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Abstract. Spatiotemporal statistical learning has received in-
creased attention in the past decade, due to spatially and
temporally indexed data proliferation, especially data col-
lected from satellite remote sensing. In the meantime, ob-
servational studies of clouds are recognized as an important
step toward improving cloud representation in weather and
climate models. Since 2006, the satellite CloudSat of NASA
is carrying a 94 GHz cloud-profiling radar and is able to re-
trieve, from radar reflectivity, microphysical parameter dis-
tribution such as water or ice content. The collected data
are piled up with the successive satellite orbits of nearly
2 h, leading to a large compressed database of 2 Tb (http:
//cloudsat.atmos.colostate.edu/, last access: 8 June 2022).

These observations offer the opportunity to extend the
cloud microphysical properties beyond the actual measure-
ment locations using an interpolation and prediction algo-
rithm. To do so, we introduce a statistical estimator based
on the spatiotemporal covariance and mean of the observa-
tions known as kriging. An adequate parametric model for
the covariance and the mean is chosen from an exploratory
data analysis. Beforehand, it is necessary to estimate the pa-
rameters of this spatiotemporal model; this is performed in a
Bayesian setting. The approach is then applied to a subset of
the CloudSat dataset.

1 Introduction

Clouds have a strong influence on weather and climate. They
are a key element of earth’s hydrological cycle, bringing wa-
ter from the air to the ground and from one region of the

globe to another. They also dominate the energy budget of
the earth through their action on the exchange of solar and
thermal radiation within the atmosphere and between the at-
mosphere, the hydrosphere, the land surface, the biosphere,
and space. However, they still remain a major source of un-
certainty in predicting the weather and climate change.

While the measurement of cloud occurrences and proper-
ties at useful spatial and temporal scales is notoriously dif-
ficult (Marshak and Davis, 2005; Stephens and Kummerow,
2007), the proliferation of satellite platforms in the past few
decades (Stephens et al., 2002; Eriksson et al., 2008; Wu
et al., 2009) is fostering a number of new approaches. One
such satellite, CloudSat, whose payload is a cloud-profiling
radar (CPR), has been dedicated to measuring the cloud ver-
tical structure and microphysical properties. It is part of the
A-train constellation, which was originally set to comprise
seven satellites specifically designed to measure cloud and
precipitation properties using different instruments. Since
2006 CloudSat has collected a large database of cloud prop-
erties, globally and over an extended period of time, despite
some malfunctions.

In this study, we analyze statistically a part of this database
in order to perform interpolation and prediction of cloud
properties. This kind of spatiotemporal estimation can be of
major importance for the assessment of satellite cloud at-
tenuation (Lyras et al., 2016), including Global Positioning
System (GPS) radio occultation (Yang and Zou, 2012). It is
required for improving the representation of cloud systems
in numerical weather prediction (Bodas-Salcedo et al., 2008;
Chen et al., 2011), e.g., for data assimilation (Qu et al., 2018).
It can be involved in the assessment of an aircraft icing de-

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://cloudsat.atmos.colostate.edu/
http://cloudsat.atmos.colostate.edu/


4412 J.-M. Lalande et al.: A kriging-based analysis of cloud liquid water content

tection system (Vivekanandan et al., 2001), the design of a
satellite communication system (Khan et al., 2012), the sys-
tematic comparison with other cloud products from different
instruments and/or satellites, etc.

As observations from different instruments are likely not
collected at the same spatiotemporal positions, the proce-
dure of interpolation–prediction usually involves regridding
selected slots of data. A number of statistical methods dedi-
cated to the analysis of spatial and spatiotemporal data have
been developed over the years taking into account the spa-
tial and/or temporal correlation of the observations (Ripley,
1981; Cressie, 1993). In this study, we propose to use an ap-
proach based on a kriging estimator for the interpolation–
prediction problem. The kriging estimator was initially in-
troduced by Krige (1951), from which it takes its name, to
estimate the gold distribution at the Witwatersrand reef com-
plex in South Africa based on samples from boreholes. It was
then formalized mathematically by Matheron (1963) in the
context of mining geology. Afterwards, the kriging estimator
spread to many other areas of sciences (Wackernagel, 2013)
(hydrogeology, geotechnics, agronomy, air quality, fishery,
epidemiology, water and soil pollution, noise, etc.). The best-
known kriging techniques are simple kriging, which assumes
stationarity of the first order with a known mean, ordinary
kriging, where the mean is unknown and to be estimated, and
universal kriging, which assumes non-stationarity of the first-
order. Since its initial development, kriging techniques have
largely evolved, and a number of new kriging techniques
have been developed (Chiles and Delfiner, 1999; Cressie,
1993; Cressie and Wikle, 2015). In the field of meteorol-
ogy, the kriging estimator has primarily been used to esti-
mate precipitation accumulation from rain gauges (Nour et
al., 2006; Belo-Pereira et al., 2011) and in combination with
satellite-derived precipitation (Jewell and Gaussiat, 2015;
Verdin et al., 2016; Varouchakis et al., 2021) as well as
aerosol concentration in the air from in situ observations
(Park, 2016). It has also been used for the estimation of tem-
perature from in situ measurements (Heuvelink et al., 2012;
Didari and Zand-Parsa, 2018), from satellite observations
(Florio et al., 2004), or a combination of them (Didari and
Zand-Parsa, 2018) as well as for the estimation of surface
properties from remote measurements (der Meer, 2012; Zak-
eri and Mariethoz, 2021).

Our approach is based on a second-order analysis of cloud
liquid water content (LWC) obtained from the Level 2B
product of the CloudSat ground segment data. We perform a
detailed analysis of these properties and propose an adequate
parametric model for their mean and covariance. The model
parameters are obtained by maximizing the a posteriori prob-
ability density, which comprises a likelihood term expressing
how the model fits the observation conditionally to the pres-
ence of clouds. Finally, we apply this model in the context
of interpolation and prediction of CloudSat observations. To
our knowledge, it is the first time the kriging estimator has

been employed to infer cloud microphysical properties using
CloudSat observations:

– We provide a comprehensive mathematical description
of the kriging estimator. It allows us to mention that the
parameters of the mean and covariance functions are
commonly treated differently in the kriging literature.
In our approach, parameters can enter both linearly and
non-linearly in the mean, which makes it more flexible
in accommodating the trend of the observations. Thus,
we propose a global treatment of all the parameters of
the model since standard universal kriging is not com-
patible with non-linearity.

