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Asymptotic analysis of plates in static and

dynamic strain gradient elasticity
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Abstract. We study the steady-state and transient responses of a second-order elastic plate by implementing
an asymptotic analysis of the three-dimensional equations with respect to two geometric characteristics
seen as parameters: the thickness of the plate and an inner material length. Depending on their ratio, four
different models arise. Conditions under which Reissner–Mindlin kinematics may appear are discussed while
the influence of crystalline symmetries is studied. The transient situation is solved through Trotter’s theory of
approximation of semi-groups of operators acting on variable spaces.

Keywords. Asymptotic analysis, Strain gradient elasticity, Plate models, Transient problems, m-dissipative
operators, Approximation of semi-groups in the sense of Trotter.

Manuscript received 2 June 2022, accepted 3 June 2022.

As an abundance and variety of literature exhibits the interest in second-gradient approaches,
here we propose an asymptotic mathematical modeling of thin strain gradient elastic plates. Even
if “la Statique consiste simplement dans l’étude de problèmes de Dynamique particuliers”, for
the reader’s convenience, the Sections 1 to 3 are dedicated to statics while Sections 4 and 5 deal
with the unsteady equations. In accordance with some of our previous works, we have chosen to
use notations that may seem daunting but have the advantage of conveying all the information
necessary to express the complexity of the studied problem.

As usual we do not distinguish between the physical euclidean space and R3. For all ξ =
(ξ1,ξ2,ξ3) of R3, ξ̂ stands for (ξ1,ξ2). The Greek coordinate indices will run in {1,2} whereas the
Latin ones will run in {1,2,3}. LetSn be the space of all n×n symmetric matrices, T3 the space of
third-order matrices with entries symmetric with respect to the first two indices, andK :=S3×T3.
These spaces are equipped with their usual inner product and norm denoted by · and | | (as well
as in Rn). The space of linear mappings from a space V into a space W is denoted by Lin(V ,W )
and when W = V we simply write Lin(V ). For any open subset G of Rn , H 1

Γ(G ,Rn) stands for the
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subspace of the Sobolev space H 1(G ,Rn) composed of the elements which vanish on a smooth
part Γ of the boundary ∂G of G while H 2

Γ(G ,Rn) is made of the elements u which belong to
H 1
Γ(G ,Rn) such that the derivative ∂νu with respect to the unit outer normal ν also vanishes on Γ.

1. Setting the static problem

A reference configuration of a thin strain gradient linearly elastic plate is the closure of
Ωε := ω× (−ε,ε). Here ε is a small positive number and ω a bounded domain of R2 with a
Lipschitz-continuous boundary. We assume that the strain energy density function of the plate is
(1/2)m(xε)k s (u) ·k s (u) with{

k s (u) := (eε(u),`g ε(u)) ∀u ∈ H 2(Ωε,R3)

s := (ε,`)
(1.1)

with mε a symmetric element of L∞(Ωε,Lin(K)) satisfying
mε =

[
a b

bT c

]
, a ∈ Lin(S3), b ∈ Lin(S3,T3), c ∈ Lin(T3)

∃αm > 0 s.t . mε(xε)k ·k ≥αm |k|2, ∀k ∈K a.e. xε ∈Ωε

(H0)

and where eε(u) is the linearized strain tensor associated with the field of displacement u, g ε

is the gradient of eε(u) (g εi j k := ∂εk eεi j ) while ` is a positive number representing an “inner
material length”. The plate is clamped on ΓεD := γD × (−ε,ε), where γD is a part with positive
length of ∂ω, and we assume that the work of the exterior loading on the plate stems from
`2Lε where Lε is an element of the strong dual H 2

ΓεD
(Ωε,R3)′ of H 2

ΓεD
(Ωε,R3), which could be

the classical loading through body and surface forces but also more special actions compatible
with second-grade continuum theories such as couples, symmetric double forces, tangential
surface couples, doubly normal and edge forces (see [1]). To simplify the presentation, as the
problem of determining the equilibrium configuration of the plate is linear, we are free to choose
a normalizing factor describing the magnitude of the loading, it is convenient to consider `2

(see the end of Remark 3.1). So the problem involves two main data s := (ε,`) and the field of
displacement us at equilibrium does satisfy:

(P s )

Find us in H 2
ΓεD

(Ωε,R3) such that∫
Ωε

mε(xε)k s (us ) ·k s (u)dxε = `2Lε(u), ∀u ∈ H 2
ΓεD

(Ωε,R3).
(1.2)

We recall that if ϑs := (σs ,µs ) denotes the couple made of the (classical) Cauchy stress tensor and
the hyperstress tensor satisfying ϑs = mεk s (us ), the volumic balance equation implied by (P s )
reads as:

∂ jσ
s
i j +∂ j kµ

s
i j k + f s

i −C s
i j , j −φs

i j , j = 0, (1.3)

where f s , C s and φs respectively denote densities of volumetric forces, volumetric couples and
symmetric double forces.

Due to the above assumptions on the data, (P s ) appears as a fourth-order elliptic boundary
value problem and has a unique solution, but the essential task is, due to various reasons—
especially numerical ones—to propose a simplified but accurate enough model. This will be done
by considering s as a couple of parameters taking values in a countable set of (0,+∞)2 with a
unique cluster point s̄ := (0, ¯̀) in {0}× [0,+∞) and studying the asymptotic behavior of us when s
goes to s̄.
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2. Asymptotic behavior for (P s)

Wishing to study various situations corresponding to the relative orders of magnitude of the
thickness and the internal length, we make the following assumption:

∃ ¯̀̄∈ [0,+∞]; ¯̀̄ := lim
s→s̄

`

ε
(Hstat1 )

and consider four cases indexed by p:
p = 1 : ¯̀∈ (0,+∞) i.e. the internal length is of order 1;

p = 2 : ¯̀= 0, ¯̀̄=+∞ i.e. the internal length is small but much larger than the thickness;

p = 3 : ¯̀= 0, ¯̀̄∈ (0,+∞) i.e. both the internal length and the thickness are similarly small;

p = 4 : ¯̀= 0, ¯̀̄= 0 i.e. the thickness is small but the internal length is much smaller.
(2.1)

Insofar as the internal length ` accounts for the microstructure inherent to a second-grade
material, it goes without saying that the cases p = 1,2 seem unrealistic. However, we felt it was
important to include them in the study in order to compare our results to the existing literature
but also and more importantly to show that it is possible to extend existing studies to more
interesting cases.

We also make assumption (Hstat2 ) on the generalized stiffness and assumption (Hstat3 ) on
the loading which express that the previous quantities stem from quantities defined on Ω :=
ω× (−1,1), the image ofΩε by a change of coordinates (see [2])

x = (x̂, x3) ∈ Ω̄ 7→ xε =Πεx := (x̂,εx3) ∈Ωε (2.2)

and, in the following, systematically xε and x are connected by xε =Πεx.
Assumption (Hstat2 ) reads as:

There exists a symmetric element m in L∞(Ω,Lin(K)) such that

αm |k|2 ≤ m(x)k ·k a.e. x ∈Ω, ∀k ∈K
mε(xε) = m(x) a.e. x ∈Ω.

