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In this Letter, we report on an experimental study which analyzes the compressive behavior of two-
dimensional bidisperse granular assemblies made of soft (hyperelastic) and hard grains in varying proportions
(« 1is the portion of soft grains). By means of a recently developed uniaxial compression setup [Vu and Barés,
Phys. Rev. E 100, 042907 (2019)] and using an advanced digital image correlation method, we follow, beyond
the jamming point, the evolution of the main mechanical observables, from the global scale down to the strain
field inside each deformable grain. First, we validate experimentally and extend to the uniaxial case a recently
proposed micromechanical compaction model linking the evolution of the applied pressure P to the packing
fraction ¢ [Cantor et al., Phys. Rev. Lett. 124, 208003 (2020)]. Second, we reveal two different linear regimes
depending on whether the system is above or below a crossover strain unraveling a transition from a discrete to
a continuous-like system. Third, the evolution of these linear laws is found to vary linearly with «. These results
provide a comprehensive experimental and theoretical framework that can now be extended to a more general

class of polydisperse soft granular systems.

DOI: 10.1103/PhysRevE.106.L.022901

Granular materials are ubiquitous in nature and human
activities. In their most generic form, they are composed of
grains of shape, dimension, and, more importantly, bulk prop-
erties that are very different, even in the same packing. Among
them, granular systems composed of squeezable compounds
are the ones with the most singular behaviors. This is the
case for biological tissues composed of soft cells [1,2], liquid
foams [3,4], emulsions [5,6], and sintered material [7,8], to
name a few. The specificity of materials composed of both
soft and hard particles lies in the fact that under any loading,
and even deep in the jammed state [9], two mechanisms com-
pete in the system: particle rearrangement and deformation.
When loaded, hard particles have only the ability to rearrange
abruptly [10,11], while it is easier for soft particles to deform
in order to sustain a given strain [12]. In these materials, both
mechanisms cohabit, prioritizing one or the other depending
on the soft to hard particle ratio and global loading.

Compressed systems made of purely hard or slightly de-
formable particles have been extensively studied these last
decades from theoretical [9,13—15], numerical [16,17], and
experimental [18-20] points of view. Most of the fundamental
aspects of their behavior in many circumstances are now well
known [9,14,21]. The behavior of systems made of highly
deformable grains at high packing fraction has also been more
and more studied [5,6,12,22,23], and at least for compaction,
reliable models exist [24,25]. In between, even if they are
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very common materials, systems composed of grains with
very different—soft and hard—rheologies, driven far above
the jamming transition, have a bewildering but fascinating
behavior that remains mostly misunderstood. They have been
experimentally studied in very specific applications, such as
stress release [26,27], seismic isolation [28,29], and founda-
tion damping [30,31]. However, to the best of our knowledge,
no local measurements have been performed to understand
the microprocesses leading to their characteristic macroscopic
behavior. Only very recently, through a numerical approach,
was a micromechanical-based compaction model proposed
[22,23] to describe the evolution of these systems in compres-
sion. However, experimental validation is still lacking, along
with a clear understanding of local processes.

In this Letter, we aim to fill this gap by extending the
recently proposed compaction law [32], and experimentally
validating it and, by stating constitutive laws, linking both
local structural parameters and local strain field with global
observables such as pressure and packing fraction. The evolu-
tion of these laws as a function of the fraction of soft grains is
also investigated.

Experiment. The experiments were carried out using a
setup partially introduced by [12,33]. As shown in Fig. 1(a),
it consists of a bidimensional piston with initial dimensions
of 270 x 202 mm? which uniaxially compresses a bidisperse
collection of rigid and soft cylinders lying on top of a flatbed
scanner. The loading piston is composed of a stepper motor
rotating a screw which translates the moving edge of the
piston in the inward direction. Two force sensors are attached
to the latter. They record the global force f evolution [see
Fig. 1(c)] when compressing the granular media. The induced
global stress P is directly deduced and measured continuously