– We propose a model for the mean and covariance func-
tions and thoroughly justify each choice we make (e.g.,
stationarity assumption, homogeneity assumption)

– We perform a detailed analysis of both the esti-
mated model parameters and the resulting interpolated–
predicted cloud LWC.

2 Data and mathematical description

2.1 The CloudSat data and the CPR instrument

CloudSat has been flying in formation in the A-train with
other satellites including Aqua, Aura and CALIPSO. Cloud-
Sat payload consists of a 94 GHz CPR that was specifically
designed to sense cloud-sized particles (i.e., cloud ice, snow,
cloud droplets and light rain).

It was declared operational on 2 June 2006 and had been
flying in the A-train until 22 February 2018. It follows a sun-
synchronous orbit with an approximately 13:30 LT equato-
rial crossing time. Since 2011 and a battery malfunction, it
has provided observations only during daytime. The satellite
visits the same position of the globe after a period of 16 d cor-
responding to 233 orbits. Each orbit is achieved in about 1 h
and 58 min. The CloudSat radar samples profiles at 625 kHz
and has an along-track velocity of approximately 7 km s−1,
which corresponds to a profile measured every 0.16 s with
an along-track displacement of approximately 1.1 km. Each
profile has 125 vertical bins of 240 m thickness.

In this study, we use the Level 2B Cloud Water Content
product (2B-CWC-RO) that contains retrieved estimates of
cloud liquid and ice water content, effective radius, and re-
lated quantities for each radar backscattered reflectivity pro-
file (Austin et al., 2009). We focus on a region centered over
Europe and under-sampled at a rate of 1/50 (cf. Fig. 1). In
this region, we select data from 16 June 2006 to 14 June 2015
constituting a set of 239 087 profiles. The CPR observations
are classified according to their cloud types in the Level 2B-
CLDCLASS product (cf. Fig. 2). After analysis of the cloud
type distribution inside the considered region, we decided to
focus on the LWCs labeled as altostratus since they constitute
a good balance between the number of available data and the
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computational feasibility. Moreover, altostratus are less frac-
tionated than other cloud types, and thereby their physical
properties are more continuous.

2.2 Mathematical description of the data

2.2.1 Background

We consider the scalar function 8 of three spatial variables
(x,y,z) and a temporal variable t mapping elements fromD

into R:

8 :

D = [0,2π ]× [−π/2,π/2]×R+×R → R
s = (x,y,z, t) 7−→ 8(x,y,z, t) ,

(1)

where s ∈D is spatiotemporal localization, x, y represent,
respectively, the longitude and latitude at the earth’s surface
and z is the altitude. The function 8 can be modeled as a
deterministic or stochastic quantity. The stochastic nature of
the function 8 can be introduced to model some inner vari-
ability of the physical phenomenon under study or an incom-
plete knowledge of the phenomenon itself. The complete de-
scription of a stochastic process requires the construction of
the joint probability density function for the continuous vari-
ables in space and time (Chonavel and Ormrod, 2002; Gaetan
and Guyon, 2008; Brockwell and Davis, 2009), which can be
cumbersome in a high-dimensional space. To alleviate this
burden, it is possible to resort to the description of the mean
and covariance of the random function. This proves very effi-
cient when the distribution associated with the random func-
tion is not too complex (for instance, when the random func-
tion is Gaussian, the mean and covariance are sufficient to
completely describe the distribution).

In this study, we assume that the mean and covariance exist
and represent sufficiently well the distribution of the random
function 8. The mean is a function of the spatiotemporal lo-
calization s:

m8(s)= E[8(s)] ,

where E[·] denotes the expectation of the random vari-
able. The covariance is a function of 4 spatiotemporal
variables and 4 spatiotemporal shift variables, noted δ =

(δx,δy,δz,δt ). Thus we have

R8(s,δ)= E[(8(s)−m8(s))(8(s+ δ)−m8 (s+ δ))] .

The covariance function describes the spatiotemporal depen-
dency of the stochastic function 8. Based on these defini-
tions, it is useful to introduce certain stationary models to
characterize the degree of homogeneity of the random func-
tion 8.

2.2.2 Stationarity

In order to infer the distribution of the random function 8,
the structure of the spatiotemporal process is of great impor-
tance. In this sense, stationary models make it possible to

structure the spatiotemporal variability of the random func-
tion 8. The process under study is said to be strictly sta-
tionary if the distributions [8(s1), . . .,8(sk)] and [8(s1+

δ), . . .,8(sk + δ)] are identical for all δ, s1, . . .,sk ∈D, and
for all k ∈ N. This is a very restrictive condition which is not
usually satisfied in real-life applications. The weak stationar-
ity stipulates that

– the random function 8 is first-order stationary when its
expected value does not depend on the localization s:

m8(s)= µ

– the random function 8 is second-order stationary when
its covariance function depends only on the lag vector δ
between two localizations s and s′ = s+ δ:

R8(s,δ)= R8(δ), for all s and δ .

2.2.3 Observations and uncertainties

We denote the successive spatiotemporal positions sn =

(xn,yn,zn, tn), n= 1, . . .,N and the targeted quantity 8 at
these positions:

8n =8(sn), n= 1, . . .,N .

We model the actual observations of the targeted quantity 8
as corrupted by an additive noise related to the measurement
uncertainty. The observation at position sn is then denoted
9n and is written:

9n =8n+Bn,

where 9n, 8n and Bn are random variables. We denote the
values associated with a realization of these random variables
by ψn, ϕn and bn. Thus, a realization of the random variable
9 at the position sn is written:

ψn = ϕn+ bn , (2)

and additionally, we write:

ψ = ϕ+ b ,

where ψ = [ψ1, · · ·,ψN ], ϕ = [ϕ1, . . .,ϕN ] and
b = [b1, . . .,bN ] are the collections of the related N

quantities.

