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1 | INTRODUCTION

During the past decades, topology optimization has been well-established diverse industrial sectors as an efficient
approach for conceptual design.! The capability to obtain optimized designs without spending significant time in
pre-processing attracted the interest of engineers and designers that search to improve their products, especially when the
mechanical framework limits the role of intuition and experience (dynamics, acoustics, electro-magnetics, fluids, etc.).
The progressive incorporation of manufacturing constraints?> in available commercial software contributed in reducing
the gap between topology optimization results and end-parts.

The recent burst of advances in additive manufacturing techniques has a significant impact on the area of topol-
ogy optimization. The unprecedented design freedom endowed by such techniques provides the capability to realize
designs of extreme geometric complexity. Moreover, the ability to print features at a very small scale has revitalized
the interest of the homogenization method for design optimization®!° and of various multiscale design frameworks,
as in Reference 11. Infill structures are typical examples of multiscale design: the boundary of the shape is a macro-
scopic feature, while the interior of the shape is not homogeneous but filled by some architectured material at a smaller
meso-scale. The infill material can typically have any geometry: periodic or nonregular, homogeneous or graded, and so
on. The interest in infill designs originates from diverse perspectives. First, it constitutes an additional design freedom,
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hence enlarges the set of admissible shapes, and thus may improve the performance in terms of mass or mechan-
ical efficiency. In addition, infill designs may be chosen for implicit reasons, as they are known to feature a better
behavior than homogeneous materials for mechanical problems that are difficult to be included in the optimization
problem (buckling, acoustics, etc.).134

There already exist several works on the topology optimization of infill structures.!>!° However, only few works
deal with the concurrent optimization of the shape and the infill part. In Reference 20, Wu et al presented a density
approach with multiple filters and projection schemes in order to optimize coated structures with non-regular infill. In
Reference 21, Groen et al used the same methodology for coated structures, combined with the homogenization method
for the optimization of an orthotropic infill part. After the optimal design has been obtained, a dehomogenization step is
applied in order to obtain a classical “black-and-white” shape. A similar approach, although using different techniques,
has been presented in Reference 22.

In this work, we present another approach, based on the coupling of the level-set method?*-** and the homogenization
method.’ An infill structure is described by two ingredients: its macroscopic shape and a lattice material filling the interior
of the shape. Note that the shape boundary may be coated by a layer of pure material (without holes) having a fixed
prescribed thickness. The structure of this lattice material is parametrized by a few variables, which may vary inside
the macroscopic shape. The topology optimization process consists in alternating the homogenization method and the
level-set method at each iteration, until convergence. With the first one, the parameters of the lattice material are updated,
while the macroscopic shape is kept fixed. With the second one, the Hadamard method of shape sensitivity yields a velocity
field which concurrently deforms the macroscopic shape and the infill material. The fact that the lattice geometry follows
the shape boundary in its displacement during the optimization process is a key feature of our algorithm and is new to
the best of our knowledge.

By coupling them, we take advantage of both methods. On the one hand, as was recently shown in several papers,
the homogenization method is a very efficient method for optimizing a lattice structure, but with no genuine informa-
tion of the external border. It is efficient because the homogenized properties of the lattice are optimized (which only
requires a coarse mesh) and in a final dehomogenization step a graded lattice is projected on a possibly very fine mesh.
On the other hand, the level-set method is very well suited for the optimization of macroscopic shapes, but it cannot
handle lattice structures since it would require a too fine mesh to capture details at the meso-scale of the lattice (of
course, except if one resorts to some kind of multi-scale approach for the numerical simulation of the lattice mechan-
ical properties). A crucial ingredient in our coupling strategy is that the infill density must be bounded from below by
a fixed positive threshold. Otherwise, there would be no optimal shape boundary since holes could be achieved by zero
density infill. Numerically, the optimization process pushes the shape boundary outside of the computational domain,
at the price of introducing very low density infill material in the regions which were exterior to the previous shape.
Finally, after the coupled optimization of the shape boundary and of the homogenized infill properties, a post-processing
step, called dehomogenization or projection, is performed to recover a modulated and oriented lattice material inside
the structure. This step is based on our previous works?”-?8 (see also References 21,25) and is very economical in terms
of CPU time.

Thanks to our proposed approach, infill structures can easily and effectively be optimized under new geometric
constraints, without any additional steps. Indeed, contrary to density-based methods (either SIMP or homogeniza-
tion), the genuine external border of the current structure is known here. We focus in the present work on three
kind of problems. The first one is the coupled optimization of a macroscopic structure and its infill. Since there
is no control of the thickness of the boundary of the structure in this first approach, a second case is considered,
which consists in optimizing a structure, with its infill, featuring additionally a coating with given thickness. Even-
tually, the third problem is the optimization of an infill structure under design-dependent load, namely, hydrostatic
pressure here.

Section 2 is concerned with the setting of the problem. For simplicity, we focus on compliance minimization in 2-d
(our approach can be extended to other objective functions and to 3-d without major conceptual difficulties but at the
price of several technicalities that are not discussed here; see Section 3.1 for some details). We recall our definition of
lattice materials as periodic structures, macroscopically modulated and oriented as in Reference 27. In Section 3, the
various derivatives of the objective function and constraints are computed with respect either to the shape or to the lattice
parameters (size and orientation). The resulting shape derivative is different from the classical one, used in the level-set
method, since the lattice infill is following the shape and therefore contributes an additional term in the shape derivative
(see Lemma 2). Section 4 describes the algorithm and its numerical implementation. The effectiveness of the method is
illustrated by several 2-d numerical examples in Section 5.

