cars waiting for free charging stations than
charging vehicles (See Figure 11). The optimal allocation of 400 additional
charging stations reverses the situation (See Figure 12), with a 30% decrease
in vehicles waiting to charge and a 25% increase in vehicles charging.

5 Conclusion

We have developed a model of transport simulation that includes several trans-
port modes, including electric vehicles. The model covers a large area in the
North of France with both urban and intercity trips. The transport model was
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Fig. 10: Occupation of optimized 1 179 charging stations for 0.85% modal
share.
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Fig. 11: Occupation of 1079 charging stations for 10% modal share.

combined with an optimization module to find the most efficient locations of
the charging stations.

Our analysis has shown that, given the expected increase in the market
share of electric vehicles, public authorities and involved operators should be
careful when planning the location of charging stations to support energy
transition policies.

Our results show that the traveled distance of the users who switch to elec-
tric cars is main factor for positive impact to this energy transition. Indeed,
if the users who switch to electric cars have daily short trips (as one may
comment the actual situation) the impacts on the emissions of pollutant gases
and fossil fuel consumption will be small. More precisely, significantly smaller
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Fig. 12: Occupation of 1 479 charging stations.for 10% modal share.

than the proportion of the users who switch to electric vehicles. Public poli-
cies aiming with ambitious environmental objectives need to target users with
important daily traveled distance. This group of users is less likely to switch
to electric vehicles for instance and given the available technologies. Specific
incentives should be provided for this group of users and for the producers of
electric vehicles to improve their supply electric vehicles with large autonomy.
In this case, however, the demand for charging stations will increase signifi-
cantly. Without new charging stations, users will need to wait for a long time
in queue to access the charging stations. They may consider using more avail-
able charging station that are far away from their routes, diverting some traffic
which may increase congestion and emissions. So, it is important in this case
to increase the number of charging stations with an optimized locations.

Indeed, an optimization of the number and of the locations of charging
stations produces two positive impacts. The first one is a direct impact for
the users of electric vehicles. With no planning of the new recharging stations,
there will be more waiting vehicles for a free charging station than vehicles
loading even for small market share of electrical vehicles. The second positive
impact is indirect to non electric vehicles. When optimizing the number and
the location of charging stations, the traffic of other vehicles is smoother and
there is an important reduction of emissions of polluting gases of other vehicles
(28% of reduction of CO2 emission for only 10% of market share of electrical
vehicles).

The model can be extended in some interesting directions. In particular,
one may consider a broader scope where several competing firms are choosing
the locations of their charging stations. It is important to see whether com-
petition improves the deployment of charging stations and how it compares
with optimized one. A second extension that we plan to address in a future
research is to improve the possibility of combining several transport modes for
a given trip. Electric and light vehicles are particularly interesting in this case.
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Indeed, they could be used to feeder to a mass transport system that connects
suburban areas to the city-center. Finally, for a more advanced examination of
electric mobility, it will be interesting to include shared modes, a feature that
we plan to consider in the near future.
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