(Hstat2 )

As

1

ε`2

∫
Ωε

mε(xε)(k s (us )−κs ) · (k s (us )−κs )dxε =
∫
Ω

m(x)(ks (us )−κs ) · (ks (us )−κs )dx (2.3)

it is natural and convenient to consider the field us :=Sεus defined on Ω, where:

(Sεu)(x) =
(

1

ε
û(xε),u3(xε)

)
a.e. x ∈Ω

ks (u) :=
( ε
`

e(ε,u), gε(u)
)

eαβ(ε,u) := eαβ(u) := 1
2 (∂αuβ+∂βuα)

εeα3(ε,u) = εe3α(ε,u) := eα3(u) := 1
2 (∂αu3 +∂3uα)

εe33(ε,u) := e33(u) := ∂3u3

gε,αβγ(u) := ε∂γeαβ(u), gε,αβ3(u) := ∂3eαβ(u)

gε,α3γ(u) = gε,3αγ(u) := ∂γeα3(u), gε,α33(u) = gε,3α3(u) := 1

ε
∂3eα3(u)

gε,33γ(u) := 1

ε
∂2
γ3u3, gε,333(u) := 1

ε2 ∂
2
33u3

κs (xε) := `κs (x) a.e. x ∈Ω, ∀κs ∈ L2(Ω;K).

(2.4)
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Actually the obvious relation (2.3) expresses that the relative energetic gap between the two fields
k s (us ) and κs defined on the physical domain Ωε is of the same order of magnitude as the gap—
measured on Ω—between their suitable images ks (us ) and κs . It is by means of this tool that we
will give a mechanical interpretation of our convergence results (in a rather classical sense) for
the “scaled” problem (P s ) set on a fixed abstract domain Ω.

So if ΓD := (Πε)−1(ΓεD ) and Lε is such that

Lε(v) := εLs (Sεv), ∀v ∈ H 2
ΓεD

(Ω,R3), (2.5)

where Ls is an element of the strong dual H 2
ΓD

(Ω,R3)′ of H 2
ΓD

(Ω,R3), the field us is the unique
solution to

(P s )

Find us in H 2
ΓD

(Ω,R3) such that∫
Ω

m(x)ks (us ) ·ks (u)dx = Ls (u), ∀u ∈ H 2
ΓD

(Ω,R3).

The last assumption on the loading is:
There exists (L̂s ,Ls3 ) in H 2

ΓD
(Ω,R3)′ such that

• Ls (u) = εL̂s (û)+Ls3 (u3), ∀u = (û,u3) ∈ H 2
ΓD

(Ω,R3)

• (L̂s ,Ls3 ) converges strongly in H 2
ΓD

(Ω,R3)′ toward (L̂,L3).

(Hstat3 )

The following notations and notions make it possible to infer from convergence results for
(P s ) the asymptotic behavior of the genuine physical problem (P s ) in a unified (they account
for the various “limit” kinematics) and concise manner. Of course, a reader in a hurry or not in-
terested in the details of rigorous mathematical developments can skip these however legitimate
notations and notions and head for the remarks following the statement of the key Theorem 2.1.

H 1
∂3

(Ω,Rn) := {u ∈ L2(Ω,Rn);∂3u ∈ L2(Ω,Rn)}
1H := H 2

ΓD
(Ω,R2)×H 1

ΓD
(Ω)×H 2

ΓD
(Ω)×H 1

ΓD
(Ω,R2)

2H := H 1
ΓD

(Ω,R2)×H 1
∂3

(Ω)×H 2
ΓD

(Ω)×H 1
∂3

(Ω,R2)
3H := H 1

ΓD
(Ω,R2)×H 1

∂3
(Ω)×H 2

ΓD
(Ω)×H 1

∂3
(Ω,R2)

pU :=

U = (uM , z,uF , y) ∈


H 2
γD

(ω,R2)×H 1
γD

(ω)×H 2
γD

(ω)×H 1
γD

(ω,R2) if p = 1

H 1
γD

(ω,R2)×L2(ω)×H 2
γD

(ω)×L2(ω,R2) if p = 2
3H ; ∂3uF = 0, uM + x3

¯̀̄ ∇̂uF ∈ H 1
γD

(ω,R2) if p = 3


peαβ(U ) := 1

2 (∂αuM
β

+∂βuM
α )

peα3(U ) := yα, pe33(U ) := z
pL(U ) := ¯̀L̂(uM )+L3(uF )

 ∀U = (uM , z,uF , y) ∈ pU , ∀p ∈ {1,2,3}.

(2.6)

Of course we will consider that any element of H m(Ω,Rn) which does not depend on x3 is
assimilated to an element of H m(ω,Rn). Let

pI− := {
(i , j ,k) ∈ {1,2,3}3 ; k ∈; if (i , j ) ∈ {1,2}2,

k = 3 if (i , j ) ∈ ({1,2,3}×3)∪ ({3}× {1,2,3})
}

, p = 1,2, 3I− =;
1I 0 =;, pI 0 := {(i , j ,k) ∈ {1,2,3}3 ; k 6= 3}, p = 2,3
pI+ := {1,2,3}3 \ ( pI−∪ pI 0), ∀p ∈ {1,2,3}

(pg ¦)i j k := gi j k , ∀ (i , j ,k) ∈ pI ¦, ∀g ∈T3

pT¦ := {pg ¦; g ∈T3}, pK¦ :=S3 × pT¦

}
∀¦ ∈ {−,0,+}

pk+ := (e, pg+), pk¦ := (0, pg ¦), ∀¦ ∈ {−,0}, ∀k = (e, g ) ∈K

 ∀p ∈ {1,2,3}.

(2.7)
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For all p in {1,2,3}, let (pm̃, pK , pK s ) in Lin(pK+)×Lin(L2(Ω, pK+),L2(Ω,K))×Lin(L2(Ω, pK+),
L2(Ωε,K)) defined by

pm̃ q ·q := Min {m k ·k ; k ∈K, pk+ = q, 2k0 = 0, 3k0 = 0}, ∀q ∈ pK+

m pK (q) · pK (q) = pm̃ q ·q, ∀q ∈ L2(Ω, pK+)
pK s (q)(xε) = ` pK (q)(x), ∀q ∈ L2(Ω, pK+), a.e. xε ∈Ωε

(2.8)

and finally for all U = (uM , z,uF , y) in pU , let pg (U ) in pT+ defined by

1gαβγ(U ) := ¯̀∂γeαβ(uM ), 1gαβ3(U ) := 2 ¯̀eαβ(y)−∂2
αβ

uF

1gα3γ(U ) := ¯̀∂γyα, 1g33γ(U ) := ¯̀∂γz
2gαβ3(U ) :=−∂2

αβ
uF

3gαβ3(U ) :=−∂2
αβ

uF , 3gα33(U ) := ¯̀̄∂3 yα, 3g333(U ) := ¯̀̄∂3z
pk(U ) := (pe(U ), pg (U )).

