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Accuracy of a markerless motion
capture system in estimating
upper extremity kinematics
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Kinematic analysis of the upper extremity can be useful to assess the

performance and skill levels of athletes during combat sports such as boxing.

Although marker-based approach is widely used to obtain kinematic data, it

is not suitable for “in the field” activities, i.e., when performed outside the

laboratory environment. Markerless video-based systems along with deep

learning-based pose estimation algorithms show great potential for estimating

skeletal kinematics. However, applicability of these systems in assessing

upper-limb kinematics remains unexplored in highly dynamic activities. This

study aimed to assess kinematics of the upper limb estimatedwith amarkerless

motion capture system (2D video cameras along with commercially available

pose estimation software Theia3D) compared to thosemeasured with marker-

based system during “in the field” boxing. A total of three elite boxers equipped

with retroreflective markers were instructed to perform specific sequences

of shadow boxing trials. Their movements were simultaneously recorded

with 12 optoelectronic and 10 video cameras, providing synchronized data

to be processed further for comparison. Comparative assessment showed

higher di�erences in 3D joint center positions at the elbow (more than

3 cm) compared to the shoulder and wrist (<2.5 cm). In the case of joint

angles, relatively weaker agreement was observed along internal/external

rotation. The shoulder joint revealed better performance across all the joints.

Segment velocities displayed good-to-excellent agreement across all the

segments. Overall, segment velocities exhibited better performance compared

to joint angles. The findings indicate that, given the practicality of markerless

motion capture system, it can be a promising alternative to analyze sports-

performance.

KEYWORDS

markerless vs. marker-based, kinematic analysis, evaluation, elite sport, upper-limb,

sports-performance
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Introduction

Boxing is an intensive combat sport, involving highly

dynamic and non-symmetrical movements of the front and

rear arms with the role of attack or defense as situation

demands. In such sports, high-performance athletes are often

characterized by their agility, i.e., the ability to punch or

evade swiftly by maintaining fluidity of motion. To achieve a

powerful punch during offensive action and quick retraction

during defense, coordination of the body segments plays

a vital role (Dinu and Louis, 2020). As body segments’

coordination is often a consequence of how the adjacent

segments are oriented to each other (Zajac and Winters,

1990; Putnam, 1993), estimating segment pose (positions

and orientations) during boxing may be helpful to analyze

the performance athletes. Furthermore, the velocities at

which body segments move and coordinate with each other

have been reported to vary across athletes based on their

skills (Putnam, 1993). Therefore, estimating velocities of the

body segments seems essential to analyze sports-performance

during boxing.

To quantify body segment kinematic variables, marker-

based motion capture has been most widely used. In such

systems, skin markers are placed on the specific anatomical

landmarks, based on which body segment coordinate systems

are defined to estimate 3D pose of the segments. While marker-

based methods are traditionally referred to as standard, they are

commonly performed in a laboratory environment and require

adequate skills in physical palpation of landmarks. Even with

necessary skills, such palpation is examiner-dependent and at

times tends to produce systemic bias for an examiner (Johnson

et al., 2018). Furthermore, joint kinematics are also largely

affected by soft tissue artifact (Camomilla et al., 2017; Lahkar

et al., 2021). Alternatively, measurements based on wearable

sensors such as inertial measurement units have been recently

shown effective in natural environment in estimating joint

angles of the lower extremity with moderate to strong accuracy

(Al Borno et al., 2022). Studies also presented the use of inertial

measurement units in estimating hand velocity (Kimm and

Thiel, 2015; Punchihewa et al., 2020) and other body segments

(Dinu and Louis, 2020) during a sport activity. While such

studies are useful for understanding differences in skills between

athlete groups, placing sensors or markers on the body surface

may be inconvenient and potentially distracting to an athlete and

practically impossible during a live combat.

With the rapid advancement of computer vision research,

human movement study has received a significant stride

allowing unobtrusive capture of data using video-based

markerless motion capture (Colyer et al., 2018; Armitano-Lago

et al., 2022). These methods rely on 2D video data combining

with generative or discriminative algorithms to estimate human

pose in 3D (Colyer et al., 2018). Generative approach often

TABLE 1 Demographic details of the athletes.

