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ABSTRACT 

The computation of solvation energies has many uses in several fields, such as design of 

separation processes, pharmacology and drug-design, and kinetic modeling. These 

applications require thermodynamic models capable of accurately predicting solvation 

energies, accounting for the temperature dependency of this property, and which are fast and 

robust. Within this framework, we compared two COSMO-based continuum solvation models 

(COSMO-RS and COSMO-SAC-dsp) with two versions of predictive cubic equations of state 

well-acknowledged for their efficiency (PSRK and UMR-PRU). For this purpose, a large 

experimental set of 65,000 datapoints extracted from the COMPSOL databank was 

considered. Comparisons between computed and experimental data were performed for Gibbs 

solvation energy and, for the first time in the literature, for both entropy and enthalpy of 

solvation simultaneously. For simpler binary mixtures, in which hydrogen bonding does not 

take place, all models were capable of providing accurate predictions, with average absolute 

deviations below 0.3 kcal/mol regarding the solvation Gibbs energy. For more complex 

associating mixtures, COSMO-RS showed the best correlation between experimental and 

calculated data, especially for aqueous systems; among EoS, it is observed that the PSRK 

model offers the best accuracy.  
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1 INTRODUCTION 

The estimation of solvation Gibbs energy (denoted          for a given component  ) is an 

important issue in process and product design. Given that this thermodynamic quantity is 

related to the degree of affinity between different chemical species, it can be very useful, for 

example, in the selection of an adequate solvent for a separation process or a chemical 

reaction. The computation of solvation quantities is also a critical matter in pharmacology and 

drug-design, since the solvation phenomena directly affects the affinity of a given biologically 

active substance for target proteins, as well as its solubility and chemical stability [1–4].  

Solvation energies are also required for liquid-phase detailed chemical kinetic models, that 

involves a large number of reactions and chemical species, and are based on gas-phase models 

developed to simulate pyrolysis, combustion or atmospheric oxidation phenomena [5–7]. 

These examples highlight the need for predictive and accurate methods that can predict 

solvation energies and at the same time are fast and robust and can be applied to a wide range 

of chemical compounds. As a noticeable feature, these applications cover large ranges of 

temperature and therefore, models used for solvation energies must include a temperature 

dependency as a prerequisite.  

With regard to the accuracy, a high degree of detail can be achieved by using the so-called 

discrete solvation models. In such models, both solute and solvent are treated explicitly, i.e., 

the solute is considered to be surrounded by a large number of solvent molecules. Solute and 

solvent molecules can be described by quantum mechanics (QM), and the sampling of their 

possible arrangements is usually carried out by Monte-Carlo (MC) or Molecular Dynamics 

(MD) algorithms [8]. An alternative to simplify the calculation is to use classical molecular 

mechanics (MM) for the representation of the surrounding solvent molecules. The accuracy of 

such simulations depends on the quality of the force-field potentials and the accuracy of the 

simulation algorithm used. This type of discrete method has been widely used for the 

computation of solvation quantities in pharmacology and drug-design [9–11]. Although 

accurate, such approaches require high computational efforts, which limits their application as 

a high-throughput method. 

Computational costs can be further reduced by using continuum solvation models, in which a 

solute molecule is described at a homogeneous QM level and then placed into a void cavity 

within a continuous dielectric medium that represents the ensemble of solvent molecules [12]. 

This category includes the solvation models (SMx) derived from generalized Born theory 
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(GB), as well as the continuum solvation models based upon apparent surface charge methods 

(ACS), such as polarizable continuum models (PCM) and conductor-like screening models 

(COSMO) [8]. Due to the good trade-off between accuracy and computational efforts 

provided by continuum solvation models they have been widely used for the computation of 

solvation quantities [13–16]. This approach can be adapted to accurate / high-throughput 

calculations if the results of the electronic structure calculation (QM) are tabulated or can be 

approximated without loss of accuracy.  

Strictly speaking, the chemical potential of solvation of a species  , often simply called 

“solvation energy”, is defined as the change in the chemical potential of   when a molecule, 

devoid of kinetic energy, is transferred from a perfect-gas phase into a condensed phase [17]. 