25-27
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2 | DESCRIPTION OF THE PROBLEM

For the sake of clarity, the present work is restricted to the 2-d case. Nevertheless, all results can be extended to the
3-d case (this is well documented for the homogenization and the level-set method; the dehomogenization method has
recently been extended to 3-d in Reference 28). Let D C R? be the bounded working domain. The admissible shapes
or structures,  C D, are subsets of D which are bounded open sets occupied by an elastic material (infill). Instead of
being homogeneous, the material is assumed to feature a micro-structure and is characterized by its homogenized elastic
tensor A*. The boundary of Q is comprised of three disjoint parts, such that 0Q = I'p U I'y U T, with Dirichlet conditions
applied on I'p, nonhomogeneous Neumann conditions on I'y, while I is traction free. For simplicity, only I'" is subject to
optimization. The displacement field u is the solution of the elasticity system:

div(A*e(u)) =0 in Q

u==0 on I'p

, 1)
Afe(un =g on 'y
A*e(u)yn=0 on I

where e(u) = %(Vu + VuT) is the strain tensor and g denotes the boundary forces.

2.1 | Lattice infill

Among the plethora of materials that can be used as infill, lattices are of particular interest since they are easily
parametrized and manufactured. In addition, structural optimization including lattices has been well studied?*-3° and
recent works on the dehomogenization of optimized lattice infills*>2” provide a useful framework for their direct
exploitation in additive manufacturing.

As lattice we consider a graded (spatially varying) elastic composite material made of two phases: void and an isotropic
solid phase whose elastic tensor will be denoted by A. The homogenized tensor of the composite material A* is constructed
in two steps. First, we consider a square periodicity cell, denoted Yy(m), with a rectangular hole, parametrized via two
geometric parameters m = (my, m,) € [0;1]? (see Figure 1). Using (modulated) periodic homogenization,>!? we obtain
an homogenized orthotropic elastic tensor, which we denote by Aj(m). Then, we orient A7(m) according to an angle
a € L*(Q, [0; 2x]). Hence the complete elasticity tensor reads:

A*(m(x), (X)) = R(a(x)Ag(mE)R@x)",

where R(a(x)) is the fourth-order tensor corresponding to a rotation of angle a(x) for symmetric matrices. To simplify the
notation, we omit in the sequel the spatial dependency of A*.

Yo

L.

FIGURE 1 Periodicity cell Yy(m)
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The material density is denoted p(m) € [0; 1] and its value is
pm)=1—mm, . (2)

When p(m) = 0 (which happens only for m; = m, = 1), the composite material is void, while p(m) = 1 (which happens
either for m; = 0 or for m, = 0) corresponds to a fully solid material (with a thin crack if one of the m; is not zero).

Remark 1. We emphasize that our approach is not restricted to the particular microstructure of Figure 1 and can be easily
generalized to any other parametrized orthotropic lattice material.

2.2 | Optimization problem
2.2.1 | General setting

The goal is to optimize the shape Q, as well as the parameters of its graded lattice infill (m, @), in order to minimize a cost
function denoted by J(Q, m, a). We restrict ourselves to the compliance of the structure, namely:

JQ,m,a)= /A*(m, a)e(u) : e(w)dx , 3)
Q
where u is solution of (1). As usual, a mass constraint is imposed on the structure. The minimization problem reads:

inf A(m, a)e(u):e(u)dx
QEV,ymEP.ael>(Q[0:27]) /¢

such that M(Q, m) = /p(m)dx = M, 4)
Q

where p(m) is defined by (2), M denotes the target mass, Uj4 the set of admissible shapes

Uy = {Q C DIy CoQ, TpC ag},

and P4 is the set of admissible geometric parameters of the lattice :

Paa = L¥(Q,[0;11%).

2.2.2 | Constrained setting

In practice, during the optimization process, in the absence of other constraints, the density of the lattice infill has to be
restricted by a minimum value. Indeed, if not, the lattice infill can be void at some places, see Section 5.1.1. In such a case,
there is no need to have an exterior boundary and the shape € can simply be the whole domain D. To avoid this problem
and to get a clearly defined exterior boundary, it is therefore required to have a strictly positive minimal density of the
infill. It turns out to be much simpler to impose a lower bound on the geometric parameters m; of the lattice, rather than
on the density p(m). Hence, an upper bound for the size of the rectangular hole is introduced, 0 < mmax < 1, and the set
of admissible geometric parameters is defined by

Pad = L®(Q, [0; Mumax]?).

The above definition of the constrained set 7,4 is not completely satisfactory since it forbids the rectangular hole to cut the
cell and thus the microstructure Yy(m) can never be that of a rank-one laminate, made of only two parallel bars (although
it is known that rank-one laminates are optimal for uni-axial stress).

Remark 2. If one insists on working only with the density, and not with the parameters m;, another possibility is to add
to the objective function a penalization term of the type

/ [f (p(0)|?dx,
Q
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where f is a penalization function, nearly equal to 1 for low densities and equal to zero for other densities. For a threshold

value 0 < ppin < 1, one example is
1 T . '
f(p) = {é <COS (Pmin) + 1) if P < Pmin,

if p> pmin.

This idea has not been pursued further here.

2.2.3 | Coating

Using a coating for infill structures can be motivated by manufacturing or even functional reasons. In the first case, the
coating acts as a protection layer from its environment (dust, external objects, etc.), while the latter holds true when the
boundary is of key importance for its mechanical efficiency (acoustics, fluids, electro-magnetics, etc.). Moreover, when
a dehomogenization step follows the optimization of a composite material, the post-treatment from useless tiny features
proves to be significantly simplified for coated structures.

The coating region can be easily provided by a geometric description using the signed distance function to the
domain Q.

Definition 1. Let Q c R? be a Lipschitz open set. The signed distance function to Q, denoted by dg : R? — R, is defined

as:

—d(x, 0Q2) if xeQ
do(x) =40 if xeoQ, (5)
d(x, 0Q) if xgQ

where d(-, 0Q) is the usual Euclidean distance to the boundary 0Q.

Then, the coating region of uniform size h, denoted €, in the following, is defined by:
Qn = {x € Q|da(x) > —h}. (6)

Imposing numerically the coating area around the boundary of the evolving shape can be done in several ways. Here,
for simplicity, we choose a penalization approach (see Remark 3 for another possible multi-material approach). To enforce
the coating region, a penalization function is introduced which forces the material density p(m), defined by Equation (2),
to be close to 1:

2
Peoat(Q, m) = < (p(m) —1) dx> .

Q,
Then, a penalized optimization problem is solved:
inf A : Poat(Q
et mer e @oe) /Q (m, e(u):e(W)dx + yPeoar(€2, m)
s.t. M@Q,m) = /p(m)dx = Mgz, 7
Q

for a given parameter y > 0. When y is set to a large enough value, the penalization P, is vanishingly small, meaning
that the coating region Qy is filled with the pure material. In practice, our experience shows that scaling the coefficient y
like h™% works well.