2.2.4 Objectives

The objective of this work is to determine the value ϕ0 of the
quantity of interest ϕ at a given location s0 = (x0,y0,z0, t0).
This is an estimation problem that is tackled by designing an
estimate ϕ̂0 of the quantity of interest ϕ0 from the data ψ de-
scribed in the previous section. On the one hand, spatially,
this is an interpolation problem since the point x0, y0, z0 is
usually not on the grid of observations. On the other hand,

https://doi.org/10.5194/amt-15-4411-2022 Atmos. Meas. Tech., 15, 4411–4429, 2022



4414 J.-M. Lalande et al.: A kriging-based analysis of cloud liquid water content

Figure 1. CloudSat ground track representing 14 orbits (a), zoom in on the European zone under study (b).

Figure 2. Sample of CloudSat cloud classification over a period of 15 d. Clouds are classified according to clear (no clouds), Cs (cumulus),
As (altostratus), Ac (altocumulus), St (stratus), Sc (stratocumulus), Cu (cirrus), Ns (nimbostratus), DC (deep convective).

temporally, this is a prediction problem since t0 is naturally
positioned in the future. The considered approach is to sta-
tistically learn from the large number of available data both
to interpolate and predict the targeted quantity and to quan-
tize the uncertainty associated with the estimated value. In
the next section, we introduce the kriging estimator, which is
specifically designed to perform such a task.

3 The kriging estimator

The goal is to construct a statistical estimator 8̂0

8̂0 : RN → R

ψ 7−→ ϕ̂0 = 8̂0(ψ)

in order to estimate ϕ0 from the observations ψ . This sec-
tion describes the strategy for the construction of the krig-

ing estimator which has been widely used in geostatistics.
This framework has been developed in a number of hand-
books (Cressie, 1993; Chiles and Delfiner, 1999; Diggle et
al., 2003) and later on by Montero et al. (2015), in the case
of a known mean and covariance. Our development differs
slightly from the standards of geostatistical literature in two
ways.

1. The parameters of the mean function m8(s) usually act
linearly and consequently their estimation can be per-
formed inside the kriging estimator while the estimation
of the covariance parameters is classically performed in
a previous offline procedure. Instead, in order to design
a model with a higher capacity, we consider both a non-
linear mean and a non-linear covariance function and
estimate their parameters in an offline procedure.

Atmos. Meas. Tech., 15, 4411–4429, 2022 https://doi.org/10.5194/amt-15-4411-2022
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2. Our approach is fully parametric and consequently re-
lies on a parametric covariance function instead of a
variogram (Banerjee et al., 2014).

Thus, in the following development, we consider that the
mean and covariance functions are known and defer the (of-
fline) estimation of their parameters to the next section.

We consider a linear estimator of the form

8̂0(9)= a
t9 + a0 , (3)

where 9 = [91, . . .,9N ] are the observations,
a = [a1, . . .,aN ] are scalar coefficients and N is the
number of available observations. This can be alternatively
expressed in terms of realizations of the random variables as

ϕ̂0 = 8̂0(ψ)= a
tψ + a0 . (4)

Our goal is to determine the coefficients a and a0. The strat-
egy is to minimize an error between the estimated quantity
8̂0 and the true value 80. We choose the mean square error
(MSE):

E(a,a0)= E
[(
8̂0−80

)2
]
. (5)

The estimator 8̂, defined by Eqs. (3)–(4) with

(a,a0)
opt
= argmin

a,a0

E(a,a0),

and the corresponding estimator is the so-called minimum
mean square error estimator (MMSE). The value aopt

0 mini-
mizing Eq. (5) satisfies

∂E
∂a0

∣∣∣∣
a

opt
0

= 0,

giving

a
opt
0 =m80 − a

tm8 . (6)

Then, plugin of Eq. (6) into Eq. (5) and expanding leads to

E(a)= E(a,aopt
0 )= atR9a− 2atr980 + var[80] , (7)

where we introduced the following notations:

R9 = E
[
(9 −m8)(9 −m8)

t
]

r980 = E
[
(80−m80)(9 −m8)

]
var[80] = E

[
(80−m80)

2
]
,

where R9 is the covariance matrix of the observations, r980

is the covariance between the observations and the quantity
of interest, and var[80] is the variance of the quantity of in-
terest. The vector aopt that minimizes Eq. (7) satisfies

∂E
∂a

∣∣∣∣
aopt
= 0,

and that leads to

aopt
= R−1

9 r980 .

Moreover, modeling noise B independent of the quantity of
interest 8, we have

R9 = R8+RB and r980 = r880 , (8)

so that

aopt
= (R8+RB)

−1r880 . (9)

Finally, we deduce the estimated value ϕ̂0 of the quantity
of interest ϕ at position s0 by inserting Eqs. (9) and (6) in
Eq. (4):

ϕ̂0 = r
t
880

(R8+RB)
−1 (ψ −m8)+m8(s0) . (10)

Additionally, the MSE of the estimated value is given by

E(aopt,a
opt
0 )= var[80] − r

t
880

(R8+RB)
−1r880 , (11)

which, in this context, equals to the variance of the estima-
tion error var[8̂0−80] because the bias is equal to zero. This
estimator is known as the kriging estimator in the geostatis-
tical literature (Montero et al., 2015). In a slightly different
form, this estimator is also the one of Kalman and Wiener in
the field of filtering.

4 Construction of a model for the mean and the
covariance

4.1 Time–altitude and spectral analysis

In order to construct an adequate model for the mean and the
covariance, we start with an exploratory analysis to extract
some raw characteristics from the time–altitude observations
represented in Fig. 3. We compute the biased empirical co-
variance for the 2-dimensional case (δt,δz) and the 1- di-
mensional case at a fixed altitude of z= 6.711 km (cf. Fig. 4).
This shows 1-year periodicity of the LWC observations in the
time component, while the altitude component decreases to 0
for δz= 1 km. The blue spots located at δz =±6 km are due
to zero-padding above and below the cloudy profile that in-
troduces an artificial correlation. Another way of looking at
the data ψ is to compute the empirical power spectral density
Ŝψ (f ), i.e., the squared modulus of the Fourier transform of
the observations ψ (a.k.a. periodogram) (cf. Fig. 5). There is
clearly a peak at 1 year−1. For some altitudes, there are lower
peaks at 2 year−1 or even at 3 year−1, indicating that the sig-
nal cannot be modeled by a single sinusoidal component. At
lower altitudes, the fundamental component becomes negli-
gible as do the harmonics. Nevertheless, this suggests that
CloudSat observations can be interpreted as the superposi-
tion of multiple periodic components.

https://doi.org/10.5194/amt-15-4411-2022 Atmos. Meas. Tech., 15, 4411–4429, 2022
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Figure 3. Scatter plot of the altostratus LWC observations.