Denoting    
 , the pseudo-chemical potential of component  , i.e., the chemical potential of 

species   in a given mixture, when   is devoid of kinetic energy, the solvation chemical 

potential is defined as: 

 ,

solv i i,liq ig (T,P, ) g (T,P, ) g (T,P)    n n   (1) 

Where symbol  refers to perfect-gas properties and   denotes the mole number vector of the 

mixture considered. This is the strict definition of solvation chemical potential following Ben-

Naim seminal proposal [17] that will be used all along this study. 

Assuming infinite dilution of a solute in a solvent, one can demonstrate that this quantity can 

be calculated by a combined estimation of pure solvent density (denoted       
    for liquid 

solvent  ) and the fugacity coefficient of the infinitely-diluted solute (denoted       
  for solute 

 ) at a given condition of temperature ( ) and pressure ( ), as highlighted in Eq. (2) [17,18]. 

This equation is well adapted for the implementation of an approach based on the use of an 

equation of state (EoS) which is a promising approach as highlighted previously by a common 

study between our research group and authors of the UMR-PRU EoS [19].  

 
i,liq

solv i sat

j,liq

P (T,P)
g (T,P) RT ln

RT (T,P)




 

   
  

  (2) 

Regardless of the approach adopted, it is possible to predict other solvation quantities from 

the calculation of          for instance, solvation entropy (        ) and enthalpy (        ) can 

be calculated by Eqs. (3) and (4), respectively. The calculation of such properties are 

especially interesting for systems in which entropy (           ) and enthalpy (        ) 

contributions compensate each other, so that the solvation Gibbs energy remains small [20]. 
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  solv i
solv i

P,

g
s

T

 
   

  x

  (3) 

  
solv i solv i solv ih g T s     (4) 

With this in mind, we undertook this study to compare the prediction capability of COSMO-

based approaches (COSMO-RS and COSMO-SAC-dsp) with EoS-based approaches, using 

two predictive versions of cubic EoS: the PSRK and UMR-PRU models. These EoS were 

selected mainly for two reasons: (i) they are among the most efficient predictive EoS 

currently available in the open literature, and (ii) they enable to model simple to complex 

mixtures including the ones were chemical association (e.g., hydrogen bonding) takes place. 

To compare these models on a fair basis, the extensive COMPSOL databank [18] was used as 

reference data for the computation of the solvation quantities of interest (Gibbs energy, 

entropy and enthalpy). In order to provide an instructive comparison of the different models, a 

systematic classification of the binary mixtures was carried out based on the associative 

character of their compounds. It is important to make it clear that this benchmarking study 

focused only on neutral molecules. 

2 METHODS 

2.1 Thermodynamic models 

2.1.1 Conductor-like screening models (COSMO) 

In short, the prediction of thermodynamic properties with COSMO-type models is based on 

molecular quantum calculation in gas phase, mostly DFT methods, followed by a conductor-

like screening calculation (COSMO) [21]. This calculation generates the so-called σ-profile, 

which basically stands for a distribution of the local screening charges [22]. The screening 

charge density (σ) is then one of the descriptors used in the further calculation of 

thermodynamic quantities, along with size and shape descriptors for the calculation of 

combinatorial contributions, and element specific coefficients used to estimate the dispersive 

interactions [23]. In COSMO-RS (realistic solvation), such calculation is based on the 

estimation of the chemical potential of an average molecular contact area of the ensemble that 

represents the condensed phase. This information is afterwards used to calculate the chemical 

potential of a given solute in this ensemble [24].  

On the other hand, in COSMO-SAC (segment activity coefficient), the activity coefficient of 

the surface segments is usually calculated instead. Indeed, COSMO-SAC is still 

mathematically equivalent to COSMO-RS, with few differences. For instance, the formulation 



5 

 

of the combinatorial term and the hydrogen-bonding interaction energy contribution are 

different from one model to another [25,26]. In this study, we used the COSMO-SAC-dsp 

version, which introduces a supplementary dispersion term calculated from the one-parameter 

Margules equation [27]. 

