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Abstract
Aim: Initiation of autumnal leaf senescence is crucial for plant overwintering and eco-
system dynamics. Previous studies have focused on the advanced stages of autumnal 
leaf senescence and reported that climatic warming delayed senescence, despite the 
fundamental differences among the stages of senescence. However, the timing of 
onset of leaf coloration (DLCO), the earliest visual sign of senescence, has rarely been 
studied. Here, we assessed the response of DLCO to temperature.
Location: 30–75° N in the Northern Hemisphere.
Time period: 2000–2018.
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1  |  INTRODUC TION

In contrast to the leaves of evergreen conifers, those of northern 
deciduous plants are not sufficiently tolerant of freezing to survive 
cold periods and, therefore, are shed before the onset of winter. 
This autumnal senescence process is controlled by changes in gene 
expression and metabolic adjustments that include the degrada-
tion of macromolecules (e.g., chlorophyll), a decrease in photosyn-
thesis and, importantly, the recycling and re-allocation of nutrients 
(Gan & Amasino, 1997; Thomas & Stoddart, 1980). In parallel to leaf 
senescence, carbon sink activity ceases progressively, and plants 
switch to nutrient recovery and resorption processes (Estiarte & 
Peñuelas,  2015; Keskitalo et al.,  2005). Without timely leaf senes-
cence and abscission, early frost would reduce nutrient resorption, 
leading to a loss of leaf resources. Changes in the timing of key steps of 
leaf senescence extensively influence ecosystem structure and func-
tions, such as vegetation activity, trophic interaction, carbon and nu-
trient cycling, land–atmosphere moisture and energy fluxes (Keenan 
et al.,  2014; Morisette et al.,  2009), which could further affect the 
climate system (Peñuelas et al., 2009; Richardson et al., 2013).

Senescence starts as a cryptic phenological process before 
any visible symptoms become apparent (Körner & Basler,  2010). 
The timing of the start of the leaf coloration following senescence 
varies, depending on the rate of the senescence process, which is 

related to environmental conditions (e.g., temperature) (Fracheboud 
et al., 2009). Hence, the process of autumnal leaf senescence has two 
phases (Figure 1a): (1) a visually indistinguishable ontogenetic stage 
that precedes (2) a visible change in leaf colour (Tang et al., 2016). 
The timings of the middle and end of leaf coloration are the focus of 
in situ phenological observations and have been the main concern of 
most autumnal phenological studies to date.

Satellite and ground-based observations indicate that climate 
warming in the last several decades has substantially advanced the 
onset of spring green-up and the peak of the growing season, and 
it has slightly delayed the timing of the end of leaf coloration [DLCE, 
the time when the normalized difference vegetation index (NDVI) de-
creases by 50% of its annual amplitude in the second half of a year 
in satellite-based studies (Ganguly et al., 2010; Lukasová et al., 2019; 
Melaas et al.,  2013; Nagai et al.,  2010; White et al.,  1997; Yu 
et al., 2010)] in the Northern Hemisphere (Figure 1b) (Fu et al., 2015, 
2019; Gill et al., 2015; Jeganathan et al., 2014; Menzel et al., 2020; Xu 
et al., 2016). In addition to temperature, an increase in precipitation 
also delays DLCE in temperate dry grasslands in the northern middle 
latitudes (Liu et al.,  2016). Besides these abiotic factors, temporal 
changes in DLCE are also associated with the onset of green-up in some 
temperate tree species (Keenan & Richardson, 2015) and in boreal 
ecosystems (Liu et al., 2016). In contrast to DLCE, the timing of onset 
of leaf coloration (DLCO; Figure 1b) has been studied inadequately. In 

Major taxa studied: Deciduous vegetation.
Methods: We retrieved DLCO from high-temporal-resolution satellite data, which were 
then validated by PhenoCam observations. We investigated the temporal changes 
in DLCO and the relationship between DLCO and temperature by using satellite and 
ground observations.
Results: DLCO was not significantly (p > .05) delayed between 2000 and 2018 in 94% 
of the area. DLCO was positively (p < .05) correlated with pre-DLCO mean daily minimum 
temperature (Tmin) in only 9% of the area, whereas the end of leaf coloration (DLCE) 
was positively correlated with pre-DLCE mean Tmin over a larger area (34%). Further 
analyses showed that warming slowed the progress of leaf coloration. Interestingly, 
DLCO was less responsive to pre-DLCO mean Tmin in areas where daylength was longer 
across the Northern Hemisphere, particularly for woody vegetation.
Main conclusions: The rate of progress of coloration is more sensitive to temperature 
than its start date, resulting in an extension of the duration of leaf senescence under 
warming. The dependence of DLCO response to temperature on daylength indicates 
stronger photoperiodic control on initiation of leaf senescence in areas with longer 
daylength (i.e., shorter nights), possibly because plants respond to the length of unin-
terrupted darkness rather than daylength. This study indicates that the onset of leaf 
coloration was not responsive to climate warming and provides observational evidence 
of photoperiod control of autumnal leaf senescence at biome and continental scales.

K E Y W O R D S
autumnal leaf senescence, global warming, leaf coloration onset, Northern Hemisphere, 
photoperiod
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particular, it is not known whether DLCO is sensitive to climate and 
whether it has been responsive to recent climate change. DLCO is of 
key importance because it indicates when leaf senescence becomes 
detectable from NDVI and its progress accelerates (Figure  1b). As 
shown by experiments on young trees, some temperate and boreal 
woody species use the shortening of the photoperiod as a signal 
for the onset of leaf senescence (Supporting Information Table S1), 
but many in situ and satellite observations indicate that increased 
temperature induces delays in the advanced stages of senescence, 
such as DLCE (Delpierre et al.,  2009; Estrella & Menzel,  2006; Ge 
et al., 2015; Gill et al., 2015; Jeong et al., 2011; Liu et al., 2016).

A dominant photoperiodic control of early senescence implies 
that DLCO should not be delayed, even if the temperature increases, 
because its timing is controlled only by daylength (hypothesis 1). 
Moreover, because DLCE delays with warmer temperature, we may 
further hypothesize that earlier stages of leaf senescence are less 
sensitive to temperature than are more advanced stages and expect 
an extension of the period between DLCE and DLCO under warming. In 
contrast, without photoperiodic control, shifts in DLCO are expected 
in the case of climatic warming (hypothesis 2). Alternatively, if DLCO is 
influenced by both photoperiod and temperature, the relationships 
between DLCO and temperature should vary among different areas, 
because the strength of the photoperiod signal varies (hypothesis 3).

To test these hypotheses, we initially investigated the temporal 
changes in DLCO and the interannual relationships between DLCO and 
pre-DLCO Tmin (the mean of monthly average daily minimum tempera-
ture for an optimized period preceding DLCO) for northern vegetation 
(30–75° N, with cropland pixels excluded) during the period 2000–
2018. We then examined whether the timings of earlier stages of 
leaf coloration are less responsive to temperature and show fewer 
delays and assessed the impacts of temperature on the progress of 
leaf coloration. Given that only a few in situ observational programs 

or networks have monitored DLCO, we determined DLCO from a 5-day 
composite time series of the NDVI derived from daily surface spectral 
reflectance (MOD09CMG) at a spatial resolution of .05°, provided by 
the spaceborne Moderate Resolution Imaging Spectroradiometer 
(MODIS) (Vermote,  2015). To complement the NDVI data, we also 
used 332 time series of DLCO observed by professional observers 
according to standard observation guidelines (China Meteorological 
Administration, 1993) in the field in China (Supporting Information 
Figure S1a; Table S2) and the timing of onset of autumnal decline 
in maximum canopy photosynthetic capacity (DPDO) derived from 
eddy covariance CO2 flux observations (Gu et al., 2009; Shen, Tang, 
et al.,  2014) at 36 sites from within the FLUXNET2015 dataset 
(Pastorello et al., 2017) (Supporting Information Figure S1b; Table S3).