Athlete Gender Age (years) Height (m) Body mass (kg)

1 Male 20 1.72 54

2 Male 18 1.90 78

3 Female 19 1.63 59

involves fitting a predefined model of the subject to 2D visual

cues such as image features from detectors or to 3D cues such as

a visual hull reconstruction with the help of silhouette matching

algorithms (Corazza et al., 2006, 2007; El-Sallam et al., 2013).

On the other hand, learning-based discriminative algorithms,

particularly deep neural network, involves detecting sparse set

of learned features such as joint key points describing a subject’s

pose in 2D. In this family, openly accessible pose estimator like

OpenPose (Cao et al., 2021) has received significant attention in

human movement analysis and similarly DeepLabCut (Mathis

et al., 2018) for both human and non-human activities. As

these tools are primarily intended for 2D pose estimation,

some studies leveraged its potential in estimating 2D kinematics

of the lower limb (hip, knee, and ankle joint) during gait

(Stenum et al., 2021), vertical jump (Drazan et al., 2021), and

under water running (Cronin et al., 2019). Progressing further,

others focused on estimating 3D poses from 2D images of

multiple calibrated cameras using triangulation during walking

(Nakano et al., 2020; Needham et al., 2021; Pagnon et al., 2022),

jumping (Nakano et al., 2020; Needham et al., 2021), running

(Needham et al., 2021; Pagnon et al., 2022), cycling (Pagnon

et al., 2022), and throwing (Nakano et al., 2020). While these

studies demonstrated the potential of openly accessible pose

estimation tools in estimating 3D joint kinematics, most of them

primarily evaluated the lower extremity. As far as we are aware of

Nakano et al. (2020) estimated 3D joint positions of the shoulder,

elbow, and wrist and evaluated against traditional marker-

based approach during walking, jumping, and ball throwing

activity. A mean absolute error up to 4 cm was observed at the

wrist, 4.7 cm at the elbow, and 2.2 cm at the shoulder during

throwing activity.

In a recent development in markerless video-based systems,

Theia3D (Theia Markerless, Inc., Kingston, Ontario) has

emerged as a rapidly evolving commercial pose estimation

software. The software implements deep convolutional

neural network combining with standard biomechanical

pose estimation approaches (inverse kinematics) to estimate

3D pose of human body segments. Using this tool, studies

showed decent kinematic accuracies compared to marker-based

method while maintaining good repeatability both in laboratory

environment (Kanko et al., 2021a,b) and in community

settings (Mcguirk et al., 2022; Riazati et al., 2022). These

studies, however, mainly provide the assessment of the lower
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FIGURE 1

(A) Layout of the boxing ring with green and blue cameras depicting optoelectronic and video cameras, respectively. (B) An example of the

boxing punch with Theia3D multibody model overlaid on the 2D video image.

TABLE 2 Boxing trials and their specific characteristics.

Trial Characteristics

1 Direct from the front arm to the face

2 Direct from the front arm to the body

3 Double of the front arm to the face

4 Rear arm jab+ front arm hook

5 Front arm (uppercut to the body+ hook to the body+ hook to the face)

extremity kinematics during either treadmill or over ground

walking activity.

While it is relevant to evaluate the usability of markerless

systems in a highly dynamic and non-symmetrical sport

such as boxing, it still remains unknown how accurate

these systems are in estimating upper-limb kinematics

as compared to marker-based approach. This study

aimed to assess whether a markerless approach (use of

video cameras + commercial pose estimation software

Theia3D) can be used to estimate upper-limb kinematics

as an alternative to the state-of-the-art marker-based

approach for sports-performance analysis during “in the

field” boxing.

Materials and methods

Participants

A total of three elite boxers volunteered in the study at

the boxing arena of National Institute of Sport, Expertise,

and Performance (INSEP, Paris, France). Out of the three

boxers, one is competing at the national level and two others

at the international level. All of them are undergoing regular

training at INSEP for Paris Olympics, 2024. Demographic

details of the athletes are presented in Table 1. The athletes,

after being fully informed about the objectives and protocol

of the study, signed an informed consent form. The study

and the procedures were approved by an institutional

review board.