2.1.2 Equation of state (EoS) 

Regarding the EoS approach, the predictive Soave–Redlich–Kwong (PSRK) and the 

Universal Mixing Rule-Peng Robinson UNIFAC (UMR-PRU) models were evaluated. Both 

models combine a cubic EoS with an activity-coefficient (or, excess Gibbs energy,   ) 

model.  

In the case of the PSRK model, the EoS adopted is the Soave–Redlich–Kwong (SRK), and the 

mixing rule is MHV1 combined with a modified UNIFAC    model proposed by J. 

Gmehling [28–32]. The UMR-PRU combines the volume-translated Peng-Robinson (VTPR) 

EoS with a MHV-based mixing rule that eliminates the double combinatorial term that 

appears in the original formulation of MHV mixing rules [33]. In this case, the    model used 

in the mixing rule is a modified version of the UNIFAC model previously proposed by 

Hansen and co-workers [34].  

Due to the use of a predictive    model, for both EoS, three to four pure-compound 

parameters are required as input parameters for each component in the mixture: their critical 

temperature, critical pressure, and acentric factor. An additional volumetric translation 

parameter is present in the UMR-PRU model. 

2.2 Reference dataset (COMPSOL databank) 

The benchmark of the different models was based on experimental data extracted from the 

COMPSOL databank [18] (where COMPSOL stands for Comprehensive solvation). The 

advantage of using this database is the large variety of chemical species available, as well as 

the wide range of pressure and temperature conditions. It is certainly the widest database of 

solvation properties currently available. Indeed, the original COMPSOL dataset comprises 

14,202 binary mixtures involving 865 different solvents and 775 different solutes. Altogether, 

70,062 experimental values for solvation energy and 29,344 experimental values for solvation 

entropy and enthalpy data, at infinite dilution, are reported in this database [18]. 

It was not possible to make use of the entire COMPSOL data. In fact, due to some limitations 

related to the models considered in this study, certain filters had to be applied in order to 

ensure that the various approaches were being used within their respective scopes of 
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application, or even that their application was actually possible. Thus, we considered only 

experimental data for which the following conditions were satisfied: 

 The solvent is liquid. Therefore, the experimental pressure and temperature must be lower 

than the critical coordinates of the solvent (                and                ). 

 The solvent remains incompressible, which is a starting assumption for the use of 

COSMO-based models. This assumption is considered valid provided            .  

 The solute and solvent must have COSMO files (i.e., the files containing input 

information for use of COSMO based models) present in both COSMOTherm and Simulis 

databases (see section 2.4), in order to enable the calculation with COSMO-RS and 

COSMO-SAC-dsp, respectively, without requiring an additional ab initio calculation step. 

 For the COSMO-SAC-dsp model, an additional assumption must be considered: only data 

at temperature   such that   
         bar (see section 2.4). 

 The solute and solvent can be decomposed into groups for the use of the group 

contribution methods of each predictive cubic EoS considered (PSRK and UMR-PRU). In 

this case, we considered only binary mixtures in which all interaction parameters between 

groups were available. 

In the case of the EoS-approach, a complementary verification was added to ensure that the 

calculations were actually performed in liquid phase. Indeed, although the solvent is liquid in 

experimental conditions of   and  , the EoS may not predict the correct phase. Consequently, 

as a preliminary step, the vapor pressure (        
   ) was calculated and then compared with the 

experimental pressure (    ). The higher value was then retained for the subsequent 

calculations of the solvation quantities:                    
    . 

Due to these filters, a total of 81% of the data published in the COMPSOL database was 

actually taken into account in the present work.  

2.3 Binary association codes (BAC) 

As stated in the introduction section, one of the aims of this work is to perform a systematic 

analysis of the results obtained for the different binary systems available in the extensive 

COMPSOL database. To discuss the results, binary mixtures will be sorted according to their 

binary association code, a descriptor revealing the presence and strength of molecular 

association, through hydrogen bonding mainly. Note that the degree of association in a 

mixture has a significant impact on the solvation properties. For a detailed discussion on this 

topic see [35]. 
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In general terms, the binary association code typifies the hydrogen-bonding capability of both 

compounds in the binary mixture. At first, this capability is evaluated for each pure compound 

based on their σ-profiles obtained from DFT and COSMO calculation, as described in [36]. 

