

Modeling Topological Relations between Uncertain Spatial Regions in Geo-spatial Databases: Uncertain Intersection and Difference Topological Model

Ahed Alboody, Florence Sèdes, Jordi Inglada

▶ To cite this version:

Ahed Alboody, Florence Sèdes, Jordi Inglada. Modeling Topological Relations between Uncertain Spatial Regions in Geo-spatial Databases: Uncertain Intersection and Difference Topological Model. 2nd International Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA.2010), Apr 2010, Les Menuires, France. pp.56-68, 10.1109/DBKDA.2010.28. hal-03763194

HAL Id: hal-03763194 https://hal.science/hal-03763194v1

Submitted on 30 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modeling Topological Relations between Uncertain Spatial Regions in Geo-Spatial Databases: Uncertain Intersection and Difference Topological Model

Ahed Alboody Université Paul Sabatier (UPS) 118 Route de Narbonne F-31062-CEDEX 9 Toulouse, France albahed@yahoo.fr Florence Sedes IRIT, UPS 118 Route de Narbonne F-31062-CEDEX 9 Toulouse, France Florence.Sedes@irit.fr Jordi Inglada Centre National d'Etudes Spatiales 18 Avenue Edouard Belin 31401- CEDEX 9 Toulouse, France jordi.inglada@cnes.fr

Abstract— Topological relations have played important roles in spatial query, analysis and reasoning in Geographic Information Systems (GIS) and geospatial databases. The topological relations between crisp, uncertain and fuzzy spatial regions based upon the 9-intersections model have been identified. The research issue of topological relations, particularly, between spatial regions with uncertainties, has gained a lot of attention during the past two decades. However, the formal representation and calculation of the topological relations between uncertain regions is still an open issue and needs to be further developed. The paper provides a theoretical framework for modeling topological relations between uncertain spatial regions based upon a new uncertain topological model called the Uncertain Intersection and Difference (UID) Model. In order to derive all topological relations between two spatial regions with uncertainties, the spatial object of type Region (A) is decomposed in four components: the Interior, the Interior's Boundary, the Object's Boundary, and the Exterior's Boundary of A. By use of this definition of spatial region with uncertainties, new 4*4-Intersection and Uncertain Intersection and Difference (UID) models are proposed as a qualitative model for the identification of all topological relations between two spatial regions with uncertainties. These two new models are compared with other models studied in the literature. 152 binary topological relations can be identified by these two models. Then, the topological complexity and distance of the 152 relations will be study in details by using the UID model. Based upon this study of topological complexity and distance, a conceptual neighborhood graph for the 152 relations can be obtained. Examples are provided to illustrate the utility of these two models presented in this paper with results which can be applied for modeling GIS, geospatial databases and satellite image processing.

Keywords-component; Uncertain Intersection and Difference Model; 4*4-Intersection Matrix; Uncertain Spatial Regions; Topological Relations; Geospatial Database, GIS

I.INTRODUCTION

Topological relations have an important significance in GIS modelling since they are the basis for spatial modelling, spatial query, analysis and reasoning. How to identify the topological relations between spatial objects is a critical point in GIS modelling.

DOI 10.1109/DBKDA.2010.28

During recent years, topological relations have been much investigated in the crisp and fuzzy topological space. The well-known 4-intersection approach described in [1] [2], as well as the 9-intersection approach as discussed in [3], and the Intersection and Difference (ID) model studied in [4][5][6], were proposed to formalize topological relations between two simple regions in the Crisp Topological Space (CTS). The 4-intersection model is extended in [7] to deal with the topological relations between spatial objects with holes. Fig. 1 represents the closure, interior and boundary of a closed disk as crisp spatial regions as in [1][2][3][4][5] [6]. Eight topological relations of the system (Region Connection Calculus) RCC8 (DC, EC, PO, TPP, NTPP, TPPi, NTPPi, and EQ) have been identified between two simple regions by using these models in [1] [2] [3] [4] [5] [6].