Remark 3. Another, more explicit, way of enforcing the coating amounts to modify the elasticity tensor, so that it takes
the coating region into consideration. Assuming that the coating is made of the same phase A as in the composite, the
total elastic tensor A* reads:

A = yo A+ (1 — yo,)A*(m, ),
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where yq, denotes the characteristic function of the domain Q. As a result, the optimization becomes a multimaterial
problem, which introduces several difficulties with respect to the shape derivation (see Reference 31 for a detailed presen-
tation on multimaterial shape and topology optimization). To avoid these technicalities and since in numerical practice
the penalization approach works well, we did not pursue the multimaterial approach.

3 | SENSITIVITY ANALYSIS

This section establishes first-order derivatives of the involved functionals with respect to the optimization parameters, in
order to use them in a gradient optimization algorithm.

3.1 | Derivation with respect to the lattice parameters

As is well known, optimizing the compliance (3) for the state equation (1) is a self-adjoint problem.3? In other words, no

adjoint state is required. Its derivative with respect to the parameters of the micro-structure, (see Reference 9 for example),
reads:

a—J(Q, m,a) = —/ 04" (m, a)e(u) : e(u)dx, (8)
om; Qom;

where

* 0A}
9 (1m, @) = R(@)—2 (mR(@)".
dm,- ami
Since there is no explicit formula for the homogenized tensor Aj(m) with respect to its parameters m;, the computation
of %(m) is performed numerically (see Reference 27 for details). A similar formula holds true for the derivative of the

compliance with respect to the orientation angle a, that is,

ﬂ(Q, m,a) = —/ oA” (m, a)e(u) : e(w)dx . ©)]
oa o Oa

Although formula (9) could be computed, in practice we do not use it. Indeed, in the specific case of single load
compliance minimization, the optimal orientation of orthotropic materials is explicitly given by the principal directions
of the stress field o = A*(m, a)e(u) (see Reference 29 and, for the 3D case, Reference 33). By choosing to align the vector
(cos(a); sin(a)) with the eigenvector of o of smallest eigenvalue (possibly negative), the angle « is then defined modulo .

For multiple loads compliance minimization, the optimal orientation at one point still only depends on the val-
ues of the local stress fields and is solution of a 1-d minimization problem. Thus the global minimization of the
cost function with respect to the orientation @ remains relatively easy even without any explicit expression. If a
more general cost function is to be considered, the gradient method could be used to optimize the orientation «
together with the other parameters m; of the microstructure. Nevertheless, it could be more prone to get trapped in
local minima.

3.2 | Shape differentiation
3.21 | Definition

We rely on Hadamard's method to compute shape derivatives and more specifically we adopt the approach of Murat and
Simon.3* Let Q be a smooth reference open set, § € W1 (R?, R?) and Id the identity map. If  is small enough, the map
Id + 6 is a diffeomorphism in R?. Hence we can consider the domains:

Qp = (1d + 0)(Q).
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{1d+8)0

(A)

| (nd+e)a

(B)

FIGURE 2 Two possible variations of the shape Q and its infill by a diffeomorphism (Id + 6). The dotted lines may represent the
isolines of the local density of the lattice material. A, The lattice material is defined on the working domain D (left). The shape Q is filled by
this lattice material (center). When the shape is deformed (right), the lattice material is kept fixed, defined in D. B, The lattice material is
defined only on the shape Q (left). When the shape Q is deformed by (Id + 9)), the lattice material is also transported by (Id + 0) (right)

Definition 2. A functional F(Q) is said to be shape differentiable at Q if there exists a continuous linear form F'(€2) on
WL (R?,R?) such that, for all § € WL (R2, R?):

F((I +6)(Q) = F@) + F'(@)0) +0(6) with lim "l’l((f”)' o,

where ||0]| is the norm of § in W*(R?, R?) and F’ is the shape derivative of the functional F.
We recall a classical result on the shape derivative of volume integrals (see Reference 32 for a proof).

Lemma 1. Forf € WHL(R?) define
F(Q) = / f(x) dx.
Q
Then F is differentiable at Q and, for all § € W*(R?; R?),

F'(Q)0) = /Q div (0(x)f (x)) dx = / QO(S) - n(S)f (s)ds.
0!

3.2.2 | Compliance

To compute the shape derivative of the compliance (3), one has first to define how the material properties, that is, the
elastic tensor of the graded lattice infill, depend on shape variations. As already said, there are two modeling possibilities:
Eulerian and Lagrangian.

In an Eulerian approach, the graded material is defined (or extended somehow) in the whole domain D and is kept
fixed when the macroscopic shape Q is deformed by Id + 6. The new shape (Id + 0)Q is filled with the same infill, defined
onD n (Id + 0)Q, see Figure 2A. In such a case, the standard framework described in Reference 35 applies and the classical
results presented therein could be used.

In a Lagrangian approach, the infill A*(x) is also transported by the diffeomorphism Id + 6, see Figure 2B. Hence the
new shape Qy = (Id + 6)Q is filled with the transported infill material, whose tensor is given by:
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Ay =A*(m,a)o(Id +60)7" . (10)

In particular, it implies that the lattice infill follows the deformation of the shape Q. The interpretation of (10) is that,
in a Lagrangian setting, that is, mapping back the infill to the reference configuration, the tensor Ajo(Id + 0) = A*(m, @)
is independent of the vector field §. Our implementation relies on the Lagrangian approach because the Eulerian setting
raised several issues. First, the infill has to be extended outside the shape before its boundary can be moved. Second, when
a coating around the shape boundary is used, moving this boundary would require a shape derivative for the interface
between the infill and the coating. Although it is a classical multiphase optimization problem, it adds further technicalities
which are avoided in our simpler Lagrangian framework.