Basically, a pure component, depending on its ability to donate and/or accept hydrogen, can 

be classified as: 

 NA = Nonassociating, nonpolar (alkanes) 

 HA = Hydrogen-Acceptor, polar but nonassociating (ketones, aldehydes, and ethers) 

 HD = Hydrogen-Donor, polar but nonassociating (di- or trihalogenated compounds) 

 SA = Self-Associating, polar and associating (water, alcohols, and carboxylic acids) 

As illustrated in Table 1, by performing all of the possible combinations between the four 

types (NA, HA, HD and SA) of pure components, it was possible to define 9 categories of 

binary systems, identified each by the so-called binary association code (BAC). 

Table 1 – Binary association code (BAC). 

  Solute 

  NA HA HD SA 

S
o
lv

en
t 

NA NA-NA 

(1) 

- - - 

HA HA-NA 

(2) 

HA-HA 

(4) 

- - 

HD HD-NA 

(3) 

HD-HA 

(6) 

HD-HD 

(4) 

- 

SA SA-NA 

(5) 

SA-HA 

(8) 

SA-HD 

(7) 

SA-SA 

(9) 

 

By grouping together some of these 9 categories, it was possible to further classify binary 

systems into four main types based on the level of association they exhibit: 

 Type 1 (BAC =1-4): mixtures without association. 

 Type 2 (BAC = 5): mixtures in which only self-association takes place, but tends to be 

broken.  

 Type 3 (BAC = 6): mixtures in which only cross-association takes place. The two 

components do not exhibit association when they are pure, but their mixture exhibits 

hydrogen bonding.  

 Type 4 (BAC = 7-9): mixtures in which both cross-association and self-association take 

place.  
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2.4 Technical details 

The predictions of solvation Gibbs energy using COSMO-RS were performed in the 

commercially available software COSMOTherm. The quantum chemical level considered was 

BP/TZVPD-FINE and the COSMO-RS parametrization was BP_TZVPD_FINE_C30_1401. 

All the COSMO files were already available in the COSMOTherm database. In COSMO-RS, 

the solvation Gibbs energy is directly calculated from the solute chemical potential in liquid 

and gas phase, as showed in Eq.(5). In this equation, the chemical potential of the solute 

molecule infinitely diluted in the solvent (      
 ) is obtained from statistical thermodynamic 

calculation that considers the σ-profiles and the σ-potential, whereas the solute’s chemical 

potential in the gas phase (      ) is estimated from the DFT and COSMO calculation outputs, 

as denoted in Eq.(6). 

  
solv i i,liq i,gasg (T) (T) (T)     (5) 

 
i,gas i,gas i,cosmo ring i,ring gas(T) E E n (T)       (6) 

In the equation above,        and          are the quantum chemical total energies of the 

solute in the gas phase and in the COSMO conductor, respectively. The adjustable parameter 

      is a correction for ring compounds, and         is the number of ring atoms in the 

molecule. Finally,      provides the link between the reference states of the system in the gas 

and in the liquid phase. 

Meanwhile, the calculation with COSMO-SAC-dsp were carried out using Simulis 

Thermodynamics v.2.0.38, with the original parameterization of COSMO-SAC-dsp published 

in [27]. In this case, the σ-profile of the different molecules was generated by GGA-

WVNBP/DNP ab initio method. Again, only the COSMO files already available in the 

software database were taken in account. When COSMO-SAC-dsp is used, Simulis 

Thermodynamics returns the activity coefficient of the solute (      
 ). This result can be 

related to          by means of Eq. (7) below (derivation leading to this equation can be found 

in ref. [18]), which actually is an equivalent representation of Eq. (2). Both solute saturation 

pressure (  
   ) and solvent liquid density (      

   ) were obtained from DIPPR database. 