2  |  MATERIAL S AND METHODS

2.1  |  Estimating timings of stages of leaf coloration 
from satellite observations of NDVI time series

2.1.1  |  Dataset and preprocessing

The NDVI is a proxy for vegetation greenness and has been widely 
used for phenological studies at large spatial scales (Buitenwerf 
et al., 2015; Gao et al., 2019; Keenan et al., 2014; Myneni et al., 1997; 
Wu et al., 2018). NDVI has also been proved capable of detecting 
the onset of leaf coloration (Mariën et al., 2019; Soudani et al., 2012, 
2021; Yang et al., 2014; Zhao et al., 2020). Previous studies have usu-
ally used half-month/16-day composite NDVI time series to retrieve 
phenological metrics. However, because the duration of leaf colora-
tion could be as short as 4 weeks in some areas (Ye & Zhang, 2021), 
NDVI time-series data with higher temporal resolution are required. 

F I G U R E  1  Conceptual graphs illustrating (a) the developmental processes in pigments during leaf senescence that are related to 
photosynthetic capacity and leaf colour; and (b) phenological changes retrieved from the normalized difference vegetation index (NDVI) in 
the last few decades. In (a), DPDO and DLCO are the timings of the onsets of the decrease in maximum canopy photosynthetic capacity and 
leaf coloration in autumn, respectively; DLCE is the timing of the end of leaf coloration. In (b), the onset of green-up corresponds to a 20% 
increase in NDVI in spring, the peak of the season corresponds to the maximum NDVI, and DLCE corresponds to a 50% decrease in NDVI in 
autumn. DLCO was defined by two methods, corresponding to a 10% decrease in NDVI (orange point) and the inflection point at which NDVI 
begins to decline (red point), respectively (for details, see Section 2). The leftward and rightward arrows indicate advances of onset of green-
up and peak of season and delay of DLCE, respectively, over the past few decades. The question mark indicates a research gap regarding 
temporal changes in DLCO and their drivers.
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We estimated phenological metrics (i.e., the timings of the onset and 
the advanced stages of leaf coloration and the onset of green-up) 
for 2000–2018 from a 5-day composite NDVI time series produced 
from the MODIS reflectance product (MOD09CMG Collection 6, 
available at: https://ladsw​eb.modaps.eosdis.nasa.gov, accessed 
on 29 January 2019) (Vermote,  2015). MOD09CMG provides an 
estimate of daily surface spectral reflectance at a spatial resolu-
tion of .05°. The quality of the daily surface reflectance data from 
MOD09CMG is unsatisfactory owing to cloud and snow contamina-
tion (Vermote, 2015); therefore, we used the 5-day maximum value 
composite approach (Zhang, 2015), combined with a Savitzky–Golay 
filter (Cao et al., 2018), to produce a high-quality NDVI time series 
before determining DLCO. Initially, NDVI values that were lower than 
the uncontaminated winter (December–February) mean NDVI were 
replaced by the latter (Beck et al., 2006; Zhang et al., 2007). After 
that, cloud-contaminated and irregularly high and low NDVI values 
were identified and reconstructed by using a Savitzky–Golay filter 
(Cao et al., 2018). Details for preparation of the high-quality NDVI 
time series are given in the Supporting Information (Section 1 of the 
Supplementary Methods).

We focused on natural vegetation by excluding pixels domi-
nated by cropland, artificial surfaces, permanent snow or ice, and 
water bodies, on the basis of the MODIS land-cover map (MCD12C1 
Version 6, available at: https://ladsw​eb.modaps.eosdis.nasa.gov, ac-
cessed on 20 August 2018) (Friedl & Sulla-Menashe, 2015) for the 
middle year of the time series (2009). Some pixels were also excluded 
from analysis because of sparse vegetation coverage, weak seasonal-
ity, or NDVI peaking in October–April. We adopted three criteria for 
pixel inclusion: mean annual NDVI must be >.10 (Jeong et al., 2011); 
NDVI should peak between May and September in the multiyear 
mean NDVI time series (Shen et al., 2020); and mean NDVI for July 
and August must be >1.15 times the mean NDVI for December and 
for January–February in every year (Shen, Zhang, et al., 2014).

2.1.2  |  Estimation of timings of leaf coloration

Two methods can generally be used to estimate the parameters 
of vegetation phenology (Chen et al.,  2016; Shang et al.,  2017), 
including DLCO from annual NDVI profiles. One is based on thresh-
olds (White et al.,  1997), whereas the other is based on inflec-
tion points (Zhang et al., 2003). We applied the threshold-based 
method by initially using a generalized sigmoid function to fit the 
NDVI annual profile [Equation (7) in the paper by Klosterman 
et al.,  2014] and then determining DLCO as the first date when 
NDVI decreased by 10% of its annual amplitude in the descending 
period (Leblans et al., 2017; Richardson et al., 2018). Although a 
smaller decrease in NDVI corresponds to an earlier stage of leaf 
coloration, consideration of it would introduce more uncertainty. 
We also determined DLCO by using the algorithm based on inflec-
tion point. In this method, DLCO was defined as the date when the 
rate of change of the curvature of a double logistic function (Beck 
et al.,  2006; Elmore et al.,  2012) fitted to the NDVI time series 

reached its first local minimum in the descending period (Zhang 
et al.,  2003). Theoretically, the DLCO defined by the inflection 
method is close to the date when NDVI decreases by c. 9% of its 
annual magnitude (Shang et al., 2017).

The advanced stages of leaf coloration were determined as the 
dates when NDVI decreases by 20, 30, 40 and 50% (corresponding to 
the timing of the end of leaf coloration, DLCE) of its annual amplitude, re-
spectively. In addition, given that in a few studies (Berman et al., 2020; 
Ren et al., 2017) the end of leaf coloration was defined as the dates 
when NDVI drops by 60 or 90% of its annual amplitude, we also in-
cluded these definitions in analysis. We defined the timing of the onset 
of green-up as the date when NDVI increased by 20% (Yu et al., 2010).

2.1.3  |  Evaluation of satellite DLCO using PhenoCam

It is unreasonable to validate the satellite-derived DLCO by comparing 
it with the DLCO of a few plant individuals from ground observation, 
because of mismatch in spatial coverage, different definitions of phe-
nological metrics, and the spatial heterogeneity in phenological phases 
among individuals for a pixel. Fortunately, pairs of field observations of 
NDVI and leaf coloration showed good consistency between the start 
of NDVI decrease and the onset of leaf coloration (Soudani et al., 2012, 
2021). Moreover, the comparison between the start of autumn from 
satellite-observed NDVI and field observations of leaf coloration onset 
for the entire area covered by the pixel also showed little difference 
between them (Zhao et al., 2020). Those studies suggest that NDVI is 
capable of detecting the onset of leaf coloration if the observed leaves 
or individuals are identical between ground and satellite observations. 
However, there are very limited pairs of compatible observations of 
NDVI and leaf coloration that can be used for validation.