Lemma 2. Assume the infill parameters (m, a) are C* on Q and the solution u of (1) belongs to H*(Q)? (this is true for
a smooth shape and a smooth loading). For all & € W' (R?,R?) such that 6 = 0 on I'p U Ty, the shape derivative of the
compliance, defined by Equation (3), reads:

J(Q, m,a)0) = —/A*(m, ae(u) : e(u) 6 - nds + /9 - VA*(m, ) e(u) : e(w)dx . (11)
r Q
Remark 4. In Equation (11) the notation J’ denotes the shape derivative, computed for given m and a. It is thus a partial
derivative.

Proof. We rely on the Lagrangian method of Céa (see, eg, Reference 32). For vector fields § € W1 (R?, R?), we consider
deformed sets Qp = (Id + 6)Q with infill A%, defined by (10), and introduce the following Lagrangian

E(@,v,q)=/g-vds—/A;e(v) : e(q)dx+/ g-qds, (12)
1—‘N QS

Ly

where v and g belong to H'(Q)? and vanish on I'p. As usual, the Lagrangian is defined as the sum of the objective function
and of the variational formulation satisfied by the primal state. Note that the compliance, defined by Equation (3), is also
equal to the work done by the load. Since it is assumed that # = 0 on I'p U I'y, that is, these boundaries are kept fixed, the
three variables (6, v, q) are independent, which ensures that the following computations make sense.

Differentiating the Lagrangian with respect to g and requiring that this partial derivative vanishes yields the variational
formulation for v = u, solution of Equation (1). Differentiating the Lagrangian with respect to v and requiring that this
partial derivative vanishes yields the variational formulation for the adjoint, which is nothing else than g = u, solution of
Equation (1). Finally, differentiating the Lagrangian with respect to 6 and evaluating it at (v, q) = (u, u) gives the shape
derivative of the objective function (see References 9,32)

%(O,V, QO) =T (Q, m, a)(0) = —/A*(m, a)e(u) : e(u) 0 - nds
r
+ /9 - VA*(m, a) e(u) : e(u)dx,
Q
by applying Lemma 1 and computing the derivative of ¢ — A7 by a simple Taylor expansion for small 6

A% = A*(m, a)o(Id + 0)™' = A*(m,a) — 0 - VA*(m, a) + 0(0).

|
Developing a bit further the second term of formula (11) for the shape derivative of the compliance, we obtain:
J(Q,m,a)0) = —/R(a)Ag(m)R(a)Te(u) : e(u) 0.nds
r
0A;
+ /R(a)—(m)R(a)Te(u) e(uw)0-Vm dx
Q om
oR * T * aRT .
+ a(a)Ao(m)R(a) + R(a)AO(m)W(a) e(u) :e(w) 6-Vadx. (13)
Q

As mentioned in Section 3.1, since the optimization with respect to the angle orientation is performed explicitly at
each iteration using Pedersen formulas,?® the last term in Equation (13) vanishes because of the optimality conditions


ct056
Zone de texte 


with respect to the orientation angle a. Therefore, denoting by a* the optimal orientation, the shape derivative of the
compliance reduces to:

J(Q,m,a*)0) = —/R(a*)A;;(m)R(a*)Te(u) ce(w)0-nds
r

*

0
+ /R(a*)—o(m)R(a*)Te(u) se(u) - Vm dx. (14)
Q om
Formula (14) is used in our numerical simulations.

3.2.3 | Mass

Following the same analysis as in Section 3.2.2, the shape derivative of the mass M(Q, m) reads:

M'(Q, m)(6) = /p(m) 6.nds— /a—”(m)e - Vm dx.
r odm

3.24 | Coating functional

The coating functional P, is posed on the coating domain €, which is defined in Equation (6) via the signed distance
function to the domain Q. Therefore, the shape derivative of the signed distance d, is required. Details concerning the
shape derivation of dg, can be found in References 31, 36, and 37. Only the basic information that we need for our results
are recalled here.

Definition 3. The skeleton (or ridge) of Q, denoted by X, is the set of points x € R? such that the minimum in

d(x, Q) = min |x — y|,
(x, 0Q) ynellgglx Y

is achieved by at least two distinct points y of 0Q.

Proposition 1. Assume Q is an open set of class C* and fix a point x ¢ ¥, outside the skeleton of Q. The map 0 — dga)a(X)
is Gateaux differentiable at 8 = 0, as an application from W'*(R?, R?) into R and its derivative is

d(0)(x) = =0(poa()) - n(paa(x)), (15)

where p,,(x) is the orthogonal projection of x on 0L, which is uniquely defined for x ¢ X.
Our main result, which generalizes Lemma 1, is the following.

Proposition 2. For f € WY1(R?) define

K(Q):/f(x)dx
Q,

For a smooth open set Q of class C* and a sufficiently small thickness h > 0, its shape derivative reads, for all 6 €
Wl,oo (RZ, ]RZ)’

K'(Q)6) = / (feo) = (1 = hEDf (x — hn(x))) 0(x) - n(x) ds,
oQ
where H = divn is the mean curvature of 0.

Proof. Let ¢ be the function defined from R to R by

1 if —h<t<O0
C(t)={ . (16)

0 otherwise
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Then, by Definition (6), one has
K(Q) = /RZC (do(x)) f(x)dx.

IfQis C? and h > 0is small enough, the skeleton does not touch or cross Q; and one can differentiate the signed distance
function everywhere in Qj,. Therefore, using Proposition 1, the shape derivative of K(€2) is:

K'(©Q)(0) = /sz(x)C’ (do(x)) dg, (0)(x) dx
=- /]R 2f ()¢ (da(x)) 0(paa(x)) - n(poa(x)) dx

= [ fO) () -n(x) ds— | fx) 6(paax)) - n(psa(x)) ds,
oQ

Iy

because ¢’(t) = 6(t + h) — 6(t) where 6 is the Dirac mass at 0, and I', is the inner boundary of the coating Q. Then,
recalling that, for x € Qy, p,o(X) = x — do(x) n(x), and performing the change of variable X = pyq(x) in the integral on I',
which has the Jacobian (1 — hH) > 0, one gets

/ Fx) 0(paa () - n(poe(x)) ds = [ f(X — hn(X)) 0X) - n(X) ds,
T, oQ

from which the desired result follows. In truth, to make this computation fully rigorous, one has first to regularize the
step function ¢ with a small parameter ¢ > 0 and then pass to the limit in the derivative as e goes to zero. This is a standard
process that we safely leave to the reader. m

The above result leads straightforwardly to the derivative of the coating penalization term P, (2, m) where, as before,
the infill is assumed to follow the shape deformation.