 

sat sat

i i,liq i

solv i
sat

sat i
j,liq sat

j,liq

P (T) (T) (T)
g (T,P) RTln

P (T) P
RT (T) exp

RT (T)





 
 

   
        

    

  (7) 
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In the present case, assuming that the vapor phase of pure   in vapor-liquid equilibrium at   

behaves as a perfect gas, the fugacity coefficient sat

i (T)  was set to 1. As mentioned before, to 

make this assumption acceptable, only data at temperature   such that   
         bar were 

considered.  

We also used the same version of Simulis Thermodynamics for the calculation of solvation 

energies from the cubic EoS (PSRK and UMR-PRU), which is done by Eq. (2). In this case, 

saturation pressure (  
   ) and solvent liquid density (      

   )  were directly calculated by the 

EoS (not obtained from DIPPR correlations). 

For all models, the solvation entropy was calculated by Eq. (3), via the finite difference 

method (central scheme), and the solvation enthalpy was then calculated by Eq.(4). 

3 RESULTS AND DISCUSSIONS 

The comparison of the different models is done on the basis of the average absolute 

deviations, which can be consulted in detail in the appendix 1, along with the standard 

deviation results, for the three solvation quantities considered in this study (solvation Gibbs 

energy, solvation entropy, and solvation enthalpy). 

3.1 Solvation Gibbs Energy 

Concerning the prediction of the solvation Gibbs energy, Figure 1 shows the performance of 

all models for aqueous and non-aqueous systems. It can be seen that, in general terms, all 

models are able to provide a satisfactory prediction of         
 

 in non-aqueous media, since 

the absolute average deviations did not exceed 0.4 kcal/mol. As could be expected, Figure 1 

pinpoints a significant deviation increase in the case where water is the solvent. Indeed, water 

has a complex association scheme with four possible hydrogen bonding sites, which normally 

leads to a strongly non-ideal behavior. In that respect, COSMO-RS clearly shows better 

performances than the other models evaluated in this study. 
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Figure 1 –Average absolute deviations between experimental solvation Gibbs energy (or 

equivalently, chemical potential of solvation         ) data and their prediction from 4 models 

for aqueous and non-aqueous systems. 

The hydration results put forward the role of hydrogen bonding in the quality of the 

prediction. For that matter, Figure 2 and Figure 3 illustrate the variation of the average 

absolute deviation according to the association character of the binary mixtures. As expected, 

a good agreement between experimental and calculated data was found for all models 

regarding the non-associating binary mixtures (BAC=1-4), with a slight advantage to 

COSMO-SAC and UMR-PRU models. In fact, this sort of system is generally well correlated 

by most of sophisticated-enough thermodynamic models. Small deviations were also observed 

for binary mixtures in which only cross-association takes place (BAC=6). In such systems, 

solute and solvent molecules form up hydrogen bonds with each other and this stabilizes the 

liquid phase. Note that the good performances of cubic models for the description of cross-

associating systems were highlighted already by past studies (e.g., see Table 15 of [35]). From 

Figure 2 and Figure 3 we can observe that all models were able to describe such a behavior 

satisfactorily. 
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Figure 2 – Average absolute deviations between experimental solvation Gibbs energy 

(        ) data and their prediction from 4 different models calculated for each binary 

association code (BAC). 

 

Figure 3 – Average absolute deviations between experimental solvation Gibbs energy 

(        ) data and their prediction from 4 different models calculated for each type of 

association. 

On the other hand, when cross and self-association happen simultaneously (BAC=7, 8, 9), a 

more complex phenomenon takes place. Due to dilution effects, the hydrogen bonds between 

self-associating molecules tend to be broken while new hydrogen bonds are formed by cross-

association. For these cases, an increase in the deviation between experimental and calculated 

data was observed. Attention must be paid to mixtures containing self-associating and 

hydrogen-donor molecules (BAC 7), since a considerable loss of accuracy was reported for 
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alcohols or water with halogen compounds. A significant increase in deviation was also 

observed for binary mixtures of self-associating molecules (BAC 9), such as alcohols, using 

UMR-PRU EoS. COSMO-RS presented the best level of accuracy for this sort of systems. 

