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A Theoretical Perspective on the Thermodynamic Stability
of Polymer Blends for Solar Cells: From Experiments to

Predictive Modeling

Claudia Caddeo,* Jorg Ackermann, and Alessandro Mattoni*

An overview of the theoretical /computational methods that allow the study ofthe
thermodynamic stability of the polymer blends for photovoltaics is provided. After
discussing the fundamental concepts of thermodynamic blend stability and
solubility, including mixing enthalpy and the Flory-Huggins theory, some
experimental approaches to determine the interaction parameter and the stability
in organic photovoltaic (OPV) are briefly discussed, and the advances in the
modeling of polymer blends based on the use of atomistic simulations and
multiscale modeling are reviewed. An outlook on the modeling strategies that can
have a strong impact on the design of stable blends and to the commercial OPV
technologies is given. In particular, the main directions along which major
developments are expected are envisaged: multiscale models with improved
accuracy or machine learning methods applied to large ab initio datasets, as well

as a judicious combination of the two strategies.

1. Introduction

Organic photovoltaic (OPVs) solar cells have attracted great
interest in the search for efficient solar cell technologies due
to their promising performance and potential for low-cost
manufacture.”! Among their characteristics of special relevance
are solution processability, flexibility, large scale, and low-cost
production. In particular, organic cells can be manufactured
over large areas, on lightweight plastic substrates, using high-
throughput printing fabrication, potentially resulting in large
reductions in production costs and energy payback time."!
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The first examples of organic solar cells
(OSCs) featured fullerene derivatives (such
as PC60BM and PC70BM) as electron
acceptors; polymer—fullerene blends can
be considered the prototypical material
realizing the bulk  heterojunction
architecture!*”! and have been investigated
for more than two decades with a rapid
increase in power conversion efficiencies
(PCE) that surpassed 10% in 2015,®! since
then followed by slower improvements,
with a record value of 11.5% for single-
junction cells and 13.2% for tandem
cells.”'”) Recently nonfullerene organic
semiconductors outperformed the fullerene-
based cells in terms of PCEs. In 2019,
the discovery of the nonfullerene acceptor
(NFA) Y6 led to the realization of a
single-junction organic solar cell with
PCE > 15%!"" in combination with the large-bandgap donor poly-
mer PM6.""?! Since then, PM6:Y-series blends achieved over 19%
PCE."? Very efficient charge separation'™ and long carrier dif-
fusion!"® are key aspects of these blends. Several groups have car-
ried out investigations to unravel the reasons behind their
exceptional performance. Surface and bulk characterization tech-
niques, as well as theoretical simulations, have been employed to
understand how phase separation and other morphological fea-
tures affect the PCE in these blends.*%*!

Despite the great progress of organic solar cells, the photovoltaic
market is still dominated by crystalline silicon (c-Si) technologies
due to the material availability, its excellent electronic charge trans-
port properties, and PCEs >24% for large module areas >1m’.
Moreover, the lifetime of c-Si solar cells typically exceeds
25 years'**?: thermal and photochemical stability of inorganic
semiconductors is in fact generally higher than that of organic
counterparts. The operational lifetimes of large-area OPV devices
are instead still significantly lower than the market requirements
of >10years.”® When considering the so-called “golden triangle,”
used to assess the feasibility of photovoltaic technologies (efficiency,
cost, and lifetime),””** it is evident that OPVs fail in meeting the
lifetime criteria to be considered competitive with c-Si.

Considerable effort is dedicated to improving OPV efficiency in
academic research, with efficiencies approaching rapidly 20% for
small-area solar blends with the advent of NFAs, as discussed earlier.

On the contrary, the fundamental study of stability has
received much less attention.”*”!

Fullerene-based blends have been studied for a long
time!*72%31 and are the systems for which more experimental
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information is available. Remarkable results have been obtained for
the PBDTTT-OFT:PC70BM blend, which retained 80% of its initial
efficiency under accelerated testing conditions for over 500 h in air
at temperature of 85 °C. The storage time at room temperature of
the encapsulated devices based on this blend was 2000 h.*?

Concerning NFA solar cells, several studies have established
that they exhibit superior long-term stability than fullerene-based
ones** %% and further improvement requires a deep understand-
ing of the morphology, thermodynamics, and degradation pro-
cesses. The UV-induced degradation at the interface between
the active layer and the charge transporting layers is one of
the main sources of instability. Important results have been
obtained for PTB7-th:BT-CIC blends by introducing a buffer
between the active and the charge transporting layers, in addition
to a UV filter. By performing accelerated aging, it was possible to
extrapolate an intrinsic lifetime equivalent to 30 years of outdoor
exposure.”*”! Photoinduced and thermal degradation modes at
the active layer contacts were individuated as responsible for
the PCE loss in the absence of the buffer layers."*®

In general, for both fullerene and nonfullerene solar cells, the
lifetime ultimately depends on the morphological, chemical, and
photochemical stability of the active layer.*! At the nanometric
scale, a bulk heterojunction (BH]J) is constituted by a good
intermix of donor/acceptor domains with similar charge carrier
mobilities within the exciton diffusion lengths (nm scale). The
BH] architecture increases the interfacial area between donor
and acceptor, overcoming the limits of bilayer junctions in
terms of short exciton diffusion length, limited exciton lifetime,
and charge separation.*”’ Nevertheless, the BH]J structure also
presents challenges. The multiple phases and complex interfaces
bring along unexpected morphologies and complicated charge
dynamics, which are difficult to be observed and controlled.
Mixing two or more components and achieving an optimum
morphology is challenging*'! and usually involves a trial-and-
error approach. Furthermore, bulk heterojunctions are metasta-
ble microstructures and are prone to degradation. The factors
that contribute to degradation of the active layer include
photochemical and photophysical degradation of the active layer
materials and interfaces,*>** morphological degradation due
to high thermal stress under operation, and"***¢l degradation
events initiated by H,0 and O, in poorly sealed devices."*”>"!

Furthermore, also solvents and additives have important
effects on the final morphology and stability. Solvent additives,
in fact, are important to manipulate the kinetics of phase sepa-
ration of the active layer during deposition. A comprehensive
review on this issue can be found in the study by McDowell
et al.®" and studies therein.

Roughly speaking, it is possible to distinguish degradation
mediated by external factors (chemical contamination, exposure
to external excitations such as ultraviolet radiation, mechanical
actions) from degradation related to the intrinsic thermodynamic
stability of the material at given thermodynamic parameters
(e.g., temperature, pressure). Extrinsic degradation mechanisms
are discussed in many existing reviews!’”*%**%% because of their
relevance under working conditions. From a theoretical point of
view, they involve photochemical reactions that require a specific
description of the excitations, interfaces, or chemical impurities.

However, even just considering the intrinsic stability of the
material with temperature, we are faced with a topic of great
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complexity that represents an important theoretical and applica-
tive scientific challenge and that is the focus of the present article.
While extrinsic factors can be, to some extent, mitigated by
production steps without modifications of the active material
(e.g., encapsulation, contacts), improving the intrinsic stability
requires optimizing molecular interactions and the processed
microstructure of the donor/acceptor blend. The control of
thermodynamic stability of polymer blends is important not only
for the active layer but also for the hole and electron transporting
layers that are often realized with polymeric systems.

Among the factors affecting intrinsic instability, the nanomor-
phological degradation and phase separation of the photoactive
layer are certainly relevant, which give rise to the formation of
nanometer-scaled interpenetrating domains of pure donor, pure
acceptor, and mixed phases. The mixed phases play a fundamen-
tal role in the overall performance of the photovoltaic cell.
A well-mixed phase is in fact needed for efficient phase separa-
tion (and consequently high short-circuit current) j,. but too
small domains can increase the charge recombination and thus
lower the fill factor (FF).161-%%

It is necessary to make progress toward the full characteriza-
tion of the morphology and the crystalline order at the nanoscale
for improving charge transport and for blend stability.**°*
The determination of the BH] structure typically requires a com-
bination of complementary analytical techniques, such as X-Ray
diffraction and solid-state nuclear magnetic resonance
(ss-NMR)."”! In particular, ss-NMR is sensitive to short-range
interactions, allowing it to probe diverse material structures,
such as crystallites, lamellar mesophases, and amorphous
regions, and making it particularly suitable for studying
organic materials. Integrated approaches combining density
functional theory (DFT) calculations or molecular dynamics
(MD) simulations to experimental techniques have been also
successfully used.”®”" In the case of blends based on NFAs
(e.g., PBDB-T:ITIC), however, the direct characterization of the
molecular arrangements at the interface and within the acceptor
phase is challenging (e.g., due to the similar electronic structures
giving overlapping signals). Promising results come from recent
studies based on analytical electron microscopy that enables
material phase identification at the nanometer scale./®

The possibility to apply in silico methods for screening
donor/acceptor pairs to identify those that might stabilize the
BH] blends, analogous with virtual screens to identify hit com-
pounds that bind with a target protein,”*”! is very appealing.
Molecular dynamics simulations, either with interatomic forces
calculated from first principles, (i.e., ab initio molecular dynam-
ics, AIMD) or derived from classical force fields (i.e., model
potential molecular dynamics, MPMD), can predict, at least in
principle, the full thermodynamics of the blends and their
miscibility.”® Recently, high-throughput methods based on
machine learning (ML) algorithms have emerged as methods
to screen donor/acceptor molecules which should in principle
provide the best performances in OPV.””7% Nevertheless, the
stability is rarely taken into account in these kinds of studies,
which mainly focus on the prediction of electronic properties
(such as, e.g., energy-level alignment) and overall PCE.

An ideal computational-theoretical method for material
screening would use the chemical structure as the only input
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(no need for experimental information) and would be able not
only to discriminate between miscible and immiscible materials,
but also to predict their volume/weight ratios in the different
phases. Computational methods to investigate the miscibility
for different classes of materials have been widely used across
the literature”” ¥ but their potential in the study of blends
specific for photovoltaics is still largely unexplored.

Here we provide an overview of the theoretical /computational
methods that allow the study of the thermodynamic stability of the
polymer blends for photovoltaics. The aim is to describe the state
of the art with a perspective on the expected contribution of model-
ing to the development and design of new highly stable organic
polymer mixtures, The article is organized as follows: after discus-
sing the fundamental concepts of thermodynamic blend stability
and solubility, we briefly discuss some experimental approaches to
the study of stability in OPV, and we review the advances in the
modeling of polymer blends based on the use of atomistic simu-
lations and multiscale modeling. We conclude with an outlook on
the modeling strategies that can have a strong impact on the
design of stable blends and the commercial OPV technologies.

2. Fundamentals on the Thermodynamics and
Stability of Blends: the Interaction Parameter

The thermodynamics of any chemical or physical process is
described by the variation in the free energy between the initial
and final states

AG = AH — TAS (1)

where AH and AS are the change in enthalpy and entropy of the
system, respectively, and T is the temperature. A reaction occurs
spontaneously if AG is negative and vice versa. For a donor-
acceptor blend the relevant process is the mixing during which
the two separate components give rise to the blend. The corre-
sponding free energy of mixing AG is the quantity that governs
the equilibrium conditions of the blend: the blend is stable if the
mixing is thermodynamically favored and the free energy change
is negative, while for positive values the blend is unstable and it
will tend to separate (or it does not even form).

The thermodynamic stability is in principle dependent only on
the free energy difference between the initial (separate compo-
nents) and final configurations (mixed phase). However, the
knowledge of the free energy barrier (i.e., the free energy that
must be overcome in order to form or to decompose the blend)
is necessary to the study of the kinetics of mixing,

Before discussing modern atomistic approaches to the study
of stability, it is necessary to start from the older approaches
based on continuum theories of the free energy of mixing AG,,,.

Detailed description and derivation of these theories can be
found in many book chapters,®®~*" while we recall here the main
concepts for ease of reference for the reader.

Continuum models are expressed in terms of empirical or
effective parameters, typically as a function of relative concentra-
tions ¢ or of the chemical potentials y = ?,f and the other inten-
sive thermodynamic parameters T and P. Continuum methods
have played a fundamental role in understanding the thermody-
namics of solutions (e.g., the theory of regular solutions or the

Sol. RRL 2022, 2200172 2200172 (3 of 17)

www.solar-rrl.com

Flory-Huggins extension to macromolecules and polymers) and
provide the formalism and the general concepts necessary to
describe stability (stability ranges, spinodal, binodal decomposi-
tion, etc.).”” ! A general expression for AG,, = AH,, — TAS,,
is given by the regular solution model, a model based on the
volume discretization and on mean field approximations.
In particular it is based on the following approximations.
1) The available space can be discretized into a lattice of molecular
volumes (lattice approximation); in such lattice approximation, the
available space is divided into lattice sites of volume V.., often
taken equal to the molecular volume of one of the materials com-
posing the blend. 2) The neighboring sites are independent of
each other, so if one site is occupied by a molecule of species
A, it is neither more nor less likely that a neighboring site is occu-
pied again by a species A molecule. 3) Molecules interact only with
their nearest neighbors in a pairwise additive way. 4) The volume
of the mix is independent of the composition.