(2.9)

Thus the asymptotic behavior of us is determined through the

Theorem 2.1. Under assumptions (Hstati )1≤i≤3, there holds:

• When p ∈ {1,2,3}

lim
s→s̄

(
1

ε`2

∫
Ωε

mε(k s (us )− pk s (pU )) · (k s (us )− pk s (pU ))

)
dxε = 0, (2.10)

where pU is the unique solution to:

(pP )

Find pU in pU such that∫
Ω

pm̃ pk(pU ) · pk(U )dx = pL(U ), ∀U ∈ pU ,

where we simply denote pK s (pk(pU )) by pk s (pU ).
• When p = 4, one has:

lim
s→s̄

1

ε`2

∫
Ωε

mε(xε) k s (us ) ·k s (us )dxε = 0. (2.11)

Proof. As usual C denotes a constant independent of s which may vary from line to line. The
fundamental identity:

∂i j uk = ∂ j ei k (u)+∂i e j k (u)−∂k ei j (u) (2.12)

implies

|D2(εûs ,us3 )|L2(Ω,T3) ≤C |gε(us )|L2(Ω,T3) (2.13)

so that taking u = us in the formulation of (P s ) successively yields:

|gε(us )|L2(Ω,T3) ≤C ,
ε

`
|e(ε,us )|L2(Ω,T3) ≤C . (2.14)

Hence, when p = 4, e(us ) and e(ε,us ) converge strongly toward 0 in L2(Ω,S3). Hence (Hstat3 )
implies that gε(us ) converges strongly toward 0 in L2(Ω,T3) and, by (2.3), that (2.11) is true.

When p belongs to {1,2,3}, we go straightforwardly through the three usual steps:

• Step 1: First results on the asymptotic behavior of us .

Proposition 2.1. For all p in {1,2,3}, there exists a not relabeled subsequence and pU =
(puM , pz, puF , py) in pU such that (((ε/`)ûs , (1/`ε)∂3us3 ,us3 , (1/`)eα3(us )),ks (us )) weakly converges
in pH ×L2(Ω,K) toward (pU , pk̄) with

p(pk̄)+ = pk(pU ) = (pe(pU ), pg (pU )). (2.15)
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Proof. The weak convergence in pH ×L2(Ω,K) is an immediate consequence of (2.13) and (2.14).
That pU belongs to pU is classical when p = 3 (cf. [2]). If p belongs to {1,2}, (2.14)1 implies
∂3

py = 0, ∂3
pz = 0 while (2.14)2 yields ∂3

puF = 0 and (ε/l )us weakly converges in H 1(Ω,R3) toward
some pu? such that p̂u?(x) = puM (x̂)−x3∇̂pu?F (x̂), a.e. x ∈Ω, with pu?F the weak limit of (ε/l )us3

which is 0! The very definition of gε(us ) and the identity

∂3eαβ(us ) = ∂αe3β(us )+∂βeα3(us )−∂2
αβus3 (2.16)

imply that ∂3eαβ(us ) weakly converges in L2(Ω) toward eαβ(py)−∂2
αβ

(puF ). Eventually when p = 2,

` goes to 0 yields the expression (2.9) of 2g (2U ). �

• Step 2: Identification of pU which describes the asymptotic behavior of us .

Proposition 2.2. The whole sequences indexed by s converge and pU is the unique solution to
(pP ).

Proof. When p belongs to {1,2}, by going to the limit in the formulation of (P s ) with u such that
first

u = ε(η̂,εη3), η(x) =
∫ x3

−1

∫ t

−1
w(x̂,τ)dτdt , a.e. x ∈Ω, w arbitrary in C∞(Ω̄,R3) (2.17)

and next

u = `
(

1

ε
uM +x3

(
2y − 1

`
∇̂uF

)
,

1

`
uF +εx3z

)
, (uM , z,uF , y) arbitrary in pU (2.18)

one successively deduces p(mk̄)− = 0 and pU is the unique solution to (pP ). When p = 3, it is right
to use u defined by:

u = `

(
1

ε
uM +2x3 y,

1

`
uF +εx3z

)
+ε

∫ x3

−1

(
2y(·, t )−

∫ t

−1
∇̂z(·,τ)dτ,εz(·, t )

)
dt ,

(uM , z,uF , y) arbitrary in pU . (2.19)

�

• Step 3: Strong convergence in L2(Ω,K) of ks (us ) toward pK (pk(pU )).

By taking u = us in the formulation of (P s ), Proposition 2.1, the very definitions of pm̃ and pK
infer

lim
s→s̄

∫
Ω

m ks (us ) ·ks (us )dx =
∫
Ω

m pK (pk(pU )) · pK (pk(pU ))dx (2.20)

which establishes the strong convergence of ks (us ) toward pK (pk(pU )).
Thus (2.10) stems from the identity (2.3) and the definition (2.8) of pK s ! �

3. Some remarks

Remark 3.1. As
∫
Ωε mε pk s (pU ) · pk s (pU )dxε = ε`2

∫
Ωmpk(pU ) · pk(pU )dx, Theorem 2.1 supplies a

“simplified and accurate” equivalent of the generalized physical strain k s (us ) by a convergence
of relative energetic gaps measured on the real physical plate (the only one which has a meaning
because the strain energies are going to zero! . . .). Note also that (H0) and (Hstat2 ) imply that

lim
s→s̄

1

ε`2

∫
Ωε

(mε)−1(ϑs − pΥs ) · (ϑs − pΥs )dxε = 0, (3.1)

where pΥs := mεpk s (pU ), which provides an equivalent to the couple ϑs made of the Cauchy
stress and hyperstress tensors (see (1.2) and (1.3)). This equivalent can be viewed as simplified
because the field pk s (pU ) is obtained through the formula pk s (pU ) = pK s (pk(pU )) by solving a linear
problem (pP ) set on the abstract fixed domain Ω.
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But even if (pP ) is posed on an abstract domain and involves abstract fields, it is interesting to
interpret it in mechanical terms as say a model for thick plates. The state variable U of this limit
system can be considered as a displacement field with in-plane component uM and transversal
one uF but with:

• a kind of “strain tensor” pe(U ) such that
peαβ(U ) = 1

2 (∂αuM
β +∂βuM

α ), peα3(U ) = yα, pe33(U ) = z (3.2)

thus introducing additional state variables y and z.
• a kind of “strain gradient tensor” pg (U ) in pT+ determined by the components pgi j k (U )

with indexes i , j ,k in a suitable set pI+ corresponding to some appropriate first partial
derivatives of pe(U ) and second partial derivatives of uF .

As to the (kind of) internal forces, they can be represented by pϑ := (pσ, pµ) in pK+ :=S3 × pT+

satisfying
pϑ= pm̃ (pe(pU ), pg (pU )). (3.3)

Note that unlike the Kirchhoff–Love model, all the components of the Cauchy stress tensor are
involved here.

When p belongs to {1,2}, (pP ) reduces to a linear boundary value problem set on ω with
“coefficients” involving the averages with respect to x3 of the entries of pm̃. Hence pk(pU ) depends
only on x̂, but if the entries of pm̃ depend on x3, pK s (pk(pU )) will depend on x3 so that pk s does
depend on xε3 which is not the case when m does not depend on x3. In the following Remark 3.3,
conditions implying a decoupling between (uM , z) and (uF , y) will be given. As to (3y(x̂, ·), 3z(x̂, ·)),
it satisfies a Sturm–Liouville problem on (−1,1) with data like e(uM0)(x̂) f (x) + ∂2

αβ
uF (x̂)g (x)

where uM0 = uM + (x3/2)∇̂uF and f , g are algebraic functions of a,b,c and of their partial
derivatives with respect to x3, so that (3P ) reduces to a standard problem set on ω like the one
encountered in the static theory of Kirchhoff–Love plates.