Considering the high capability of PhenoCam in capturing the 
variations in leaf coloration onset at the landscape scale (Klosterman 
et al.,  2014; Klosterman & Richardson,  2017; Nezval et al.,  2020; 
Wingate et al.,  2015), we used the PhenoCam dataset v.2.0 
(Richardson et al., 2018; Seyednasrollah, Young, Hufkens, Milliman, 
Friedl, Frolking, & Richardson,  2019; Seyednasrollah, Young, 
Hufkens, Milliman, Friedl, Frolking, Richardson, Abraha, et al., 2019) 
to assess the relationships between satellite-derived DLCO and the 
DLCO derived from time series of the green chromatic coordinate 
(GCC) and vegetation contrast index (VCI) observed by PhenoCam. 
The GCC and VCI were determined from the digital numbers (DN) 
in red (R), green (G) and blue (B) channels. Specifically, GCC and VCI 
were calculated as DNG/(DNR + DNG + DNB) and DNG/(DNR + DNB), re-
spectively. Details for the determinations of DLCO from time series of 
GCC and VCI are given in the Supporting Information (Section 2 of 
the Supplementary Methods).

2.2  |  DLCO from in situ phenological observations

DLCO was extracted at the species level from datasets of in situ phe-
nological observations in China provided by the Chinese Academy of 
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Sciences (CAS). The CAS dataset uses the date of first leaf colouring as 
DLCO. For a given species at a given site, the date of first leaf colouring 
was identified as the day when the first batch (c. 5%) of leaves on more 
than half of three to five marked individuals started to change colour 
(China Meteorological Administration, 1993). The in situ phenological 
observations were performed visually according to standard obser-
vation guidelines (China Meteorological Administration, 1993) every 
other day by professional observers trained well by CAS. The CAS 
dataset is available from National Earth System Science Data Sharing 
Infrastructure, National Science and Technology Infrastructure of 
China (http://www.geoda​ta.cn, accessed on 25 July 2018).

2.3  |  DPDO estimated from maximum canopy 
photosynthetic capacity

The timing of the onset of the decrease in maximum canopy pho-
tosynthetic capacity in autumn (as day of year, DPDO) is defined as 
the date when the capacity decreases by 10% of its annual ampli-
tude after the data have been fitted to a generalized sigmoid func-
tion [Equation (7) in the paper by Klosterman et al.,  2014]. The 
capacity was calculated from half-hourly or hourly gross primary 
productivity (GPP_NT_CUT_MEAN) based on eddy covariance 
measurements in the FLUXNET2015 dataset (http://fluxn​et.fluxd​
ata.org/data/fluxn​et2015-datas​et/, accessed on 10 March 2018) 
(Pastorello et al., 2017). We followed the procedure of Shen, Tang 
et al.  (2014) to estimate daily canopy photosynthetic capacity, ex-
cept that the parameters in the rectangular hyperbolic function 
were estimated by using half-hourly/hourly gross primary produc-
tivity and incident short-wave radiation calculated by using 15-day 
moving windows throughout a year. We used data from the sites in 
non-Mediterranean (Köppen–Geiger climate classification) and non-
cultivated (International Geosphere–Biosphere Programme classifi-
cation) regions at middle and high northern latitudes (30–75° N). In a 
similar way to the pixel exclusion process that was applied to the sat-
ellite retrievals, we discarded sites where weak seasonality (i.e., the 
mean maximum canopy photosynthesis for June–August was <1.15 
times that for December or for January and February) was detected 
in any year and sites where capacity did not peak in May–September.

2.4  |  Analyses

2.4.1  |  Temporal changes

Temporal changes of DLCO over the study period were assessed using 
temporal trends in DLCO, which were quantified as the slopes of linear 
regressions between DLCO and year by using ordinary least squares 
regression (OLSR) and t tests. To complement the temporal changes 
assessed by using OLSR, a nonparametric approach (the Theil–Sen 
estimator and Mann–Kendall test; Sen, 1968; Theil, 1992) was also 
used to calculate the trends in DLCO. Temporal changes of timings of 
advanced stages of leaf coloration were assessed in the same way.

The temporal trend was calculated for each time series for the 
ground-based observations and for each pixel for the satellite obser-
vations. We focused only on the temporal trends for the pixels and 
time series of in situ phenological observations with a multiyear mean 
of DLCO occurring after the summer solstice. Phenological records 
were not available for some of the years of the time series for calcu-
lating more trends, because the time series might have had missing 
values owing to a lack of observation. However, the time series used 
for the regressions contained ≥10 years of observational records and 
at least one record for any 3 years consecutively. If two or more parts 
of the time series met these criteria, the most recent part was used.

2.4.2  |  Partial correlation between DLCO and 
temperature or precipitation

Tmin has long been recognized as the indicator of the thermal condi-
tion that induces autumnal leaf coloration (Tang et al.,  2016), and 
the duration of the period preceding DLCO in which Tmin has the larg-
est influence on DLCO could vary among different locations because 
of differential vegetation characteristics and climate conditions 
(Gao et al.,  2019; Jeong et al.,  2011; Matsumoto et al.,  2003; Wu 
et al., 2018). In addition, precipitation might also regulate leaf col-
oration in dry climates (Liu et al., 2016). Initially, we determined the 
duration of this period preceding DLCO (referred to as the pre-DLCO 
period). Taking satellite-derived DLCO, for example, we investigated 
the impacts of temperature on the DLCO by calculating the partial 
correlation coefficient (RTN) values between DLCO and the mean 
of the monthly average daily minimum temperature (Tmin) for the 
pre-DLCO period, with concurrent total precipitation as the control 
variable for 2000–2018. The pre-DLCO period for Tmin (Supporting 
Information Figure S2) was defined as the period preceding the mul-
tiyear mean DLCO for which Tmin had the strongest interannual partial 
correlation with DLCO, with concurrent total precipitation as a con-
trol variable (Jeong et al., 2011; Wu et al., 2018). In detail, we first 
determined several candidate periods that ended at the multiyear 
mean DLCO and had a duration starting from 1 month, with a step of 
1 month. For each of the candidate periods, we calculated the par-
tial correlation coefficient between DLCO and mean Tmin in each of 
these periods, then selected the candidate with the highest abso-
lute value of correlation coefficient. If the multiyear mean DLCO was 
in the first half of a month, then the pre-DLCO period ended at the 
month preceding the multiyear mean DLCO. Otherwise, the pre-DLCO 
period ended at the month of the multiyear mean DLCO. The impacts 
of Tmin on the advanced stages of leaf coloration were investigated 
in a similar manner. A few studies have suggested that the date of 
onset of green-up might affect leaf coloration through carry-over ef-
fects (Cong et al., 2017; Fu et al., 2014; Keenan & Richardson, 2015; 
Liu et al., 2016); therefore, we also considered the case in which the 
onset of green-up was included as an extra control variable in the 
partial correlation between DLCO and Tmin. The pre-DLCO period for 
precipitation and the impacts of precipitation on DLCO were assessed 
in a similar manner.
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The data for Tmin and precipitation were extracted from the 
Climatic Research Unit (CRU) Time-Series (TS) 4.03 dataset (http://
data.ceda.ac.uk, accessed on 11 June 2019), which provided monthly 
data at a spatial resolution of .5° × .5° until 2018. It should be noted 
that Tmin in the dataset is an approximation of the mean of daily min-
imum temperature for a calendar month, which is calculated arith-
metically from the gridded monthly mean temperature and the diurnal 
temperature range (Harris et al., 2014) and does not exactly reflect the 
interannual variations in the absolute minimum temperature (Körner & 
Hiltbrunner, 2018) experienced by plants before DLCO. The CRU data 
were resampled at .05° × .05° by replication to match the DLCO data.