Proposition 3. For a smooth open set Q of class C*> and a sufficiently small thickness h > 0, the map 6 — Peoai((Id +
0)Q, mo(Id + 0)7') is Gateaux differentiable at = 0, as an application from WH*(R2?,R?) into R, and its derivative reads:

Pl (Q, m)(0) = 2 < / (p(m) — 1)dx> (— / 0_p(m) Vm -0 dx
Q, Q, om

+ / (p(m(s)) — (1 — hH)p(m(s — hn(s)))) 6(s) - n(s) dS) . 17)
r

4 | NUMERICAL IMPLEMENTATION
41 | Level-set description

From a numerical point of view, the shape Q is represented on a fixed mesh of the working domain D by the level-set
method.3® A level-set function ¢ is introduced and the shape Q C D is described implicitly by

dx)=0 if x€eoQnD
dpx)<0 ifxeQ
px)>0 ifxeD\Q

Usually, the deformation of the shape Q is performed by solving a non-linear Hamilton-Jacobi advection equation where
the scalar normal velocity is given by the shape derivative. Note that alternatives approaches based on the level-set
method like the ones proposed by Amstutz or Luo are possible.>**° However, in the present context, the shape deriva-
tive in Equation (14) or (17) is made of two terms: one classical term on the boundary, depending only on the normal
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component of the vector field 6, and another new term inside the shape, depending on all components of 8. Therefore,
from the very structure of the shape derivative, it is clear that the advection velocity must be vector-valued, and not merely
a scalar normal component. Therefore, one cannot use the usual nonlinear Hamilton-Jacobi advection equation. Rather,
denoting by 6 the velocity field deduced from shape differentiation (see the next subsection to find out how it is precisely
obtained), we use the following linear transport equation

%(t, X) +0(x) - Vop(t,x) = 0 in [0,dt| x D, (18)

where ¢ is some pseudo-time variable and the final time dt corresponds to the descent step in the optimization (dt has
nothing to do with the time step for the numerical resolution of Equation (18)). Note that the velocity field 6 is used for both
advection of the shape and of the infill properties. Numerically, we use the advect library*! to solve (18) on an unstructured
mesh. Moreover, the descent step dt is adapted as follows. At each iteration, if the newly computed homogenized structure
is accepted, it is increased by 20%. On the contrary, if the newly computed structure is rejected, it is divided by two. The
initialization of dt is given by:

dt - hmax
101l ()

where hpay is the maximal size of the edges of the mesh. The idea is to prevent the shape to move too much between two
iterations. In order to avoid significant distortions of the level-set function, leading to numerical errors, as well as to define
accurately the coating area, the level-set function ¢(x) is reinitialized at each iteration as the signed-distance function of
the current Q, using the mshdist library.*? Finally, the classical “ersatz” material approach® is used to extend the state
Equation 1 in the whole working domain D.

4.2 | Velocity extension and regularization

As shown in Section 3.2, the shape derivative for functionals including “transported” material properties is no more a
surface integral, as in the classical framework of Hadamard's method, where only the normal component of the advection
field on the shape boundary is of interest. Instead, the vector field 6 is defined both on the boundary and inside the shape
Q. Furthermore, to solve the transport equation (18), the advection field must be defined on the whole working domain
D, thus 6 needs to be extended to D \ Q.

We now explain how to deduce a vector field 6 from the shape derivatives (14) or (17), which is defined everywhere in
D and is indeed a descent direction. According to Hadamard theory, 8 should belong to the Lipschitz space W (D, R?)
but, as is common numerical practice, we content ourselves in defining 6 in the (slightly less smooth) Sobolev space
H'(D,R?). In any case, a typical shape derivative is of the type

J(Q,m)0) = / Jjx) 60 -nds+ /k(x) 0 - Vm dx,
0Q Q

where j and k are two given scalar integrands. A naive choice would amount to choose

{—j(x) n on 0%,
0(x) =
—k(x)Vm(x) in Q,

which is indeed a descent direction for the objective function J(Q, m) but has the main disadvantage of being discontin-
uous at the boundary 0Q. Therefore, another, more educated, choice of 8 has to be made. Following the classical idea of
derivative regularization,>>* we identify the directional derivative with the H'(D, R?) scalar product. More precisely,
an advection velocity field 6 is computed as the solution of the following variational formulation in H*(D, R?): for all test
functions & € H'(D, R?),

/ (PVO : VE+0- &) dx=—T(Q m,a)®), (19)
D
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where J' is the shape derivative of the functional J, for example, Equation (14), and # > 0 is a small regularization
coefficient (typically of the order of a mesh cell size). Taking & = 6 in Equation (19) ensures that indeed the solution 0 is
a descent direction for J(Q2, m, a). Furthermore, € is well defined in the entire working domain D and not only on Q.

To compute the surface integral that appears in the right-hand side of Equation (19) on a fixed mesh, we use a volu-
mic approximation as proposed in Reference 45. The boundary integral of a function y defined on D is numerically
approximated as:

/ v ds~ / W (%)8:(x)dx, (20)
oQ D
where
5.0 = {01 ) if 1ol > e,
% <1 + cos (;dg(x)>> otherwise,

and e > 0 is a small coefficient of the order of the mesh size.

4.3 | Optimization algorithm

We combine several optimization methods: augmented Lagrangian for shape optimization, gradient descent with
projection for the unit-cell parameters, and explicit optimization for the orientation angle.