The entropy of mixing is a measure of the number of ways @,
in which the components A and B can occupy the sites at the
desired relative concentration. For a binary mixture, with n, mol-
ecules of species A, ny molecules of species B, and N = n, + ng
as the total number of molecules in the mix, we have

N N
fa ]

—kg [n,\ln — + ngln —] )

AS,, AS, kg
V., NV Vi [daln(a) + ¢pln(ebp)]
where kg is the Boltzmann constant and ¢4 and ¢ are the molar
fractions of species A and B, respectively, that is, ¢; = 7
These are equal to the volume fractions if the volume of the
mix is independent on the composition.

The entropy is always positive and favors mixing with a maxi-
mum for ¢, = ¢y = 0.5.

Assumptions 2) and 3) correspond to the mean field approxi-
mation and make it possible to derive an expression for the
enthalpy in the reference volume AH,,/V,,/*? of the form

.ﬁ A
meem ¢'A¢B AB

()
Vier

where the parameter Apg = % (2e45 — £4 — £3) contains the differ-
ence of the “molecular energies”, that is, the energy of the mixed
A-B interaction (e,g) with respect to homologous A-A (£4) and
B-B (ep) interactions, and z is the coordination number. The term
hadhs = Pa(l — ¢a) accounts, within mean field approximation,
for the number of mixed interactions per site. For example, at
¢ =1 or ¢y =1 the probability of mixed interactions is zero.
The maximum probability is obtained when ¢, = ¢ = 0.5.

In summary, within the mean field assumptions described
above the effective model of the free energy per unit volume is

AG, kg T

=y 9an(da) + duln(e) + Paderas] *)
m ref

where here ¢; = er‘{"‘:\.:"n? is the volume fraction of the i-th com-

ponent (we consider that the volume of the mix is independent
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on the composition), and yap is a dimensionless interaction
parameter defined as

1 =z
AAB :mi(zsﬁﬁ_fﬂ —&p) (5)

that characterizes the strength and favorability of mixed (A-B)
interactions compared with homologous (A-A and B-B) interac-
tions with respect to the thermal budget of a single degree of
freedom at the corresponding temperature k;T.

We remark that the entropic part of the free energy
(i.e., kgT[¢pa - In(pa) + g - In(ghy)]) increases with temperature
and always dominates over the enthalpic term kp T(¢adbpyan] =
$(2eap — €a — €5)adhy if the energies exp, 4,5 are substan-
tially temperature independent. At sufficiently high temperature
every blend is soluble within this model.

The free energy curve AG(¢) for a prototypical polymer
solution””! is reported in Figure 1B as a function of the relative
concentration ¢ = ¢, (and ¢y =1 — ¢) for different values of
temperatures. For high temperature (T;) the curve has a single
minimum and positive concavity, meaning that the blend will not

Binodal curve

One-phase regime
Spinodal curve

T,

Temperature

Free energy

¢3 ¢2. ¢0 ¢1" ¢!"

Composition

Figure 1. A) Phase diagram and B) free energy curves of a polymer solu-
tion. ¢hy represents the initial composition; ¢, and ¢, represent the equi-
librium phase composition at temperature T,; and ¢y and ¢~ represent
the equilibrium phase composition at temperature T;. The black dots on
free energy curves represent the inflection points. Reproduced with per-
mission.”’l Copyright 2016, Elsevier.
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spontaneously phase separate, as any combination of volumes
with different relative concentrations would increase the free
energy. For T; < T} we find two minima and a local maximum
with negative curvature: in this case the blend is unstable, and it
will tend to separate into two volumes, each with the relative con-
centration ¢, and ¢, of one of the minima; it is easy to under-
stand that this combination can lower the free energy and
decomposition is accordingly spontaneous. These two concentra-
tions are coexisting, and the locus of these concentrations as a
function of temperature (and thus of the interaction parameter)
is known as the coexistence curve or the binodal (see Figure 1A).
The limit of local stability is defined by the points, where the cur-
vature of the free energy changes (inflection points in Figure 1B),
and the locus of these points is called the spinodal curve.

The above analysis refers to equilibrium conditions where the
increase in temperature always favors mixing. However, out of
equilibrium, the effect of temperature can be subtler. For exam-
ple, metastable blends are commonly synthesized which are
kinetically but not thermodynamically stable. In these cases
(e.g., polymer-fullerene blends) the increase of temperature
can favor phase separation (as typically observed during organic
solar cells processing).®*® This occurs when demixing requires
thermally activated phenomena (e.g., diffusion of fullerenes in
the polymer matrix).

In the simplest derivation of free energy, A,p is constant and

—Bay _ AH, Vi 1
AAB = [T = "V, T g4

temperature as yap &~ 7. In the most general case, the mixing
interaction parameter is a function of ¢, T, P, and it can include
a dependence on the local packing of components. This is not
yet fully understood and all the deviations from the lattice
approximation are put together into an entropic contribution
to the interaction parameter. This contribution is an extra term
with respect to the combinatorial entropy AS,,, described above
and that is independent on the specific nature of the interactions,
being a sole function of size and relative concentration. y,5 can
thus be described as the sum of two contributions: yy; which
accounts for enthalpic contributions and yg which accounts
for entropy, or other energetic effects, arising from the specific
chemical nature of the molecules””

is only due to enthalpy and scales with

Xag = Xu t+Xs (6)

For example, if a molecule is involved in a hydrogen
bonding network with molecules that restrict it into certain
constrained positions, this will have a configurational entropic
penalty due to the reduced number of configurations available.

The Flory—Huggins theory!®*?) generalizes the expression for
the free energy of mixing to macromolecular solutions, such as
polymer blends. If only small molecules are involved, any lattice
site can be occupied either by the solvent or the solute, but when
dealing with high-molecular-weight polymers, the value of AS,,
is reduced, because of the constraints induced by the polymer
(e.g., the sites occupied by the polymer must be consecutive,
self-avoiding, etc.). Flory and Huggins introduced the quantities
ra and rg representing the volumes of polymer A and polymer B
(or polymer and molecule) in units of V.. (e.g., if the latter is
chosen equal to the molecular volume of one of the two materi-
als, say, A, then r, = 1). They were able to derive an expression
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for the entropy of polymer blends that is identical to that for the
regular solutions

AS k
— = [#aln(@a) + deln(dp)] )
m ref
provided that the relative concentrations depend on the molecule
volumes as
Vierriti

R T ———_ @)

Vier(rana + rgng)

In the general case the sizes of the polymers are different
(i.e., ry # rp), and the above FH mixing entropy is an asymmet-
ric function of ¢. The derivation of Equation (3) for the enthalpy
is still valid also for macromolecules, so that Equation (3) and (7)
give the formula for the effective FH free energy of polymeric
solutions. Further details can be found in classical texts on ther-
modynamics of the blends.®>931%

It is useful here to relate the interaction parameter to a
macroscopic quantity, that is, the enthalpy change upon mixing
per unit volume ﬁTf,‘fl- The latter quantity can be measured or

calculated by atomistic simulations and it can be expressed as
the difference between the energy of the mixed and of the
unmixed states, divided by the volume of the mix V.

AHIH . IE‘m = EA = EB

m m

where E, (Eg) is the energy of the same number of particles of
the component A (B) present in the mix but obtained in the pure
single-component phase. To further simplify we suppose that the
volume change upon mixing is negligible (which is true for most
blends), so that we can write

AH, E Ex Vg E

m m m EA EB
B SK YA SBYE tm g TA ST
Vo Ve VaVe VeV Ve Ay, Py, (10

In conclusion AH,,/V,,, that is, the mixing enthalpy per unit
volume, can thus be related to the cohesive energy densities (i.e.,
the energy per unit volume needed to vaporize the molecules
from the condensed phase) of the i components CED; = E;/V,;
and of the mix CED,,, = E,;,/V,, by
AH,,

m

and, if the entropic contribution to y,p is negligible

CED,, — )pCED, — ¢p5CEDy
ke Tpachn

XAB =XH T Xs = Yu = (12)

It has been evidenced in literature that care should be taken
when considering yap = yyy, especially when hydrogen bonds
are present in the blend, which may constrain the macromole-
cules in specific conformations, thus lowering the entropy of
the system.''?")

Provided that parameter y,p(T, ¢) is known, the free energy
of a blend can be calculated giving information on stability,
spinodal decomposition, binodal loci, phase behaviors etc.
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This approach is discussed for example in the study by Bates
et al"% and references therein.

In the next sections we discuss how to derive the interaction
parameter from experimental data.

3. Experimental Determination of the Interaction
Parameter

Several studies have tried to determine the interaction parame-
ters for a number of donor/acceptor blends of interest for OPV
and establish a correlation between the overall efficiency and the
purity of the mixed phase. This has been mainly done to estimate
the miscibility of donor polymers with molecular acceptors
(fullerene or NFA) or with other polymers (acting, e.g., as sensi-
tizers) in ternary and quaternary devices.!'**~1%%!

A possible way to obtain y is through the melting point depres-
sion method."" %! Using differential scanning calorimetry
(DSC) to measure the change in melting temperature of the poly-
mer in the mix (T,,) as a function of the acceptor concentration
¢, one can estimate the value of the interaction parameter via the
relation

1 RV,

1
T T A—vas(ff)‘ —xd?) (13)

where T,,, is the melting point of the polymer at acceptor volume
fraction ¢, Ty is the melting point of pure polymer, R is the
ideal gas constant, AHy is the heat of fusion of the polymer,
Vi is the monomer molar volume of polymer, and V; is the
acceptor molar volume.

Kozub et al."*! were among the first groups to study the mis-
cibility of P3HT and PCBM and estimated a value of y concluding
that miscibility is possible for polymer volume fractions greater
than 0.42. Determination of the miscibility is also important
when optimizing the choice of the third component in the reali-
zation of ternary solar cells. Addition of a sensitizer to the widely
studied, highly efficient polymer:NFA-mixed PBDB-T:ITIC has
been studied by Yi et al."' In their work, PDCBT and P3HT,
which have similar chemical structures but different side chains,
were chosen as third components. The Flory-Huggins interac-
tion parameters between the sensitizers and both the polymer
PBDB-T and the ITIC molecule acceptor were determined via
the melting point depression method, and it was found that while
both sensitizing polymers are able to form bimolecular crystals
with PBDB-T, they possess different miscibility with ITIC,
leading to very different morphologies and photovoltaic
performances.

Ye et al.""! developed an approach to determine the depen-
dence on the processing temperature of the FH parameter of
polymer-small molecules blends and to establish quantitative
relations between y and device performance. These authors
were among the first to point out the relevance of miscibility
in the achievement of good performance in polymer:NFA
blends."'*""*l By measuring the polymer concentration ¢ in
the mixed phase (obtained at different processing temperatures),
it is possible to determine the T — ¢ phase diagram (i.e., the
binodal curve). For each value of temperature, the two values

of ¢ correspond to minima in the G, that is, where "—g;n =0
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2 .. - .
and 2% < 0. From these two conditions, it is possible to extract
o P

the value of y at different temperatures and to obtain y(T) by
fitting the general formula y = A+ £. The authors have then
measured the photovoltaic performances of the devices fabri-
cated at different processing temperatures and plotted the fill fac-
tor FF versus y, showing that there is a quantitative relation
between the value of the fill factor and the interaction parameter.
In particular, they were able to predict the optimum y and thus
composition leading to the highest device FF for a wide range
of binary blends composed of small-molecule acceptors and
(amorphous and semicrystalline) polymer donors.