Figure 1. Closure, Interior and Boundary of a Crisp Spatial Region

Geographical phenomena in GIS with *uncertain* boundaries can be modelled by *Regions with Broad* Boundaries (BBRs) as in [8]. A region with broad boundary is an extension of a region with a crisp boundary (refer to simple regions with holes as in [7]). Objects with broad boundaries as defined in [8] are spatial objects, whose crisp boundaries are replaced by an area expressing the boundary's uncertainty. The 9-intersection model is extended in [9] to describe topological relations between BBRs by replacing the crisp boundary in the 9-intersection with the broad boundary. Using this model, 44 relations between two regions by using the 3*3-intersection matrix are possible. For composite regions with broad boundaries, there are 14 additional topological relations [8]. Fig. 2 represents a region with broad boundary.

Figure 2. Region with a Broad Boundary (BBR)

Another method called 4-tuple representation of topological relations between *BBRs* is used in [10] to infer new topological information. The 4-tuple representation can distinguish the same topological relations as identified by the

extended 9-intersection. The 4-tuple, however, can be applied to the reasoning of topological relations between *BBRs* [10], because it uses the composition of topological relations between crisp regions to determine those between *uncertain* and *vague* regions.

More recently fuzzy spatial objects have been emphasized since there are spatial features which are not always crisp. Fuzzy spatial objects are those with indeterminate boundaries and uncertain spatial objects. For fuzzy boundaries, that is, boundaries that are by nature not crisp, the broad boundary represents their minimum and maximum extent. In order to derive the topological relations between fuzzy spatial objects, the 9-intersection approach was updated into the 3*3-intersection approach in the fuzzy topological space [11] [12]. Furthermore, in these two works, a 4*4-intersection matrix was built up by using the topological properties of fuzzy sets, and then a 5*5intersection matrix can be built up based on certain conditions. The 3*3-intersection matrix in [13] [14] is derived based on the interior, boundary, and exterior of a simple fuzzy spatial region. By use of 9-intersection matrix, 44 topological relations are identified between two simple fuzzy regions (See Appendix 1. in [14]). Fig. 3 represents a region with indeterminate and uncertain boundary as simple fuzzy spatial region.

Figure 3. Two Fuzzy Spatial Regions with Uncertain Boundaries

In [14], it was shown that fuzzy spatial regions can be decomposed into four parts: the *interior*, the *boundary* of the *boundary* $\partial(\partial A)$, the *interior* of the *boundary* $(\partial A)^{\circ}$ and the *exterior*, which are mutually *disjoint* as in Fig. 4.

Figure 4. Interior, Boundary, Interior of the Boundary and Boundary of the Boundary of a Simple Fuzzy Region with Indeterminate and Uncertain Boundary (After X. Tang and W. Kainz in [14])

After investigation about the topological relations between *two regions with uncertain boundaries* compared with these models studied in the literature, we can see that some topological relations can't be identified by these models. Here are some relations presented in Fig. 5.

Figure 5. Some of Topological Relations to Identify

The question is how many topological relations there are exactly between *two regions with uncertain boundaries*? To answer this question, we will extend the *4-intersection* and the *ID models* with a new definition of the *uncertain boundary* for *regions with uncertainties*.

The disadvantage of the 3*3-intersection and 4*4intersection models is that the intersection operator (\cap) is the most expensive one in terms of computation. In order to reduce the computational cost of the 3*3-intersection and 4*4-intersection models; and to reduce the computational complexity by avoiding spatial operations between topological components with different dimensions (**1-D** and **2-D**), we will try to reduce the number of intersections by introducing the difference operator (-).

Finally, the motivation of the paper is trying to build a complet topological model for identification of all topological relations between two spatial regions with uncertainties. This paper is also an extension of our work in [15] about the topological relations between fuzzy regions.

The structure of the paper is as follows: The definition of the uncertain spatial region is presented in Section II. The novel major contribution of our study, proposed in Section III, is a new form of 4*4- intersection model and the Uncertain Intersection and Difference (UID) model. Section IV shows the identification of topological relations between two uncertain spatial regions by using two models (4*4intersections and UID) based on empty/non-empty contents. 152 topological relations can be identified by these two models. In Sections V and VI, the topological complexity and topological distance of the 152 topological relations will be study in details by using the UID model. Based upon this study of topological complexity and topological distance, a conceptual neighborhood graph for the 152 binary topological relations can be obtained in Section VII. We present some application and the utility of this model in GIS and satellite image processing in Section VIII. We end with a discussion about results and a conclusion.