Complementary to the pre-DLCO period in which Tmin had the 
strongest interannual partial correlation with DLCO, we also used 
fixed durations (1 month and 15 days preceding multiyear mean DLCO, 
respectively) as the pre-DLCO periods. We calculated the partial cor-
relation between DLCO and pre-DLCO Tmin, with concurrent total precip-
itation as the control variable. Moreover, we investigated the partial 
correlation coefficient between DLCO and the lowest Tmin during the 
15 days before the multiyear mean DLCO, with the concurrent mean 
Tmin (mean of the remaining 14 Tmin values after removal of the low-
est Tmin during the period) and total precipitation as control variables. 
Note that when the pre-DLCO period was defined as the 15 days pre-
ceding DLCO and when we analysed the relationship between the low-
est Tmin and DLCO, daily Tmin and precipitation were extracted from the 
CRU-NCEP dataset (v.7.2, available at: https://vesg.ipsl.upmc.fr, as-
sessed on 10 January 2019), which provides 6-hourly data at a spatial 
resolution of .5° × .5° until 2016 (Viovy, 2018). The CRU-NCEP v.7.2 is 
a combination of two datasets: the CRU TS 3.2  .5° × .5° monthly data 
covering the period 1901–2002 and the NCEP re-analysis 2.5° × 2.5° 
6-hourly data covering the period 1948–2016. We determined daily 
Tmin as the minimum value of the four 6-hourly minimum tempera-
ture values for each day. The CRU-NCEP data were resampled at 
.05° × .05° by replication to match the DLCO data.

We also investigated the impact of Tmin and precipitation on DLCO 
from ground-based observations in China and on DPDO from eddy-
covariance sites as complementary to satellite-derived DLCO. Climatic 
data for in situ observations in China were extracted from the “Daily 
Surface Climate Variables of China” catalogue (a dataset named 
SURF_CLI_CHN_MUL_DAY_V3.0), which includes daily climate data 
for 2,474 sites in China from January 1951 to July 2014, provided by 
the Chinese Meteorological Administration. The distance between 
phenological and meteorological stations was <25 km. Climatic data 
for DPDO were calculated from the half-hourly temperature dataset 
provided by FLUXNET2015.

2.4.3  |  Relationships between the progress of leaf 
coloration and temperature

The impacts of temperature on the progress of leaf coloration were 
assessed in four ways.

First, we calculated the partial correlation coefficient between 
each of the timings of different stages in leaf coloration (determined 

as NDVI decreases by 20, 30, 40, 50, 60 and 90%) and preceding Tmin 
using the approach described in Section 2.4.2. We then compared 
the percentage of area corresponding to the partial correlation coef-
ficient among the different timings.

Second, the difference in temperature sensitivity between the 
DLCE and DLCO was used to assess the differential responses to Tmin 
between DLCE and DLCO. The temperature sensitivity of DLCO was 
defined as the coefficient for pre-DLCO Tmin in a linear regression in 
which DLCO was set as the dependent variable, and pre-DLCO Tmin 
and pre-DLCO total precipitation were independent variables. The 
temperature sensitivity of DLCE was calculated in a similar manner. 
See Section 2.4.2 for the details of the determination of pre-DLCO (or 
pre-DLCE) Tmin and total precipitation.

Third, the temperature sensitivity of the duration of leaf color-
ation was used to assess the impact of temperature on the duration 
of leaf coloration. The duration of leaf coloration was defined as the 
difference between DLCE and DLCO. Its temperature sensitivity was 
estimated as the coefficient for mean Tmin in the linear regression in 
which the duration was set as the dependent variable and the mean 
Tmin and total precipitation in the period between DLCE and DLCO 
were independent variables.

Fourth, the temperature sensitivity of the speed of leaf color-
ation was used to assess the impact of temperature on the speed 
of leaf coloration within a season. The speed of leaf coloration 
within a season was defined as the normalized decreasing speed 
of NDVI between DLCE and DLCO, calculated as −(NDVIDLCE − 
NDVIDLCO)/(DLCE − DLCO)/AMPNDVI, where AMPNDVI is the annual 
amplitude of NDVI for a given pixel and given year. The tempera-
ture sensitivity of the speed of leaf coloration was then calculated 
as the coefficient for mean Tmin when regressing the speed of leaf 
coloration against mean Tmin and total precipitation between DLCE 
and DLCO. Here, Tmin and precipitation were extracted from the 
CRU TS 4.03 monthly data.

2.4.4  |  Dependence of DLCO on daylength

Previous experimental findings suggest that daylength is a signal 
for the start of autumn leaf senescence (Supporting Information 
Table S1), indicating a photoperiodic control of DLCO. However, it 
is difficult to assess the role of daylength by using interannual cor-
relations between DLCO and daylength in natural conditions, be-
cause the daylength on a given date does not vary among years. 
Alternatively, because control of photoperiod on autumn leaf 
phenology might vary with daylength across different regions 
(Howe et al., 1995; Pau et al., 2011; Paus et al., 1986; Saikkonen 
et al., 2012), we examined the variabilities in the correlation be-
tween DLCO and Tmin and in temporal changes in DLCO against the 
spatial gradient of daylength to explore the dependence of DLCO 
on daylength. Meanwhile, the spatial variations in the response 
of autumn leaf phenology to temperature might be associated 
with local background temperature conditions (Ford et al., 2017; 
Zohner et al.,  2016). Hence, the spatial variations in background 
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temperature should be minimized when assessing the dependence 
of DLCO on daylength. To do this, we first calculated the daylength 
for each pixel at the date of multiyear mean DLCO over the period 
2000–2018 and the mean Tmin of the period before multiyear mean 
DLCO. The period before multiyear mean DLCO was the month pre-
ceding the multiyear mean DLCO if the multiyear mean DLCO was in 
the first half of a month; otherwise, the period was the month of 
the multiyear mean DLCO. Next, for each cell of 1.5-h daylength and 
4 °C mean Tmin in the space of the daylength and mean Tmin (for a 
graphical illustration, see Figure 5), we calculated the percentage 
of area with significant (p < .05, t test) DLCO delays, the average of 
positive correlation, and the percentage of area with a positive cor-
relation between DLCO and Tmin (or precipitation).

In addition, there is more experimental evidence of photoperi-
odic control on the onset of leaf senescence for woody plants than 
for herbaceous plants (Supporting Information Table S1), indicat-
ing that woody and herbaceous vegetation might respond to pho-
toperiod in different ways. Therefore, the above exploration was 
also performed separately for woody and herbaceous vegetation. 
The woody and herbaceous vegetation were merged from Classes 
1–6 and Class 10, respectively, in the MODIS land-cover product 
(MCD12C1, v.6) for 2009 (Friedl & Sulla-Menashe, 2015).