The same group” focused on the impact of morphological
instabilities on the so-called burn-in (i.e., the efficiency loss in
the first few hundred hours of operation of an unstable organic
solar cell) in polymer-NFA OPVs, which is typically driven by
polymer—-NFA demixing in the mixed domains and/or crystalli-
zation of the NFA. The crystallization of NFAs is inhibited
by quenching the acceptor in an amorphous state which is
metastable: the thermodynamically stable state in fact involves
NFA crystals. As the metastable state is governed by the binodal
composition, if the optimal morphology is quenched far from the
binodal, severe burn-in is expected (see Figure 2a). In contrast, a
device with a binodal close to the optimal morphology (see
Figure 2b) is expected to be relatively stable and thus to exhibit
lower burn-in degradation. The authors calculated the FH inter-
action parameter as in the study by Ye etal,"'!! determining the
amorphous—amorphous phase diagram (and thus the binodal) at
different processing conditions for four polymer-NFA blends
(P3HT:EH-IDTBR, FTAZ:EH-IDTBR, FTAZ:ITIC, and PTB7-
Th:EH-IDTBR) and delineating thermodynamic drivers and
kinetic factors for stability. In particular, they estimated the dif-
fusion coefficients of EH-IDTBR in P3HT, FTAZ, and PTB7-Th,
showing that in some blends it is sufficiently high to enable

(a) Peroolahon threshold

hypo-miscibility

— Liguidus
— Binodal | |,
T I CHL
L4l if no C/”
HighT, : I1la
Low T, i
I ®
l
0
¢'p01ymer
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demixing and crystallization burn-in after no- or low-temperature
annealing. They concluded that the optimum morphology must
be stabilized by a high degree of vitrification with low diffusion,
or it has to be metastable with a mixed composition near the per-
colation threshold.

4. Computational Approaches to the Modeling of
Stability of (organic) Blends

Despite the great advances in the experimental techniques to
access the nanomorphology of BH] and to control to some extent
the stability of the blends, a truly predictive approach is not cur-
rently available and, in principle, only atomistic methods can
achieve this goal.

The possibility to predict thermodynamic properties of novel
blends and to perform high-throughput screening via in silico
methods would be a major step forward in the search for opti-
mum, highly stable blends not only in the field of organic PV but
in a wide range of applications, from materials science to phar-
maceutics and drug delivery.

To predict the miscibility through computational methods,
two strategies are widely used: the first is the determination
and comparison of the solubility parameters 5 of only the
separate phases of the blend (the so-called Hildebrand and
Hansen solubility parameters, HSPs, discussed below) and the
other is the simulation of both the mixed phase and the separate
pure phases and the determination of the interaction
parameter y.

The solubility parameter approach is based on the idea that
materials with similar § should be miscible. This approach is
derived from an approximation of Equation (5) assuming that
the interaction energy e,y can be approximated as, ,/gaey that
is, the geometric average of €, and ey obtaining

(b) F'ercolation threshold

Optimal miscibility

— Liquidus
L — Binodal | |

Burn-in
HighT,

Low Ty

Figure 2. a) A blend with miscibility that is too low (hypomiscible). Solid lines, including the blue part of the y-axis, correspond to thermodynamic
equilibrium, whereas dashed lines are only metastable states. Below T, which is composition and material dependent, the liquids are frozen into a
glass. Equilibrium can still be established by diffusion but is kinetically hindered. The points A, P, and B represent initial average D/A ratio, percolation
threshold of the acceptor in the mixed domains (optimal morphology), and the binodal composition at a given temperature, respectively. Point C rep-
resents the crystallization of NFAs in a blend. The system generally proceeds from point A to point C during casting and aging. Processing conditions are
typically chosen to reach the vicinity of point P, where an optimal tradeoff between charge creation, charge extraction, and charge recombination is
achieved if the domain size can be sufficiently controlled. b) A blend of an optimum amorphous—amorphous miscibility. Adapted with permission.®®!
Copyright 2019, Elsevier.
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1 =z
XAB = kB_TE(Z\/SA‘:B — &5 — &p) (14)

By defining the solubility parameter for species i=A, B as
8 = \/;iﬁ? = /CED; from which & =2V5? an approxi-

mated expression for y,p is finally obtained

1 Vie
Aan = o Ve (2985 — 84 = 89?) = kn; (5a—8)7  (15)

that only depends on the difference 8, — 85. According to
Equation (15), the two materials are miscible if their solubility
parameters are similar, as in this case yap is small.""*11
According to Equation (15) the value y,p is always positive,
and so this approximation applies only if there is an energy cost
for the formation of the blends. The theory was developed for
nonpolar liquids, and it was extended by Hansen'"'® by decom-
posing & into three components, that is, polar, nonpolar, and
hydrogen bonding. The solubility parameter can be calculated
either via group contribution (GC) methods, where the value
of the parameter is given by the sum of the contributions coming
from the different parts that make up the molecule, or via molec-
ular dynamics simulations, where the CED is calculated from the
full atomic structure. GC methods were first proposed by
Small,""”! are relatively easy to use, and have been applied to
determine & in a few works.!''#12°)

The determination of § via all-atoms simulations is expected to
be more precise, as it takes into account all microscopic interac-
tions between the materials. Nevertheless, the approximations
underlying solubility parameter often fail in predicting miscibil-
ity when factors such as temperature, concentration, viscosity,
ionic interactions are important, such as for example in predict-
ing polymer—drug miscibility for drug delivery applications.?")

To overcome the above limits, the second strategy is to directly
calculate, though at a much higher computational effort, the
interaction parameter y by the atomistic simulation of both
the blends and the separate components,

This has been carried out by different groups in a wide range
of applications, such as the prediction of the mixing of impurities
with crude oil,®*? the study of drug—polymer formulations for
pharmaceutical use,®'?*'%! and the study of the solubility of
conjugated polymers for organic electronics'®*** and the ther-
modynamics of mixing in organic blends for solar cells.®***

The field of drug delivery is the one where the method has
found most of its applications: as many newly developed drugs
possess poor water solubility, delivery of these drugs within the
human body is a major and challenging problem in pharmaceu-
tical technology. Among the approaches to solve this problem
there is the incorporation of drugs into nanoparticles, liposomes,
emulsions, or polymers. Despite the high number of works on
the subject, in each of them only a limited chemical space has
been considered, and consequently none of the available studies
are able to draw definitive conclusions about the usefulness of
these techniques in this field. Turpin et al."" in particular con-
ducted a systematic review of works on the in silico determina-
tion of drug-polymer y for solid dispersions. They have also
conducted a comparative study between experiments and differ-
ent theoretical techniques (namely, determination of § via GC or
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www.solar-rrl.com

MD and direct determination of ¥ via MD) and have concluded
that these theoretical methods have a limited reliability to predict
drug-polymer interactions for the purposes of screening or
excipient selection. Among the reasons for these deviations there
is the possible limited transferability of the available force fields
and the incorrect evaluation of the entropic part of g, which for
materials where hydrogen bonds are important can make a large
contribution and should not be neglected. In these cases, the cal-
culation of the free energy of mixing and not only the enthalpy
should be taken into account. There is extensive literature on the
calculation of the free energy difference that relies on thermody-
namic integration, which consists of defining a thermodynamic
path between initial and final states and integrating over
ensemble-averaged enthalpy changes along the path.'?%1%7]
Several methods have been developed such as, for example,
umbrella sampling,!'*® metadynamics,'*® and free energy per-
turbation,!*” which have been implemented in most molecular
dynamics simulation codes and successfully applied, mainly in
the field of biophysics or in other contexts'"*'"**! but to a less
extent to polymer blends for photovoltaics.

The effect of the entropic part of y can be minor in systems
where hydrogen bonds are less important, such as organic blends
for photovoltaics. In these systems, in fact, both the polymers and
the small molecules possess large conjugated cores, and large
contributions to the intermixing come from by z—n
Stacking.l'ug—l‘iz]

Recent works based on MD®*¥ derived the interaction
parameters of blends formed by low-bandgap polymers such
as PTB7, PTB7-th, and Si-PCPDTBT with fullerene acceptors
PC60BM and PC70BM and found good agreement with experi-
ments, Interestingly, it was found that the mixing enthalpy
dependence on ¢ is not the simple parabolic function ¢(1 — ¢)
of the mean field approximation and the interaction parameter is
not independent on ¢ as expected from the ideal Flory-Huggins
theory. The dependence of y on concentration or on the blend
density is typically not taken into account in literature.

A central point for the accurate calculation of the interaction
parameter is the quality of the blend model. It is necessary to
have realistic microstructures and suitable sampling of the con-
figurational space. In the studies discussed above, ®*** the atom-
istic models of polymer blends for photovoltaics were generated
by randomly distributing fullerenes within a dilated mesh of pol-
ymers chains and letting the system relax by long constant tem-
perature and pressure MD runs under the effect of cohesive
forces due to interatomic potentials."**! For each concentration
several initial configurations were considered. Alternative strate-
gies could be to generate models of blends starting from the
donor-acceptor molecules in solution and simulating the solvent
evaporation. This mimics the experimental process but it is com-
putationally demanding due to the large number of atoms and
long simulation time needed. For example, in the study by
Gertsen et al.,"** the solution deposition of NFA thin films via
solvent evaporation was simulated, and the resulting structures
were compared with experimental results from grazing-
incidence X-Ray scattering measurements. Short-range struc-
tural properties, such as n-stacking and alignment effects relative
to the substrate, were accurately reproduced, but the time scales
affordable were not sufficient to induce significant longer-range
order in the thin films. Applications that make use of

© 2022 The Authors. Solar RRL published by Wiley-VCH GmbH
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coarse-graining (CG) strategies are needed to reduce the work-
load and extend the scales."**'*¢!

The MD results based on the random approach mentioned
earlier have shown to provide meaningful morphologies.
The value of AH,, was found to be dependent on the relative
polymer/fullerene concentration with local oscillations (see
Figure 3a) and minima which corresponded to the concentra-
tions determined experimentally by scanning transmission
electron microscopy combined with spatially resolved spectro-
scopic imaging (STEM-SI) of low-energy loss (Figure 3c-e).
This is a powerful approach able to distinguish between donor
and acceptor phases of the polymer blend with nanoscale
rESOluﬁOn‘lgﬂ‘M?'“s]

The analysis of MD blends can also provide information on the
dependence of AH,,, from blend density (see Figure 3b). Indeed,
as polymer cells are processed from solution, fast drying of the
blend can generate nanoscale morphology in nonequilibrium con-
ditions. For fullerene/PTBT/PTB7-th blends it was found that at
low density the polymer chains are not sizably bent, the binding to
fullerene is dominated by the large van der Waals interactions, and
the PTB7-th polymer has a better adhesion to the fullerene than
PTB7, due to the larger conjugated core. As the density of the sys-
tems increases, the polymer chains are constrained by neighbor-
ing molecules and the energy cost of bending increases rapidly for
the more rigid PTB7-th so that the rather flexible PTB7 polymer is
energetically favored and has better miscibility (lower) AH,,, with
fullerenes. From atomistic data, qualitative models to correlate the
stability to the commensurability between polymers and fullerenes
size can be tested and extracted.”™
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The above models and analysis are valid under the condition
that enthalpy dominates over mixing entropy. If this is not the
case, the free energy can in principle be calculated directly by
atomistic methods, making use of suitable thermodynamic inte-
gration along a configurational path connecting separated phases
to mixed phases. However, such an all-atom approach for 3D
blends of macromolecules is very demanding and the direct cal-
culation of free energy is still unexplored for these materials.
The application of such methods to study mixing and solubility
has mainly focused on small molecules or ions such as mixing
water with acetone,™®! small alcohols,*® and DMSO,Y to
study the solubility of ions in electrolytes’*? and to model ther-
modynamic mixing properties of solid solutions.!'>*'*4

To further extend the time and length scales of molecular
dynamics  simulations, coarse-grained approaches are
possible in which groups of atoms are replaced by beads with
effective masses and interactions able to reproduce the
average material property but at a much lower computational
cost. /1451461551581 However the models developed so far are not
readily transferable, limiting their potential for high-throughput
screening calculations. Recently, Marrink et al."****" proposed a
method based on the transferable Martini CG force field"**'*"I to
simulate the morphological evolution during solution processing
of P3HT:PCBM blends. This force field still possesses a degree of
chemical specificity, allowing its use also for the design of com-
pounds which differ only slightly in chemical nature. The force
field was initially developed for lipids, and parameters exist for
water, simple alkanes, organic solvents, surfactants, a wide range
of lipids, cholesterol, proteins,’®® carbohydrates,"®* nucleic
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Figure 3. a) Enthalpy of mixing per unit volume AH,,,/V,, calculated for PTB7:PC60BM and PTB7:PC70BM as a function of the fullerene weight ratio. Error
bars on each point are the standard deviation of the AH,,,/V,, calculated on ten systems with different starting configurations. b) AH,,,/V,, at 1:1 polymer:
PC70BM weight ratio, calculated for polymers PTB7, PTB7-th, and Si-PCPDTBT as a function of the blend density. c) Conventional annular dark-field
STEM micrograph of the as-cast PTB7:PC70BM photoactive layer. d) Plasmon peak map of the same area of observation in (c) showing the nanoscale
materials phase (PC70BM rich in red with high plasmon peak energy and PTB7 rich in green with low energy). e) Segmentation of the same area into
enriched and mixed domains. a), c-e) Adapted with permission.’®® Copyright 2016, Wiley-VCH. b) Adapted with permission.®® Copyright 2021, Elsevier.
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acids,"**1%! some carbon nanoparticles,*® ionic liquids,®®
and some polymers.[1#¢:167:1681

Among coarse-graining schemes, it is worth citing dissipative
particle dynamics (DPD), which is a method developed to address
mesoscale problems in complex fluids and soft matter in general.
The method allows access to polymer structure and morphology
at a reasonable computational cost, and it has been very successful
in identifying mechanisms in phase separation."®” DPD simula-
tions have been extensively used to study polymers in solvents but
also polymer melts and blends. Concerning OPVs, the application
of DPD to explore the active layer morphology is limited, includ-
ing P3HT:PCBM"7% and small-molecule OSCs in the presence of
solvents and additives.""”"!