II.DEFINITION OF UCERTAIN SPATION REGION AND BOUNDARY PROPERTIES

In this section, we will develop a definition of spatial regions with uncertainties which is different from other definitions in the litteraure. Then, we summarize the properties of the boundary of an uncertain spatial region. This definition of spatial regions with uncertainties is taken as in our paper [15] for fuzzy spatial region.

A. Definition of Uncertain Spatial Region

Uncertain spatial region (A) is made up of two regions A_1 and A_2 with A_1 and A_2 $A_1 \subset A_2$ (see Fig. 6), where: (1) the *interior* of A is the *interior* of A_1 $A^{\circ} = (A_1)^{\circ}$ and A° is an open subset and connected; (2) the *interior's boundary* of A is the *boundary* of A_1 as $A^{i} = \partial(A^{\circ}) = \partial A_1$, and A^{i} is a closed subset and connected; (3) the *boundary* of A is ∂A defined as the *interior* of the *difference* between A_1 and A_2 as $\partial A = (A_2 - A_1)^{\circ}$, and ∂A is an open subset and connected; (4) the *exterior's boundary* of A is the *boundary* of A is the *boundary* of ∂A_2 as $A^{\circ} = \partial^{\circ}(\partial A) = \partial A_2$, and A° is a closed subset and connected; (5) the intersection of all closed sets

containing A is called the *closure of* A, denoted by A^- . Fig. 6 shows the four components of *an uncertin spatial region*.

This definition is considered as the decomposition of the *boundary* in [14][16][17] into *disjoint* subsets such as the *interior boundary*, the *exterior boundary* and the *interior* of the *boundary* with condition that is the *interior* of the *boundary* couldn't be a *non-empty set*.

We called the *boundary* (∂A) of A by the *uncertain boundary*. This definition of *uncertain spatial regions* is very interesting to identify all topological relations between two uncertain spatial regions that other models [8] [9] [14] can't identify. We will prove that in the next section by developing a 4*4-intersection matrix. In the next part, we will define the properties of the *uncertain boundary*.

Figure 6. Interior, Boundary, Interior's Boundary, and Exterior's Boundary of an Uncertain Spatial Region

B. Properties of Uncertain Boundary

Based on the definition of uncertain spatial regions as in [15], we find the properties of the *uncertain boundary* (∂A) as follows: (1) ∂A is an open subset of A; (2) $\partial A = \neg \emptyset$ is a *non-empty* subset; (3) the *boundary* of A (∂A) is the *interior* of the *difference* $\partial A = (A^e - A^i)^e$ between the *exterior's boundary* (A^e) and the *interior's boundary* (A^i) of A; (4) the union $A^i \cup \partial A \cup A^e$ of the *interior's boundary* (A^e) of A is a closed subset of A; (5) the *interior boundary* of the *boundary* (∂A) and the *exterior's boundary* (A^e) of A is a closed subset of A; (5) the *interior boundary* of the *boundary* (∂A) of $A = \partial^i (\partial A) = A^i = \partial (A^e)$ is the *interior's boundary* (∂A) of $A = \partial^i (\partial A) = A^i = \partial (A^e)$ is the *interior's boundary* (∂A) of $A = \partial^i (\partial A) = A^i = \partial (A^e)$ is the *interior's boundary* (∂A) of $A = \partial^e (A)$ is the *exterior's boundary* (A^e).

We also find that the intersections between A^o , A^i , ∂A , A^e are, respectively, always empty, and the union of these parts is equal to A as follows: $A^\circ \cap A^i = \emptyset$; $A^i \cap \partial A = \emptyset$; $\partial A \cap A^e = \emptyset$; $A^\circ \cap A^i \cap \partial A \cap A^e = \emptyset$; and $A^\circ \cup A^i \cup \partial A \cup A^e = A$.

It also can be easily proven by the above intersections that the *interior* (A^{o}) , the *interior's boundary* (A^{i}) , the *boundary* ∂A and the *exterior's boundary* (A^{e}) of uncertain spatial region (A) are *mutually disjoint*.

In order to identify all possible topological relations, the condition of the mutual disjointness of these four parts of uncertain spatial regions is important to propose and construct a new method to form the intersection matrix. In the next section, a *new 4*4-intersection matrix* and *uncertain intersection and difference model* are proposed based upon this definition of uncertain spatial region. These two models

are founded for topological relations between fuzzy regions in our work [15].