Moreover, hydrogen bonds between self-associating molecules are also broken when they are 

mixed with non-associating molecules (BAC=5), but in this case there is no cross-association 

to stabilize the liquid-phase and, thus, phase splitting is often observed. This kind of mixture 

is naturally more difficult to be represented by a thermodynamic model, which explains the 

increase in the deviations results observed in all models. The COSMO-RS approach provided 

the most accurate results for this case as well.  

Broadly speaking, COSMO-RS was found to be the most accurate model, especially mixtures 

showing high degree of association (i.e., with a binary association code greater than 4). Both 

COSMO-RS and COSMO-SAC-dsp models have a dedicated hydrogen bonding term for 

calculating the interacting energy between the surface segments. It seems that the 

temperature-dependent formulation implemented in COSMO-RS tends to be more accurate 

than COSMO-SAC-dsp for the calculation of the solvation quantities of associating mixtures 

at infinite dilution. On the other hand, PSRK and UMR-PRU EoS do not have a specific term 

to predict the association phenomena; it must however be noticed that these complex 

interactions are addressed partially through the use of advanced EoS/   mixing rules.  

Surprisingly, PSRK provided better results than UMR-PRU for most associating binary 

mixtures. One could say that it is in contrast to expectations since the addition of a volume-

translation parameter in the latter model is supposed to lead to better predictions of liquid-

phase density [37]. Moreover, unlike PSRK, the mixing rules of UMR-PRU do not suffer 

from the double combinatorial term issue [38,39]. Therefore, better performances of UMR-

PRU over PSRK would be expected, especially for asymmetric systems. However, when there 

is no hydrogen bond, UMR-PRU shows better performance. 

3.2 Solvation entropy and enthalpy 

Let us now turn to the prediction of other solvation quantities. Figures 4-6 show the deviation 

results between experimental and calculated data for solvation entropy, whereas Figures 7-9 

show the deviation results for solvation enthalpy. 
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Figure 4 – Average absolute deviations between experimental solvation entropy (or 

equivalently, partial molar entropy of solvation         ) data and their prediction from 4 

models for aqueous and non-aqueous systems. 

 

Figure 5 – Average absolute deviations between experimental solvation entropy (        ) data 

and their prediction from 4 different models calculated for each binary association code 

(BAC). 
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Figure 6 – Average absolute deviations between experimental solvation entropy (        ) data 

and their prediction from 4 different models calculated for each type of association. 
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Figure 7 – Average absolute deviations between experimental solvation enthalpy (or 

equivalently, partial molar enthalpy of solvation         ) data and their prediction from 4 

models for aqueous and non-aqueous systems. 

 

Figure 8 – Average absolute deviations between experimental solvation enthalpy (        ) 
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Figure 9 – Average absolute deviations between experimental solvation enthalpy (        ) 

data and their prediction from 4 different models calculated for each type of association. 
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Figure 10 – Probability distribution of signed deviations between the calculated and 

experimental data of solvation Gibbs energy (a), solvation entropy (b) and solvation enthalpy 

(c) from 4 models (―COSMO-RS, ―COSMO-SAC-dsp, ―PSRK, ―UMR-PRU). 
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For all models, the deviation distribution showed a gaussian behavior with mean close to zero. 

Only for the distribution of entropy and enthalpy deviations calculated by UMR-PRU, the 

mean values are slightly displaced from the origin of the abscissa axis. 

4 CONCLUSIONS 

In this paper, we have compared the accuracy of different methods (COSMO-based 

approaches and EoS) in the prediction of solvation energies of binary mixtures at infinite 

dilution. For this purpose, around 65,000 experimental points from the COMPSOL database 

were used as reference data. To analyze the results in more detail, the binary mixtures were 

sorted according to their degree of association (through hydrogen bonding). 