Eventually it is possible to introduce an additional parameter r accounting for the magnitude
of the loading. The framework of the study being linear, the solution of the corresponding
problem (P s,r ) would be in this case (r /`2)us and the results of convergence of energetic gap
would be the same by replacing pk(pU ) by (r /`2) pk(pU )!

Remark 3.2. This study improves [3] which confines to the case p = 1 with isotropic strain
gradient elasticity (where b = 0 and 1m̃ yields a decoupling between (uM , z) and (uF , y)), and a
loading such that L̂ε(û) = lε

∫
Ω f̂ (x) · û(x)dx, Lε3 (u3) = ∫

Ω f3(x)u3(x)dx which imply vanishing
in-plane effects!

Remark 3.3. It is worthwhile to highlight some properties of the operators pm̃ supplying the con-
stitutive equations of the second-grade elastic plate when p belongs to {1,2,3}. In this direction
it is advantageous to define pUM := {U ∈ pU ;uF = 0, y = 0} and pUF := {U ∈ pU ;uM = 0, z = 0} so
that pU =p UM⊕pUF . The spaces pUM and pUF are said to be pm̃-polar when pm̃ pk(U )·pk(V ) = 0
for all (U ,V ) in pUM × pUF , p ∈ {1,2}.

Considering the influence of crystalline symmetries of the material constituting the thin plate
as well as the possible symmetry classes of m̃ε (see the very valuable works of [4] and the
notations therein), we deduce:

• the operators pm̃ are symmetric elements of L∞(Ω,Lin(pK+)) and, similarly to (H0) and
(Hstat2 ), we can write:

pm̃ =
[ pã pb̃

pb̃T pc̃

]
, pã ∈ Lin(S3), pb̃ ∈ Lin(S3, pT+), pc̃ ∈ Lin(pT+),

• the very definitions of 3m̃, 3k0 and 3k− imply that the coefficients never mix and that the
genuine elastic tensor a is left unchanged through the asymptotic process when p = 3
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which means that 3ã = a while the sub-operators 3̃b and 3̃c are only composed of elastic
coupling and second-order elastic coefficients, respectively,

• the limit elastic tensors 1ã and 2ã are always identical: 1ã = 2ã,
• of course, for any centro-symmetric class material (which obviously implies isotropy) the

genuine coupling elastic tensor b vanishes. This property is not altered in the limit model
and pb̃ = 0 for p = 1,2,3 in these situations. Perhaps more surprisingly, the decoupling
between the first and second-order elasticities also occur when p = 2,3 for materials
whose symmetry class is Dh

10!
• for materials with Z−

8 , Dh
8 and Dh

10 symmetry classes, we have 1ã = 2ã = 3ã = a. This is also
true for materials with centro-symmetric microstructure. In all other situations, 1ã and
2ã involve a mixture of elastic, elastic coupling and second-order elastic coefficients,

• for materials with trigonal or hexagonal microstructures (and only for them), the elastic
tensors a and pã do not share the same symmetry class, p = 1,2. More precisely, pã66 6=
1/2(pã11 − pã12) in these cases,

• from the very definitions of pm̃ and pk¦, 1m̃-polarity implies 2m̃-polarity. Accordingly
it can be shown that the spaces pUM and pUF are pm̃-polar for Z−

2 , Z−
6 , D6, Dh

6 and
Dh

10 symmetry class materials when p = 1,2. Moreover, the same result holds for all
centro-symmetric classes that are not trigonal (p = 2), or all symmetry classes that are
neither trigonal nor pentagonal (p = 1). This illustrates a generalization to strain gradient
elasticity of the decoupling between flexural and membrane displacements which is well
known in some cases of first-order elastic plates,

• when p = 3, it should be noted that uM and uF are not independent of each other and
that the field (uM , y, z) depends on x3 (see (2.19)). Therefore the notion of 3m̃-polarity is
not relevant.

We dwelve into more specific polarity properties in appendix A.

Remark 3.4. As written previously, the strain eε(us ) in the real plate is equivalent to pe s (pU ) =
`pe(pU )(Π−1

ε xε) which in general is not of Reissner–Mindlin type. Indeed, when p = 3, pei 3(pU )
depends on x3 in general while, when p belongs to {1,2}, pz = pe33(pU ) does not vanish and
peαβ(pU ) does not depend on x3 so that it is not an affine function of x3. A remedy to that last
point is to add to `(puM , puF ) the field (xε3(2 py − ∇̂puF ),0) whilst pz = 0 is obtained when both
pL̂ = 0 (only for p = 1) and pb̃ = 0. That highlights the connection between the microstructure
and Reissner–Mindlin plate model (see [5]).

Remark 3.5. As in polycrystalline plates one expects to have only one grain in the thickness
and many grains in the surface with an internal length related to the grain size, it is interesting
to consider the case of an internal length anisotropy. For this purpose it suffices to replace the
scalar ` in the definition (1.1) of the generalized strain k s by an operator in Lin(T3) and in (1.2)
to replace `2 by the square of the norm of this new operator which will be assumed to converge
to some limit in Lin(T3) with various relative behavior with respect to ε. This will generate new
definitions of pg (U )!

Remark 3.6. One can also introduce another parameter which accounts for the coupling be-
tween strain and strain gradient as a scalar factor λ in front of b in (H0). Because of (2.14) one
easily deduces that when (s,λ) goes to (s̄,0) the coupling disappears in the sense that (pP ) in-

volves pm̃0 built from m0 :=
[

a 0
0 c

]
.

Remark 3.7. As there are no kinematic links between the fields of displacement and the electric
and magnetic fields, it is obvious to derive an asymptotic modeling of electromagnetoelastic
plates with gradients of strain, electric and magnetic fields by simply superposing the present
analysis and the one done in [6, 7].
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4. Setting the dynamic problem

We denote the field of velocities in the plate by v s and introduce

hs (v s ) := (v s ,`∇εv s ). (4.1)

Referring to [8] we consider that the kinetic energy of the plate reads as
∫
Ωε 1/` j ε(xε)hs (v s ) ·

hs (v s )dxε where

j ε(xε) = j (x), a.e. x ∈Ω
j belongs to L∞(Ω,Lin(R3 ×M3)) and is such that

(i) j =
[
ρI d

d T J

]
with I the identity of Lin(R3), (d , J ) ∈ Lin(M3,R3)×Lin(M3,M3),

M3 the space of 3×3 matrices,

(ii) j (x)q ·q ≥αm |q |2, ∀q ∈R3 ×M3, a.e. x ∈Ω.

(Hdyn1
)

The space R3 ×M3 is equipped with its usual inner product and norm still denoted by · and | |.
Now we assume that the previous loading Ls is smoothly time dependent, namely:

Ls ∈C 1,1([0,T ], H 2
ΓεD

(Ωε,R3)′) (Hdyn2
)

so that the problem (Q s ) of determining the evolution on the interval of time [0,T ] of the plate in
an initial state X s0 := (us0, v s0) and subjected to the loading Ls can be formulated as:

(Q s )



Find X s := (us , v s ) sufficiently smooth in Ωε× [0,T ] such that∫
Ωε

j ε(xε)hs (v̇ s ) ·hs (v)+mε(xε)k s (us ) ·k s (v)dxε = Ls (t )(v)

for all v sufficiently smooth in Ωε and almost every t in [0,T ]

X s (0) = X s0.