III.CONTRIBUTIONS: 4*4 - INTERSECTION AND UNCERTAIN INTERSECTION AND DIFFERENCE (UID) MODELS

In this section, we will develop two models to identify the topological relations between two spatial regions with uncertainties. Supposing there are two uncertain spatial regions *A* and *B*, we adopt the *interior*, *boundary*, *interior*'s *boundary*, and *exterior*'s *boundary* to formalize two new topological models as in the two next parts.

A. Contribution 1: 4*4 - Intersection Model (I_{4*4})

In the first contribution, the first model is a *new* 4*4-*intersection matrix* which uses the *operator* (\cap) of *intersection*. Between these two uncertain spatial regions A and B, the 4*4-*intersection matrix* will be presented in Table I, as similar as to the building of the topological models 4-*Intersection, 9-Intersection,* and the *ID* model in [1] [2] [3] [4] [5] [6] [7] [8].

Table I. 4*4 - INTERSECTION MATRIX

\cap	B°	Bi	∂B	B ^e
A°	A°∩ B°	$A^{\circ} \cap B^{i}$	A°∩ ∂B	$A^{\circ} \cap B^{e}$
Ai	$A^i \cap B^\circ$	$A^i \cap B^i$	$A^i \cap \partial B$	$A^i \cap B^e$
∂A	∂A∩B°	$\partial A \cap B^i$	∂A ∩∂B	$\partial A\cap B^e$
A ^e	$A^e \cap B^\circ$	$A^e \cap B^i$	$A^e\cap \partial B$	$A^e \cap B^e$

And the *4*4-inetrsection model* applied to uncertain spatial regions is expressed by the following expression:

$$I_{4*4}(A,B) = \begin{bmatrix} A^{\circ} \cap B^{\circ} & A^{\circ} \cap B^{i} & A^{\circ} \cap \partial B & A^{\circ} \cap B^{e} \\ A^{i} \cap B^{\circ} & A^{i} \cap B^{i} & A^{i} \cap \partial B & A^{i} \cap B^{e} \\ \partial A \cap B^{\circ} & \partial A \cap B^{i} & \partial A \cap \partial B & \partial A \cap B^{e} \\ A^{e} \cap B^{\circ} & A^{e} \cap B^{i} & A^{e} \cap \partial B & A^{e} \cap B^{e} \end{bmatrix}$$
(1)

This *new* 4*4- *intersection matrix* (I_{4*4}) given by (1) is considered as an extension of the 4-*intersection model* [1] [2] [15] for uncertain spatial regions. This model is developed for fuzzy regions in our study [15].

The *intersection operator* (\cap) is perhaps the most expensive one in terms of computation. In order to reduce the computational cost of this 4*4-intersection model, we will extend this model to the *uncertain intersection and difference model* in the next part.

B. Contribution 2: Uncertain Intersection and Difference (UID) Model

In this model, we will introduce the *difference operator* (-). In order to avoid spatial operations between topological components with different dimensions $(A^{\circ}, B^{\circ}, \partial A, \partial B \text{ as } 2-D;$ and $A^{i}, B^{i}, A^{e}, B^{e}$ as 1-D), we will replace the intersection between the terms $A^{\circ} \cap B^{i}, A^{\circ} \cap B^{e}, A^{i} \cap B^{\circ}, A^{i} \cap \partial B, \partial A \cap B^{i}, \partial A \cap B^{e}, A^{e} \cap B^{\circ}$ and $A^{e} \cap \partial B$ in the 4*4-intersection model by the differences as in the matrix (see Table II).

The four intersections $(A^{\circ} \cap B^{\circ}, A^{\circ} \cap \partial B, \partial A \cap B^{\circ}, \partial A \cap \partial B)$ with topological components with dimension **2-D** and the four intersections $(A^{i} \cap B^{i}, A^{i} \cap B^{e}, A^{e} \cap B^{i}, A^{e} \cap B^{e})$ with topological components with dimension **1-D** remain unchanged as similar as in [4] [5] [6] for the *ID model*.