2.4.5  |  Possible effect of summer NDVI

In some deciduous forests, NDVI can decline in early summer (i.e., 
late May–July) before leaf coloration, and this might potentially 
interfere to some extent with the determination of DLCO (Elmore 
et al.,  2012) and its relationship with temperature. To address 
this, for the pixels classified as deciduous broadleaf forest in the 
MODIS land-cover product (Friedl & Sulla-Menashe,  2015), we 
redefined DLCO considering the possible effect of summer NDVI 
decline on DLCO and then re-analysed the trends in DLCO and 
the relationship between DLCO and temperature as described in 
Sections 2.4.1 and 2.4.2.

For the sake of robustness, the possible effect of summer NDVI 
decline on DLCO was considered in three different ways. First, we 
used a modified double logistic model that considers early summer 
NDVI decline (Elmore et al., 2012) to fit the NDVI time series in-
stead of the original double logistic function for the pixels classified 
as deciduous broadleaf forest. DLCO was then determined as the 
date when the rate of change of the curvature of a double logis-
tic function fitted to the NDVI time series reached its first local 
minimum in the descending period. Second, DLCO was defined as 
the date when NDVI decreased by 10% of its annual amplitude 
from 1 August. The maximum value used to determine the annual 
amplitude was the mean value of the upper quartile of the fitted 
NDVI values in August. Third, DLCO was defined as the date when 
NDVI decreased by 10% of its annual amplitude from 16 August. 
The maximum value used to determine the annual amplitude was the 
mean value of the upper quartile of the fitted NDVI values in the 
second half of August.

2.4.6  |  Possible cold events before DLCO (or DPDO)

A sudden drop of night-time temperature to the freezing point can 
induce leaf coloration in a few days (Körner, 2007), and this might 
interfere with our partial correlation analysis between DLCO (or DPDO) 
and temperature. Hence, we re-examined the temporal changes in 
DLCO and the correlation between DLCO and temperature as de-
scribed in Sections  2.4.1 and 2.4.2, after excluding possible cold 
events estimated using an empirical approach as follows (taking 
satellite-derived DLCO as an example).

First, we determined the Tmin threshold below which there could 
potentially be a cold event for each pixel. Given that a cold event that 
induces rapid leaf senescence should happen 1–5 days before DLCO, 
the lowest Tmin during the 6–35 days before DLCO for all years was 
set as the Tmin threshold. A temperature higher than such a thresh-
old will not induce a cold event. For vegetation in middle and high 
latitudes, a temperature higher than freezing (0°C) does not cause 
frost damage (Körner, 2021; Lenz et al., 2013; Sakai & Larcher, 1987; 
Taschler & Neuner, 2004). Therefore, if the lowest Tmin was >0°C, the 
Tmin threshold was set to 0°C.

Second, for a given pixel, a year was determined as a candidate 
cold event year if the lowest Tmin in the period 1–5 days before DLCO 
was lower than the above-mentioned Tmin threshold. Then, from the 
years in which there was no candidate cold event, we determined 
the latest DLCO that was not caused by a cold event for that pixel.

Finally, a DLCO was recognized as possibly being caused by a 
cold event if it was in the candidate cold event years and also ear-
lier than the latest DLCO that was not caused by a cold event. For 
a DLCO (referred to as D'LCO) from the candidate cold event years 
and later than the latest DLCO that was not caused by a cold event, 
it (D'LCO) would be recognized as a DLCO possibly caused by a cold 
event if one of the following two conditions was met: (1) the de-
creasing rate of Tmin in the period 1–5 days before D'LCO was faster 
than the maximum decreasing rate of Tmin among the years in which 
there was no candidate cold event; or (2) the decrease (absolute 
value) in Tmin in the period 1–5 days before D'LCO was greater than 
the maximum decrease in Tmin among the years with no candidate 
cold event. Here, for a given year, the decreasing rate of Tmin in 
the period 1–5 days before DLCO (or D'LCO) was calculated as the 
minimum of the slopes of Tmin against calendar date. A slope of Tmin 
against calendar date was calculated as [Tmin(time2) − Tmin(time1)]/
(time2 − time1), where time2 = DLCO − 1, DLCO − 2, DLCO − 3, DLCO − 4 
or DLCO − 5 and time1 = DLCO − 2, DLCO − 3, DLCO − 4 or DLCO − 5, and 
time2 is later than time1. The decrease in Tmin in the period 1–5 days 
before DLCO (or D'LCO) for a given year was the maximum value of 
magnitudes of [Tmin(time2) − Tmin(time1)].

This empirical approach might have overestimated the number 
of years with cold events before DLCO (hereafter, these identified 
events are referred to as possible cold events), but our objective 
here was to exclude as many cold events as possible, then to ex-
amine whether the main findings of our study were caused by cold 
events. In addition, under clear skies, the temperature of the canopy 
surface could be lower than the air temperature; therefore, we also 
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determined the possible cold events by using 2°C as the Tmin thresh-
old (Körner, 2021).

Here, the daily Tmin used to determine possible cold events for 
satellite-derived DLCO was extracted from the CRU-NCEP v.7.2 data-
set. Daily Tmin for ground-based observations in China was derived 
from the nearest meteorological station (<25 km), provided by the 
Chinese Meteorological Administration. Daily Tmin for DPDO was 
calculated from the half-hourly temperature dataset provided by 
FLUXNET2015.

3  |  RESULTS

3.1  |  Comparison of satellite DLCO with 
PhenoCam DLCO

The satellite DLCO explained >80% of the variations in PhenoCam-
derived DLCO (n  =  378 and 377 for GCC and VCI, respectively; 
Figure  2). The differences between the satellite-derived DLCO 
and the PhenoCam-derived DLCO are caused by the mismatch be-
tween the annual NDVI and GCC (or VCI) trajectories owing to 
the difference in spatial coverage between the PhenoCam and 
satellite pixels in the case of phenologically heterogeneous land 
surface (see Supporting Information Supplementary Methods 
Section 2).

3.2  |  Proportion of possible cold events before 
DLCO (or DPDO)

Possible cold events occurred before DLCO or DPDO in very small 
fractions of pixel-years/site-years with phenological data (1.6, 1.7 
and .6% for satellite-derived DLCO, ground-based observations in 
China, and DPDO from eddy-covariance sites, respectively; Table 1). 
The proportion of years possibly affected by cold events was slightly 
higher when using the method based on a temperature threshold of 
2°C than that of 0°C.

3.3  |  Temporal trends in DLCO and the advanced 
stages of leaf coloration

DLCO was not significantly delayed in 94% of the area during the 
study period, as assessed by OLSR. The few pixels with a significant 
delay trend (6%; p < .05, t test) were scattered across the Northern 
Hemisphere (Figure 3a). Excluding years with possible cold events 
before DLCO produced similar results (Supporting Information Figure 
S3; Table S4). The Theil–Sen estimator generated results support-
ing the lack of changes in DLCO (no significant delay in 96% of the 
area; p < .05, Mann–Kendall test; Supporting Information Figure S4a; 
Table S5). When we defined DLCO as the inflection point at which 
NDVI begins to decline, we obtained similar results (Supporting 
Information Figure S4b,c). Considering early summer NDVI decline 
produced similar results (Supporting Information Figures S5–S7).