Finally, the morphology evolution of the full active layer can be
simulated by continuum approaches, such as phase field (PF)
models."”?77%I These are typically used to model the kinetics of
phase separation of donor:acceptor blends by the Cahn-Hilliard
equation,'”®'77l which evaluates the change of local composition
with annealing time. PF models require the knowledge of a
number of effective parameters of the blend, including the
Flory-Huggins parameters and donor/acceptor/solvent interface
energies, which can be obtained from experiments or by
atomistic/CG simulations as described earlier. Applications of
PF methods to OPV include the simulation of the morphology
evolution during solvent evaporation''”® and thermal
annealing.""””! The computed morphologies can be then corre-
lated with optoelectronic and photovoltaic properties.!'”*18%

One aspect that is crucial in the calculation of the FH interac-
tion parameter is the accuracy of the force field adopted in
MD/CG simulations. The possibility to adopt more accurate
atomistic calculations at the level of ab initio DFT!"®""**” has been

time and length scale
>1 um ' 4N
. p PF

DPD
1065 OLHm

CG

0% 10" I mpMD

QM/MM

101% inm

structural DFT v

optimization

www.solar-rrl.com

explored within a multiscale strategy. High-quality quantum
chemical calculations have been used for predicting HSPs for
rather simple, low-dimensional molecules."®*! An interesting
approach is represented by hybrid quantum mechanics/molecu-
lar mechanics (QM/MM) simulations: within this scheme, a QM
zone (which is simulated ab initio) is surrounded by a classical
environment (MM zone). This approach is particularly useful
whenever an explicit description of changes in the electronic
structure is necessary as, for example, when modeling charge
transport."®*'%%  Obviously, the computational bottleneck of
QM/MM methods is the description of the QM part, and semiem-
pirical methods are often used to reduce the computational
workload."® %8 A recently proposed alternative approach is rep-
resented by substituting the QM part by machine-learnt models,
but this is challenging in condensed-phase systems due to long-
range interactions and further progress is needed toward this direc-
tion."®?1%% The major obstacle in the application of QM/MM to the
study of polymer blends is that intermixing derive in general from
long-range interactions (dispersive and multipolar) and the linking
sites are distributed within the blend volume. The separation of the
QM and MM zones under these conditions is ill-defined.

In Figure 4 we report a summary of atomistic, coarse-grained,
and continuum models of polymer blends that can be used to
calculate the free energy of mixing at different levels of
approximation. When accurate ab initio methods are employed
(downward arrow of Figure 4), their higher computational cost
hampers the study of a realistic blend microstructure: the rough-
est approximation is to model the blend as a pair formed by one
donor and one acceptor molecule or oligomer and use their inter-
action in combination with the mean field approximations to esti-
mate AH,,. In the upper direction (upward arrow of Figure 5),

exact

Figure 4. Schematic summary of models (and corresponding methods) that can be used to calculate the thermodynamics of polymer blends for photo-
voltaics. Time and size (logarithmic) scales accessible for different methods are reported on the left. Light blue shadings in the axis represent intermediate
scales shared by different models. Ab initio methods (e.g., DFT) that reproduce accurately the molecular interactions that are limited to small systems
with oversimplified morphologies (downward arrow). In contrast, blend models with realistic morphologies (upward arrows) can be treated by classical
potentials, coarse-grained, and continuum methods but at the price of less accurate description of atomic interactions. The exact free energy requires both
accurate interactions and realistic models. Images for DFT: Adapted with permission.?'! Copyright 2020, American Chemical Society. Adapted with
permission.""! Copyright 2018, Wiley-VCH. Image for QM/MM: Reproduced with permission.I"! Copyright 2014, American Chemical Society.
Image for MPMD: Reproduced with permission.®® Copyright 2020, Elsevier Ltd. Image for CG: Adapted with permission."® Copyright 2019,
Wiley-VCH. Image for DPD: Reproduced with permission under the terms of the Creative Commons CC BY license."” Copyright 2015, the
Authors. Published by Springer Nature. Image for PF: Reproduced with permission."® Copyright 2022, Elsevier.
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model potentials and coarse-grain methods allow to simulate
much bigger and realistic portions of the active layer, also allow-
ing, in principle, the determination of the full AG,,, but at the cost
of less accurate interatomic interactions. A good approximation
of the exact free energy requires both accurate atomistic interac-
tions and large-scale realistic models, and this could be obtained
by multiscale approaches.

Novel opportunities have been opened by ML techniques.
These have been applied mainly to predict PCE and are typically
trained on optical properties (such as, e.g., energy levels) but
information on solubility and mixing properties is rarely
included in the descriptors.

In a recent work, ML coupled with MD simulations has been
also employed to design new materials for OPV”" with improved
optoelectronic properties and stability. More than 5000 NFAs
were designed (starting from synthesizable building blocks)
and screened to be used together with the low-bandgap polymer
PTB7-th as a donor. ML models were trained on data collected
from the literature and various properties were predicted for
the new NFAs, such as energy levels, UV /vis absorption maxima,
and PCE. More than 100 NFAs with suitable energy-level align-
ment, absorption maxima, and PCE >13% were selected.

reduced materials
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Figure 5. Computational flowchart describing the routine for determining
the relative stability capable of describing the microstructure of polymer:
fullerene blends from the study by Perea et al."®! (i) creation of the
a-profile from the conductor-like screening model (COSMO); (i) -moments
as extracted from COSMO are fed into an ANN to determine HSPs;
(iii) HSPs are used to calculate the qualitative FH interaction parameters
(#1.2); (iv) determination of reduced materials properties; (v) spinodal demix-
ing diagrams resulting from polymer blend theory; and (vi) FoM defined as
the ratio of the FH intermolecular parameter and spinodal diagram forms
the basis of a relative stability metric. Reproduced with permission."*!l
Copyright 2017, American Chemical Society.
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The selected NFAs were studied using molecular dynamics sim-
ulations to predict the Flory-Huggins parameter of the blends.
This was obtained by calculating the binding energies and coor-
dination numbers of polymer—polymer, NFA-NFA, and poly-
mer—-NFA pairs. Equation (5) was then applied to obtain y.
Finally, 15 NFAs were selected, and the best predicted PCE
was found to be over 15%, which is far better than reported
results on PTB7-th-based blends.

Another example is the work of Perea et al."**! who developed
a numerical approach to determine the solubility parameters of
fullerene mixtures using a mathematical tool based on artificial
neural networks (ANNs). They calculated the molecular surface
charge density distribution (e-profile) by DFT within the frame-
work of a continuum solvation model and then applied ANN to
transform it into solubility parameters. The corresponding
computational flowchart is reported in Figure 5. The calculated
values were validated against experimentally determined HSP,
showing excellent agreement. The same authors also conceived
a figure of merit (FoM) to describe the mixing thermodynamics
(phase evolution) of polymer:fullerene bulk heterojunctions.
This new model predicts relative stabilities linking the FH inter-
action parameter to the spinodal demixing interaction parameter
(also referred to as the spinodal line)."?*

The studies reported above are representative of the state of art
in the modeling of the thermodynamic stability of polymer
blends. To place such studies in a broader context we report
in Table 1 a summary of the recent computational works (either
atomistic or based on ML analysis of data) on OPV. We report in
columns the material investigated, the methodology, and the type
of blend model with the corresponding calculated properties.

Most studies focus on the prediction of electronic energy lev-
els or PCE, while stability is taken into account in a few cases. Itis
clear that the available advanced computational techniques for
the modeling of polymer solar cells are still largely underutilized
for the study of stability.

As shown, atomistic simulations can be used to determine the
parameters necessary for the continuum description of the ther-
modynamics of mixing and the determination of most stable
configurations. However, real systems are not limited to thermo-
dynamically stable mixtures: kinetically stable blends could give
rise to de facto stable devices, if demixing happens on a suffi-
ciently long timescale, and should be thus included in the poten-
tially optimum blends for OPV. As such, other attributes of the
mix may be important, which cannot be captured in the effective
FH or solubility parameters but are directly accessible, in princi-
ple, by atomistic models.

5. Outlook and Perspectives

Stability remains a fundamental issue in the quest for novel
donor:acceptor blends for OPVs. Due to the very large chemical
space available for the synthesis of novel donor and acceptor moi-
eties, it is necessary to go beyond the experimental trial-and-error
approach. An improvement in this direction can be the extensive
use of artificial intelligence and ML techniques to predict the sta-
bility of novel blends from available experimental data on existing
materials.”””® This approach has the advantage of being readily
available and relatively fast, but it is not easily generalizable
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Table 1. Synoptic table of recent computational works on organic photovoltaics reporting: the investigated material, the method, the type of donor-
acceptor model and the calculated properties (thermodynamic, electronic and photovoltaic).

Ref Material Methods D/A Model Calculated Properties
thermodyn properties electronic properties PV properties
[86] polymer/fullerene MPMD 3D blend (thermodyn) AHp, ¥
[87] polymer/fullerene MPMD 3D blend (thermodyn) AHp, ¥
[88] polymer/fullerene MPMD 3D blend (thermodyn) AHp, ¥
[193] fullerenes DFT + ML A in implicit solvent ]
[194] polymer{fullerene DFT + ML D, A molecules in P
implicit solvent
[77] polymer{fullerene ML on existing data PCE
[195] polymer/NFA DFT + ML D/A molecular pairs HOMO, LUMO, abs. PCE
spectra, kes, ker (DFT)
[146] polymer/fullerene cG 3D blend blend morphology
[20] polymer/NFA EXP + DFT + MPMD 3D blend blend morphology
[78] polymer/NFA ML on existing data + MPMD X HOMO LUMO absorption PCE
maxima (ML)
[196] polymer/NFA EXP + ML PCE
[197] polymer/NFA ML on existing data PCE
[198] polymer/NFA ML on existing data PCE
[199]  Small molecules (D/A) ML on existing data PCE
[200] NFA ML on existing data + DFT Log(Posu) HOMO, LUMO, fi.. (DFT)
[201] donors ML+ DFT HOMO, LUMO (DFT) PCE
[170] polymer/fullerene MPMD + DPD 3D blend + solvent + additive 4, ¥, blend morphology

whenever important changes on the molecules involved are
committed and it is not easy to extract physicochemical rules
for improving the results. The alternative approach is to use
atomistic simulations to develop predictive and accurate models
of the free energy of mixing and to make use of high-throughput
calculations to reduce part of the experimental screening but for
the final stages of materials selection.

Provided that fast and reliable models are available, theoretical
screening would be possible, saving time and money with respect
to simple trial and error.”°”! Nowadays, the requested level of
accuracy is provided by abinitio methods. In particular DFT
calculations are the best choice among first-principles methods
as a good compromise between accuracy and computational
cost.?* 21 However, ab initio methods are still too computa-
tionally expensive for the study of stability through the use of
realistic (i.e., large-scale) atomistic models. The perspective of ab
initio-based predictive models of free energy of blends requires
necessarily a multiparadigm/multiphysics/multiscale approach.
We envisage at least two directions that are still ongoing and that
can provide important support to experiments: 1) predictions
based on ML techniques trained on abinitio data calculated
on representative small-scale models and 2) development of
more accurate multiscale methods (e.g., based on a hierarchy
of coarse-graining steps with minimum human effort) for the
generation of atomistic models of blends and the calculation
of corresponding free energy.