(4.2)

As usual, we seek us on the form:

us (t ) = use (t )+usr (t ) (4.3)

with use directly coming from the static study through the “quasi-static” formulation

use (t ) ∈ H 2
ΓεD

(Ωε,R3) =: U s ; ϕs (use (t ),u) = Ls (t )(u), ∀u ∈U s , ∀t ∈ [0,T ], (4.4)

where

ϕs (u,u′) = 1

ε`2

∫
Ωε

mε(xε)k s (u) ·k s (u′)dxε, ∀u,u′ ∈U s . (4.5)

Clearly use is well-defined and satisfies

use ∈C 1,1([0,T ];U s ) (4.6)

and we set

X se := (use ,0) (4.7)

so that the remaining part usr is involved in an evolution equation on a space H s of possible
states with finite total (strain + kinetic) mechanical energy. If T s is the following bilinear form
associated with the kinetic energy

T s (v, v ′) := 1

ε`2

∫
Ωε

j ε(xε)hs (v) ·hs (v ′)dxε, ∀v, v ′ ∈ V s := H 1(Ωε;R3) (4.8)

then H s reads as:

H s :=U s ×V s (4.9)
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and is a Hilbert space if equipped with the following inner product and norm:

(X , X ′)s := ϕs (u,u′)+T s (v, v ′), ∀X = (u, v), X ′ = (u′, v ′) ∈H s

|X |s = [(X , X )s ]1/2.
(4.10)

As in [9] and due to (2.3), the scaling factor 1/ε`2 will appear as appropriate to determine
quantitatively and qualitatively the asymptotic behavior of X s when s goes to s̄. So if As is the
operator in H s defined by

D(As ) :=
{

X = (u, v) ∈H s ;

{
(i) v ∈U s

(ii) ∃!w ∈ V s ; ((w,u), (v ′, v ′))s = 0, ∀v ′ ∈U s

}
As X := (v, w)

(4.11)

and which obviously satisfies

Proposition 4.1. As is skew adjoint and for all Ψs = (Ψs
u ,Ψs

v ) in H s

X̄ s − As X̄ s =Ψs ⇔


X̄ s = (ūs , v̄ s )

ūs = v̄ s +Ψs
u

H s (v̄ s ) ≤ H s (v) := 1
2 [|(v, v)|s ]2 + ((Ψs

u ,−Ψs
v ), (v, v))s , ∀v ∈U s

(4.12)

then (Q s ) is formally equivalent to

(Qs )


dX s

dt
= As (X s −X se )

X s (0) = X s0
(4.13)

so that the following assumption
X s0 −X se (0) ∈ D(As ) (Hdyn3

)

allows us to state the classical result:

Theorem 4.1. Under assumptions (Hstat2 ) and (Hdyni
)1≤i≤3, the problem (Qs ) has a unique

solution in C 1([0,T ],H s )∩C 0([0,T ],D(As )).

As in the static case, the essential task is—for various reasons, especially numerical ones—to
propose a simplified but accurate enough model. This will also be done by considering s = (ε,`)
as a parameter satisfying the same conditions as in the static case and involving the four cases
indexed by p defined in (Hstat1 ) and (2.1).

5. Asymptotic behavior for (Qs)

We will determine the asymptotic behavior by using the theory of Trotter of convergence of semi-
groups of linear operators acting on variable Hilbert spaces (cf. [10,11]) which is particularly well-
suited to sequences of time-dependent boundary value problems set on sequences of domains.
By studying the asymptotic behavior of sequences with uniformly bounded mechanical energies,
we will propose the functional framework, i.e. the spaces pH of possible “limit” states with finite
“limit” mechanical energy. Next, by considering the asymptotic behavior of sequences (X s ) in
H s such that X s −A sX s is uniformly bounded, we will be able to define a “limit” operator pA,
skew-adjoint in a special subspace S pH of pH , which may govern an evolution equation in S pH

similarly as As does in H s . It will be the problem (pQ) which precisely describes the asymptotic
behavior of the solution to (Qs ) by due account of a result of convergence in a special sense
particularly suited to this situation, very common in the physics of continuous media, involving
sequences of domains. As in the static case, the reader disinclined to rigorous mathematical
developments may straight away direct himself to the crucial comment of Proposition 5.5,
which clarifies the statements of Theorems 5.2 and 5.3, and then move to their mechanical
interpretations detailed in Section 5.4.
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5.1. The limit space pH

Similarly to the static case, it is convenient to use the “scaling operator” Sε defined in (2.4)
because

ϕs (u,u′) =
∫
Ω

m(x)ks (Sεu) ·ks (Sεu′)dx, ∀u,u′ ∈U s

T s (v, v ′) =
∫
Ω

j (x)hs (Sεv) ·hs (Sεv ′)dx, ∀v, v ′ ∈ V s
(5.1)

with ks also defined in (2.4) while

hs,α(v) := ε

`
vα hs,3 := 1

`
v3

hs,αβ(v) := ε∂βvα hs,α3 := ∂3vα ∀v ∈ H 1(Ω,R3)

hs,3β(v) := ∂βv3 hs,33 := 1

ε
∂3v3.

(5.2)

To describe the asymptotic behavior for p in {1,2,3}, we need to introduce, in addition to (2.6)–
(2.9), some notions and notations related to the velocities:

pV :=
{

V = (uM ,ζ, vF ,ξ) ∈
{

H 1(ω,R2)×L2(ω)×H 1(ω)×L2(ω,R2), p ∈ {1,2}

L2(Ω,R2)×L2(Ω)×L2(Ω)×L2(Ω,R2); (ζ,ξ) = ¯̀∂3(v M , vF ), p = 3

}
ph(V ) :=

(
(v M , vF ),

[
¯̀∇̂v M ξ

¯̀∇̂vF ζ

])
pT (V ,V ′) :=

∫
Ω

j ph(V ) · ph(V ′)dx, ∀V ,V ′ ∈ pV

(5.3)
and 

pϕ(U ,U ′) :=
∫
Ω

pm̃pk(U ) · pk(U ′)dx, ∀U ,U ′ ∈ pU

pH := pU × pV
p(X , X ′) := pϕ(U ,U ′) = pT (V ,V ′), ∀X = (U ,V ), X ′ = (U ′,V ′) ∈ pH
p|X | := [p(X , X )]1/2.

(5.4)

The next proposition shows that the spaces pH are suitable to describe the asymptotic behavior:

Proposition 5.1. For all sequences X s = (X s
u ,X s

v ) in H s such that |X s |s is uniformly bounded,
there exists a not relabeled subsequence, pΞ = (pΞu , pΞv ) in pH and pk̄ in L2(Ω,K) such that, if
Xs = (Xsu ,Xsv ) := (SεX

s
u ,SεX

s
v ), one has:

(i) ((ε/`)X̂su , (1/`ε)∂3Xsu3 ,Xsu3 , (1/`)eα3(Xsu)), ks (Xsu), hs (Xsv ) weakly converge in pH ×
L2(Ω,K)×L2(Ω,R3 ×M3) toward (pΞu , pk̄, ph(pΞv )) with p(pk̄)+ = pk(pΞu),

(ii) p|pΞ| ≤ lim
s→s̄

|Ξs |s .