Complementary to satellite-derived DLCO, we also examined the 
temporal changes of DLCO by using ground-based leaf coloration 
data from China. DLCO was not significantly delayed for 90 and 94% 
of the 332 time series as shown by OLSR (Figure 3b) and the Theil–
Sen method (Supporting Information Table S5), respectively. Similar 
results were produced when possible cold events were excluded 
(Supporting Information Table S4).

The timings of earlier stages of leaf coloration exhibited delay-
ing trends in fewer areas. The leaf coloration stages determined as 
the dates when NDVI decreases by 50% (i.e., DLCE), 40, 30, 20 and 
10% (i.e., DLCO) were significantly (p < .05, t  test) delayed for 14, 
14, 12, 9 and 6% of the area, respectively (Supporting Information 
Figure S8).

3.4  |  Correlation between DLCO and temperature or 
precipitation

DLCO was not consistently correlated with pre-DLCO Tmin, with only 9% 
of the area in scattered pixels showing a significant positive correla-
tion and 5% showing a significant negative correlation (Figure 4a). 
DLCO was positively correlated with pre-DLCO total precipitation in 

F I G U R E  2  Comparison between satellite timing of the onset of leaf coloration in autumn (DLCO) and PhenoCam-derived DLCO. The 
PhenoCam-derived DLCO was determined from the green chromatic coordinate (GCC; a) and vegetation contrast index (VCI; b), respectively. 
AAD = average absolute difference; bias is defined as the difference between the mean of satellite-derived DLCO and the mean of 
PhenoCam-derived DLCO, and negative bias means that the PhenoCam-derived DLCO is earlier than satellite-derived DLCO; R = Pearson's 
correlation coefficient; RMSE = root mean square error.

 14668238, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13581 by U

niversité de V
ersailles-Saint-Q

uentin-en-Y
velines, W

iley O
nline L

ibrary on [06/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  2305JIANG et al.

13% of the area, mainly in the temperate grassland of North America 
and in the middle latitudes of Eurasia, sub-arctic grassland, and al-
pine steppe of the Tibetan Plateau (Supporting Information Figure 
S9). Therefore, neither pre-DLCO Tmin nor precipitation was a useful 
predictor of DLCO in most areas. We obtained similar results when 
using the month preceding DLCO (Supporting Information Figure 
S10) or 15 days preceding DLCO (Supporting Information Figure S11) 
as the pre-DLCO period, with only 6 and 5%, respectively, of the area 
showing a significant positive correlation between DLCO and pre-
DLCO Tmin. We also investigated the relationship between DLCO and 
the lowest daily minimum temperature during the 15 days before the 
multiyear mean DLCO, and only 3% of the area showed a significant 
positive correlation (Supporting Information Figure S12). Moreover, 
including the date of onset of green-up as an extra control variable in 
the partial correlation analyses did not affect the results (Supporting 
Information Figure S13). The in situ phenological records in China 
indicated that ground-observed DLCO was positively correlated with 
pre-DLCO Tmin for 13% of the time series and was not correlated with 
pre-DLCO Tmin for 82% of the time series (Table 2). Excluding DLCO 
possibly caused by cold events produced similar results (Supporting 
Information Figure S14; Table S6). Overall, these results suggest that 
an increase in pre-DLCO Tmin is not likely to delay DLCO in most areas 
in the middle and high northern latitudes.

3.5  |  Impacts of temperature on the progress of 
leaf coloration

We first examined whether the timings of earlier stages of leaf col-
oration are less closely related to temperature than later stages. The 
fact that the earlier stages of leaf coloration had fewer areas with a 
significantly delayed trend (Supporting Information Figure S8) is in 
agreement with the finding that the significantly positive correla-
tions between the timings of earlier stages of leaf coloration and 
Tmin were observed in fewer areas (Figure  4c). The timings of leaf 
coloration stage corresponding to NDVI decreases by 40, 30, 20 and 

10% (i.e., DLCO) exhibited a significant positive correlation with Tmin in 
30, 25, 17 and 9% of the area, respectively (Figure 4a,c; Supporting 
Information Figure S15). In particular, DLCE exhibited a significant 

TA B L E  1  Proportions of years with possible cold events before 
DLCO (for satellite and in situ observations) and before DPDO (for 
FLUXNET2015)

Metrics
Satellite DLCO 
(2000–2016)

In situ DLCO 
China

FLUXNET2015 
DPDO

Proportion (%) of years 
with possible cold 
events (0°C)

1.6 1.7 .6

Proportion (%) of years 
with possible cold 
events (2°C)

2.1 3.5 1.0

Note: Possible cold events were determined mainly by using a 
threshold-based method with a daily minimum temperature of 0 or 2°C 
(for identification of possible cold events, see Section 2.4.5).
Abbreviations: DLCO, timing of onset of leaf coloration in autumn; DPDO, 
timing of onset of the decrease in maximum canopy photosynthetic 
capacity in autumn.

F I G U R E  3  Temporal trends in the timing of the onset of 
leaf coloration (DLCO), as retrieved from satellite and in situ 
observations. (a) Satellite-derived DLCO trends over 2000–2018. 
The bar chart in the bottom-left corner shows the percentage of 
area within each interval of the significant temporal trends and 
the percentage of area with non-significant trends, indicated by 
the colour scale at the bottom. Positive and negative trend values 
refer to significantly delayed and advanced DLCO, respectively. DLCO 
corresponds to a 10% decrease in normalized difference vegetation 
index. (b) Ground-observed DLCO trends derived over 1971–1997 
from observations of in situ leaf coloration in China. Significant 
temporal trends were determined using t tests at p < .05 and 
ordinary least squares regression.
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positive correlation with pre-DLCE Tmin in 34% of the area (Figure 4b), 
substantially more than that for the DLCO–Tmin correlations (9%; 
Figure 4a). The proportion increased to 38 and 41% for the timings 
of leaf coloration stage corresponding to a 60 and 90% decrease in 
NDVI, respectively (Supporting Information Figure S16).

These results show decreasing correlations with temperature of 
earlier stages of leaf senescence. To verify this, we examined the 
correlation between DPDO, an indicator of leaf senescence earlier 
than DLCO, and pre-DPDO Tmin. DPDO and pre-DPDO Tmin exhibited a 
less positive correlation than NDVI-derived DLCO and pre-DLCO Tmin 
at the same sites during the same periods (3 and 6% of the sites 
for DPDO and DLCO, respectively; Supporting Information Table S7). 
Among all the eddy-covariance towers, DLCO exhibited a significant 
positive correlation with pre-DLCO Tmin in 3% of the 36 and was not 
correlated with pre-DPDO Tmin in 89% of the eddy-covariance records 
(Table 2). Moreover, excluding DPDO possibly caused by cold events 
produced similar results (Supporting Information Table S6).

We then examined whether DLCO is less sensitive to temperature 
than DLCE. In most regions (66%) of the middle and high northern lat-
itudes, the temperature sensitivity of DLCO was less than that of DLCE 
(Figure 4d). The temperature sensitivity of DLCO was less than DLCE 
by ≥4 days/°C in 39% of the study area, mainly in northern Europe, 
the eastern USA, eastern Canada and western Russia. In 14% of the 
area, the temperature sensitivity of DLCO was >4 days/°C greater 
than DLCE, mainly distributed in the Tibetan Plateau, western North 
America, areas in Europe near 60° N, northern Kazakhstan, and be-
tween 45 and 65° N in Russia.