Figure 4. Empirical covariance: (a) 2-dimensional covariance (δt,δz), (b) slice at δz = 0 km and (c) slice at δt = 0 year.

Figure 5. Empirical periodogram at (a) z= 6.71 km and (b) z= 6.00 km.
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4.2 Proposition of an adequate model

The observations 9 are modeled as the addition of a random
process 8 and a random noise process B, such as

9(t,z)=8(t,z)+B(t,z).

We dodge the complexity of handling 4 dimensions and
choose to do an in-depth analysis of a time-altitude depen-
dent model while omitting the latitude-longitude dimensions.
This simplification can be justified when the spatial exten-
sion of the dataset is not too important. This is equivalent to
assimilating the dataset to a single spatial location by averag-
ing over the geographic components. All random processes
are modeled as Gaussian (Rasmussen and Williams, 2005):

8 ∼ N (m8,R8),
B ∼ N (0,RB),
9 ∼ N (m8,R9),

(12)

where R8, RB and R9 are the covariance matrices associ-
ated with the quantity of interest 8, the noise B and the ob-
servations 9. Assuming the noise B independent of the ran-
dom function 8, we can write R9 = R8+RB , see Eq. (8).

In order to take into account the periodic temporal trend
observed in the observations, we consider a non-first-order
stationary model. Moreover, the mean is chosen not to be a
function of the altitude in order to limit the number of param-
eters. Considering the time variations, we chose a periodic
mean with one fundamental and two harmonics such that

m8(t)= β0+β1 cos
(
α1+

2πt
T

)
+β2 cos

(
α2+

2πt
T /2

)
+β3 cos

(
α3+

2πt
T /3

)
,

where β0, β1, β2 and β3 are, respectively, the amplitude of
the continuous component, the fundamental and the 2 har-
monics, αi (with i = 1,2,3) are the phase parameters of the
fundamental and the harmonics and T is the period.

In order to further simplify we resort to the widely used
separable model for the covariance (Genton, 2007) so that the
spatiotemporal covariance factors into a purely spatial and
a purely temporal component. This reduces the number of
parameters allowing for computationally efficient estimation
and inference, and it is then more tractable to run different
tests on the dataset. Thus, the separable covariance model is
written as

R8(δt ,δz)= r8R8t (δt)R8z(δz) ,

where r8 is the variance of the quantity of interest. We chose
an exponential covariance model for the time covariance

R8t (δt)= exp
[
−|δt |

/
lt
]
,

where lt is the correlation time. The choice of this covariance
model is motivated by the shape of the empirical covariance

described in the previous section (it decreases more rapidly
than a Gaussian). The altitude covariance is set to be

R8z(δz)= exp
[
−
(
δz
/
lz
)2]

,

where lz is the correlation length in altitude. We then use a
white noise:

RB(δt,δz)= rB Dirac(δt,δz),

where rB is the variance of the noise. Finally, we have a
model consisting of 12 parameters, including four parame-
ters for covariance and eight parameters for the mean:

θ =
[
r8, lt , lz,β0,β1,β2,β3,α1,α2,α3,T ,rB

]
.

Using this notation we can denote the parametric model for
the mean m9(δt;θ) and for the covariance R9(δt,δz;θ). In
the following section, we describe the strategy to estimate
this set of parameters.

5 Model parameter estimation, optimization and final
kriging equations

In this section, we present the strategy for the estimation of
the model parameters θ . We choose the maximum a poste-
riori (hereafter abbreviated MAP) estimate for θ , which is
the mode of the posterior probability density function (pdf)
in Bayesian statistics. The analysis of the estimated param-
eters and corresponding model is deferred to Sect. 6 for the
1-dimensional case and Sect. 7 for the 2-dimensional case.

5.1 The MAP estimator

In the previous section, we proposed a parametric model for
the mean m9(δt;θ) and for the covariance R9(δt,δz;θ) of
the random variables 9, which decomposes into a model for
the quantity of interest 8 and the noise B. The problem is to
find an estimate θ̂ of the true parameters θ? from the obser-
vations ψ . We introduce the posterior pdf:

π(θ |ψ)=
f (ψ |θ)ρ(θ)

f (ψ)
,

where f (ψ |θ) is the so-called likelihood function, which ex-
presses the probability of the observations given the param-
eter θ , ρ(θ) is the prior distribution for the parameters θ
and f (ψ) is the marginal pdf for the observations. Since we
model the observations by a Gaussian pdf conditionally to the
parameters θ (see Eq. 12), the likelihood function f (ψ |θ) is
written as

f (ψ |θ)= (2π)−N/2(detR9)−1/2

exp
[
−

1
2
(ψ −m9)

tR−1
9 (ψ −m9)

]
, (13)

where we have omitted the dependence in θ , δt and δz for R9
andm9 to weigh down the notations. Since the posterior pdf

https://doi.org/10.5194/amt-15-4411-2022 Atmos. Meas. Tech., 15, 4411–4429, 2022
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π(θ |ψ) is by definition positive, we consider the co-log pos-
terior CLP(θ)=− logπ(θ |ψ), which expands as follows:

CLP(θ) # − logf (ψ |θ)− logρ(θ)

#
1
2
(ψ −m9)

tR−1
9 (ψ −m9)

+
1
2

logdetR9 − logρ(θ), (14)

where # stands for “equality up to an additive constant” (not
function of θ ). The minimum of Eq. (14) is the maximum of
the posterior pdf. Thus, minimizing the CLP gives the MAP
estimate. To complete, we consider a uniform prior ρ(θ) on
a given domain 2:

ρ(θ)= U2(θ) ,

where 2 is a hyper-rectangle in RP describing a range of
possible values for each component of θ . For our model P =
12. Finally, we obtain

CLP(θ) # (ψ −m9)tR−1
9 (ψ −m9)

+ logdetR9 − logU2(θ). (15)

The function CLP is infinite when θ 6∈2 because of the term
− logU2(θ). The minimizer θ̂ , given by

θ̂ = argmin
θ

CLP(θ), (16)

is the MAP estimate of the true parameter θ?.