Proof. Point (i) for the displacements X s
u is nothing but rephrasing Proposition 2.1 while for ve-

locities it stems from the boundedness of (∂3X̂sv , (1/ε)∂3Xsv3 ) in L2(Ω,R3). A standard argument
of lower semi-continuity and the very definition of pm̃ yield point (ii). �

Indeed pH is exactly the appropriate space because any of its element Ξ admits a representa-
tive pPsΞ in H s which is energetically very close to Ξ:

Proposition 5.2. For all Ξ= (U ,V ) in pH , let pPsΞ= (pPs
u U , pPs

v V ) in H s be defined by:

(pPsΞ,X ′)s =
∫
Ω

pm̃ pk(U ) · p(ks (Sεu′))++ j ph(V ) ·hs (Sεv ′)dx =: F s
Ξ(X ′), ∀X ′ = (u′, v ′) ∈H s

(5.5)
then
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(i) ∃C > 0 s.t. |pPsΞ|s ≤ C p|Ξ|, ∀Ξ ∈ pH , ∀s ∈ (0,+∞)2,
(ii) lim

s→s̄
|pPsΞ|s = p|Ξ|, ∀Ξ ∈ pH ,

(iii) lim
s→s̄

1

ε`2

∫
Ωε

mε(k s (pPs
u U )− pk s (U )) · (k s (pPs

u U )− pk s (U ))

+ j ε(hs (pPs
v V )− phs (V )) · (hs (pPs

v V )− phs (V ))dx = 0,

where pk s (U ) stands for pK s (pk(U )) (see Theorem 2.1) and phs (V )(xε) := `ph(V )(x), V ∈ pV , a.e.
x ∈Ωε.

Proof. As regard displacement fields, the result is a variant of Theorem 2.1 with the linear form
Ls replaced by

H 2
ΓD

(Ω,R2) 3 w 7→
∫
Ω

pm̃ pk(U ) · p(ks (w))+ dx (5.6)

while for the velocities it participates from the same strategy as the one used in Theorem 2.1 with
the following test functions to be used in its second step:

vε =
(
`

ε
v M +

∫ x3

−1
ξ(x̂,τ)dτ,`vF +

∫ x3

−1
ζ(x̂,τ)dτ

)
if p ∈ {1,2},

vε =
(
`

ε
v M , vF

)
if p = 3

(5.7)

with (v M ,ζ, vF ,ξ) arbitrary in pV . �

5.2. The limit problem (pQ)

5.2.1. The limit operator pA

To guess and define the limit operator pA it suffices by (4.12) to consider sequences such
that T s (w s , w s ) +ϕs (w s , w s ) is uniforly bounded because pA is such that its resolvent should
be the limit of the resolvent of As according to Trotter’s theory of convergence of semi-groups
(see [10, 11]). We will see that the sequence (ws ) with ws := Sεw s will have a “limit” pW in a
special subspace S pU of pU that will define the space of “virtual generalized velocities” while
the limit of the kinetic scaled enery Ts (ws , ws ) := ∫

Ω j hs (ws )·hs (ws )dx involves pW̆ defined from
pW by:

pW = (pw M , pz, pwF , py) ∈S pU 7→ pW̆ :=
{(pw M , ¯̀pz, (1/ ¯̀) pwF ,2 ¯̀py −∇̂pwF ) ∈ pV , p = 1

(pw M ,0,0,0) ∈ pV , p ∈ {2,3}

S pU :=
{

U = (uM , z,uF , y) ∈
{

pU , p = 1
pU ; uF = 0, p = 2,3

}
.

(5.8)
There holds:

Proposition 5.3. For all p in {1,2,3} and all sequence (w s ) in H s such that T s (w s , w s ) +
ϕs (w s , w s ) ≤ C , there exists a not relabeled subsequence and (pW, pW ?) in pH such that, if ws :=
Sεw s , one has:((

ε

`
ŵs ,

1

ε`
∂3ws3 , ws3 ,

1

`
eα3(ws )

)
,ks (ws ),hs (ws )

)
* (pW, pk̄, ph(W ?))

in pH ×L2(Ω,K)×L2(Ω,R3 ×M3) (5.9)

with 
p(pk̄)+ = pk(pW )

pW ? ∈ pW̆ +
{

{0} if p = 1

(0,0,L2(ω),0) if p ∈ {2,3}.

(5.10)
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Proof. By Proposition 4.1, there exists some pW ? such that for a not relabeled subsequence
hs (ws ) weakly converges in L2(Ω,R3 ×M3) toward ph(pW ?), but Proposition 2.1 and ∂3wsα =
2eα3(ws )−∂αws3 imply both that pW belongs to S pU and (5.10). �

However, to avoid using multi-valued operators, we consider a special subspace S pV of pV

and, consequently, a special subspace S pH of pH of limit possible states with finite energy:

S pV := {V = (v M ,ζ, vF ,ξ) ∈ pV ; vF = 0}
S pH := pU ×S pV

(5.11)

and we define the unbounded linear operator pA in S pH by:
D(pA) :=

X = (U ,V ) ∈S pH ;


(i) ∃!Ṽ ∈S pU such that p ˘̃V =V

(ii) ∃!W ∈S pV such that for all V ′ ∈S pU∫
Ω

j ph(W ) · ph(pV̆ ′)+ pm̃ pk(U ) · pk(V ′) = 0,


pA X := (Ṽ ,W )

(5.12)

As for As , it is routine to check

Proposition 5.4. pA is skew-adjoint and for all Ψ= (Ψu ,Ψv ) in S pH

pX̄ − pA pX̄ =Ψ⇔
{

pX̄ = (pŪ , pV̄ ) with pŪ = Ṽ +Ψu , pV̄ = p ˘̃V
pH(W̃ ) ≤ pH(V ) := 1

2 [p|(V , pV̆ )|]2 + p((Ψu ,−Ψv ), (V ,V )), ∀V ∈S pU .
(5.13)

5.2.2. The limit problem (pQ)

As for X se , we consider pX e := (pU e ,0) where pU e is the solution to

pU e (t ) ∈ pU ; pϕ(pU e ,U ) = pL(t )(U ), ∀U ∈ pU , ∀t ∈ [0,T ] (5.14)

that is to say pU e is the solution to the static problem (pP ) given by Theorem 2.1. If we make the
following time-dependent variant of (Hstat3 ):

There exists L̂(t ),L3(t ) in C 1,1([0,T ]; H 2
ΓD

(Ω,R3)′) such that

(L̂s ,Ls3 ) converges strongly in C 1,1([0,T ]; H 2
ΓD

(Ω,R3)′) toward (L̂,L3) (Hdyn4
)

we get
pX e ∈C 1,1([0,T ]; pH ) (5.15)

and consequently

Theorem 5.1. Under assumptions (Hstat2 ), (Hdyni
)1≤i≤4 and

pX 0 ∈ pX e (0)+D(pA) (Hdyn5
)

the differential equation in S pH

(pQ)


d pX

dt
= pA(pX − pX e )

pX (0) = pX 0
(5.16)

has a unique solution in C 1([0,T ],S pH )∩C 0([0,T ],D(pA))
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5.3. A convergence result

To express it, we introduce the following fundamental notion (see [10, 11]):

Definition 5.1. A sequence (X s ) in H s is said to converge in the sense of Trotter towardΞ in pH

if and only if

lim
s→s̄

|pP sΞ−X s |s = 0. (5.17)

So, Proposition 5.2 implies

Proposition 5.5. The sequence X s = (X s
u ,X s

u ) in H s converges in the sense of Trotter toward
Ξ= (Ξu ,Ξv ) in pH if and only if:

lim
s→s̄

1

ε`2

∫
Ωε

mε(k s (X s
u )− pk s (Ξu)) · (k s (X s

u )− pk s (Ξu))

+ j ε(hs (X s
v )− phs (Ξv )) · (hs (X s

v )− phs (Ξv ))dx = 0. (5.18)

This is a convergence result of relative energetic gaps, measured on the real physical plate (the
only one which has a meaning because the total mechanical energies are going to zero!), between
the state X s and the image on the intial physical configuration Ωε of the limit state Ξ.