The first strategy requires intensive use of ab initio methods to
perform calculations on simplified models that still retain a
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minimum amount of information on the donor-acceptor and
mixing interactions (e.g., at least the most relevant chemical
groups of the donor-acceptor mixtures and binding). By suitable
standardization of the system generation and calculated proper-
ties (it is necessary to automatically explore the compositional
and configurational space of donor:acceptors), it is possible to
perform high-throughput calculations organized into clusters
of embarrassingly parallel calculations on independent
materials.*** 2%l ML techniques with suitable training of the
algorithms can be used to predict stability and to drive additional
data generation. The efficiency and the role of strategies based on
artificial intelligence are expected to grow rapidly in next years,
also considering likely improvements of ML algorithms, which is
a very active rising research field.!"**?%?' Furthermore, several
freely available databases have been made easily accessible
through web interfaces, such as AFLOW, Materials Project,
NOMAD, Materials Cloud.”">*'® Nevertheless, when dealing
with stability, the complexity of the blends and entropic effects
plays an important role and it is difficult to include them in
the atomistic models affordable by only abinitio methods.
Furthermore, ML predictions do not necessarily reveal the key
physicochemical factors or provide rules able to drive the synthe-
sis of improved stable blends. We believe that ML will play a major
role in the development of OPVs, but for more accurate predic-
tions not only electronic properties should be included within the
descriptors, but also morphology-related properties (e.g., intermo-
lecular packing and mixing, extent of phase separation, crystallin-
ity, size and purity of domains,  parameter) are needed.””'"!
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The second path for the study and in silico design of polymer
blends is the use of multiscale models, which can in principle
simulate realistic donor:acceptor blends. As discussed earlier,
complex blends can be simulated by molecular dynamics and
the corresponding mixing enthalpy calculated. Simulating atom-
istic models of interfaces, both crystalline and amorphous, under
experimental conditions (temperature, pressure, stress, presence
of solvents...) can give important information on the blend
morphology and density, as well as enthalpy of mixing, ¢
The relevant open challenges within these methods are related
to the limited accuracy and transferability of the interatomic force
fields (which are required to be possibly at abinitio accuracy
levels) and to the need to extend the length and time scales to
allow including more realistic microstructures and thermody-
namics with better sampling of phase space. Concerning
accuracy, model potentials trained on abinitio through ML
(which promise to reach the accuracy of quantum mechanical
computations at a substantially reduced computational cost)
constitute a promising approach to solve large-scale problems
in materials science.”?*??" Further progress is necessary, as
currently available models are still computationally more
demanding than typical classical MD simulations.?*”

The possibility to simulate the synthesis/mixing processes to
gain access to entropic effects is also intriguing. In this direction,
coarse-grained molecular dynamics simulations have been used
to simulate organic materials for OPVs."*>'**"138] However, the
atom-to-bead mapping and the determination of the topology is
in general not automatic, and the coarsening process typically
has to be carried out manually by expert researchers.
Programs which facilitate automatic mapping for CG simula-
tions exist for biomolecular simulations””*?**! while in most
cases they are missing for other systems including blends for
photovoltaics, with few exceptions.”****? Interestingly, ML

sT)

dr
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methods have also been applied to parameterize bottom-up
coarse-grained force fields.|****!

Finally, developing methods that allow a smooth transition
from discrete (i.e., all atom or CG) to continuum (e.g., PFI'7?))
models with minimum information losses would be highly desir-
able to better link atomistics to experimental scales. As a final
remark, we point out that important advances are needed to allow
the simulation of more complex structures which are already
being synthesized, such as, for example, ternary blends, or to
include the effects of charge transport layers into the stability
of organic solar cells.”****! To our knowledge, a full simulation
of a ternary blend has not been carried out yet, though theoretical
insight has been obtained from atomistic simulations of binary
blends.®®!

We summarize in Figure 6 the schematic roadmap with the
two modeling strategies discussed earlier that are expected to play
an important role in predicting materials with optimal
stability. Starting from the chemical structures x of the blend con-
stituents, the stability properties P(x) (e.g., the interaction param-
eter y or the free energies) are calculated by either one or the other
strategy: multiscale models with improved accuracy (left path) or
ML methods applied to large ab initio datasets (right arrow), as
well as a judicious combination of the two strategies (horizontal
arrow). Both are rooted necessarily on predictive ab initio calcu-
lations or experiments. It seems very likely that in the near future
the two strategies will reach a level of reliability and computational
efficiency to allow routinely calculations of the structure—property
relation of polymer blends, that is, P(x) (blue box).

Provided that this goal is achieved, the design of the blends
Xopt that optimizes the stability P(x) can be obtained by a suitable
optimization algorithm in which the chemical structure is itera-
tively varied (dx) and the new P(x) calculated until a stationary
point is obtained (dP(x)/dx = 0).

dP(z) _

P(z) t

CHEMICAL

OPTIMIZATION (/-
DESIGN

STRUCTURE

Figure 6. Roadmap of the possible paths to achieve the chemical structure—property relation P(x) (arrows in blue rectangle) and predict the best stability
(optimization/design right arrow) in complex blends for OPVs. Multiscale models (MD/CG) can be derived from experimental data and DFT (also with

the use of ML as in ML force fields). ML can also be directly used on experimental /[DFT results to calculate AG,,. MD image is adapted with permis-
sion.®®l Copyright 2021, Elsevier. CG image is adapted with permission.I"*®! CC-BY-ND-NC license. DFT image is adapted with permission.**% Copyright

2019, American Chemical Society. ML image is adapted with permission.””! Copyright 2019, American Chemical Society.
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The practical implementation of such a conceptual optimiza-
tion/design scheme will depend on the availability of effective
procedures for mapping the chemical molecular structures
(e.g., based on the SMILES representation”****?)) and by effi-
cient optimization algorithms (nonlinear optimizers, evolution-
ary algorithms!'?%),

The methodological progress of recent years, the constant
increase in high-performance computing resources (GPU,
exascale computing), and the exploitation of artificial intelligence
suggest that computational methods will have a strong impact in
the near future for the design of stable OPV blends fulfilling
commercial requirements.

Acknowledgements

The authors acknowledge CNR for funding under Bilateral agreement
CNR-RFBR Project CUP B55F21000620005 “Fullerene containers for
BeNCT”; MUR for funding under Project PON04a2_00490 “M2M
Netergit” CUP B22112000280001; and CINECA for awarding access to
high-performance computing resources under the ISCRA initiative.

Open Access Funding provided by Consiglio Nazionale delle Ricerche
within the CRUI-CARE Agreement.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

density functional theory, Flory—Huggins, machine learning, mixing
enthalpy, molecular dynamics, organic photovoltaics

Received: April 26, 2022
Revised: May 28, 2022
Published online:

[1] S. Park, T. Kim, S. Yoon, C. W. Koh, H. Y. Woo, H. ]. Son, Adv. Mater.
2020, 32, 2002217.

[2] C. ). Brabec, A. Distler, X. Du, H. Egelhaaf, |. Hauch, T. Heumueller,
N. Li, Adv. Mater. 2020, 10, 2001864.

[3] M. Moser, A. Wadsworth, N. Gasparini, |. McCulloch, Adv. Mater.
2021, 17, 202100056.

[4] J. Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res. 2009, 42, 1700.

[5] N.S. Sariciftci, L. Smilowitz, A. |. Heeger, F. Wud|, Science 1992, 258,
1474,

[6] N. S. Sariciftci, D. Braun, C. Zhang, V. |. Srdanov, A. |. Heeger,
G. Stucky, F. Wudl, Appl. Phys. Lett. 1993, 62, 585.

[7] L. Smilowitz, N. S. Sariciftci, R. Wu, C. Gettinger, A. |. Heeger,
F. Wudl, Phys. Rev. B 1993, 47, 13835.

[8] ). Huang, C.-Z. Li, C.-C. Chueh, S.-Q. Liu, J.-S. Yu, A. K.-Y. Jen,
Adv. Mater. 2015, 5, 1500406.

[9] National Renewable Energy Laboratory (NREL), Best Research-Cell
Efficiency ~ Chart, https:/ fwww.nrel.gov/pv/cell-efficiency.html
(accessed: March 2022).

[10] A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science
2016, 352, aad4424.

[11] ). Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Ly,
C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, ). Ulanski,
Y. Li, Y. Zou, Joule 2019, 3, 1140.

Sol. RRL 2022, 2200172 2200172 (13 of 17)

www.solar-rrl.com

[12] M. Zhang, X. Guo, W. Ma, H. Ade, ]. Hou, Adv. Mater. 2015, 27, 4655.

[13] Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, ). Zhang, Y. Zu, T. Zhang, |. Qin,
J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, |. Hou, Adv. Mater. 2021, 33,
202102420.

[14] L. Perdigén-Toro, H. Zhang, A. Markina, |. Yuan, S. M. Hosseini,
C. M. Wolff, G. Zuo, M. Stolterfoht, Y. Zou, F. Gao, D. Andrienko,
S. Shoaee, D. Neher, Adv. Mater. 2020, 32, 1906763.

[15] N. Tokmoldin, S. M. Hosseini, M. Raoufi, L. Q. Phuong,
O. ). Sandberg, H. Guan, Y. Zou, D. Neher, S. Shoaee, J. Mater.
Chem. A 2020, 8, 7854,

[16] A. Karki, ). Vollbrecht, A. L. Dixon, N. Schopp, M. Schrock,
G. N. M. Reddy, T. Nguyen, Adv. Mater. 2019, 37, 1903868.

[17] G. Zhang, X.-K. Chen, ). Xiao, P. C. Y. Chow, M. Ren, G. Kupgan,
X. Jiao, C. C. S. Chan, X. Du, R. Xia, Z. Chen, ]. Yuan, Y. Zhang,
S. Zhang, Y. Liu, Y. Zou, H. Yan, K. S. Wong, V. Coropceanu,
N. Li, C. |. Brabec, ).-L. Bredas, H.-L. Yip, Y. Cao, Nat. Commun.
2020, 11, 3943,

[18] Y. Cui, H. Yao, ). Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu,
K. Ma, C. An, C. He, Z. Wei, F. Gao, |. Hou, Adv. Mater. 2020, 32,
1908205.

[19] A. Karki, ). Vollbrecht, A. |. Gillett, S. S. Xiao, Y. Yang, Z. Peng,
N. Schopp, A. L. Dixon, S. Yoon, M. Schrock, H. Ade,
G. N. M. Reddy, R. H. Friend, T.-Q. Nguyen, Energy Environ. Sci.
2020, 13, 3679.

[20] B. R. Luginbuhl, P. Raval, T. Pawlak, Z. Du, T. Wang, G. Kupgan,
N. Schopp, S. Chae, S. Yoon, A. Yi, H. Jung Kim, V. Coropceanu,
J. Brédas, T. Nguyen, G. N. M. Reddy, Adv. Mater. 2022, 34, 2105943,

[21] W. Zhu, A. P. Spencer, S. Mukherjee, |. M. Alzola, V. K. Sangwan,
S. H. Amsterdam, S. M. Swick, L. O. Jones, M. C. Heiber,
A. A Herzing, G. Li, C. L Stern, D. M. Delongchamp,
K. L. Kohlstedt, M. C. Hersam, G. C. Schatz, M. R. Wasielewski,
L. X. Chen, A, Facchetti, T. ). Marks, J. Am. Chem. Soc. 2020, 142, 14532.

[22] V. Coropceanu, X.-K. Chen, T. Wang, Z. Zheng, |.-L. Brédas, Nat. Rev.
Mater. 2019, 4, 689.

[23] C. Li, ). Zhou, |. Song, ]. Xu, H. Zhang, X. Zhang, ]. Guo, L. Zhu,
D. Wei, G. Han, |. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao,
F. Liu, Y. Sun, Nat. Energy 2021, 6, 605.

[24] M. Green, E. Dunlop, ]. Hohl-Ebinger, M. Yoshita, N. Kopidakis,
X. Hao, Prog. Photovoltaics: Res. Appl. 2021, 29, 3.

[25] G.Hou, H. Sun, Z. Jiang, Z. Pan, Y. Wang, X. Zhang, Y. Zhao, Q. Yao,
Appl. Energy 2016, 164, 882.

[26] G.Bernardo, T. Lopes, D. G. Lidzey, A. Mendes, Adv. Mater. 2021, 11,
202100342.