43.1 | Augmented Lagrangian

In this section, we describe a simple augmented Lagrangian algorithm for minimizing a cost function J(€2) under equality
constraints

P(Q) =0 i=1,..,1L

Of course, there are other more efficient optimization algorithms in topology optimization that have been success-
fully combined with the level-set method,***” but it is not the purpose of this article to discuss the important issue of
optimization efficiency. Following Reference 48, we introduce the augmented Lagrangian function:

1 I
L@ ) =J@) = 3 P + Y, SR (1)

i=1 i=1

where J(Q) is the cost function, # = (¢;)i=1,... ; are the Lagrange multipliers, and u = (u;);=1,... s are the penalty parameters,
used to enforce the constraints at convergence. The Lagrange multipliers are updated at each iteration n according to
the relation sz“ = ¢ — uiPi(Qy) (see Reference 48 for more details). We also increase the penalty parameters every five
iterations.

The augmented Lagrangian is used here only for the mass constraint. It is not used for the coating constraint of
Section 2.2.3 since, in practice, a classical simple penalization is very efficient and yields quickly a dense coating, as
desired.

4.3.2 | Pseudocode

To optimize the objective function J(Q, m, a), we rely on an alternate direction algorithm. More precisely, the shape Q
is updated by the level-set method every ny iterations, while the lattice infill parameters (m, a) are updated at all other
iterations, that is (no — 1) times in a row. In practice, we set ny = 5. The algorithm is stopped when the objective function
is no longer significantly decreasing, namely, J, — J,11 < 1078, where J,, is the value of the objective function at iteration
n (which is is of order 1 in all our examples). Moreover, a maximal amount of iterations is imposed, in practice here, 200
iterations.
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The algorithm reads as follows:

1. Initialization of the shape Q, and of the lattice parameters (my, ap).

2. Iteration for n > 0:
a. Computation of the solution u, of the linearized elasticity system (1).
b. If n mod ny # 0, update the lattice infill parameters:

(i) Computation of the descent direction, using (8).
(i) Updating the geometric parameters m,.; by a projected gradient step.
(iii) Updating the orientation @, by using Pedersen formulas.
(iv) Verification that the new infill improves the objective function, else, reduction of the step size and rejection
of the new infill.
(v) The shape is kept: Q1 = Q.

c. If n mod ny = 0, update the macroscopic shape:

(i) Computation of the descent direction 6y,
(ii) Updating the shape Q,,;; and the geometric parameters m,; by advection.
(iii) Updating the orientation @, of the lattice material using Pedesern formulas.
(iv) Verification that the new shape and the new infill improve the objective function, else, reduction of the time
interval dt and rejection of the new shape and of the new infill.

For details on the projected gradient algorithm for the geometric parameter m and on the Pedersen formula for the
orientation «, the reader is referred to Reference 27.

4.4 | Dehomogenization process

The optimized microstructure is not a genuine structure. Indeed, the infill lattice is a homogenized material: it is equiva-
lent to periodic cells of infinitely small size. In other words, the optimized homogenized structure is not straightforwardly
manufacturable. Hence, it has first to be dehomogenized before it can be built. The dehomogenization process was first
introduced by Pantz and Trabelsi,?> for rank laminates materials. It has been further generalized to other microstructures,
in 2-d?%%” and in 3-d.?® Here, the same method as in Reference 27 is used and we content ourselves in simply recalling
the main ideas below.

The dehomogenization consists in building a sequence of genuine structures, that converges to the optimized homog-
enized one. Let y(y, m) be a level-set function describing the perforated unit periodic cell Yo(m) (this level-set function y
has nothing to do with the other level-set function ¢ which defines the shape €2). In other words, y = (y;,¥,) = w(, m)
is a periodic function, with period [0; 1], such that

Yo(m) = {y € [0; 11|y (y,m) < 0} .

If the orientation of the periodic cells is kept constant in the whole working domain D, namely a(x) = 0, an obvious recon-
struction amounts to mesh the working domain with squares of size £ and to project in each square the corresponding
local microstructure, parametrized by the local values of the geometric parameters m. The corresponding nonoriented
structure Q° is given by:

Q= {x € Qly (;—C, m(x)) < 0} .

If the cell orientation a varies in the working domain, the above idea has to be modified. A naive idea would be to
simply rotate each cell by a, without deforming it. However, it cannot work since two neighboring squares with different
orientation may not be well connected to each other: either they overlap, or there is a gap between them. In order to take
into account the local orientation and to yield well connected genuine structures, cells have to be slightly distorted, see
Figure 3. This distortion is mathematically given by a vector field, ¢ : R? — R2, a diffeomorphism whose inverse maps
the periodic square grid, Figure 3A, on a distorted grid where each cell is optimally oriented, Figure 3C. (The notation
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FIGURE 3 Aregular grid (A) is associated to a direction
/ / i field (B), giving the local orientation of each cell: it yields a
distorted grid (C)
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@ for this diffeomorphism should not be confused with ¢ for the level-set function of Q.) The grid map ¢(x) is deduced
from the optimal angle a(x). Indeed its gradient has to be locally aligned with the axes of the cell, whose directions are
given by a, namely

oo [ cosa(x) sina(x)
Vo(x) = '™ <—sin a(x) cos a(x)) ’

where r(x) is a scalar dilatation field. To solve the above equation for ¢ and r, the orientation angle « has to satisfy a
conformality condition, namely, it must be harmonic. For theoretical, as well as practical details, on the solution process
for @, the reader is referred to Reference 27.

Eventually, a sequence of genuine, or projected, structures Q.(g,m), taking into account the orientation of
the cells is simply given by composing the level-set function y, the grid map ¢, and the parameter field m
as follows:

Q. (p,m) = {x € Qly (@,m(x)) < O} .

The shape Q. (@, m) is a modulated and oriented periodic domain (recall thaty — y(y, m) is periodic). When ¢ is going
to zero, €, is converging to the optimized homogenized structure characterized by the homogenized tensor A*(m, «).

5 | NUMERICAL EXAMPLES

Our topology optimization method is implemented in the finite element software FreeFem++*° (see Reference 50 for the
use of FreeFem++ in optimal design). All unknowns are discretized using P;-functions.