According to Trotter’s theory (see [10, 11]), to affirm the convergence in the sense of Trotter of
X s (t ) toward pX (t ) uniformly on [0,T ], it suffices to make the additional assumption:

∃pX 0 ∈ pX e (0)+D(pA) ; lim
s→s̄

|pP s pX 0 −X s0|s = 0 (Hdyn6
)

and to establish

Proposition 5.6. There holds

(i) lim
s→s̄

|pP s (I − pA)−1Ψ− (I − As )−1 pP s Ψ|s = 0, ∀Ψ ∈S pH

(ii) lim
s→s̄

|pP s X e (t )−X se (t )|s = 0, ∀t ∈ [0,T ].

Proof. First let Ψ = (Ψu ,Ψv ) in S pH , according to (5.5) and Proposition 5.1, X̄ s = (Ū s ,V̄ s ) :=
(I −As )−1 pP sΨ is such that Ū s = V̄ s+ pP s

uΨu and V̄ s is the unique minimizer on U s of H̃ s defined
by H̃ s (v) := 1/2[(v, v)]2 +F s

(Ψu ,−Ψv )(v) for all v in U s . So V̄ s is bounded in both U s and V s and
Proposition 5.3 implies that there exists (pW, pW ?) in (S pU , pV ) such that

1
2 [p|(W, pW ?)|]2 + p((Ψu ,−Ψv ), (pW, pW̆ ?)) ≤ lim

s→s̄
H̃ s (v̄s ) (5.19)

and the crucial point is to note, as ψF
v = 0 if p = 2,3, that one has:

pH(pW ) ≤ 1
2 [p|(W, pW ?)|]2 + p((Ψu ,−Ψv ), (pW, pW̆ ?)), ∀p ∈ {1,2,3}. (5.20)

To conclude that the whole sequence converges toward V̄ the unique minimizer on S pU of
the strictly convex function pH , it remains to show that for all V in S pU there exists a sequence
(v s ) in U s such that if vs := Sεv s one has lim

s→s̄
H̃ s (v s ) ≤ pH(V ) and it is straightforward to check

that vs given by (2.18) suits.
Eventually the convergence (ii) is nothing but the one stated in Theorem 2.1. �

Thus one has the final convergence result:

Theorem 5.2. Under assumptions (Hstati )1≤i≤2 and (Hdyni
)1≤i≤6, the solution X s to (Qs ) con-

verges in the sense of Trotter toward the solution pX to (pQ), p in {1,2,3}.
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5.4. The asymptotic behaviors and models

First when p = 4, the Duhamel formula involving the unitary group generated by As , assumption
(Hdyn2

) and

lim
s→s̄

|X s0|s = 0 (Hdyn7
)

imply

Theorem 5.3. When p = 4, under assumptions (Hstati )1≤i≤2 and (Hdyni
)

i∈{1,2,3,4,5}∪{7}
, one has:

lim
s→s̄

|X s (t )|s = 0 uniformly on [0,T ]. (5.21)

When p ∈ {1,2,3}, Theorem 5.2 and Proposition 5.5 supply a “simplified and accurate” equiva-
lent (pk s , phs ) of the generalized physical strain k s (us ) and generalized velocities hs (us ) by a con-
vergence of relative energetic gaps measured on the real physical plate. It can be viewed as sim-
plified because the fields (pk s , phs ) are obtained through the formula of Proposition 5.2 by solving
a linear time-dependent problem set on the abstract fixed domainΩwhich has valuable features.

For the sake of brevity, we skip the left superscripts 1,2 and 3 for the solutions of the following
limit formulations. Problem (1Q) is posed over the bidimensional set ω and reads as:

Find (uM , z,uF , y) in 1U such that for all V ′ = (v ′M , z ′, v ′F , y ′) in S 1U∫
ω

[∫ 1

−1
j (x̂, x3)dx3

]((
üM ,

1

`
üF

)[
¯̀∇̂üM 2 ¯̀ÿ −∇̂üF

¯̀∇̂üF ¯̀z̈

])
·
((

v ′M ,
1

`
v ′F

)[
¯̀∇̂v ′M 2 ¯̀y ′−∇̂v ′F

¯̀∇̂v ′F ¯̀z ′

])

+
[∫ 1

−1

1m̃(x̂, x3)dx3

]([
eαβ(uM ) y

y z

]
,

[
¯̀∂γeαβ(uM ) 2 ¯̀eαβ(y)−∂2

αβ
uF

¯̀∂γyα ¯̀∂γz

])
·

·
([

eαβ(v ′M ) y ′

y ′ z ′

]
,

[
¯̀∂γeαβ(v ′M ) 2 ¯̀eαβ(y ′)−∂2

αβ
u′F

¯̀∂γy ′
α

¯̀∂γz ′

])
dx̂ = ¯̀L(v ′M )+L3(v ′F ),

+ initial conditions
(5.22)

Problem (2Q) is also a problem posed over the bidimensional set ω, it reads as:

Find (uM , z,uF , y) in 2U such that for all V ′ = (v ′M , z ′, v ′F , y ′) in S 2U∫
ω

[∫ 1

−1
j (x̂, x3)dx3

](
(üM ,0)

[
0 0

0 0

])
·
(

(v ′M ,0)

[
0 0

0 0

])

+
[∫ 1

−1

2m̃(x̂, x3)dx3

]([
eαβ(uM ) y

y z

]
,∂2
αβuF 0

)
·
([

eαβ(v ′M ) y ′

y ′ z ′

]
,0

)
dx̂ = 0

+ initial conditions

(5.23)

The acceleration term involves uM only while uF is frozen, as is also y in the cases implying 2m̃-
polarity (see Remark 3.3).

Problem (3Q) reads as:

Find (uM , z,uF , y) in 3U such that for all V ′ = (v ′M , z ′, v ′F , y ′) in S 3U∫
Ω

j (x̂, x3)

(
(üM ,0)

[
0 0

0 0

])
·
(

(v ′M ,0)

[
0 0

0 0

])

+3m̃


[

eαβ(uM ) y

y z

]
−∂2

αβ
uF 0

¯̀̄∂3 yα
¯̀̄∂3z


 ·


[

eαβ(v ′M ) y ′

y ′ z ′

]
0

¯̀̄∂3 y ′
α

¯̀̄∂3z ′


 dx = 0

+ initial conditions

(5.24)
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Here again uF is frozen and the acceleration term involves only uM thus uM0 = uM + (x3/2)∇̂uF 0.
The problem is tridimensional but (y, z) may be eliminated as in the static case and (3Q) reduces
to a purely membrane dynamical problem as in the Kirchhoff–Love theory of plates (see [9, 12]).