[27] Z. Liu, S. E. Sofia, H. S. Laine, M. Woodhouse, S. Wieghold,
I. M. Peters, T. Buonassisi, Energy Environ. Sci. 2020, 13, 12.

[28] L. Meng, J. You, Y. Yang, Nat. Commun. 2018, 9, 5265.

[29] Q. Burlingame, M. Ball, Y.-L. Loo, Nat. Energy 2020, 5, 947,

[30] N. S. Sariciftci, A. J. Hebger, Int. J. Mod. Phys. B 1994, 08, 237.

[31] S. Morita, A. A. Zakhidov, K. Yoshino, Solid State Commun. 1992, 82,
249,

[32] X.Xu, K. Fukuda, A. Karki, S. Park, H. Kimura, H. |inno, N. Watanabe,
S. Yamamoto, S. Shimomura, D. Kitazawa, T. Yokota, S. Umezu,
T.-Q. Nguyen, T. Someya, Proc. Natl. Acad. Sci. 2018, 115, 4589.

[33] A. Karki, A. . Gillett, R. H. Friend, T. Nguyen, Adv. Mater. 2021, 11,
2003441.

[34] C.Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, 5. R. Marder, X. Zhan,
Nat. Rev. Mater. 2018, 3, 18003.

[35] S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf,
C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini,
M. Alamoudi, F. Laquai, C. ). Brabec, A. Salleo, |. R. Durrant,
I. McCulloch, Nat. Commun. 2016, 7, 11585.

[36] S. Li, L. Zhan, F. Liu, J. Ren, M. Shi, C.-Z. Li, T. P. Russell, H. Chen,
Adv. Mater. 2018, 30, 1705208.

© 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

sapie ssa20y uadp o} 1daxe ‘paniwiad jou ApoLiis st uonnguisip pue asn-ay ‘[2z02/80/62] Uo -aoueld aueiyro) Ag ‘worksimAieiqiauiuo//sdny woly papeojumod ‘0 ‘2202 'X861/9E2



ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

[37] Y. Li, X. Huang, K. Ding, H. K. M. Sheriff, L. Ye, H. Liu, C-Z. Li,
H. Ade, S. R. Forrest, Nat. Commun. 2021, 12, 5419.

[38] K. Ding, Y. Li, S. R. Forrest, ACS Appl. Mater. Interfaces 2022, 14, 5692.

[39] L. Duan, A. Uddin, Adv. Sci. 2020, 7, 1903259.

[40] F. Zhao, H. Zhang, R. Zhang, |. Yuan, D. He, Y. Zou, F. Gao,
Adv. Mater. 2020, 10, 202002746.

[41] A. Wadsworth, Z. Hamid, |. Kosco, N. Gasparini, |. McCulloch,
Adv. Mater. 2020, 32, 2001763.

[42] Y. Wang, ]. Han, L. Cai, N. Li, Z. Li, F. Zhu, J. Mater. Chem. A 2020, 8,
21255.

[43] Y. Wang, M. ). Jafari, N. Wang, D. Qian, F. Zhang, T. Ederth,
E. Moons, |. Wang, O. Ingands, W. Huang, F. Gao, J. Mater.
Chem. A 2018, 6, 11884.

[44] H. K. H. Lee, A. M. Telford, |. A. Réhr, M. F. Wyatt, B. Rice, |. Wu,
A. de Castro Maciel, S. M. Tuladhar, E. Speller, |. McGettrick,
J. R. Searle, S. Pont, T. Watson, T. Kirchartz, ). R. Durrant,
W. C. Tsoi, J. Nelson, Z. Li, Energy Environ. Sci. 2018, 11, 417.

[45] Y.-C. Huang, W.-S. Liu, C.-S. Tsao, L. Wang, ACS Appl. Mater.
Interfaces 2019, 11, 40310.

[46] C. ). Schaffer, C. M. Palumbiny, M. A. Niedermeier, C. Jendrzejewski,
G. Santoro, S. V. Roth, P. Miiller-Buschbaum, Adv. Mater. 2013, 25,
6760.

[47] P. Boldrighini, A. Fauveau, S. Thérias, ). L. Gardette, M. Hidalgo,
S. Cros, Rev. Sci. Instrum. 2019, 90, 014710.

[48] X. Wang, C. Xinxin Zhao, G. Xu, Z.-K. Chen, F. Zhu, Sol. Energy Mater.
Sol. Cells 2012, 104, 1.

[49] V. M. Drakonakis, A. Savva, M. Kokonou, S. A. Choulis, Sol. Energy
Mater. Sol. Cells 2014, 130, 544.

[50] P. Cheng, X. Zhan, Chem. Soc. Rev. 2016, 45, 2544,

[51] C. McDowell, M. Abdelsamie, M. F. Toney, G. C. Bazan, Adv. Mater.
2018, 30, 1707114,

[52] N. Grossiord, |. M. Kroon, R. Andriessen, P. W. M. Blom, Org.
Electron. 2012, 13, 432.

[53] M. Jergensen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells
2008, 92, 686.

[54] S. Rafique, S. M. Abdullah, K. Sulaiman, M. Iwamoto, Renewable
Sustainable Energy Rev. 2018, 84, 43.

[55] H. Cao, W. He, Y. Mao, X. Lin, K. Ishikawa, |. H. Dickerson,
W. P. Hess, J. Power Sources 2014, 264, 168.

[S6] I. Fraga Dominguez, A. Distler, L. Lier, Adv. Mater. 2017, 7,
1601320.

[57] E. M. Speller, A. |. Clarke, ). Luke, H. K. H. Lee, ]. R. Durrant, N. Li,
T. Wang, H. C. Wong, |.-S. Kim, W. C. Tsoi, Z. Li, J. Mater. Chem. A
2019, 7, 23361.

[58] E. K. Lee, M. Y. Lee, C. H. Park, H. R. Lee, . H. Oh, Adv. Mater. 2017,
29, 1703638.

[59] M. Jorgensen, K. Norrman, S. A. Gevorgyan, T. Trombholt,
B. Andreasen, F. C. Krebs, Adv. Mater. 2012, 24, 580.

[60] M. Hasel, R. R. Sendergaard, M. Jorgensen, F. C. Krebs, Adv. Mater.
2014, 4, 1301625.

[61] S. Roland, M. Schubert, B. A. Collins, ]. Kurpiers, Z. Chen,
A. Facchetti, H. Ade, D. Neher, J. Phys. Chem. Lett. 2014, 5, 2815.

[62] S. Mukherjee, C. M. Proctor, G. C. Bazan, T.-Q. Nguyen, H. Ade,
Adv. Mater. 2015, 5, 1500877.

[63] L. Ye, X. Jiao, S. Zhang, H. Yao, Y. Qin, H. Ade, |. Hou, Adv. Mater.
2017, 7, 1601138.

[64] W. Kéntges, P. Perkhun, |. Kammerer, R. Alkarsifi U. Wiirfel,
O. Margeat, C. Videlot-Ackermann, |. ). Simon, R. R. Schréder,
R. R. Schréder, M. Pfannméller, Energy Environ. Sci. 2020, 13, 1259.

[65] Q. Liang, J. Han, C. Song, X. Yu, D. M. Smilgies, K. Zhao, ). Liu,
Y. Han, J. Mater. Chem. A 2018, 6, 15610.

[66] X. Wang, Y. Yang, Z. He, H. Wu, Y. Cao, J. Mater. Chem. C 2019, 7,
14861.

Sol. RRL 2022, 2200172 2200172 (14 of 17)

www.solar-rrl.com

[67] H.Jiang, X. Li, H. Wang, G. Huang, W. Chen, R. Zhang, R. Yang, ACS
Appl. Mater. Interfaces 2020, 12, 26286.

[68] G. Gryn’ova, K.-H. Lin, C. Corminboeuf, J. Am. Chem. Soc. 2018, 140,
16370.

[69] M. Seifrid, G. N. M. Reddy, B. F. Chmelka, G. C. Bazan, Nat. Rev.
Mater. 2020, 5, 910.

[70] P. Zhan, W. Zhang, I. E. Jacobs, D. M. Nisson, R. Xie, A. R. Weissen,
R. H. Colby, A. J. Moulé, S. T. Milner, |. K. Maranas, E. D. Gomez,
J. Polym. Seci., Part B: Polym. Phys. 2018, 56, 1193.

[71] N. C. Miller, E. Cho, M. J. N. Junk, R. Gysel, C. Risko, D. Kim,
S. Sweetnam, C. E. Miller, L. |. Richter, R. ]. Kline, M. Heeney,
I. McCulloch, A. Amassian, D. Acevedo-Feliz, C. Knox, M. R. Hansen,
D. Dudenko, B. F. Chmelka, M. F. Toney, ]. Brédas, M. D. McGehee,
Adv. Mater. 2012, 24, 6071.

[72] A. Kumar, K. Y. ]. Zhang, Methods 2015, 71, 26.

[73] A. Lavecchia, C. Giovanni, Curr. Med. Chem. 2013, 20, 2839.

[74] S. Kar, K. Roy, Expert Opin. Drug Discovery 2013, 8, 245.

[75] E. Lionta, G. Spyrou, D. Vassilatis, Z. Cournia, Curr. Top. Med. Chem.
2014, 14, 1923.

[76] K. Do, M. K. Ravva, T. Wang, ).-L. Brédas, Chem. Mater. 2017,
29, 346.

[77] S. Nagasawa, E. Al-Naamani, A. Saeki, J. Phys. Chem. Lett. 2018,
9, 2639.

[78] A. Mahmood, A. Irfan, |.-L. Wang, J. Mater. Chem. A 2022, 10, 4170.

[79] L. Huynh, C. Neale, R. Pomes, C. Allen, Nanomed. Nanotechnol. Biol.
Med. 2012, 8, 20.

[80] T.-X. Xiang, B. D. Anderson, J. Pharm. Sci. 2013, 102, 876.

[81] D. C. Santos, S. D. Filipakis, M. P. Rolemberg, E. R. A. Lima,
M. L. L. Paredes, Fuel 2017, 199, 606.

[82] S. Alimohammadi, |. Sayyad Amin, E. Nikooee, Neural Comput. Appl.
2017, 28, 679.

[83] C. Caddeo, A. Mattoni, Macromolecules 2013, 46, 8003.

[84] C. Caddeo, D. Fazzi, M. Caironi, A. Mattoni, J. Phys. Chem. B 2014,
118, 12556.

[85] S. Bellani, M. Porro, C. Caddeo, M. I. Saba, P. B. Miranda,
A. Mattoni, G. Lanzani, M. R. Antognazza, J. Mater. Chem. B
2015, 3, 6429.

[86] S. Ben Dkhil, M. Pfannmdller, M. |. Saba, M. Gaceur, H. Heidari,
C. Videlot-Ackermann, O. Margeat, A. Guerrero, |. Bisquert,
C. Garcia-Belmonte, A. Mattoni, S. Bals, |. Ackermann, Adv. Mater.
2017, 7, 1601486.

[87] S. Ben Dkhil, P. Perkhun, C. Luo, D. Miiller, R. Alkarsifi, E. Barulina,
Y. A. Avalos Quiroz, O. Margeat, S. T. Dubas, T. Koganezawa,
D. Kuzuhara, N. Yoshimoto, C. Caddeo, A. Mattoni,
B. Zimmermann, U. Wiirfel, M. Pfannméller, S. Bals, ). Ackermann,
C. Videlot-Ackermann, ACS Appl. Mater. Interfaces 2020, 12, 28404.

[88] C. Caddeo, A. Filippetti A. Bosin, C. Videlot-Ackermann,
J. Ackermann, A. Mattoni, Nano Energy 2021, 82, 105708.

[89] ). D. Perea Ospina, S. Langner, T. Ameri, C. . Brabec, in Encyclopedia
of Physical Organic Chemistry (Eds.: Z. Wang, U. Wille, E. Juaristi),
John Wiley & Sons, Inc., Hoboken NJj 2017, p. 697.

[90] Y.S. Lipatov, A. E. Nesterov, Thermodynamics of Polymer Blends, CRC
Press, Boca Raton, FL 2020.

[91] B. A. Wolf, in Polymer Thermodynamics (Eds.: B.A. Wolf, S. Enders),
Springer, Berlin, Heidelberg, 2011, pp. 1-66.

[92] R. H. Colby, M. Rubinstein, Polymer Physics, Oxford University Press,
Oxford 2003.

[93] R. A. L. Jones, Soft Condensed Matter, Oxford University Press, New
York, 2002.