As can be expected from the lower temperature sensitivity of 
DLCO relative to that of DLCE, warming could extend the duration of 
leaf coloration in 71% of the area (Figure 4e). In 42% of the area, 
the temperature sensitivity of the duration of leaf coloration was 
>3 days/°C, mainly in Russia, eastern North America and northern 
Europe. The area with a temperature sensitivity <−3 days/°C ac-
counted for 11% of the study area, scattered in the Tibetan Plateau, 
central USA, western North America, between 45 and 60°  N in 
Europe, northern Kazakhstan and south-eastern Russia.

Moreover, warming could slow the progress of leaf coloration. 
In 69% of the area, the speed of leaf coloration could be reduced 
by higher temperature (Figure 4f), particularly in the region north of 

60°  N. The temperature sensitivity of the speed of leaf coloration 
was <−1‰/day/°C in 34% of the study area (negative values of tem-
perature sensitivity indicate that warming reduces the speed of leaf 
coloration), mainly in eastern and northern Canada, northern Europe 
and northern Russia. Only 13% of the area showed a large increase 
in the speed of leaf coloration under increasing temperature (>1‰/
day/°C), scattered in Mongolia, the Tibetan Plateau, western Canada, 
central and western USA, and central and south-eastern Russia.

When considering early summer NDVI decline, we also found 
that more advanced stages of leaf coloration were more responsive 
to temperature (Supporting Information Figures S17c,d and S18c,d), 
and that warming could slow the progress of coloration (Supporting 
Information Figures S17f and S18f) and extend the duration of leaf 
coloration (Supporting Information Figures S17e and S18e).

3.6  |  Dependence of DLCO on daylength

We attempted to explore the dependence of DLCO on daylength 
by examining the variabilities in the correlation between DLCO and 
Tmin and in temporal changes in DLCO against the spatial gradient of 
daylength. In the areas with longer daylengths at multiyear mean 
DLCO, there were proportionally fewer significant DLCO delays during 
2000–2018 (Figure 5a; Supporting Information Figure S19a), and the 
positive relationship between DLCO and pre-DLCO Tmin was slightly 
weaker, as indicated by the lower partial correlation coefficient be-
tween them (Figure  5d). Such patterns were more prominent for 
woody vegetation than for herbaceous vegetation (Figure 5b,c,e,f; 
Supporting Information Figure S19b,c). For vegetation with a day-
length at DLCO of >13.5 h, DLCO was more positively correlated with 
pre-DLCO Tmin in colder areas at a given daylength (Figure  5d–f). 
The dependences of DLCO trends on daylength and of the correla-
tion between DLCO and pre-DLCO Tmin on daylength were also found 
when years with possible cold events before DLCO were excluded 
(Supporting Information Figure S20) and when we considered sum-
mer decline in NDVI (Supporting Information Figures S21 and S22). 
The correlation between DLCO and pre-DLCO total precipitation was 
independent of daylength and was slightly stronger for the areas 
with a higher temperature before DLCO, mostly because of the 

F I G U R E  4  Impacts of temperature on the timing of different stages of leaf coloration and on the progress of leaf coloration over the 
period 2000–2018. (a) Spatial pattern of the partial correlation coefficient (RTN) between the onset of leaf coloration [DLCO, 10% decrease 
in normalized difference vegetation index (NDVI)] and pre-DLCO mean daily minimum temperature (Tmin). (b) Spatial pattern of RTN between 
timing of the end of leaf coloration (DLCE, 50% decrease in NDVI) and pre-DLCE Tmin. The bar charts inset in (a) and (b) show the percentage 
of area for each interval of the partial correlation coefficient (p < .05), with the coefficient indicated by the colour scale on the right. Non-
significant correlations (p > .05) are in grey. (c) Percentage of area for which RTN between the timing of a given stage of leaf coloration and 
preceding Tmin is higher than a given threshold indicated by the horizontal axis. For example, RTN for the onset of leaf coloration is >.2 in 
c. 40% of the area. (d) Difference in temperature sensitivity between DLCE and DLCO. Positive values indicate that DLCE is more sensitive to 
temperature than DLCO, whereas negative values indicate that DLCO is more sensitive to temperature than DLCE. (e) Temperature sensitivity 
of the duration of leaf coloration. Positive values indicate that warming extends the duration of leaf coloration, whereas negative values 
indicate that warming shortens the leaf coloration duration. (f) Temperature sensitivity of the speed of leaf coloration. Positive values 
indicate that warming increases the speed of leaf coloration, whereas negative values indicate that warming reduces the speed of leaf 
coloration. The bar charts inset in (d–f) show the percentage of area for each interval of the temperature sensitivity indicated by the colour 
scale on the right.
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TA B L E  2  Percentage of correlations between DLCO or DPDO and each climate factor for each interval of the partial correlation coefficient

Metric
Number of 
time series Climate factor

Interval of the partial correlation coefficient (p < .05)

p > .05(−1.0, −.8) (−.8, −.6) (−.6, 0) (0, .6) (.6, .8) (.8, 1.0)

In situ DLCO China 332 Temperature 0 2 3 4 8 1 82

Precipitation 0 3 3 4 5 0 85

FLUXNET2015 DPDO 36 Temperature 0 5 3 0 3 0 89

Precipitation 0 6 0 8 3 5 78

Note: The data in the rightmost column indicate the percentages of area or time series with non-significant correlations.
Abbreviations: DLCO, timing of the onset of leaf coloration in autumn; DPDO, timing of the onset of the decrease in maximum canopy photosynthetic 
capacity in autumn.

F I G U R E  5  Dependence of temporal trends in the timing of the onset of leaf coloration [DLCO, 10% decrease in normalized difference 
vegetation index (NDVI); a–c] and of the partial correlation coefficient (RTN; d–f) between DLCO and pre-DLCO mean daily minimum 
temperature (Tmin) on daylength and temperature over the period 2000–2018. (a) All vegetation. Colour indicates the percentage of area 
with significant (p < .05) DLCO delays in each cell (i.e., a specific temperature × daylength combination), as indicated in the scale at the 
bottom. The number in each cell indicates the ratio (unit: ‰) of the area in each cell to the total area with DLCO retrieval. The temporal 
trends and their significances were determined with ordinary least squares regression and t tests. (b,c) The same as (a), but for woody and 
herbaceous vegetation, respectively. (d) All vegetation. Colour indicates the average of the positive RTN, as indicated in the scale at the 
bottom. The number in each cell indicates the percentage of area with a positive correlation in each cell. (e,f) The same as (d), but for woody 
and herbaceous vegetation, respectively. Only cells where the ratio of the area of the cell to the total area is >1‰ are represented.
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stronger effect of precipitation in delaying DLCO in herbaceous veg-
etation (Supporting Information Figures S9 and S23).