©2022 American Physical Society
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FIG. 1. (a) Experimental setup. A bidimensional bidisperse gran-
ular system, composed of soft and rigid particles, lies on the top glass
of a flatbed scanner. A uniaxial compression device stresses it step-
wisely while it is imaged from below by the scanner. (b) Composite
view of measured fields. Rigid particles are colored in blue. Raw
image, in gray, is shown on the left; particle boundaries are in red.
Von Mises strain field C is shown on the right with a color scale going
from dark red (low value) to yellow (high value). Contacts are shown
in white. (c) Evolution of the measured global force f as a function
of the global strain ¢ for different softness ratios «.

at a frequency of 100 Hz, while the system is compressed
stepwisely. For each loading step, the piston moves 0.5 mm
at a speed of 2 mm/min to stay in the quasistatic regime.
Then, the system relaxes for 1 min and is imaged from below
with the scanner [34] at a resolution of 2400 dots per inch
(10.6 um/pixel).

The compressed granular systems are composed of both
hyperelastic silicone cylinders [35,36] and rigid PVC cylin-
ders. Their Young’s moduli are Ey = 0.45 MPa [37] and
1.2 GPa, respectively, and the Poisson ratio of silicone is
v = 0.5. Both soft and rigid granular packings are bidisperse
cylinders with diameters of 20 and 30 mm and a height of
15 mm. For each experiment, about n = 100 particles are
used; the ratio between the rigid and soft ones is the softness
ratio, k = Ngoi/n. This ratio is equally spread among soft and
rigid particles and is varied from 0.2 to 1. To avoid basal
friction the scanner glass is coated with oil [33]. This makes
friction between any parts of the system less than 0.1. The
bottom of each particle is coated with thin metallic glitter,
which creates a random pattern with a correlation length of
about 50 um [12].

For each experiment, a set of about 90 pictures of ~500
megapixels displays the evolution of the bottom face of the
granular system. These pictures are postprocessed with an
algorithm modified from [12,38]. First, particles are detected
individually by thresholding the undeformed picture. Each
particle is then tracked along the full set of pictures. Then,
from the particle’s solid rigid motion measurement, subsets of
images are extracted following each particle and correcting its
translation and rotation. For soft particles, a digital image cor-
relation (DIC) algorithm aimed at large deformations already
presented in [37] is used to obtain the displacement field i
inside each particle. For the rigid particles, a more classical
DIC algorithm is used. The latter correlates all images with

the initial one as classically done in the small deformation
assumption.

As shown in Fig. 1(b), the particle boundaries are obtained
from the displacement fields # [12]. The system packing
fraction is directly deduced from it, along with the particle
asphericity, a = p?/(4mws), where p and s are the perimeter
and surface of the particles, respectively. For the soft particles,

the right Cauchy-Green strain tensor field C is computed
[12,39], and its von Mises measure C is deduced [32]. For
the rigid particles, the local stresses are too low to induce any
significant deformation of the PVC [33]. Contacts between
particles and their length / are measured from the proximity
of the boundaries and the von Mises strain [12].

Finally, because the system size is relatively small, it is
more sensitive to the initial conditions and sample prepa-
ration. To limit this effect, we paid particular attention to
preparing the system as homogeneously as possible, which
is usually done when preparing experimental or numerical
samples [40—42], minimizing the vicinity of particles of the
same size and rigidity. Moreover, the mean behavior for each
k is averaged over three different samples with initially inde-
pendent configurations. Note that the systems were prepared
loosely enough to observe the jamming transition [9]. This
lets some space for the system to rearrange and somehow
forget the initial conditions. The way to select the packing
fraction ¢, at the jamming transition and the corresponding
mean coordination number Z; are discussed in more detail in
the Supplemental Material [32].

Results. In Fig. 2(a), we show how the increase in the
coordination from the jamming point Z — Z; evolves with the
relative packing fraction ¢ — ¢,;. Whatever the softness ratio
is, curves collapse on a single one fitted by a power law with
exponent « = 0.5 and prefactor k = 4.9, in agreement with
previous experimental and numerical observations [36,43,44].
Thus, our experimental results extend the validity of such a
relation to the case of binary mixtures [22].