5.2 Optimization procedure

An optimization procedure is required in order to determine
the minimizer θ̂ of the CLP. In this study, we use an itera-
tive conditional mode strategy with a golden-section search
(ICM-GS) for each component (Kiefer, 1953; Press et al.,
1992). We then have an algorithm composed of an outer and
an inner loop.

The inner loop optimizes with respect to one component
at a time, say, θp, based on a golden-section search. It stops
when the variation of θp is smaller than a given threshold,
say, εp. The outer loop repeats the scan of the P components
and stops when the variation of θ becomes smaller than a
second given threshold denoted by η. The values εp and η
have been fixed so as to reach stable results. The specific
threshold values used in optimization procedure are reported
in Table 1.

5.3 Kriging equation with m̂8 and R̂9

The interpolation–prediction solution given the observations
ψ is performed using the kriging estimator developed in
Sect. 3. The kriging equations were initially developed as-
suming a known mean m8 and covariance R9 . In reality, we
only have at hand the parametric mean m̂8 and covariance

R̂9 that depend on the estimated parameter θ̂ . Thus, the esti-
mation of the quantity of interest 8 in t0 is written:

ϕ̂0 = r̂
t
980

R̂−1
9 (ψ − m̂8)+ m̂8(t0), (17)

where m̂8 is a vector of estimated mean at the positions
of the observations. Finally, we can compute the minimum
mean square error:

E = r̂8− r̂ t980
R̂−1
9 r̂980 . (18)

This last expression is equal to the variance of the estimation
error, which we note σ 2

= var[8̂0−80]. It gives an estima-
tion of the forecast error associated with the kriging tech-
nique. However, it should be kept in mind that this variance
does not account for the uncertainty in the model parameter
estimate θ̂ . Therefore, this expression tends to underestimate
the true estimation variance. This feature has been well docu-
mented in Cressie (1993) and Montero et al. (2015). We leave
the assessment of this impact for further development of this
model. Note that the kriging stage is essentially a computa-
tional step that does not present any major difficulty except
for the computational burden when dealing with large dimen-
sions.

6 The 1-dimensional time case

We start our analysis with the 1-dimensional case at a single
altitude. We give a detailed analysis of the estimated param-
eters according to the MAP criterion and the ICM-GS algo-
rithm, both described in the previous section. We concentrate
on the estimation over the west of Europe and analyze the
impact of reducing the considered geographic area. We then
proceed to the kriging of observations in the interpolation
and prediction case.

6.1 Estimation over a European area at a single
altitude

In order to analyze the results of the previously described pa-
rameter estimation procedure, we first consider observations
associated with altostratus clouds over a European area ex-
tending from 10◦W to 10◦ E in longitude and 30 to 60◦ N
in latitude (see Fig. 1) and use a subsampled database (at
1/50 rate) at a single altitude of z' 6 km. This corresponds
to a set of Nobs = 3653 observations. The period parameter
T has been readily set to 1 year so as to represent the season-
ality observed in the data.

Figure 6 shows the evolution of CLP during the optimiza-
tion process which, as expected, decreases with the iterations
and stabilizes after ∼ 5 iterations. The current value of the
parameters changes at each iteration and stabilizes as shown
in Fig. 7.

Even though the decrease in CLP along the iterative opti-
mization process indicates convergence toward a minimum,
there is no guarantee that it is a global minimum. This is
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Table 1. Threshold values εp used for each parameter and global threshold value η.

εr8 εlt εlz εrB εβ0 εβ1 εβ2 εβ3 εα1 εα2 εα3 η

1× 10−5 1× 10−7 1× 10−1 1× 10−6 1× 10−3 1× 10−2 1× 10−2 1× 10−4 1× 10−2 1× 10−5 1× 10−2 1× 10−3

Figure 6. Evolution of CLP during the optimization process.

Figure 7. Evolution of each parameter along the optimization pro-
cess. The x axes represent the iteration index while the y axes rep-
resent the current value for each parameter. Parameters associated
with the covariance of the quantity of interest are represented with
red circles, parameters associated with the mean of the quantity of
interest are represented with blue circles and the noise variance is
represented with green circles.

Figure 8. (a) Contour plot of CLP as a function of r8 and lt .
There is a global minimum characterized by r̂8 ' 2.2×10−2, l̂t '
3.6× 10−6 and a corresponding CLP(θ̂)=−1.67× 104 and a lo-
cal minimum characterized by r̂8 ' 2×10−2, l̂t ' 9.1×10−4 and
CLP(θ̂)=−1.65×104. (b) CLP as a function of r8 while fixing all
the other parameters to their initial values. This shows why the first
two iterations of the optimization algorithm are moving away from
the global minimum shown in the contour plot because the CLP is
strictly monotonic inside the considered region.
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highlighted in Fig. 8a which represents the isocontour plot
of CLP as a function of (r8, lt ) while the other parameters
are fixed to their estimated values. Additionally, we plot the
current values of r8 and lt at each iteration of the ICM-
GS algorithm in Fig. 8a. In Fig. 8b we plot the CLP as a
function of r8 while fixing all the other parameters to their
initial values to highlight the fact that the first two itera-
tions of the optimization algorithm are moving away from
the global minimum shown in the contour plot. The con-
tour plot has been represented by varying values of r8 and
lt while setting the other parameters to their estimated value
at the end of the optimization procedure so that it is not rep-
resentative of the CLP at the initial states. It clearly shows a
global and a local minimum. The global minimum is reached
for (r̂8, l̂t )' (2× 10−3,3.75× 10−6). The estimated value
l̂t = 3.75× 10−6 corresponds to ∼ 2 min. This correlation
time is very small compared to the 9-year period used to
train the parameters. It indicates that there is essentially no
correlation for observations later than 6 min apart. Indeed,
the exponential covariance model reaches a 5 % correlation
at about 3lt (Banerjee et al., 2014). This feature can be either
explained by the model, the observations or the phenomenon
itself. However, it is then evident that such a model will not
be very efficient from the perspective of long-term forecasts.