4  |  DISCUSSION

In previous analyses of in situ and satellite observations (Garonna 
et al., 2014; Gill et al., 2015; Liu et al., 2016), the advanced stage of 
autumnal leaf senescence, indicated by DLCE, was significantly de-
layed in a larger proportion of areas, or time series, than was DLCO in 
our study. In the present study, DLCE was also significantly delayed in 
more areas than DLCO (Supporting Information Figure S8), probably 
because the timings of the earlier stages of leaf coloration deter-
mined from satellite data were less affected by Tmin than the later 
stages (Figure 4a–c; Supporting Information Figure S15). Evidence 
for photoperiodic control of the start of leaf senescence (Fracheboud 
et al., 2009; Keskitalo et al., 2005) suggests that the early phases of 
leaf senescence are insensitive to warming, in contrast to the later 
phases. Given that the degradation of chlorophyll starts earlier than 
leaf coloration (Lim et al., 2007; Tang et al., 2016), the timing of au-
tumnal phenological metrics that closely follow chlorophyll degra-
dation before DLCO should be less delayed by temperature increase 
than DLCO if chlorophyll degradation is triggered by the photoperiod. 
In our analysis, we verified that DPDO was less positively correlated 
with temperature than DLCO (Supporting Information Table S7), prob-
ably because the start of autumnal chlorophyll degradation was con-
trolled by photoperiod and was not delayed by higher temperature 
(Bauerle et al., 2012; Fracheboud et al., 2009; Keskitalo et al., 2005).

Overall, our results suggest that temperature does not initi-
ate senescence in autumn in most areas; instead, it influences the 
speed of change in coloration after it starts (Figure 4f) (Fracheboud 
et al., 2009). The lack of a positive correlation between DLCO (or DPDO) 
and pre-DLCO (or pre-DPDO) temperature suggests an overriding photo-
periodic control that makes the timing of the onset of leaf senescence 
stable. In the areas with longer daylengths (calculated for each pixel/
location at multiyear mean DLCO over 2000–2018), there were propor-
tionally fewer significant DLCO delays during 2000–2018 (Figure 5a; 
Supporting Information Figure S19a), and the positive relationship be-
tween DLCO and pre-DLCO Tmin was slightly weaker, as indicated by the 
smaller partial correlation coefficient between them (Figure 5d). Such 
dependences on daylength were more prominent for woody vege-
tation than for herbaceous vegetation (Figure  5b,c,e,f; Supporting 
Information Figure S19b,c), in agreement with experimental findings 
suggesting that the initiation of leaf senescence in woody plants 
is likely to be controlled by photoperiod (Fracheboud et al.,  2009; 
Keskitalo et al.,  2005). These findings indicate stronger photoperi-
odic control in areas where daylength at DLCO is longer (i.e., shorter 
nights), possibly because plants respond to the duration of uninter-
rupted darkness rather than daylength (Borthwick & Hendricks, 1960; 
Hamner,  1940; Howe et al.,  1995; Paus et al.,  1986). Interestingly, 
for vegetation with a daylength at DLCO of >13.5 h, DLCO was more 
positively correlated with pre-DLCO Tmin in colder areas (Figure  5d–
f), indicating a stronger effect of temperature in areas with harsh 

temperature conditions, consistent with experimental studies (Ford 
et al., 2017; Zohner et al., 2016). Therefore, although for these types 
of vegetation the correlation between DLCO and temperature is weak, 
probably because of stronger photoperiodic control, there is still a sig-
nal of temperature influence on DLCO, reflecting a stronger selection 
pressure in harsher temperature environments.

Although observational evidence is limited, experimental results 
have been reported for the photoperiodic induction of leaf senes-
cence in several, mostly woody, species (Supporting Information 
Table S1). However, in those manipulative experiments, daylength 
was altered by several hours (>4  h; Supporting Information Table 
S1), which is more extreme than the natural conditions plants are 
likely to experience. Daylength depends only on the day of year and 
location. Owing to the interannual limited variations in the timings of 
leaf coloration or senescence onset, the fluctuation in daylength in 
natural conditions is far less than that in manipulative experiments. 
Therefore, the role of photoperiod in leaf senescence identified in 
such experimental conditions does not necessarily apply to plants in 
natural conditions. The results in the present study support exper-
imental findings in wild plants at the biome and continental scales 
and show that photoperiod influences the onset of leaf coloration, 
which closely follows the initiation of leaf senescence.

Autumnal leaf senescence in preparation for overwintering 
is an evolutionary trade-off between the re-allocation of leaf nu-
trients before leaf shed to reduce the risk of frost damage and the 
assimilation of carbon (Estiarte & Peñuelas,  2015). The response 
of leaf senescence to an increase in temperature in autumn influ-
ences this trade-off. The absence of delays over time in the onset 
of leaf coloration and in the onset of decrease in maximum can-
opy photosynthetic capacity in response to climate warming, as 
observed in our study, might limit the detrimental effects of frost 
in autumn (Liu et al., 2018) and might also have limited impacts on 
the start of the remobilization and resorption of nutrients (Estiarte 
& Peñuelas, 2015). The slower rate of progress of leaf senescence 
(Figure  4f) and extended duration of leaf coloration (Figure  4e) 
under warming might increase the efficiency of nitrogen resorption 
(Rennenberg et al., 2010) and increase the vegetation greenness in 
this period, which will modify the surface energy balance through 
biophysical processes (Shen et al.,  2015). The extended period of 
leaf coloration might also prolong the plant transpiration time and 
increase soil water consumption. The impact of autumn warming 
on net ecosystem productivity is dual, increasing both respiratory 
flux to the atmosphere (Piao et al., 2008) and forest gross primary 
photosynthesis (Keenan et al.,  2014). The relatively static onset 
date of leaf coloration and its weak response to temperature would 
preclude the vegetation from fully using the potential increase in 
CO2 assimilation in early autumn induced by warming (Stinziano & 
Way, 2017). Combined with a delay in the end of the season and an 
increase in respiration attributable to warming, this suggests that 
additional warming will probably not result in a continuous increase 
in autumn CO2 assimilation.

In summary, satellite NDVI time series and ground-based phe-
nological observations indicated no significant delay in the start of 
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autumnal leaf coloration for most areas covered by natural vegetation 
over middle and high northern latitudes. Neither pre-DLCO tempera-
ture nor pre-DLCO precipitation significantly affected the interannual 
variations of the start of leaf coloration in most areas, indicating that 
the start of leaf senescence is triggered by photoperiod. Interestingly, 
there was a weaker positive correlation between the start of autum-
nal leaf coloration and pre-DLCO Tmin for vegetation in regions with 
longer daylength, indicating strong photoperiodic control of the start 
of leaf senescence. For vegetation with a given daylength at DLCO 
>13.5 h, the positive correlation between DLCO and pre-DLCO Tmin was 
slightly stronger in colder areas, suggesting that there is strong selec-
tion pressure in harsher temperature environments on the timing of 
leaf coloration onset, and that autumn warming could have a stronger 
delaying effect on leaf coloration onset in colder areas than in warmer 
areas. This study suggests that autumnal warming will not change the 
start date of leaf senescence, but it might slow the rate of senes-
cence. A slower senescence speed might extend the period of senes-
cence and provide more time to re-allocate nutrients and prepare for 
overwintering. Such changes could substantially affect carbon and 
nutrient cycles. Our study provides a foundation for understanding 
the complex relationships among nutrient cycling, vegetation growth, 
energy exchange and climate change in autumn in temperate and bo-
real regions dominated by winter deciduous vegetation.
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