Remark 5.1. Even if from the physical point of view it seems to us not clear at all to introduce
a new parameter—say `dyn—in place of ` (which from now on we rename `stat for purposes of
clarity) in the expression of hs (v s ), it could be interesting to deal with it from a mathematical
point of view or to examine the relevance of the effect of the gradient of velocity on the kinetic
energy or of the relative magnitudes of the elements ρ, d , J of j . . . It is straightforward to get
that ks , pk keep the same expressions with ` replaced by `stat and for ks , pk with ` replaced by
`dyn. So we obtain new cases indexed by p = (p1, p2) ∈ {1,2,3,4}2 corresponding to the previous
definition of p but with ` replaced by `stat, `dyn for p1, p2 respectively. We left the easy details
to the interested reader and simply mention that one may obtain “crossbred” behavior when
p1 6= p2. For example when p = (2,1) full gradient of acceleration terms coexist with reduced
terms of strain gradient whereas when p = (1,2) no gradient of acceleration terms mixes with a
full strain gradient term.
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Appendix A. Influence of symmetries

It is interesting to show how the elastic coupling and the second-order elastic tensors interact
with the various components of the gradient of the strain tensor. We define

S3
M := {

(σi j ) ∈S3;σ31 =σ23 = 0
}

, S3
F := {

(σi j ) ∈S3;σ11 =σ22 =σ33 =σ12 = 0
}

and in the following each element of S3 is understood as a sextuplet (σ11,σ22,σ33,σ23,σ31,σ12)
of R6.

For p in {1,2} and all U = (uM , z,uF , y) in pU we introduce the following notations and spaces:

pgM (U ) := pg (uM , z,0,0) ∈ pUM , pgF (U ) := pg (0,0,uF , y) ∈ pUF .

and recall that:

pm̃pk(U ) · pk(V ) = pã pe(U ) · pe(V )+ pb̃pg (U ) · pe(V )+ pb̃T pe(U ) · pg (V )+ pc̃ pg (U ) · pg (V ),

∀U ,V ∈ pU .

In the case p = 1 we associate with 1b̃ the sub-operators 1b̃M , 1b̃F and focus our attention on
the expression:

1b̃ 1g (U ) = 1b̃M
1gM (U )+ 1b̃F

1gF (U ), ∀U ∈ 1U .
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Considering an hexagonal material whose symmetry class is D6, we get:

1b̃ 1g (U ) =

1b̃M︷ ︸︸ ︷

x x x x 0 0 0 0
x x x x 0 0 0 0
x x x 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 x x x x





g111(U )
g221(U )
g122(U )
g331(U )
g222(U )
g112(U )
g121(U )
g332(U )


︸ ︷︷ ︸

1gM (U )

+

1b̃F︷ ︸︸ ︷

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 x x x
x x x x 0 0 0
0 0 0 0 0 0 0





g113(U )

g131(U )

g223(U )

g232(U )

g231(U )

g132(U )

g123(U )


︸ ︷︷ ︸

1gF (U )

(A.1)

where we use the letter x to denote non-vanishing components non-necessarily identical.
It is therefore clear that 1b̃M

1gM (U ) belongs to S3
M while 1b̃F

1gF (U ) belongs to S3
F . In other

words, 1UM and 1UF are 1b̃-polar in the sense that 1b̃ 1g (U ) · 1e(V ) = 1b̃ 1g (V ) · 1e(U ) = 0 for all
(U ,V ) in 1UM × 1UF . This is a rather infrequent feature as it occurs only for D6, Z−

2 , Z−
6 , Dh

6 and
Dh

10 symmetry classes materials.
Let us now consider a monoclinic material whose symmetry class is Z2, we have:

1b̃ 1g (U ) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
x x x x x x x
x x x x x x x
0 0 0 0 0 0 0





g111(U )
g221(U )
g122(U )
g331(U )
g222(U )
g112(U )
g121(U )
g332(U )


+



x x x x x x
x x x x x x
x x x x x x
0 0 0 0 0 0
0 0 0 0 0 0
x x x x x x





g113(U )
g131(U )
g223(U )
g232(U )
g231(U )
g132(U )
g123(U )


(A.2)

which means that 1UM together with 1UF are 1b̃-polar to themselves! This is unexpected but
surprisingly quite common: it occurs for all other possible symmetry classes except Z3, Z5, D3,
D5, Dν

3 and Dν
5 (i.e. trigonal and pentagonal ones). It can also be shown that 1UM and 1UF are

1c̃-polar (this time to one another) for all symmetry classes except the latter.
It can be shown that 2UM and 2UF are 2̃b-polar for D6, Z−

2 , Z−
6 and Dh

6 symmetry classes while
they are 2̃b-polar to themselves in all other symmetry classes except trigonal ones.

In the case p = 3 the situation is a bit more peculiar. Considering a material whose symmetry
class is Z−

2 , we get:

3̃b 3g (U ) =



0 0 0 x x 0
0 0 0 x x 0
0 0 0 x x 0
x x x 0 0 x
x x x 0 0 x
0 0 0 x x 0





g113(U )
g223(U )
g123(U )
g133(U )
g233(U )
g333(U )

=



0 0 0 x x 0
0 0 0 x x 0
0 0 0 x x 0
x x x 0 0 x
x x x 0 0 x
0 0 0 x x 0





−∂2
11uF

−∂2
22uF

−∂2
12uF

¯̄l∂3 y1

¯̄l∂3 y2

¯̄l∂3z


, ∀U = (uM , z,uF , y) ∈ 3U

(A.3)
so that 3̃b 3g (uM , z,uF ,0) belongs to S3

F while 3̃b 3g (0,0,0, y) belongs to S3
M . We therefore obtain:

3̃b 3g (uM , z,uF ,0) · 3e(u′M , z ′,0,0) = 3̃b 3g (0,0,0, y) · 3e(0,0,u′F , y ′) = 0,

∀U = (uM , z,uF , y), ∀U ′ = (u′M , z ′,u′F , y ′) ∈ 3U . (A.4)

This somewhat remarkable result occurs for materials whose symmetry class is either Z−
2 , Z−

4 ,
Z−

6 , D6 or Dh
6 .
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If we consider a monoclinic material whose symmetry class is Z2 we have:

3̃b 3g (U ) =



x x x 0 0 x
x x x 0 0 x
x x x 0 0 x
0 0 0 x x 0
0 0 0 x x 0
x x x 0 0 x





−∂2
11uF

−∂2
22uF

−∂2
12uF

¯̄l∂3 y1

¯̄l∂3 y2

¯̄l∂3z


, ∀U = (uM , z,uF , y) ∈ 3U (A.5)

so that this time we obtain
3̃b 3g (uM , z,uF ,0) · 3e(0,0,u′F , y ′) = 3̃b 3g (0,0,0, y) · 3e(u′M , z ′,0,0) = 0, ∀U ,U ′ ∈ 3U ! (A.6)

This result occurs for all other symmetry classes that are not trigonal.
Lastly, it can be shown in a similar manner that for all microstructure which is not trigonal, we

have 3̃c 3g (uM , z,uF ,0) · 3g (0,0,0, y ′) = 0 for all U ,U ′ in 3U !
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