As stated in Rasmussen and Williams (2005), each local
minimum corresponds to a particular interpretation of the
data, and a careful analysis may be required to choose one
model instead of the other. In the next section, we will fur-
ther discuss the presence of two minima of the CLP in rela-
tion to two competing models. An exhaustive search for all
local minima requires computing the criterion CLP(θ) for all
possible combinations of parameters in the domain2, which
is impossible. Instead, we performed a set of 10 optimiza-
tions with random initialization to track down additional lo-
cal minima and converged toward the same minimizer. Hence
we conclude there is no other local minima than the one pre-
viously pointed out (cf. Fig. 8a).

6.2 Discussion on the reduction of the geographic area

In order to assess the influence of the considered geographic
area, the optimization procedure is run by reducing the ge-
ographic extent of the dataset. We consider nine areas that
are represented in Fig. 9, and the estimated parameters θ̂ are
summarized in Fig. 10.

The estimated values of the covariance parameters (i.e.,
r̂8, l̂t and r̂B ) vary in a complementary fashion, with approx-
imately similar values for zones 1–3, a leap of several orders
of magnitude for zones 4–8, followed by a drop for zone 9.
These variations can be traced back to the presence of a local
minimum in the domain 2 as shown in Fig. 11 where the
variation of CLP−µCLP with respect to lt has been repre-
sented for each geographic area. All CLPs show the presence
of local and global minima on the considered interval (except
for the ninth area). The variations of CLP with respect to the

Figure 9. The nine geographic areas used for the parameter estima-
tion analysis.

correlation time lt have similar behavior for areas 1–3 with
locations of the local and global minimum roughly identical.
The same is valid for areas 4 and 5. Concerning areas 6–8
(cf. Fig. 11c), they have a more complex shape with a well-
defined global minimum but less pronounced local minima
at less correlation time.

It is also worth highlighting the sliding of the global min-
imum to the local minimum when switching from zones 1,
2 and 3 to zones 4 and 5 (cf. Fig. 11a and b). The global
minimum of zones 1, 2 and 3 is reached for a smaller corre-
lation time lt ∼ 10−6 year, which means that the aggregation
of spatially distant observations is interpreted as a less corre-
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Figure 10. Comparison of the estimated parameters for nine ge-
ographic areas. Parameters associated with the covariance of the
quantity of interest are represented with red dots, parameters asso-
ciated with the mean of the quantity of interest are represented with
blue dots and the noise variance is represented with green dots.

lated process than for smaller geographic area (i.e., zones 4
and 5). In this case, the retrieved model tends toward a white
Gaussian noise as the covariance function is close to a Dirac
function. However, the presence of a local minimum of CLP
with a higher correlation time indicates that the observations
could also be explained by a second model, providing some
additional constraint on the correlation time (e.g., a different
prior distribution for lt ). In particular, we note that the order
of magnitude of the lt values associated with this local mini-
mum is similar to the lt values obtained for zones 4–7. When
we reduce the geographic area, the set of observations tends
to be more homogeneous, which is in favor of models with
higher correlation times.

The result obtained for zone 9 has a different interpre-
tation. The estimated correlation time is l̂t ' 7.13× 10−7,
which is several orders of magnitude smaller than every other
geographic areas. This is in conjunction with a particularly
low estimated noise variance r̂B � r̂8 (cf. Fig. 10c). For
this geographic area, the estimated r̂B sticks to the minimum
bound of the prior density so the optimization procedure is
stuck for this parameter. Thus, the MAP estimator compen-
sates for the remaining signal variance by increasing r̂8 and
decreasing the associated l̂t , so that R8 tends toward a Dirac
function, i.e., a covariance associated with white noise. In
other words, the estimator is no longer able to separate the
quantity of interest8 from the noise with this dataset. To ac-

count for computational burden and stability of the estimated
model, we will pursue our analysis with the dataset corre-
sponding to the sixth geographic area.

6.3 Discussion on the 1-dimensional model

To conclude, it seems more interesting to carry on with ge-
ographic areas associated with higher correlation time, es-
pecially those obtained for zones 4–7 which corresponds to
lt ∼ 1–6 d, compared to lt ∼ 2 min for zones 1–3. Consider-
ing the exponential covariance model reaches 5 % of its total
variance at δt ∼ 3lt (Banerjee et al., 2014), the latter tends
toward its mean m8 after ∼ 6 min. Note that the models cor-
responding to zones 4–7 are associated with variances r8
lower than those obtained for zones 1–3 and a greater noise
variance rB . However, the correlation time corresponding to
zones 1–3 is very small that the corresponding covariance
tends toward a diagonal matrix (i.e., a Dirac function).

6.4 Results in interpolation

We start with the interpolation of the LWC over the 9-
year period. Note that, despite the regular sampling rate of
the CPR, actual observations of altostratus in the European
area are sparsely distributed. The temporal positions t0 at
which kriging is applied are defined by t0 = [0,1/N0, . . .,9−
1/N0,9], with N0 = 4001. The result of this kriging inter-
polation is represented in Fig. 12. The variability of the es-
timated ϕ̂0 is smaller than the actual variability of the ob-
servations, which is consistent with the estimated model pa-
rameters. Indeed, the estimated noise variance r̂B = 2.2×
10−3 g2 cm−6 is greater than the estimated variance of the
quantity of interest r̂8 = 9.8× 10−4 g2 cm−6. The periodic
nature of the estimate ϕ̂0 is strong, especially when there are
no observations (e.g., during the fifth year of operation of the
satellite). In this case, the result of the kriging interpolation
consists in the estimated mean m̂8. In the vicinity of obser-
vations, the kriging estimates take a more complex form be-
cause of the additional information brought by the neighbor-
ing data. The behavior observed over this period of 9 years
is not surprising in itself because of the relative weakness
of the observed correlation time, which is only l̂t = 2.7 d.
We perform another kriging interpolation over a period of
∼ 36 d centered on the beginning of the satellite’s third year
of operation (cf. Fig. 13a). In this figure, we see that some
observations are very close temporally and have significantly
different values of LWC, which can explain the high esti-
mated variance of the noise with respect to the variance of
the quantity of interest. In this case, the kriging gives an av-
erage value of the observations. These observations generally
correspond to successive profiles in the 1/50 database, which
are separated by 8 s. It should be noted that between two suc-
cessive observations, the satellite moves∼ 54 km, which can
certainly explain a loss of spatial correlation not taken into
account in our model. It is therefore likely that the model will
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Figure 11. (CLP−µCLP) as a function of the correlation time lt around θ̂ for the geographic zones 1–3 (a), 4 and 5 (b), 6–8 (c) and 9 (d).
The results for the nine geographic areas have been grouped into four sketches according to their similarities.