By simplification and arrangement of this 4*4 -Intersection and Difference matrix, we obtain two intersection matrices and two difference matrices (Table III):

\cap	B°	B ⁱ	∂B	B ^e	-
A°	A°∩ B°	A ⁱ - B ⁱ	A°∩ ∂B	A ⁱ - B ^e	A°
A ⁱ	B ⁱ - A ⁱ	$A^i \cap B^i$	B ⁱ - A ⁱ	$A^i \cap B^e$	Ai
			$B^e - A^i$		
∂A	∂A ∩B°	A ^e - B ⁱ	∂A ∩∂B	A ^e - B ^e	∂A
		A ⁱ - B ⁱ		A ⁱ - B ^e	
A ^e	B ⁱ - A ^e	$A^e \cap B^i$	$B^i - A^e$	$A^e \cap B^e$	A ^e
			$B^e - A^e$		

Table II. 4*4 - INTERSECTION AND DIFFERENCE MATRIX

Table III. INTERSECTION AND DIFFERENCE MATRICES

\cap	B°	∂B	\cap	Bi	B ^e
A°	A°∩ B°	A°∩ ∂B	A ⁱ	$A^i \cap B^i$	$A^i \cap B^e$
∂A	∂A ∩B°	$\partial A \cap \partial B$	A ^e	$A^e \cap B^i$	$A^e \cap B^e$
-	A ⁱ	$\mathbf{A}^{\mathbf{e}}$	-	Bi	B ^e
Bi	B ⁱ - A ⁱ	B ⁱ - A ^e	Ai	A ⁱ - B ⁱ	A ⁱ - B ^e
R e	B ^e - A ⁱ	B ^e - A ^e	Ae	$A^e - B^i$	$A^e - B^e$

At the end, the *Uncertain Intersection and Difference* (*UID*) *model* is written as follows:

$$\operatorname{UID}_{4^{*4}}(A,B) = \begin{bmatrix} A^{\circ} \cap B^{\circ} & A^{\circ} \cap \partial B & A^{i} - B^{i} & A^{i} - B^{e} \\ \partial A \cap B^{\circ} & \partial A \cap \partial B & A^{e} - B^{i} & A^{e} - B^{e} \\ A^{i} \cap B^{i} & A^{i} \cap B^{e} & B^{i} - A^{i} & B^{i} - A^{e} \\ A^{e} \cap B^{i} & A^{e} \cap B^{e} & B^{e} - A^{i} & B^{e} - A^{e} \end{bmatrix}$$
(2)

The UID model given by (2) combines two different operators (*intersection and difference*). The UID has two advantages: first, it reduces the computational complexity by avoiding spatial operations between topological components with different dimensions, e.g., $A^{\circ} \cap B^i$, $A^{\circ} \cap B^e$, $A^i \cap B^{\circ}$, A^i $\cap \partial B$, $\partial A \cap B^i$, $\partial A \cap B^e$, $A^e \cap B^{\circ}$ and $A^e \cap \partial B$, with A° , B° , ∂A , ∂B as **2-D**, and A^i , B^i , A^e , B^e as **1-D**; and second, it reduces the computational cost due to only eight intersections in the matrix of UID model.

This *UID* model is considered as an extension of the *ID* model [4] [5] [6] [15] for uncertain spatial regions.

In general, there are $2^{16} = 65536$ relations between two uncertain spatial regions by using the 4*4-intersection matrix and UID model. For GIS applications, some conditions will limit the number of these relations as in [7] [8] [14]. However, how to find all possible topological relations between two uncertain spatial regions needs more investigation. It's done in the next section for the 4*4intersection matrix and UID model.

IV.IDENTIFICATION OF TOPOLOGICAL RELATIONS BASED UPON UID MODEL

For identification by *UID* model, by respecting the definition in section III, we scan all possible configurations for A and B in two different steps as following: (1) If the *exterior's boundary* of A intersects with the *exterior's boundary* of $B(A^e \cap B^e = \neg \emptyset)$, then, we search all possible topological relations between A and B, we find 105 relations; (2) If the *exterior's boundary* of A doesn't intersect with the

exterior's boundary of $B(A^e \cap B^e = \emptyset)$, *then*, we search all topological relations between A and B, we find 47 relations. The *total number* of topological relations identified by *UID* model between A and B is 152 relations (See Appendix). Some of these topological relations are not identified and determined in [8] [9] [14]. We give some examples in Fig.7 and Fig.8.