[94] P. ). Flory, J. Chem. Phys. 1942, 10, 51.

[95] M. L. Huggins, J. Chem. Phys. 1941, 9, 440.

[96] ). H. Hildebrand, Proc. Natl. Acad. Sci. 1927, 13, 267.

[97] J. Zhu, X. Lu, R. Balieu, N. Kringos, Mater. Des. 2016, 107, 322.

© 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

sapie ssa20y uadp o} 1daxe ‘paniwiad jou ApoLiis st uonnguisip pue asn-ay ‘[2z02/80/62] Uo -aoueld aueiyro) Ag ‘worksimAieiqiauiuo//sdny woly papeojumod ‘0 ‘2202 'X861/9E2



ADVANCED
SCIENCE NEWS

i iRRL

www.advancedsciencenews.com

[98] M. Ghasemi, H. Hu, Z. Peng, ). J. Rech, I. Angunawela,
). H. Carpenter, S. |. Stuard, A. Wadsworth, |. McCulloch,
W. You, H. Ade, Joule 2019, 3, 1328.

[99] ). H. Hildebrand, R. L. Scott, The Solubility of Nonelectrolytes, 3rd Ed.,
Reinhold, New York, 1950.

[100] H. C. van Ness, Classical Thermodynamics Of Nonelectrolyte
Solutions : With Applications To Phase Equilibria, McGraw-Hill,
New York, NY 1982.

[101] E. R. Turpin, V. Taresco, W. A. Al-Hachami, ]. Booth, K. Treacher,
S. Tomasi, C. Alexander, |. Burley, C. A. Laughton, M. C. Garnett,
Mol. Pharmaceutics 2018, 15, 4654.

[102] F. S. Bates, Science 1991, 251, 898.

[103] P. P. Khlyabich, A. E. Rudenko, B. C. Thompson, Y.-L. Loo,
Adv. Funct. Mater. 2015, 25, 5557.

[104] M. Ghasemi, L. Ye, Q. Zhang, L. Yan, |. H. Kim, O. Awartani, W. You,
A. Gadisa, H. Ade, Adv. Mater. 2017, 29, 1604603.

[105] ). A. Emerson, D. T. W. Toolan, . R. Howse, E. M. Furst, T. H. Epps,
Macromolecules 2013, 46, 6533.

[106] T. K. Kwei, T. Nishi, R. F. Roberts, Macromolecules 1974, 7, 667.

[107] T. Nishi, T. T. Wang, Macromolecules 1975, 8, 909.

[108] D. Lin, Y. Huang, Int. J. Pharm. 2010, 399, 109.

[109] D. R. Kozub, K. Vakhshouri, L. M. Orme, C. Wang, A. Hexemer,
E. D. Gomez, Macromolecules 2011, 44, 5722.

[110] N.Yi, Q. Ai, W. Zhou, L. Huang, L. Zhang, Z. Xing, X. Li, ). Zeng,
Y. Chen, Chem. Mater. 2019, 31, 10211.

[117] L. Ye, H. Hu, M. Ghasemi, T. Wang, B. A. Collins, J. H. Kim,
K. Jiang, J. H. Carpenter, H. L, Z. Li, T. McAfee, |. Zhao,
X. Chen, ). L. Y. Lai, T. Ma, ). L. Bredas, H. Yan, H. Ade, Nat.
Mater. 2018, 17, 253.

[112] L. Ye, W. Zhao, S. Li, S. Mukherjee, |. H. Carpenter, O. Awartani,
X. Jiao, J. Hou, H. Ade, Adv. Mater. 2017, 7, 1602000.

[113] L. Ye, B. A. Collins, X. Jiao, ). Zhao, H. Yan, H. Ade, Adv. Mater. 2018,
8, 1703058.

[114] H. G. Harris, J. M. Prausnitz, Ind. Eng. Chem. Fundam. 1969, 8, 180.

[115] ). H. Hildebrand, R. L. Scott, Regular Solutions, Prentice-Hall,
Englewood Cliffs, N.J., 1962.

[116] C. M. Hansen, Hansen Solubility Parameters, CRC Press, Boca Raton,
2007.

[117] P. A. Small, J. Appl. Chem. 1953, 3, 71.

[118] K. Hoy, J. Paint Technol. 1970, 42, 76.

[119] P. Hoftyzer, D. van Krevelen, Properties of Polymers, 1st Ed., Elsevier,
Amsterdam, 1976.

[120] R. F. Fedors, Polym. Eng. Sci. 1974, 14, 147.

[127] K. DeBoyace, P. L. D. Wildfong, J. Pharmaceutical Sci. 2018, 107, 57.

[122] S. Patel, A, Lavasanifar, P. Choi, Biomacromolecules 2008, 9, 3014.

[123] S. K. Patel, A. Lavasanifar, P. Choi, Biomacromolecules 2009, 10,
2584.

[124] A. O. Kasimova, G. M. Pavan, A. Danani, K. Mondon, A. Cristiani,
L. Scapozza, R. Gurny, M. Méller, J. Phys. Chem. B 2012, 116, 4338.

[125] T. X. Xiang, B. D. Anderson, J. Pharmaceutical Sci. 2017, 106, 803.

[126] T. P. Straatsma, H. ). C. Berendsen, J. Chem. Phys. 1988, 89, 5876.

[127] T. P. Straatsma, H. ). C. Berendsen, ). P. M. Postma, J. Chem. Phys.
1986, 85, 6720.

[128] G. M. Torrie, ). P. Valleau, J. Comput. Phys. 1977, 23, 187.

[129] A. Barducci, G. Bussi, M. Parrinello, Phys. Rev. Lett. 2008, 100,
020603.

[130] R. W. Zwanzig, J. Chem. Phys. 1954, 22, 1420.

[131] F. Baftizadeh, P. Cossio, F. Pietrucci, A. Laio, Curr. Phys. Chem. 2012,
2, 79.

[132] S. Angioletti-Uberti, M. Ceriotti, P. D. Lee, M. W. Finnis, Phys. Rev. B
2010, 87, 125416.

[133] Q. Wei, W. Zhao, Y. Yang, B. Cui, Z. Xu, X. Yang, ChemPhysChem
2018, 19, 690.

Sol. RRL 2022, 2200172 2200172 (15 of 17)

www.solar-rrl.com

[134] T. Mandal, P. H. Koenig, R. G. Larson, Phys. Rev. Lett. 2018, 121,

033001.

[135] A. de Izarra, C. Choi, Y. H. Jang, Y. Lansac, J. Phys. Chem. B 2021,
125, 1916.

[136] T. Ludwig, A. R. Singh, ]. K. Narskov, J. Phys. Chem. C 2020, 124,
26368.

[137] R. Réocreux, E. Girel, P. Clabaut, A. Tuel, M. Besson,
A. Chaumonnot, A. Cabiac, P. Sautet, C. Michel, Nat. Commun.
2019, 70, 3139.

[138] H. ). Heelweg, R. A. de Souza, Phys. Rev. Mater. 2021, 5,
013804.

[139] L. Zhong, L. Gao, H. Bin, Q. Hu, Z.-G. Zhang, F. Liu, T. P. Russell,
Z. Zhang, Y. Li, Adv. Mater. 2017, 7, 1602215.

[140] Y. Ma, D. Cai, S. Wan, P. Yin, P. Wang, W. Lin, Q. Zheng, Natl. Sci.
Rev. 2020, 7, 1886.

[141] R.Yu, H. Yao, Z. Chen, |. Xin, L. Hong, Y. Xu, Y. Zu, W. Ma, ). Hou,
Adv. Mater. 2019, 31, 1900477.

[142] C. B. Nielsen, S. Holliday, H.-Y. Chen, S. ]. Cryer, |. McCulloch, Acc.
Chem. Res. 2015, 48, 2803.

[143] ). Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case,
J. Comput. Chem. 2004, 25, 1157.

[144] A. S. Gertsen, M. K. Sgrensen, ). W. Andreasen, Phys. Rev. Mater.
2020, 4, 075405.

[145] C.-K. Lee, C.-W. Pao, J. Phys. Chem. C 2014, 118, 11224.

[146] R. Alessandri, J. J. Uusitalo, A. H. de Vries, R. W. A. Havenith,
S. ). Marrink, J. Am. Chem. Soc. 2017, 139, 3697.

[147] A. Guerrero, M. Pfannméller, A. Kovalenko, T. S. Ripolles,
H. Heidari, S. Bals, L.-D. Kaufmann, ]. Bisquert, G. Garcia-
Belmonte, Org. Electron. 2015, 16, 227.

[148] S. Ben Dkhil, M. Pfannmaéller, R. R. Schréder, R. Alkarsifi, M. Gaceur,
W. Kéntges, H. Heidari, S. Bals, O. Margeat, ]. Ackermann,
C. Videlot-Ackermann, ACS Appl. Mater. Interfaces 2018, 10, 3874.

[149] A. Pinke, P. Jedlovszky, J. Phys. Chem. B 2012, 116, 5977.

[150] A. Idrissi, P. Jedlovszky, J. Mol. Lig. 2021, 338, 116777.

[151] A. I\drissi, B. Marekha, M. Barj, P. Jedlovszky, J. Phys. Chem. B 2014,
118, 8724.

[152] S. Gupta, T. M. Lim, S. H. Mushrif, Electrochim. Acta 2018,
270, 471,

[153] X. Liu, V. L. Vinograd, X. Lu, E. V. Leonenko, N. N. Eremin, R. Wang,
B. Winkler, Am. Mineral. 2016, 101, 1197.

[154] D. Y. Jung, V. L. Vinograd, O. B. Fabrichnaya, A. R. Oganov,
M. W. Schmidt, B. Winkler, Earth Planet. Sci. Lett. 2010, 295, 477.

[155] S. J. Marrink, D. P. Tieleman, Chem. Soc. Rev. 2013, 42, 6801.

[156] L. Monticelli, J. Chem. Theory Comput. 2012, 8, 1370.

[157] M. Modarresi, ). F. Franco-Gonzalez, |. Zozoulenko, Phys. Chem.
Chem. Phys. 2018, 20, 17188.

[158] N. Rolland, M. Modarresi, |. F. Franco-Gonzalez, |. Zozoulenko,
Comput. Mater. Sci. 2020, 179, https://doi.org/10.1016/].
commatsci.2020.109678.

[159] R. Alessandri, S. Sami, ). Barnoud, A. H. Vries, S. ]. Marrink,
R. W. A. Havenith, Adv. Funct. Mater. 2020, 30, 2004799.

[160] S. ). Marrink, A. H. de Vries, A. E. Mark, J. Phys. Chem. B 2004, 108,
750.

[161] S. ). Marrink, H. |. Risselada, S. Yefimov, D. P. Tieleman, A. H. de
Vries, J. Phys. Chem. B 2007, 111, 7812.

[162] L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson,
D. P. Tieleman, S.-J. Marrink, J. Chem. Theory Comput. 2008,
4, 819.

[163] C. A. Lépez, A. |. Rzepiela, A. H. de Vries, L. Dijkhuizen,
P. H. Hiinenberger, S. |. Marrink, J. Chem. Theory Comput. 2009,
5, 3195.

[164] ). ). Uusitalo, H. I. Ingélfsson, P. Akhshi, D. P. Tieleman,
S. ). Marrink, J. Chem. Theory Comput. 2015, 11, 3932.

© 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

sapie ssa20y uadp o} 1daxe ‘paniwiad jou ApoLiis st uonnguisip pue asn-ay ‘[2z02/80/62] Uo -aoueld aueiyro) Ag ‘worksimAieiqiauiuo//sdny woly papeojumod ‘0 ‘2202 'X861/9E2



ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

[165] J. ). Uusitalo, H. I. Ingdlfsson, S. ]. Marrink, I. Faustino, Biophys. J.
2017, 113, 246.

[166] L. |. Vazquez-Salazar, M. Selle, A. H. de Vries, S. |. Marrink,
P. C. T. Souza, Green Chem. 2020, 22, 7376.

[167] H. Lee, R. G. Larson, J. Phys. Chem. B 2008, 112, 7778.

[168] G. Rossi, L. Monticelli, S. R. Puisto, . Vattulainen, T. Ala-Nissila, Soft
Matter 2011, 7, 698.

[169] P. Espaniol, P. B. Warren, J. Chem. Phys. 2017, 146, 150901.

[170] C.Du, Y. Ji, J. Xue, T. Hou, J. Tang, S.-T. Lee, Y. Li, Sci. Rep. 2015, 5,
16854.