Following a recent micromechanical compaction model
numerically tested on isotropically compressed soft grains
[22,24,25], we extended it to the case of uniaxial compression
[32]. In Fig. 2(b), compaction curves (P vs ¢ — ¢;) are plotted
with

-~ E_>'< (,bmax - ¢J _ 0.5
P~ ar 1+ MM)—¢J [Zo + k(¢ — ¢))1¢
d’max - ¢O>
In{ —— ), 1
x In ( ra— (D

where E* = Ey/[2k(1 — v?)] is the mean effective material
Young’s modulus and ¢, is the asymptotic maximum pack-
ing fraction. For k = 1, ¢max = 0.97 is close to 1, while for
k = 0.2, ¢pmax = 0.88, closer to the random close packing
[32]. T is a geometrical parameter directly measured on the
local vs global strain curve [32]. uy is the macroscopic
friction known to be close to 0.25 for an assembly of two-
dimensional particles [45,46]. The prediction given by Eq. (1)
is in good agreement for all ¥ values. We note only a small
discrepancy with experimental data at small «, arising when
the grains sharply rearrange. Even if the behavior is averaged
over several runs, this effect is certainly enhanced by the fact
that the system is relatively small. Finally, it should be noted
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FIG. 2. (a) Evolution of the coordination Z relative to the coor-
dination at jamming Z, as a function of the distance to the jamming
transition for the packing fraction ¢ — ¢;. The dashed line corre-
sponds to a power law with an exponent 0.5. (b) Evolution of the
global stress applied to the system P as a function of ¢ — ¢,. Plane
line curves correspond to Eq. (1). In both panels, the different curves
correspond to different softness ratios « given in (a).

that Eq. (1) is based on only well defined quantities without
the need for any ad hoc parameters.

Figure 3(a) shows how the average soft particle asphericity
(a) increases with the global stress P. Apart from a few sharp
grain rearrangements, this increase is linear whatever the soft-
ness ratio « is. The slope increases nearly linearly with «. In
Fig. 3(b) we show the evolution of the average relative contact
length (I). It increases linearly with the packing fraction for
any « and, interestingly, with a slope independent of «.

Under the small deformation assumption, the infinitesimal

strain tensor £ is related to C following i=1 / 2(C —I), with

I being the second order identity tensor. Hence, as shown
in Figs. 4(a) and 4(b), when the system is compressed, C
decreases from 1, while the pressure and the packing fraction
increase. At a low compression level, for (C) > C. ~ 0.991,
a crossover strain, the average von Mises strain (C), decreases
linearly with the packing fraction. In this regime, whatever the
softness ratio is, curves collapse fairly well. On the contrary,
at high compression level, for (C) < C,, it decreases linearly
with the global pressure. Not only does the average strain
evolve during compression, but its distribution also gets wider
[12,32]. In Fig. 4(c), we show how the standard deviation of
C increases with the packing fraction. When shifted from ¢,,
curves collapse on a linear law whatever « is, up to a cutoff
which increases linearly with «.

Discussion and conclusion. First, we point out that, even
if the system seems to be small, macroscopic measurements
stay repeatable. The exponent « of the Z —Z; vs ¢ — ¢,
power law is repeatable from one « value to another and
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FIG. 3. (a) Linear evolution of the soft particle average aspheric-
ity (a) as a function of the global stress applied to the system P.
Their slope is given in the inset as a function of the softness ratio
k. (b) Linear evolution of the average value of the relative contact
length (I) as a function of the distance to the jamming transition
for the packing fraction ¢ — ¢;. In both panels, the different curves
correspond to different «, given in the legend in (b).

fully in agreement with previous experimental and numeri-
cal studies [22-25,36,43]. As explained in [22,25], this law
can be plugged into existing models to obtain an isotropic
compaction equation. In the specific case of grain mixture,
k is introduced in the effective Young’s modulus to consider
the softness variation. Also, to consider the uniaxiality of the
compression [47], the induced effective friction is added to the
law prefactor to obtain Eq. (1) and describe the compaction
curve without any ad hoc parameters. In this equation, Pmax
goes ideally from 1 for purely soft systems to ¢, for purely
rigid systems, which is what we observe in our experimental
data. So it is here remarkable that this model matches well
the experimental data whatever the grain mixture is. This
constitutes a validation of the model.