Data acquisition setup and protocol

Boxing data were collected synchronously using an

optoelectronic marker-based system (12 Qualisys Miqus

and Arqus cameras; 2–5 megapixel) at 300Hz, and using

a markerless 2D video-based system (10 Qualisys Miqus

video cameras; 2 megapixel) at 60Hz. Both the types of

cameras, optoelectronic and video, were placed next to

each other as a pair around the boxing ring, except two

optoelectronic cameras placed separately to the posterior

aspect of the athlete (Figure 1A). All the cameras were

connected to Qualisys Track Manager for allowing them to

be synchronized and calibrated in space and time, giving

a single global reference frame nearly at the center of the

boxing platform. Camera setup and placement was performed

by the team members with expertise in both optoelectronic

and video-based motion analysis. Specific attention was

provided to the 2D video-based cameras to comply with

recommended specifications for resolution, focus, and

exposure time.

Prior to the sessions, the boxers were outfitted with 44

retro-reflective skin markers placed by a single operator

with adequate palpation skills on the relevant landmarks

of the whole body (Wu et al., 2002, 2005). The details
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FIGURE 2

Joint center positions (ordinate) at the shoulder, elbow and wrist in the global reference frame (X, Y, Z) computed with marker-based and

markerless methods and represented over time (abscissa). Left and right columns represent joints of the rear and front limbs, respectively.

Example shown for the second athlete and first boxing trial. Blue and red colors represent marker-based and markerless joint center positions,

respectively.

of the marker-set and their anatomical locations are

provided in the Supplementary Material. A professional

coach instructed each boxer to perform specific five

shadow boxing trials of different characteristics, with 4–5

repetitions in each trial (Table 2). In between repetitions

within a trial, boxers were instructed to perform footwork

and remain in defensive pose with elbow flexed guarding

their body and face, as classically performed during

a contest.

Data processing and analysis

Multibody models

Theia3D embedded multibody kinematic model consists of

two separate kinematic chains: one for the lower extremity and

one for the upper extremity, and a separate head segment with

six degrees of freedom (DoFs) (https://www.theiamarkerless.ca/

docs/model.html). In this study, we will only adhere to the

upper extremity model in the following descriptions. The upper
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FIGURE 3

Joint angles (ordinate) at the shoulder, elbow, and wrist computed with marker-based and markerless methods and represented over time

(abscissa). Left and right columns represent joints of the rear and front limbs, respectively. Example shown for the second athlete and first

boxing trial. Blue and red colors represent marker-based and markerless joint angles, respectively.

extremity chain comprises the thorax as root segment with

six DoFs with respect to the ground, followed by the clavicle,

upper arm, forearm, and hand segments bilaterally. The clavicle,

at its proximal end, is connected to the thorax with a two

rotational DoFs constraint, while distally connected to the upper

arm with a three rotational DoFs at the shoulder joint. The

elbow and the wrist joints are constrained to have two DoFs,

restricting abduction/adduction (Abd/Add) at the elbow and

internal/external (Int/Ext) rotation at the wrist.

For the marker-based multibody model, a gender-

specific generic template was created in Visual3D (C-motion,

Germantown, USA, v2021.11.3) to have identical body segments

and joint constraints as that of the Theia3D model. The

shoulder, cervical, lumbar, and thoracic joint centers were

defined based on the regression equations adopted from the

study of Dumas and Wojtusch (2018). The midpoint between

the medial and lateral humeral epicondyles was defined as

the elbow joint center and the midpoint between the ulnar

and radius styloid processes as the wrist joint center. Segment

reference frames were defined following the methodology

reported in the study of Dumas and Wojtusch (2018).

For both the models, the center of mass position for each

segment was defined according to the study of Dumas and

Wojtusch (2018).

Kinematic estimation

Markerless motion capture data were processed with

Theia3D (v2021.2), a deep learning-based software. The

underlying principle of the software is detailed elsewhere
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TABLE 3 Bland–Altman bias (b), confidence interval (CI) along with

coe�cient of determination (R2) and root mean square di�erence

(RMSD) between markerless and marker-based methods for joint

angles at the shoulder, elbow, and wrist.