[171] X. Xu, Y. Ji, C. Du, T. Hou, Y. Li, RSC Adv. 2015, 5, 70939.

[172] K. Bergermann, GAMM Arch. Stud. 2019, 1, 18.

[173] R. Rabani, H. Sadafi, H. Machrafi, M. Abbasi, B. Haut, P. Dauby,
Colloids Surf, A 2021, 612, 126001.

[174] R. C. Ball, R. L. H. Essery, J. Phys. Condens. Matter 1990, 2,
10303.

[175] I. Steinbach, Annu. Rev. Mater. Res. 2013, 43, 89.

[176] A. Choudhury, in Handbook of Solid State Diffusion, Vol. 1, Elsevier,
2017, pp. 363-389.

[177] J. W. Cahn, J. Chem. Phys. 1965, 42, 93.

[178] O. Wodo, B. Ganapathysubramanian, Comput. Mater. Sci. 2012, 55,

113.

[179] B. Ray, P. R. Nair, M. A. Alam, Sol. Energy Mater. Sol. Cells 2011, 95,
3287.

[180] F. Kaka, M. Keshav, P. C. Ramamurthy, Sol. Energy 2022,
231, 447.

[181] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.

[182] W. Kohn, L. |. Sham, Phys. Rev. 1965, 140, A1133.

[183] G. Jarvés, C. Quellet, A. Dallos, Fluid Phase Equilib. 2011, 309, 8.

[184] P. Friederich, F. Symalla, V. Meded, T. Neumann, W. Wenzel,
J. Chem. Theory Comput. 2014, 10, 3720.

[185] S. Roosta, F. Ghalami, M. Elstner, W. Xie, J. Chem. Theory Comput.
2022, 18, 1264.

[186] E. Brunk, U. Rothlisberger, Chem. Rev. 2015, 115, 6217.

[187] A. S. Christensen, T. Kubaf, Q. Cui, M. Elstner, Chem. Rev. 2016,
116, 5301.

[188] J. J. P. Stewart, J. Mol. Model. 2013, 19, 1.

[189] F. Hise, S. Valleau, E. Pyzer-Knapp, A. Aspuru-Guzik, Chem. Sci.
2016, 7, 5139.

[190] L. Béselt, M. Thirlemann, S. Riniker, J. Chem. Theory Comput. 2021,
17, 2641.

[191] G. Han, Y. Guo, X. Ma, Y. Yi, Sol. RRL 2018, 2, 1800190.

[192] Y. Li, V. Agrawal, |. Oswald, J. Polym. Sci., Part B: Polym. Phys. 2019,
57, 331.

[193] J. D. Perea, S. Langner, M. Salvador, ]. Kontos, G. Jarvas, F. Winkler,
F. Machui, A. Gorling, A. Dallos, T. Ameri, C. |. Brabec, J. Phys.
Chem. B 2016, 120, 4431.

[194] ). D. Perea, S. Langner, M. Salvador, B. Sanchez-Lengeling, N. Li,
C. Zhang, G. Jarvas, |. Kontos, A. Dallos, A. Aspuru-Guzik,
C. ). Brabec, J. Phys. Chem. C 2017, 121, 18153.

[195] M.-Y. Sui, Z.-R. Yang, Y. Geng, G.-Y. Sun, L. Hu, Z.-M. Su, Sol. RRL
2019, 3, 19002538.

[196] Y.-C. Lin, Y.. Lu, C.-S. Tsao, A. Saeki, |.-X. Li, C.-H. Chen,
H.-C. Wang, H.-C. Chen, D. Meng, K.-H. Wu, Y. Yang, K.-H. Wei,
J. Mater. Chem. A 2019, 7, 3072.

[197] Y. Wu, J. Guo, R. Sun, ). Min, npj Comput. Mater, 2020, 6, 120.

[198] K. Kranthiraja, A. Saeki, Adv. Funct. Mater. 2021, 31, 2011168.

[199] Z. W. Zhao, M. del Cueto, Y. Geng, A. Troisi, Chem. Mater. 2020, 32,
77717.

[200] Z. W. Zhao, O. H. Omar, D. Padula, Y. Geng, A. Troisi, J. Phys. Chem.
Lett. 2021, 12, 5009.

[201] W. Sun, Y. Zheng, Q. Zhang, K. Yang, H. Chen, Y. Cho, J. Fu,
0. Odunmbaku, A. A. Shah, Z. Xiao, S. Lu, S. Chen, M. Li,

Sol. RRL 2022, 2200172 2200172 (16 of 17)

www.solar-rrl.com

B. Qin, C. Yang, T. Frauenheim, K. Sun, J. Phys. Chem. Leit.
2021, 12, 8847.

[202] Y. Cui, P. Zhu, X. Liao, Y. Chen, J. Mater. Chem. C 2020, 8, 15920.

[203] J. Klimes, A. Michaelides, J. Chem. Phys. 2012, 137, 120901.

[204] M. Stéhr, T. van Voorhis, A, Tkatchenko, Chem. Soc. Rev. 2019, 48,
4118.

[205] C. Li, X. Zheng, N. Q. Su, W. Yang, Natl. Sci. Rev. 2018, 5, 203.

[206] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Sci. Rep.
2013, 3, 2310.

[207) K.T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature
2018, 559, 547.

[208] G. R. Schleder, B. Focassio, A. Fazzio, Appl. Phys. Rev. 2021, 8,
031409.

[209] A. Mahmood, |.-L. Wang, Energy Environ. Sci. 2021, 14, 90.

[210] R. Olivares-Amaya, C. Amador-Bedolla, |. Hachmann,
S. Atahan-Evrenk, R. S. Sanchez-Carrera, L. Vogt, A. Aspuru-
Guzik, Energy Environ. Sci. 2011, 4, 4849.

[217] L. Pattanaik, C. W. Coley, Chem 2020, 6, 1204.

[212] N. Marzari, A. Ferretti, C. Wolverton, Nat. Mater. 2021, 20, 736.

[213] C. Duan, F. Liu, A. Nandy, H. J. Kulik, J. Phys. Chem. Lett. 2021, 12,
4628.

[214] Y. Miyake, A. Saeki, J. Phys. Chem. Lett. 2021, 12, 12391.

[215] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,
S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater.
2013, 1, 011002.

[216] S. Curtarolo, W. Setyawan, S. Wang, |. Xue, K. Yang, R. H. Taylor,
L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli,
N. Mingo, O. Levy, Comput. Mater. Sci. 2012, 58, 227.

[217] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol,
S. Riihl, C. Wolverton, npj Comput. Mater. 2015, 1, 15010.

[218] L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich, V. Granata,
F. Gargiulo, M. Borelli, M. Uhrin, 5. P. Huber, S. Zoupanos,
C. S. Adorf, C. W. Andersen, O. Schitt, C. A. Pignedoli,
D. Passerone, |. VandeVondele, T. C. Schulthess, B. Smit,
G. Pizzi, N. Marzari, Sci. Data 2020, 7, 299.

[219] T. Wang, G. Kupgan, |. L. Brédas, Trends Chem. 2020, 2, 535.

[220] |. Behler, M. Parrinello, Phys. Rev. Lett. 2007, 98, 146401.

[221] ). Behler, Angew. Chem., Int. Ed. 2017, 56, 12828.

[222] A. P. Bartdk, M. C. Payne, R. Kondor, G. Csdnyi, Phys. Rev. Lett. 2010,
104, 136403.

[223] Z. Li, ). R. Kermode, A. de Vita, Phys. Rev. Lett. 2015, 174,
096405.

[224] R. Jinnouchi, F. Karsai, G. Kresse, Phys. Rev. B 2019, 100,
014105.

[225] P. Friederich, F. Hase, |. Proppe, A. Aspuru-Guzik, Nat. Mater. 2021,
20, 750.

[226] Y. Qi, H. I. Ingélfsson, X. Cheng, . Lee, S. . Marrink, W. Im, J. Chem.
Theory Comput. 2015, 11, 4486.

[227] G. T. Johnson, L. Autin, M. Al-Alusi, D. S. Goodsell, M. F. Sanner,
A. ). Olson, Nat. Methods 2015, 72, 85.

[228] T. A. Wassenaar, H. |. Ingélfsson, R. A. Béckmann, D. P. Tieleman,
S. ). Marrink, J. Chem. Theory Comput. 2015, 11, 2144,

[229] T. Bereau, K. Kremer, J. Chem. Theory Comput. 2015, 11, 2783.

[230] M. A. Webb, |.-Y. Delannoy, ). ]. de Pablo, J. Chem. Theory Comput.
2019, 15, 1199.

[2317] F. Grinewald, R. Alessandri, P. C. Kroon, L. Monticelli,
P. C. T. Souza, S. ). Marrink, Nat. Commun. 2022, 13, 68.

[232] T. D. Potter, E. L. Barrett, M. A. Miller, J. Chem. Theory Comput.
2021, 17, 5777.

[233] A. E. P. Durumeric, G. A. Voth, J. Chem. Phys. 2019, 151,
124110.

[234] W. Wang, R. Gémez-Bombarelli, npj Comput. Mater. 2019,
5, 125.

© 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

sapie ssa20y uadp o} 1daxe ‘paniwiad jou ApoLiis st uonnguisip pue asn-ay ‘[2z02/80/62] Uo -aoueld aueiyro) Ag ‘worksimAieiqiauiuo//sdny woly papeojumod ‘0 ‘2202 'X861/9E2



SIRNCF NEWs solar,

www.advancedsciencenews.com www.solar-rrl.com

[235] ). Wang, S. Olsson, C. Wehmeyer, A. Pérez, N. E. Charron,  [238] N. M. O’boyle, A. Dalke, DeepSMILES: An Adaptation of SMILES for

G. de Fabritiis, F. Noé, C. Clementi, ACS Cent. Sci. 2019, 5, 755. Use in Machine-Learning of Chemical Structures, ChemRxiv,
[236] R. Bhowmik, R. ). Berry, M. F. Durstock, B. |. Leever, ACS Appl. Cambridge Open Engage, Cambridge 2018.

Mater. Interfaces 2017, 9, 19269. [239] G. A. Pinheiro, ]. Mucelini, M. D. Soares, R. C. Prati, ). L. F. da Silva,
[237] R. Bhowmik, R. ). Berry, V. Varshney, M. F. Durstock, B. |. Leever, M. G. Quiles, J. Phys. Chem. A 2020, 124, 9854.

J. Phys. Chem. C 2015, 719, 27909. [240] L. Benatto, M. Koehler, J. Phys. Chem. C 2019, 123, 6395.

Claudia Caddeo is staff researcher at the Italian Research Council, Istituto Officina dei Materiali, She
received her M.S. in electronics engineering in 2009 and Ph.D. in physics at the University of Cagliari in
2013. She has been working for Centre National d’'Etudes Spatiales (French Space Agency) in Toulouse,
University of Cagliari, and Catholic University of Brescia. Her research interests focus on multiscale
modeling of hybrid and polymer-based nanomaterials for applications in third-generation photovoltaics,
electronics, and sensors.

Jorg Ackermann is a research director at the CNRS in the Interdisciplinary Center of Nanoscience of
Marseille (CINaM) in France. He received his physics diploma from the Saarland University, Germany, in
1998. After working as an engineer at the Bavarian Center for Applied Energy Research, he obtained his
Ph.D. in physical chemistry in 2002 from the University of Aix-Marseille 2 in France. After two years as a
postdoc fellow, he started his academic career at the CNRS in 2004. His research focuses on the
development of inorganic, organic, and hybrid semiconducting nanomaterials, corresponding ink
formulations, and printing of optoelectronic devices such as solar cells.

Alessandro Mattoni is a research director at the ltalian Research Council and director of the unit of
Cagliari of the Istituto Officina dei Materiali, where he coordinates a theory group on the multiscale
modeling of nanomaterials. He received a master's degree in physics at the University of Perugia and a
Ph.D. in solid-state physics at the University of Padova. His research focuses on polymers and hybrid
perovskites for photovoltaics and nanoelectronics. He developed the first interatomic force field for
classical molecular dynamics of hybrid perovskites.

Sol. RRL 2022, 2200172 2200172 (17 of 17) © 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

sapie ssa20y uadp o} 1daxe ‘paniwiad jou ApoLiis st uonnguisip pue asn-ay ‘[2z02/80/62] Uo -aoueld aueiyro) Ag ‘worksimAieiqiauiuo//sdny woly papeojumod ‘0 ‘2202 'X861/9E2