As expected, all models (COSMO-RS, COSMO-SAC, PSRK and UMR-PRU) provided 

satisfactory predictions for non-associating binary mixtures. In such cases, the average 

absolute deviation did not exceed 0.30 kcal/mol for the calculation of the solvation Gibbs 

energy. For binary mixture with more complex association schemes, COSMO-RS and PSRK 

showed better performance than COSMO-SAC and UMR-PRU. A similar conclusion can be 

drawn with respect to entropy and enthalpy of solvation. 
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APPENDIX 1 

Table 2 – Average absolute deviations (AAD) and standard deviations (SD) between experimental solvation Gibbs energy (or, more precisely, 

chemical potential of solvation) data and their prediction with COSMO-based and equation-of-state approaches. 

Deviations results  

Npoints 

COSMO-RS COSMO-SAC-dsp  PSRK UMR-PRU 

        
  

AAD 

 [kcal/mol] 

SD  

[kcal/mol] 

AAD 

 [kcal/mol] 

SD  

[kcal/mol] 

AAD  

[kcal/mol] 

SD  

[kcal/mol] 

AAD  

[kcal/mol] 

SD 

 [kcal/mol] 

All binaries 56603 0.29 0.30 0.35 0.63 0.32 0.49 0.34 0.65 

Aqueous systems 5511 0.41 0.50 0.82 1.34 0.68 0.83 1.00 1.02 

Non-aqueous systems 51092 0.28 0.27 0.30 0.46 0.28 0.42 0.26 0.55 

BAC = 1 8047 0.22 0.18 0.14 0.18 0.18 0.20 0.12 0.41 

BAC = 2 8005 0.24 0.19 0.20 0.27 0.21 0.28 0.16 0.27 

BAC = 3 1784 0.19 0.15 0.18 1.04 0.25 0.45 0.21 0.50 

BAC = 4 3930 0.24 0.20 0.14 0.21 0.21 0.21 0.17 0.41 

BAC = 5 14011 0.32 0.34 0.52 0.61 0.41 0.70 0.43 0.73 

BAC = 6 1007 0.21 0.16 0.16 0.17 0.27 0.37 0.33 1.08 

BAC = 7 1720 0.25 0.25 0.49 0.63 0.51 0.80 0.39 0.57 

BAC = 8 10265 0.36 0.40 0.43 0.84 0.35 0.44 0.41 0.72 

BAC = 9 7834 0.32 0.33 0.45 0.77 0.38 0.43 0.57 0.77 

No association 

 (BAC = 1-4) 
21766 0.23 0.19 0.16 0.37 0.20 0.26 0.15 0.37 

self-association only  

(BAC = 5) 
14011 0.32 0.34 0.52 0.61 0.41 0.70 0.43 0.73 

cross-association only  

(BAC = 6) 
1007 0.21 0.16 0.16 0.17 0.27 0.37 0.33 1.08 

cross and self-association  

(BAC = 7-9) 
19819 0.34 0.36 0.44 0.79 0.38 0.48 0.47 0.73 
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Table 3 – Average absolute deviations (AAD) and standard deviations (SD) between experimental solvation entropy (or, more precisely, partial 

molar entropy of solvation) data and their prediction with COSMO-based and equation-of-state approaches. 

Deviations results 

Npoints
tot 

COSMO-RS COSMO-SAC-dsp PSRK UMR-PRU 

        
  

AAD 

[cal/mol.K-1] 

SD 

[cal/mol.K-1] 

AAD 

[cal/mol.K-1] 

SD 

[cal/mol.K-1] 

AAD 

[cal/mol.K-1] 

SD 

[cal/mol.K-1] 

AAD 

[cal/mol.K-1] 

SD 

[cal/mol.K-1] 

All binaries 23586 2.1127 11.3976 2.1095 11.3644 2.3699 11.4305 3.4955 12.8297 

Aqueous systems 448 6.7120 5.1403 6.0145 5.4465 8.1271 5.5060 6.9827 8.1061 

Non-aqueous systems 23138 2.0236 11.4670 2.0338 11.4357 2.2585 11.4867 3.4279 12.8948 