Joints Side b CI R
2

RMSD

Abduction/Adduction (◦)

Shoulder Front 3.7 13 0.90 6.6

Rear −0.1 15 0.37 6.3

Wrist Front 7.2 17 0.31 11

Rear 0.2 21 0.39 9.1

Internal/External (◦)

Shoulder Front −8.7 9.4 0.83 12

Rear 2.5 19 0.41 8.1

Elbow Front 13 30 0.17 23

Rear −12 18 0.21 18

Flexion/Extension (◦)

Shoulder Front 2.4 13 0.88 10

Rear 0.3 8 0.77 7.3

Elbow Front −6.2 5.3 0.99 7.4

Rear −5.4 8.5 0.87 7

Wrist Front 7.4 22 0.41 14

Rear −0.7 59 0.27 20

Units for all parameters are in degrees except R2 (no unit).

in the study of Kanko et al. (2021a) and briefly delineated

hereafter. The software relies on synchronized and calibrated

videos as input that uses pre-trained deep convolutional neural

networks to estimate 2D positions of learned key features

(e.g., joint locations and surface landmarks) within the frames

of video data, thus enabling to obtain the features in 3D

space. The embedded multibody kinematic model is adapted

to fit 3D subject-specific features, and a multibody kinematic

optimization scheme (Begon et al., 2018) allows to perform 3D

pose estimation during an activity. In this study, estimated 3D

poses (4-by-4 matrices) of the body segments were exported to

Visual3D to compute joint kinematics and segment velocities.

Figure 1B illustrates an example of the Theia3D model obtained

with multibody kinematic optimization during boxing.

Regarding the marker-based data, the generic multibody

template was adapted to obtain subject-specific scaled models,

and segment’s pose estimation throughout all motion frames was

obtained using multibody kinematic optimization (Begon et al.,

2018) within Visual3D. Proper segment-specific marker weights

were implemented and tuned based on residual analysis, with

highest weight at the thorax, followed by the upper arm, forearm,

and hand.

The markerless vs. marker-based method was assessed by

the following kinematic variables: joint center positions, joint

angles, and linear segment velocities. The joint center positions

at the shoulder, elbow, and wrist were retrieved from the

pose matrices resulting frommultibody kinematic optimization.

Then, 3D Euclidean distances between corresponding joint

centers across all the trials and subjects were computed. The

joint angles at the shoulder (between thorax and upper arm),

elbow (between upper arm and forearm), and wrist (between

forearm and hand) were computed with cardan sequences of

rotation adopted from the study of Wu et al. (2002). Linear

segment velocity magnitudes were derived from the center

of mass positions of each segment in the global reference

frame. The kinematic variables were exported to MATLAB

(MathWorks, USA), and a 4th-order low-pass Butterworth filter

was implemented to filter both the joint angles and segment

velocities with cutoff frequency of 8 Hz.

Statistical analysis

The deviation between corresponding joint centers

estimated with marker-based and markerless system was

assessed as mean (standard deviation) or median (interquartile

range) based on normality outcomes across all the trials and

subjects. The degree of agreement between joint angles resulting

from both the methods was assessed using Bland–Altman

analysis (Bland and Altman, 1986). Bias (b), confidence

interval (CI; 1.96 times standard deviation or 1.45 times

interquartile range for non-normal distributions), coefficient of

determination (R2), and root mean square difference (RMSD)

were calculated for comparison. The same statistical parameters

were used for comparing segment velocity magnitudes. All the

analyses were performed for the front and rear limbs separately

using customized MATLAB routines.

Results

Joint center positions

An example (second athlete and first trial) of the joint

center positions in the global reference frame estimated with

markerless vis-à-vis marker-based approach is presented in

Figure 2. Overall across all the subjects and trials, the joints of the

front and rear limbs followed similar trajectories measured with

both the systems. Differences [median (interquartile range)]

between markerless and marker-based joint centers for the front

shoulder, elbow, and wrist were found as 2.3 (0.8), 3.1 (0.8), and

1.8 (1.2) cm, respectively. These values for its rear counterparts

were 2.3 (1.3), 3.1 (0.9), and 2.2 (2.5) cm, respectively.

Joint angles

Figure 3 illustrates an example (second athlete and first trial)

of the joint angles at the shoulder, elbow, and wrist obtained with

markerless and marker-based systems. Overall, the kinematic
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FIGURE 4

Segment velocity magnitudes (ordinate) at the thorax, and at the front and rear upper arm, forearm, and hand computed with marker-based and

markerless methods and represented over time (abscissa). Example shown for the second athlete and first boxing trial. Blue and red colors

represent marker-based and markerless segment velocities, respectively.

profiles estimated with both the methods exhibited qualitatively

similar pattern, with some noticeable offsets.

Table 3 represents the statistical parameters b, CI, R2, and

RMSD when comparing markerless joint angles with marker-

based ones. No values are reported for the elbow and wrist joint

along Abd/Add and Int/Ext rotation, respectively, as these DoFs

were restricted in the multibody kinematic optimization.