For each relation identified in the Uncertain Intersection and Difference (UID) Model takes value of either empty (\emptyset) or non-empty ($\neg \emptyset$). For example, The UID matrices correspondent to the relations (7), (8) and (9) in Fig. 7, and to the relations (10), (11) and (12) in Fig. 8 are given, respectively, by:

To find and extract these topological relations by the 4*4-intersection and UID models, we have developed and implemented these two steps on **MATLAB**. In the next section, we will study the topological complexity for UID model.

Comparing between the relations identified in [8] [9] [14] and our models (4*4-intersection and UID), we find that there are 100 new relations which can't be discriminated and identified by other models. These 152 relations identified by UID model are presented in the appendix of this paper.

V.TOPOLOGICAL COMPLEXITY

Intuitively, the complexity of a kind of topological relation corresponds to the number of non-empty value in its *uncertain intersection and difference (UID) model*, because the *non-empty value* may be further differentiated by other *topological invariants* (e.g., *dimension* and *separation number*) [4] [5] [6]. It is hereof natural to define the *topological complexity* denoted by $C_T(UID)$ of the topological relations obtained by the *UID* model as follows:

$$C_{T}(UID) = \sum_{i=1}^{4} \sum_{j=1}^{4} \delta(e_{ij})$$
 (3)

Where e_{ij} $(l \le i, j \le 4)$ is the value of elements in the i^{th} row and j^{th} column of the *uncertain intersection and difference matrix* defined in (3). The symbol $\delta(.)$ is a function of mapping the values of *empty* (\emptyset) and *non-empty*

 $(\neg \emptyset)$ onto the integers θ and 1, which can be represented by the next expression: $\delta(.) = \begin{cases} 1, \text{ When } e_{ij} = \neg \emptyset \\ 0, \text{ When } e_{ij} = \emptyset \end{cases}$ (4)

The topological complexity $C_T(UID)$ is the sum of all *non-empty* $(\neg \emptyset)$ *values* in the *UID* matrix of the relation.

For example, the topological complexity of the topological relation (UID^{2l}) given by the matrix:

 $C_{T}(UID^{21}) = \sum_{i=1}^{4} \sum_{j=1}^{4} \delta(e_{ij}) = 12$; Another example, the topological complexity of topological relation (UID¹⁷) given

The topological complexity (C_T(UID)) of the (152) kinds of topological relations obtained by the UID model between uncertain spatial regions can be computed by using (3), where $C_T(UID)$ has eleven (11) different values: 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16, listed as follows (Presented in Fig. 10 and implemented on MATLAB):

- 1. $C_T(UID) = 6$: Group 1 of the Topological Relations: 85, 137, 139, 140, 151, 152
- **2.** $C_T(UID) = 7$: Group 2 of the Topological Relations: 84, 95, 133, 134, 136, 138, 142, 143, 144, 145
- 3. $C_T(UID) = 8$: Group 3 of the Topological Relations: 1, 74, 75, 77, 87, 91, 94, 96, 97, 114, 116, 117, 128, 129, 132, 135, 141, 146, 147, 148
- 4. $C_T(UID) = 9$: Group 4 of the Topological Relations: 2, 54, 55, 58, 65, 70, 73, 76, 78, 83, 86, 90, 92, 98, 109, 110, 113, 115, 118, 123, 124, 127, 130, 149
- 5. $C_T(UID) = 10$: Group 5 of the Topological Relations: 3, 7, 37, 39, 50, 52, 56, 57, 59, 64, 66, 69, 71, 79, 82, 88, 93, 99, 104, 108, 111, 119, 122, 125, 126, 131, 150
- 6. $C_T(UID) = 11$: Group 6 of the Topological Relations: 4, 6, 8, 11, 25, 26, 33, 38, 40, 45, 46, 49, 51, 60, 63, 67, 72, 80, 89, 100, 103, 105, 106, 112, 120
- 7. $C_T(UID) = 12$: Group 7 of the Topological Relations: 5, 9, 12, 13, 18, 21, 24, 27, 31, 34, 41, 44, 47, 53, 61, 68, 81, 101, 107, 121
- 8. $C_{T}(UID) = 13$: Group 8 of the Topological Relations: 10, 14, 20, 28, 32, 35, 42, 48, 62, 102
- 9. $C_T(UID) = 14$: Group 9 of the Topological Relations: 15, 19, 22, 29, 36, 43
- **10.** $C_T(UID) = 15$: Group 10 of the Topological Relations: 16, 23, 30
- 11. $C_T(UID) = 16$: Group 11 of the Topological Relations: 17