BAC = 1 5445 1.1929 1.5104 1.0545 1.2849 1.2211 1.3826 1.8188 5.8779 

BAC = 2 3997 1.6078 2.9433 1.5583 2.9391 1.7387 3.0603 3.0413 7.3874 

BAC = 3 921 1.9922 4.2126 1.9982 4.2634 2.1394 4.2782 2.4298 5.0790 

BAC = 4 2031 1.4220 2.1520 1.3675 2.1003 1.6499 2.2945 2.7346 2.7952 

BAC = 5 4240 3.1030 25.9568 3.5305 25.8987 4.0006 25.9434 5.6694 27.1489 

BAC = 6 398 2.3441 2.7709 2.3254 2.6162 2.3953 2.2935 4.8350 4.8055 

BAC = 7 676 2.3251 2.3577 2.2597 2.1099 2.0210 2.3240 3.5300 3.0890 

BAC = 8 3670 2.7838 4.2289 2.6367 4.0958 2.8666 4.4770 3.9430 6.0326 

BAC = 9 2208 2.8567 4.6770 2.7475 4.6004 3.2496 4.7266 4.4260 7.3806 

No association 

(BAC = 1-4) 
12394 1.4236 2.4356 1.3384 2.3808 1.5265 2.4837 2.4085 6.0229 

self-association only 

(BAC = 5) 
4240 3.1030 25.9568 3.5305 25.8987 4.0006 25.9434 5.6694 27.1489 

cross-association only 

(BAC = 6) 
398 2.3441 2.7709 2.3254 2.6162 2.3953 2.2935 4.8350 4.8055 

cross and self-association 

(BAC = 7-9) 
6554 2.7610 4.2403 2.6351 4.1233 2.9084 4.4078 4.0631 6.3084 
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Table 4 – Average absolute deviations (AAD) and standard deviations (SD) between experimental solvation enthalpy (or, more precisely, partial 

molar enthalpy of solvation) data and their prediction with COSMO-based and equation-of-state approaches. 

Deviations results  

Npoints
tot 

COSMO-RS COSMO-SAC-dsp  PSRK UMR-PRU 

        
  

AAD  

[kcal/mol] 

SD 

 [kcal/mol] 

AAD  

[kcal/mol] 

SD 

 [kcal/mol] 

AAD  

[kcal/mol] 

SD  

[kcal/mol] 

AAD  

[kcal/mol] 

SD 

 [kcal/mol] 

All binaries 23586 0.80 4.35 0.95 4.53 0.81 4.34 1.28 4.82 

Aqueous systems 448 2.47 1.67 1.90 1.58 2.00 1.54 2.66 2.61 

Non-aqueous systems 23138 0.75 4.39 0.92 4.58 0.77 4.39 1.24 4.87 

BAC = 1 5445 0.49 0.68 0.75 2.13 0.39 0.48 0.67 1.72 

BAC = 2 3997 0.58 0.94 0.85 1.76 0.58 0.96 1.12 3.04 

BAC = 3 921 0.72 1.72 0.74 1.69 0.77 1.73 0.95 2.13 

BAC = 4 2031 0.53 0.74 0.54 0.77 0.70 0.87 1.00 1.07 

BAC = 5 4240 1.16 9.72 1.48 9.82 1.31 9.71 2.02 10.09 

BAC = 6 398 0.98 1.10 1.02 1.20 0.89 1.07 1.70 1.77 

BAC = 7 676 0.88 0.93 0.95 0.96 0.94 1.01 1.49 1.38 

BAC = 8 3670 1.00 1.35 0.92 1.27 0.91 1.42 1.34 1.87 

BAC = 9 2208 1.18 1.76 1.07 1.68 1.15 1.67 1.78 2.80 

No association  

(BAC = 1-4) 
12394 0.54 0.89 0.75 1.82 0.53 0.86 0.89 2.22 

self-association only 

 (BAC = 5) 
4240 1.16 9.72 1.48 9.82 1.31 9.71 2.02 10.09 

cross-association only 

 (BAC = 6) 
398 0.98 1.10 1.02 1.20 0.89 1.07 1.70 1.77 

cross and self-association  

(BAC = 7-9) 
6554 1.05 1.46 0.97 1.39 0.99 1.47 1.49 2.18 

 