Along Abd/Add axis, higher bias, CI, and RMSD, and

lower R2 values were found at the wrist as compared to

the shoulder. Similar outcomes were observed for Int/Ext

rotation, with higher bias, CI, and RMSD, and lower R2

at the elbow joint. As for the flexion/extension (Flex/Ext)

axis, overall, lower bias was noticed at the shoulder

joint, whereas lower CI and RMSD were observed at

the elbow joint. When comparing across DoFs, highest

bias and RMSD were seen along Int/Ext axis (bias:

2.5–13◦; RMSD: 8.1–23◦), followed by Flex/Ext (bias: 0.3–

7.4◦; RMSD: 7.3–20◦) and Abd/Add (bias: −0.1 to 7.2◦;

RMSD: 6.3–11◦).

When comparing across joints, lowest bias (−0.1◦) and

lowest RMSD (6.3◦) were noticed at the shoulder joint, while

revealing largest values at the elbow (bias up to 13◦ and RMSD

up to 23◦). Interestingly, between joints on both the sides, lower

bias, R2, and RMSD were observed at all the rear-side joints

compared to its front counterparts with few exceptions.

Segment velocities

Figure 4 demonstrates linear segment velocity magnitudes

at the thorax, upper arm, forearm, and hand for the second

athlete and first trial. The velocity profiles estimated by both

the systems displayed qualitatively similar patterns. The median

peak velocities across all the athletes and trials measured by

the marker-based system were different among segments, with

highest velocity of 7.5 m/s at the front hand, followed by the

forearm with 5.5 m/s, upper arm with 3.2 m/s, and thorax with

1.6 m/s. These peak velocities were observed while the boxers
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TABLE 4 Bland–Altman bias (b), confidence interval (CI) along with

coe�cient of determination (R2) and root mean square di�erence

(RMSD) between markerless and marker-based methods for segment

velocity magnitudes at the thorax, upper arm, forearm, and hand.

Velocity magnitudes (m/s)

Segments Side b CI R
2

RMSD

Thorax 0.00 0.12 0.96 0.07

Upper arm Front −0.01 0.14 0.98 0.09

Rear −0.02 0.13 0.97 0.08

Forearm Front −0.03 0.20 0.98 0.14

Rear −0.02 0.14 0.98 0.09

Hand Front −0.01 0.23 0.98 0.17

Rear −0.01 0.17 0.97 0.11

Units for all parameters are in m/s except R2 (no unit).

were throwing punches, and some small velocities (∼0–1.5 m/s)

were noticed in between punches when they were performing

footwork. The markerless system estimated similar results, with

7.0 m/s at the hand, 5.5 m/s at the forearm, 3.5 m/s at the upper

arm, and 1.6 m/s at the thorax.

The results of Bland–Altman analysis showed a relatively

good agreement between both the systems for the segment

velocity magnitudes (Table 4). Very small bias was observed

for every segment. Confidence intervals were slightly higher

(between 0.10 and 0.25 m/s), but remained small compared

to the peak velocity observed during the punch. Overall,

the segment with lowest velocity (i.e., thorax) performed the

highest level of agreement between both the systems. When

comparing between the sides, the rear-side segments showed

better agreement as compared to the front-side ones.

Discussion

The purpose of the study was to assess whether markerless

motion capture system can be exploited to estimate upper-

limb kinematics as a substitute to maker-based approach for

analyzing sports-performance during “in the field” boxing.

We assessed joint center positions, joint angles, and segment

velocities obtained with a commercially available markerless

motion data processing software (Theia3D) compared to

those estimated with classical marker-based method. Multibody

models and optimization methods were designed to match at

best between the two approaches.

Across all the subjects and trials, the median 3D distances

between corresponding joint centers were noticed in the range

∼1.5–2.5 cm for all the joints, except the elbow exceeding 3 cm.

Our findings were comparable to those, who reported an average

difference in the range 1.1–2.4 cm for the upper extremity joints

during a treadmill walking activity (Kanko et al., 2021a) and in

the range∼2.0–4.7 cm during a throwing activity (Nakano et al.,

2020).