explain this loss of spatial correlation by noise. On the other
hand, we notice the presence of peaks in the structure of ϕ̂
that can be explained by the structure of the chosen temporal
covariance, which is in fact characterized by an exponential
decay corresponding to the decay observed on the curve of ϕ̂
when moving away from an observation (cf. Fig. 13a).

On all kriging results, we represent the 4σ area, where
σ 2
= var[8̂0−80] is the variance of the estimation error

of Eq. (18). This variance is decomposed into two terms,
the variance var[8̂0] and a quadratic term in r̂980(= r̂880),
which represents the covariance between the object of in-
terest and the observations. At the observation location
(i.e., 80 is chosen collocated with an observation), r̂980

reaches its maximum value and so does the quadratic term
r̂980R̂−1

9 r̂980 . Consequently, at the observation location the
minimum mean square error given in Eq. (18) is minimal.

6.5 Results in prediction

In order to study the results of kriging prediction, we se-
lected a period that includes observations until a certain date
and analyzed the behavior of the prediction beyond the last
available observation (cf. Fig. 13b). In order to facilitate the

interpretation, we subtracted the estimated mean m̂8 from
the observations ψ and the estimates ϕ̂0 and we centered the
x axis on the last observation available. This clearly shows a
decrease in the kriging result after the last observation toward
0, which indicates that the result tends toward the estimated
mean. We plot the value of the correlation time lt as an in-
dication. In the case of the exponential covariance, we get
5 % of the variance r8 for a time ∼ 3lt , which corresponds
to the time from which the kriging estimation tends toward
the estimated mean. It is therefore a result consistent with
the chosen covariance model and the estimated correlation
time. This means that the prediction will be different from
the average when an observation is available in a period of
approximately 8.2 d (because lt ' 2.7 d) before or after the
position where the estimation is performed.

6.6 Error analysis

In this section, we interpret in more detail the kriging re-
sults through the analysis of the variance of the estimation
error var[8̂0−80] and the estimated noise. This is accom-
plished with a kriging estimation at temporal positions t0 col-
located to the positions of the observed data (cf. Fig. 14a). Fi-
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Figure 12. Kriging-based interpolation over a 9-year period. The training set observations are represented as blue dots, the kriging estimate
as a solid black line, and variance of the estimation error as shaded gray area.

Figure 13. (a) Kriging-based interpolation over a period of 36 d centered at the beginning of third year in the dataset. The mean is represented
as a dashed black line. (b) Kriging-based prediction over a period of∼ 36 d centered at the beginning of 3rd in the dataset. The vertical black
line represents the correlation time lt after the last observation. In panels (a) and (b), the training set observations are represented as blue
dots, the kriging estimate as a solid black line, and the variance of the estimation error as shaded gray area.

gure 14b represents the corresponding histograms for quan-
tities

(
ϕ̂0− m̂8

)
and

(
ψ − m̂8

)
. Although the model used to

describe the observed data is Gaussian, the histogram of the
zero-mean quantity,

(
ϕ̂0− m̂8

)
, is not exactly Gaussian. It is

actually skewed toward zero. However, its range of variation
is smaller than the corresponding histogram for the observa-
tions,

(
ψ − m̂8

)
, which is an expected result as some of the

observed variability is attributed to the presence of noise.
The variance of the estimation error var[8̂0−80] gives an

approximation of the variability around the estimated value
8̂0. Note that it is impossible to compute exactly the dif-
ference (8̂0−80), but we have estimated the variance of
the noise knowing the observations, and it is then possible
to compute the variance var[8̂0−80] (cf. Sect. 3). This
last variance term can be used to compute posterior real-
izations of the quantity of interest 8. Figure 14c represents
the variance var[80] and the variance of the estimation error
var[8̂0−80]. The latter has a lower magnitude than var[8]0,

which is consistent with Eq. (11) as the term r t980
R−1r t980

is positive.
Finally, we computed the difference

(
ψ − ϕ̂0

)
(cf.

Fig. 15a). According to Eq. (2), this distribution must cor-
respond to the noise distribution. We represented the normal-
ized histogram of

(
ψ − ϕ̂0

)
in Fig. 15b as well as the pdf

of the noise B ∼N (0, r̂B). We observe that the two distri-
butions have slightly different shapes but similar ranges of
variation. The differences observed are mainly due to the fact
that the parameters of a Gaussian model are estimated from
observations that do not have a strictly Gaussian distribution.
Indeed, we notice that the observations have an asymmetric
distribution which extends toward higher values of LWC than
the Gaussian distribution.
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Figure 14. Kriging results collocated to the observations. (a) Observations ψ (blue dots), estimate ϕ̂0 (red dots), estimated mean m̂8 (solid
black line) and variance of the estimation error (shaded gray). (b) Histograms of

(
ϕ̂0− m̂8

)
and

(
ψ − m̂8

)
. (c) Shaded gray area represents

the variance of the estimation error and the variance of the quantity of interest 8.

Figure 15. (a) Differences
(
ψ − ϕ̂0

)
(blue dots) superimposed on 4σB in shaded gray area, and (b) normalized histograms of

(
ψ − ϕ̂0

)
and

the pdf of B ∼N (0, R̂B ).