On top of extending and validating this compaction model,
we introduce relations between global observables and de-
formed local structures. Hence, linear relations are observed
between the particle asphericity and the global pressure
({a) ~ P) as well as for the relative contact length and the
packing fraction [{I) ~ (¢ — ¢;)]. This first observation per-
mits indirect measurement of pressure in a granular system
just by measuring the grain boundary deformations. For this
latter linear relation, in the small deformation regime, a scal-
ing consideration of the Hertz contact law [48] as well as
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FIG. 4. (a) and (b) Evolution of the global stress P and of the
relative packing fraction ¢ — ¢, as a function of the average value of
the von Mises strain (C) in soft particles for different « values, given
in the legend in (b) (for the three panels). In (a) and (b), straight
black dashed lines show slopes of 2.2 kPa and 5.4, respectively, as
a guide for the eyes. The vertical dashed line and the shaded area
show the crossover strain C. = 0.991 + 1.2 x 103 and its error bar,
respectively. It splits the space horizontally between small and large
deformation levels. (¢) Evolution of the standard deviation of the von
Mises strain in soft particles as a function of the relative packing
fraction ¢ — ¢;. The straight dashed line with a slope of 4.0 x 10~
is a fit of the curves collapsed in their linear regime. These curves
leave their linear regime at certain cutoff whose approximated values
are given in the inset as a function of the softness ratio «.

the Z vs ¢ — ¢y equation permits us to predict this linear
relation [32]. It is important to note that this linearity persists
far beyond the small deformation regime and even for any
particle mix, which makes it useful to indirectly deduce the
packing fraction evolution of a compressed system from the
contact geometry observation. In the (a) vs P relations, it is
remarkable that linear coefficients also increase linearly with
the softness ratio, while they remain independent of « for the
(I) vs ¢ relation.

Relations between global observables and the local defor-
mation field are also revealed in our experimental results.
For a small level of deformation, the average strain inside
particles evolves linearly with the packing fraction ((C) ~
¢ — ¢;), while in the case of an important loading, it scales
with the global pressure applied to the system ({C) ~ P).
This evidences two distinct regimes deep in the jammed state,
as already observed in [12], separated by a crossover value
C. ~ 0.991 independent of «. In the first regime, linearity is
reminiscent of the fact that the global strain scales with the
packing fraction [32], so this seems to be extrapolated to the
local strain. In the second regime, linearity between strain
and stress suggests that the material behaves like a bulk one
(except for small rearrangements); this is consistent with the
fact that the material is very dense with almost no interstitial
porosity. It is also consistent with the fact that, at large com-
pression levels, the pressure seems to decrease faster with the
strain for a lower softness ratio; the material gets stiffer for
lower «. On the contrary, linear relations collapse in the case
of small deformations and do not significantly depend on the
softness ratio. Finally, a scaling between the strain standard
deviation and the packing fraction is evidenced (o¢ ~ ¢ — @)
and does not depend on the softness ratio. Only the linearity
cutoff increases with «. This is explained by the fact that for
low « soft particles deform more and more rapidly, entering
faster in a nonlinear regime.

Granular systems composed of purely soft or mixed rigid-
ity particles are ubiquitous, so we believe that the results
obtained in this Letter, more specifically the compaction law
and scaling relations, can release blockages in domains as
different as biology, geoscience, and industry. Using our ex-
perimental setup, these results could be extended to the case
of noncircular particles or the case of a mixture of particles
with different rheologies.
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