The upper limb joint angles captured a varying agreement

across all the joints and DoFs. Highest bias and RMSD were

observed along Int/Ext rotation axis and lowest along Abd/Add

axis, confirming the remarks reported for the lower extremity

joints during gait (Kanko et al., 2021a). However, the values

obtained for the upper extremity joints were higher than

those obtained for the lower extremity. For instance, RMSD

along Int/Ext rotation axis was found in the range 6.9–13.2◦

for the lower extremity (Kanko et al., 2021a), whereas 8.1–

23◦ was observed for the upper extremity in the present

work. These higher values could be a consequence of weaker

estimation of segment poses during a dynamic activity as

compared to gait, respecting the previous evidence of pose

estimation performance being task-specific (Nakano et al.,

2020; Needham et al., 2021). With regard to all statistical

parameters, the shoulder joint demonstrated better agreement

between the methods across all DoFs, except Flex/Ext axis

along which elbow joint was seen superior. Furthermore,

relatively lesser agreement was observed for the front-side

joints in general. It is perhaps because of relatively higher

and faster movement of the front-side segments resulting

higher differences. The front arm is also more often fully

extended, a configuration in which determining Int/Ext rotation

becomes problematic.

With regard to the segment velocities, the markerless

system performed a good-to-strong level of agreement,

with maximum RMSD ≤ 0.17 m/s and with a strong

R2 (0.96–0.98). Both systems captured highest velocity

at the hand (7–7.5 m/s) followed by the other body

segments in the kinematic chain. These tendencies

corroborate the findings who reported average punch

contact velocities in the range 5.9–8.2 m/s for combination

of punches (Whiting et al., 1988; Piorkowski et al.,

2011).

Overall, we have noticed a higher degree of agreement

at the proximal joints/segments between the data collecting

methods. This could be a result of the pose algorithm, whichmay

perform less for distal segments, especially for the hand in the

considered boxing task as it moves relatively quicker. It could

also be a consequence of the multibody kinematic optimization,

in which the proximal segments are more constrained than

distal segments (they “inherit” the constraints from distal

segments) and thus less sensitive to measurement errors.

Nevertheless, further investigations are required to confirm

these hypotheses.

While interpreting the degree of agreement or differences

between the two methods, we would like to highlight few

potential sources of errors and assumptions whichmay influence

the results. Marker-based kinematics are prone to misplacement

or inconsistent placement of markers. Although the markers

were placed by the same operator with adequate palpation skills,
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some degrees of variability/inconsistency cannot be denied. On

the other hand, markerless kinematics are normally susceptible

to the quality of 2D video data determined by particularly

spatial resolution, exposure time, and angle of view specified

for the motion under study. As such we have not studied the

sensitivity of these parameters on the kinematic accuracy, we

can expect some changes (improvement/deterioration) in the

kinematics as reported in other studies (Nakano et al., 2020).

Nevertheless, we believe that these impacts would likely to be

minimal as data collection was carried out under proficient

supervision, and the video data were randomly and qualitatively

checked after each acquisition. Furthermore, a repeatability

study for the upper extremity seems relevant in the future,

although the same has been assessed during gait showing

reliable estimation of the lower-limb kinematics using Theia3D

(Kanko et al., 2021b). Another source of error commonly known

as soft tissue artifact (Camomilla et al., 2017) may impact

marker-based kinematics to certain extent, although multibody

kinematic optimization was implemented to compensate for

it (Begon et al., 2018). Apart from the probable sources of

errors, there are some likely differences in defining segment

reference frames between the Theia3D kinematic model and

marker-based model. For instance, in the marker-based model,

the long axis of the thorax is defined between the thoracic joint

center and the cervical joint center estimated with regression

equations (Dumas and Wojtusch, 2018). Although the Theia3D

model uses identical landmarks derived from pose matrices

to define the axis, any differences in estimating joint centers

would impact the segment frame and thereby resulting in

offsets and distortions in the joint angles. We acknowledge

that such discrepancies could not be avoided; nevertheless,

definition of marker-based joint centers for the shoulder, elbow,

and wrist was in accordance with the study carried out by

the team involving in Theia3D development (Kanko et al.,

2021a,b).