5.1 | Noncoated structure

We first discuss numerical results of the optimization process for structures, without any coating.
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FIGURE 4 Boundary conditions for the cantilever test case

Ty {

T'p

FIGURE 5 Density p = 0.5 of the initialization structure for the cantilever test case (the
boundary of Q is the red line)

FIGURE 6 Cantilever test
case: optimized density for
different values of m,,,. The
boundary of the shape Q is the
red line. A, my,x = 0.8. B,

Mpax = 0.9. C, My = 1.0

(A) | (B) ©)

5.1.1 | Cantilever case

Our optimization algorithm is tested with a cantilever, see Figure 4 for the boundary conditions. The domain size is
20 x 20 and it is discretized by a structured triangular mesh, featuring about 800 vertices. A unit vertical load is applied on
a central segment of length 1 on the right side. The structure is clamped on a central segment of length 10 on the left side.
The target mass is fixed to 30% of the working domain, that is, My = 120. The initial shape Q is displayed in Figure 5: it
is slightly smaller than the whole working domain D and its border contains the Dirichlet and the Neumann boundaries,
respectively, I'p and I'y. Its lattice infill is homogeneous and m; = m, = \/0_ ~ 0.7, yielding an homogeneous density
p =0.5.

The optimized densities and shapes Q for three values of the threshold my.y, 1, 0.9, and 0.8 (see Section 2.2.2) are
displayed in Figure 6. The final values of the objective function, the compliance, and the mass are given in Table 1. For
these three designs, the mass constraint is satisfied (Mt = 120). The compliance and the area of the shape Q, which is equal
to /,,dx and is different from the weight /,p(m) dx, are given for comparison. The higher the maximal length of the hole
Mmax, the higher the area of Q. Indeed, as previously mentioned in Section 2.2.2, when the infill can have a zero density
(meaning it is like void), the level-set function, which separates the infill from the external void phase, is mechanically
meaningless. For mpy,x = 1, the level-set do not disappear totally although it could have done so ; nevertheless, the area


ct056
Zone de texte 


TABLE 1 Numerical values for the three

My Compliance Mass Percentage of area of Q w.r.t. D ) . )
optimal designs of Figure 6

0.8 2.87 30.1% 57%

0.9 2.74 29.9% 63%

1.0 2.63 30.2% 81%

8 300 FIGURE 7 Convergence history of the
7 5 . objective function (red continuous line), the
f 6 . 250 compliance (blue dotted line), and the mass of
g - 4 200 — the structure (green dashed line) for the

é g g 3 ? cantilever with m,, = 0.8
=4 = 150 =
Z 3 ) 0
e = 2 100
2 9 )
o 1 1 50

0 0 0

0 20 40 60 80 100 120 140 160 180 200

iterations

of Q is 85% of the one of the working domain D. However, the external boundary o€ is surrounded by void (it lies in a
white, or void, region on Figure 6C) and so has no impact on the final design. The areas of Q for m.x equal to 0.9 and 0.8
are smaller. The external boundary 0Q of the design is much more visible on Figure 6A,B, when m,,x = 0.9 or 0.8, since
the transition between the infill and the exterior void phase is sharper.

Besides, the higher my,,y, the smaller the compliance. Indeed, the set of admissible structures is enriched when
Mmax increases. Hence the optimized structure can only be more efficient for larger mm.. From a mechanical
point of view, it means that smooth transitions between the infill and the void (corresponding to large values of
Mmax) are more efficient. However, in practice, after dehomogenization, such transition areas are not manufac-
turable because they involve very thin bars, which are impossible to manufacture and thus have to be removed
before building the structures. This post-process alters the performance of the genuine structures. On the contrary,
using a value of mypy,x smaller than 1 during the optimization step, the optimized structure features no transi-
tion phase between infill and void, and thus no very thin bars. No post-process of the genuine structures is then
required.

The convergence history for mp.x = 0.8 is displayed in Figure 7. First, in order to satisfy the mass con-
straint, the mass decreases abruptly, at the expense of the compliance. After around 20 iterations, the mass
constraint is quite respected. The mass does not vary significantly anymore and the compliance decreases
gradually.

The optimized homogenized structure for mmayx = 0.8 is dehomogenized in order to yield genuine structures, using
the dehomogenization process described in Section 4.4 (following Reference 27). A diffeomorphism ¢ corresponding to
the orientation is computed. Then, a sequence of genuine shapes Q. (@, m) is constructed, see Figure 8, where ¢ stands
for the characteristic period of the cells. The smaller ¢, the finer the lattice infill.

5.1.2 | Bridge case

Our approach is now applied to a bridge problem, see Figure 9 for the boundary conditions. A unit verti-
cal load is applied on a central unit segment of the bottom side. The structure is sliding on two unit seg-
ments of the bottom border, distant of one unit from the corners. The domain size is 22 x 13 and it is dis-
cretized by a structured triangular mesh, featuring about 1000 vertices. The target mass is fixed to 30% of
the working domain and mpm is set to 0.8. The optimized density and the optimized shape Q are displayed
in Figure 10. A sequence of genuine shapes Q.(@,m) obtained by the dehomogenization process is displayed

in Figure 11.
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FIGURE 8 Projected
structures Q, (@, m) for several e
in the case of the cantilever, with
Mpax = 0.8. A, € = 0.4. B,
£=02.C,e=0.1D,e =0.05

(A) (B)

©

FIGURE 9 Boundary conditions for a bridge

D
I'p I'n I'p
FIGURE 10 Bridge test case: optimized density for m,,, = 0.8. The boundary of the —
shape Q is the red line
5.1.3 | Discussion

Thanks to the shape Q, tracked by the level-set function ¢, there is a clear border between the lattice infill inside
the macroscopic structure and the outside of the structure. Consequently, the dehomogenized structures Q. (¢, m) are
clean in the sense that no small, thin, or disconnected bars appear close to the boundary. This is a great advantage
of the coupled optimization method over the topology optimization done only with the homogenization method as in
Reference 27. Indeed, when lattice structures are optimized only with homogenization method, they feature a transition
area in the domain D, where the density of the lattice goes slowly to zero. This yields very thin bars in this part of the
domain during dehomogenization process and a post-treatment is then required to clean the dehomogenized structures.
No such post-treatment is necessary here.
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(A) (B) ©

FIGURE 11 Projected structures Q. (¢, m) for several ¢ in the case of the bridge. A, = 0.2. B, = 0.1. C, € = 0.05

Moreover, since the compliance is minimized here, the cells are aligned with the principal directions of
the stress, and so with the external boundary defined by the level-set function. Nevertheless, the external bor-
der is not perfectly smooth: it features stumps of bars or tiny holes. These small defaults are due to the
inherent numerical approximations during the computation of the diffeomorphism ¢. The same post-treatment
method, as the one presented in Reference 27, could be used here to clean the structures Q.(¢,m). However,
we can also fix this problem during the optimization process by imposing a coating to the structure, as we now
explain.