7 The 2-dimensional time–altitude case

In a similar fashion as in Sect. 6, we examine the 2-
dimensional time–altitude case starting from the parameter
estimation followed by the kriging results.

7.1 Parameter estimation

Here we consider the estimation of model parameters includ-
ing the altitude dimension. Following the conclusions of the
previous section, we use the observations of the sixth geo-
graphic area. However, for computational reasons, the train-

ing dataset is restricted to the first 3 years of observations,
which consists of Nobs = 4167 observations (cf. Fig. 17).

Figure 16 represents the evolution of each parameter dur-
ing the optimization process. We observe that all parameters
have stabilized toward an estimated value. Moreover, none of
the parameters have converged toward the bound defined by
the prior.

The estimated values in the 1-dimensional (temporal) and
2-dimensional (time–altitude) cases are consistent from one
model to the other (cf. Table 2). Overall, the order of magni-
tude for most quantities is close. However, we point out some
noticeable differences:
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Figure 16. Evolution of each parameter during the optimization process in 2-dimensional case (time–altitude). Parameters associated with
the covariance of the quantity of interest are represented with red circles, parameters associated with the mean of the quantity of interest are
represented with blue circles and the noise variance is represented with green circles.

– There is a factor 10 between the estimated variance r̂8
of the time model and the time–altitude model.

– For the 1-dimensional case, r̂8 < r̂B whereas in the 2-
dimensional case we have r̂8 > r̂B , which means that
adding a dimension to the model helps to find some
structure in the data that was missing otherwise.

– The amplitudes and phases of the first and second har-
monics (β̂2, β̂3, α̂2 and α̂3) differ substantially.

This last point explains the distinct mean behavior for the
two models. The mean of the altitude–time model has a lower
amplitude, which can be explained by the fact that the model
must accommodate for a greater variability of observations
due to an underlying altitude dependence of the dataset. It
is an indication that future development should include this
altitude dependence.

7.2 Kriging results

In this section, we present the kriging results obtained for the
time–altitude model. The parameters corresponding to this

Table 2. Comparison between estimated parameters for the 1-D and
the 2-D model. Note that we have fixed T = 1 in the optimization
procedure.

θ̂ 1-D model 2-D model

r̂8 ∼ 9.84× 10−4
∼ 5.3× 10−3

l̂t ∼ 7.5× 10−3
∼ 5.6× 10−3

l̂z / ∼ 865
r̂B ∼ 2.2× 10−3

∼ 1.7× 10−3

β̂0 ∼ 6.7× 10−2
∼ 6.2× 10−2

β̂1 ∼ 4.2× 10−2
∼ 7.9× 10−3

β̂2 ∼ 2.9× 10−3
∼ 4.4× 10−3

β̂3 ∼ 9.7× 10−3
∼ 3.4× 10−3

α̂1 ∼ 5.4 ∼ 5.5
α̂2 ∼ 6.1 ∼ 1.5
α̂3 ∼ 6.1 ∼ 3.6

model have been estimated in Sect. 7.1. The kriging esti-
mator is applied on a regular grid of 20× 500 positions in
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Figure 17. CloudSat observations on geographic area 6. The red rectangle indicates the training dataset, the green rectangle indicates
observations not used in the kriging estimate and the solid black lines represent the spatiotemporal positions where the kriging estimates
are computed (a). Result of the 2-dimensional kriging on zone 6 (b) and its associated 2-dimensional variance of the estimation error (c).

time and altitude, this corresponds to a total of 10 000 posi-
tions. We take z0 = [1, . . .,8] km and t0 = [2, . . .,5.5] years.
In addition, we excluded observations made after the fifth
year. Therefore, we used a set of Nobs = 6112 observations.
Figure 17a outlines the situation we have just defined. The
obtained kriging surface represented in Fig. 17b visually fits
the observations from Fig. 17. Figure 17c represents the 2-
dimensional map of the variance of the estimation error. We
note that the variance of the estimation error is minimal when
there are observations in the neighborhood, whereas it in-
creases as we move away from the observations. This is an
expected result that is consistent with what has been observed
in the case of time kriging. Since the interpretation of krig-

ing surfaces is complex, we represent these results at constant
altitude (cf. Fig. 18). On constant height sections, the estima-
tion structure seems more complex than in the 1-dimensional
case; it can be explained by the interaction with observations
at altitudes above and below the considered altitude. More-
over, we note that the model tends to the mean of the model
when we move away from observations. This is especially
true in the case of long-term predictions around the fifth year.
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Figure 18. Kriging results at constant altitudes, z' 2.17 km (a), z' 3.62 km (b), z' 5.08 km (c), z' 5.96 km (d). We represent the obser-
vations ψ (blue dots), the estimations ϕ̂0 (red dots), the mean (solid black line) as well as 2σ around the estimation ϕ̂0.

8 Conclusion and perspectives

The interpolation, in space, and prediction, in time, of the
cloud microphysics in the medium and long term are of ma-
jor importance in weather and climate analysis. Since a per-
fect estimation is obviously unattainable, it becomes an is-
sue of uncertainty quantification. In this original work, we
develop a statistical spatiotemporal kriging-based approach
that is able to interpolate and predict from the dataset and
provide uncertainties. Beforehand, it requires in particular
estimating the covariance model parameters; it is performed
in a Bayesian setting, which allows for estimation and uncer-
tainty quantification. The approach is then applied to a subset
of the CloudSat dataset, which shows promising results, es-
pecially in the 2-dimensional case where detailed structure
appears in the quantity of interest. A natural extension to
this approach would be to consider the latitude and longitude
variables in order to interpolate horizontally the quantity of
interest. Other extensions should consider the joint estima-
tion of ice water content and LWC, the estimation of cloud
types (cumulus, stratus, etc.) or some nonlinear functions of
our actual quantity of interest (i.e., some parametric model
that depends directly on LWC or ice water content such as
optical properties). The treatment of these problems would
require resorting to suitable kriging estimators (co-kriging,
disjunctive kriging, etc.), or, more likely, some adapted ver-
sions of them. Finally, the impact of the parameter uncer-
tainty in the kriging results could be rigorously handled by
developing a complete Bayesian hierarchical model.
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