The present work may provide practical avenues to analyze

the performance and skill levels of athletes by assessing upper

extremity kinematics. For instance, the joint center trajectories

and angles have been shown to vary based on the characteristics

of boxing type and level of expertise (Whiting et al., 1988; Dinu

and Louis, 2020). Measuring these kinematic variables would

be necessary to analyze and enhance punches that require a

distinct segment orientation in different planes. Information on

trajectories of different punch types will also help the combatant

to deflect or escape blows (Piorkowski et al., 2011). Furthermore,

ranges of motion may provide insights on predisposing factors

of injury, as larger joint motion has been reported to implicate

joint injury, particularly at the shoulder (Lenetsky et al., 2015).

The literature on assessing segment velocities suggests that

punch velocity is crucial for optimal performance in boxing

(Whiting et al., 1988), with higher values reported for elite

boxers (Dinu and Louis, 2020). Attaining high velocity at

the fist is typically a result of contribution of other body

segments in the kinematic chain. The latter study indicated

that the shoulder contributed most to hook and uppercut

punch both in junior and in elite boxers. They also noticed

moderate differences in segment contribution between high-

and low-performing boxers, underlining the need for accurate

estimation of segment velocities. Despite such knowledge on

the biomechanical distinctions across boxing styles and athletes,

receiving timely feedback has been a major burden to coaches

and athletes with marker-based methods. In this context, the

markerless system is easily deployable both in training sessions

and in live combats, while maintaining comparable kinematics

to marker-based approach. It is worthwhile to mention that the

usability of the kinematic variables as performance measures

will depend upon the context of application within an allowable

error limit, and this remains an explorable avenue. In marker-

based motion analysis, with reference to gait analysis, 5◦ of

error is generally considered the maximum accepted (McGinley

et al., 2009). This 5◦ error correspond to the lower limb,

and no such value seems to be present in the literature

for the upper limb. That said, we expect segment velocities

across all the segments, and joint angles along Abd/Add and

Flex/Ext axes can be used with reasonable confidence. The

wrist joint angles should be dealt with caution due to relatively

poor agreement.

There are few limitations of the present work to

acknowledge. We assessed only the upper extremity kinematics,

although may not be sufficient to underscore a wide range

of performance descriptors such as athletes’ stability and

kinetic characteristics such as punching force. For example,

distribution of the forces between the legs has a considerable

effect on punching performance in terms of both stability

and fist velocity (Stanley et al., 2018; El-Oujaji et al., 2019).

For direct measurement, this would, however, require

additional arrangements such as force plates (Piorkowski

et al., 2011; Stanley et al., 2018) and instrumented punch

bags, making it cumbersome and unsuitable for monitoring

“in the field” matches. Studies have also also showed the

possibility of estimating punching force using wearable

devices and external contact loads (Robert et al., 2013;

Muller et al., 2020) using marker-based approach without

the need of force sensors. Estimation of these variables

using markerless video-based approach seems relevant in

assessing sports-performance. One important limitation to

highlight is the small number of elite athletes participated in

the study. It is also noteworthy to remark that comparative

assessment was performed for shadow boxing trials, i.e., one

single athlete throwing punches without interaction with

the opponent. Although it would be pertinent to analyze

the performance of both the athletes in close-combats,

evaluating with marker-based motion capture system would

be questionable due to its inherent limitations. Moreover,

the boxers performed trials without the usage of gloves and

boxing outfit as it was convenient to place markers on body
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landmarks. It would be interesting to analyze the sensitivity

of the markerless kinematics in response to traditional

boxing attire.

Conclusion

As a first “in the field” study of a highly dynamic sport,

we evaluated 3D joint center positions, joint angles, and

segment velocities of the upper extremity of three elite athletes

estimated with a markerless approach in comparison with

those obtained with marker-based method. We observed a

median difference of <2.5 cm for the shoulder and wrist,

and slightly higher than 3 cm for the elbow joint between

the two approaches. While assessing the joint angles, the

shoulder joint largely exhibited a higher level of agreement

with RMSD in the range of 6–12◦, whereas the wrist and

elbow joint displayed more than or equal to 20◦ in some

DoFs. The agreement along the Int/Ext axis was consistently

poor across all the DoFs. Segment velocities demonstrated

a strong level agreement between the two methods showing

a maximum RMSD of 0.17 m/s. Overall results indicated

higher levels of agreement between the methods for segment

velocities compared to joint angles. Given the practicality of

the markerless motion capture system out of the laboratory

environment, the results will help both athletes and coaches

to analyze sports-performance. Future studies will focus on

analyzing both the athletes in close-combat situations with

markerless method.
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