5.2 | Coated structures

Our algorithm for coated structures is tested for a cantilever. The boundary conditions are identical to the ones in the
previous subsection, see Figure 4. The Lagrange multiplier y for the coating constraint is initially equal to 0.05, and the one
for the mass constraint is initially equal to 0.1. They are increased of 20% each five iterations. No augmented Lagrangian
was used for this example.

The mass constraint is set to 40% of the whole working domain.

The algorithm is applied with two different widths of the coating, h = 0.7 and h = 2.1, and two different upper bounds
for the geometric parameters, My = 0.8 and Myax = 0.9 (see Section 2.2.2). The results are displayed in Figure 12. One
can check that the final densities feature a coating of constant width.

For the thick coating (h = 2.1), the shapes are smaller than for the thin coating (h = 0.7). Indeed, the mass
of the coating is closed to the target mass, and the inside of the shape has also to be filled with a nonzero
density.

The optimized structures are dehomogenized according to the dehomogenization method of Section 4.4. Several pro-
jected structures Q. (@, m) are displayed in Figure 13 for various values of the characteristic cell period ¢. Those genuine
shapes do not require any post-treatment to clean them. Indeed, the external boundary is smooth and regular, thanks to
the presence of the coating.

5.3 | Optimization under design-dependent loads

Adding a uniform pressure load of magnitude p, on the optimizable boundary I', the state equation
is modified as:

div(A*e(u)) =0 in Q
u-n=0 on I'p

1A*e()n An=20 on I'p . (22)
A'e(uyn=g on I'y

LA*e(u)n = pon on I

Following the approach described in References 35 and 51, the surface integral due to the pressure load is approxi-
mated by a volume integral, as explained by Equation (20). The compliance (3) is still minimized. Assuming that I'p and
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FIGURE 12 Optimized density of the coated cantilever
for two different values of coating width h and of upper bound
Mupax- A, h = 0.7 and mp,x = 0.8. B, h = 0.7 and m,,x = 0.9. C,
h=21and mpy,, =0.8. D, h = 2.1 and mpy,, = 0.9

(A) (B)

© (D)

I'y are fixed, that is, & = 0 on these parts of the boundary, the shape derivative of the compliance is modified accordingly
(see References 35 and 51):

J(Q,m,a")(6) = —/R(a*)AS(m)R(a*)Te(u) ce(u) O.nds
r

A .
+/R(a*)—(m)R(a*) e(u) : e(uw) O-Vm dx
a om

+ /Zdiv(upo) O.nds . (23)
r

We consider almost the same bridge case, as in Figure 9. The boundary conditions are identical except the addi-
tion of the pressure load p, on I' and the sliding constraint on I'p instead of a clamp. For this bridge test case, the
boundary T is just the upper boundary of the arch structure (see Figure 14). Several tests are run for different val-
ues of the pressure p,, from 0 to —0.05. The value 0 corresponds to the setting of Section 5.1.2 and it is displayed
only for the sake of comparison. The second value, —0.01, yields a pressure loading equivalent to 30% of the unit
vertical load. The third value, —0.05 is taken in order to have a pressure load 50% greater than the vertical load.
Note that the precise values of the integrated pressure loads are unknown, since the length of the shape boundary is
not fixed.

The target mass is equal to 30% of the mass of the working domain D. The upper bound on the geometric parameters
is set to mpy,,x = 0.8, and ny = 3. Genuine shapes Q. (¢, m), obtained by the dehomogenization process of Section 4.4, are
displayed in Figure 14, for three different values of the pressure p,, and a characteristic cell period € equal to 0.1.

In the absence of pressure, the final structure does not feature a coating. It is quite close to the bridge structure, see
Figure 11, but not exactly the same since the parameters of the algorithm are slightly different. When the magnitude of
the pressure increases, a coating appears and becomes thicker. The shape optimization process takes well into account
the design-dependent load.
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FIGURE 13 Projected structures Q. (¢, m) for several
£ in the case of the coated cantilever. A, e = 0.1. B, € = 0.05.
C,e=01.D,e=0.05.E,e=0.1.F,e =0.05.G,¢ =0.1. H,
e =0.05

(A) & = 0.1 (B) £ = 0.05
h = 0.7 and myax = 0.8
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(E) e =0.1 (F) e =0.05
h = 2.1 and mpyax = 0.8

(G)e=0.1 (H) e =0.05
h =2.1and mpax = 0.9

We emphasize that such a pressure load can not be straightforwardly considered in shape optimization by the homog-
enization method. Indeed, an homogenized structure does not feature a clear external border. Hence, the coupled method
presented here is a simple and effective way to address this problem.

6 | CONCLUSION

In this article, we have presented an approach for the simultaneous optimization of the lattice infill and the macroscopic
shape of a structure, using the level-set method. Moreover, we have proposed a simple method to impose a coating around
the shape boundary, which proves to reduce significantly the necessity for post-treatment once a dehomogenization step
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(A) (B) ©)

FIGURE 14 Dehomogenized structures Q, (¢, m) under pressure loads, for several values of the pressure p,. A, p, = 0. B, p, = —0.01.
C, p, = —0.05

follows. Several examples in the case of single load compliance minimization have been provided to illustrate the effective-
ness of the approach in a 2-d setting. The approach has been also successfully applied to design-dependent loads given by
an external pressure. Future works should tackle more realistic cases, that is, 3-d shapes and more general cost functions.
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