One can easily see from above list that the six types of topological relations with $C_T(UID) = 6$, i.e., Group 1 of the

Topological Relations: 85, 137, 139, 140, 151, 152, are of the *lowest complexity*. The relation with $C_T(UID) = 16$, i.e., Group 11 of the Topological Relations: 17 (Completely Overlap), is of the highest complexity. The topological relations with $C_T(UID) > 6$ are of higher complexity. They are completely differentiated by the proposed uncertain intersection and difference (UID) model. In other words, som relations of the 152 relations with are higher complexity of $C_T(UID) < 16$ cannot be classified into subclasses in terms of topology.

The above investigation has shown that on the one hand the topological complexity defined in $C_T(UID)$ given by (3) can be used as a measure for the in-depth of further classification, and that on the other hand the Uncertain Intersection and Difference (UID) model can be used to represent effectively the potential complexity of various kinds of topological relations between two spatial regions with uncertainties.

VI. TOPOLOGICAL DISTANCE

Since the topological relation converts from one case to another with the changes in geometry of one or two of the involved objects, such as location, orientation, shape, and size, a topological change occurs if the change in geometry of an object affects its relation with respect to another object [4] [18]. Taking Fig. 9 as example, the relation between A and B in (a) is **Disjoint**, with the location of object B moving downwards, the relation is in order changed into *Completely Meet* in (b) and *Completely Overlap* in (c). It indicates that there is different degree of similarities and the order of transformation among topological relations. Egenhofer and Al-Taha [18] utilized the 9-intersection as a basic model to describe such order over topological relations, and provided a measure to assess how far two relations are apart from each other. In following discussion, a similar definition of topological distance to Egenhofer and Al-Taha [18] is taken on the basis of the newly presented uncertain intersection and difference model as similar as in [4].

Figure 9. Illustration of the process of topological changes usin the UID model: from (a) Disjoint (Relation (1)) to (b) Completely Meet (Relation (9)) and then to (c) Completely Overlap (Relation (17)) (See Appendix).

For two topological relations of the 152 relations obtained by the UID model between two uncertain spatial regions, the uncertain intersection and difference matrix of these relations is represented as UID^k and UID^m , respectively with $1 \le k, m \le 152$. Further, the *topological distance* denoted by $TD_T(UID^k, UID^m)$ between these two relations can be defined as in [13] by the following expression:

$$TD_{T}(UID^{k}, UID^{m}) = \sum_{i=1}^{4} \sum_{j=1}^{4} \left| \delta(e_{ij}^{k}) - \delta(e_{ij}^{m}) \right|$$
(5)

Where the definitions of e_{ii} and $\delta(.)$ are the same as

those in (4). By using (5), the topological distance (TD_T) between any two topologicl relations can be obtained. For example, by taking the two topological relations (k = 5 and m = 127) given by the matrix of *UID* model as following:

$$\mathrm{UID}^{k} = \mathrm{UID}^{5} = \begin{bmatrix} \phi & \phi & \neg \phi & \neg \phi \\ \neg \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \end{bmatrix} \text{ and } \text{UID}^{m} = \mathrm{UID}^{127} = \begin{bmatrix} -\phi & -\phi & -\phi \\ \phi & -\phi & -\phi \\ \neg \phi & -\phi & -\phi \end{bmatrix}$$

Then the topological distance between these two relations $(UID^5 \text{ and } UID^{127})$ can be computed by (5) as follows:

Similarly, topological distances can be obtained for other relations. We have developed and implemented the calculus of topological distances on *MATLAB*. From this study about the topological distance, it can be found that the topological distance between two topological relations based upon the *UID model* satisfies the following properties as in [4]:

(1) Symmetric Property: $TD_{T}(UID^{k}, UID^{m}) = TD_{T}(UID^{m}, UID^{k})$

(2) Minimum Value Non-Minus Property: If

$$UID^{k} = UID^{m}$$
 then $TD_{T}(UID^{k}, UID^{m}) = 0$, in other

words, the *minimum topological distance* is equel to zero when the topological relations are the same. This property is called *non-minus property* where the topological distance is already more or equal to zero $0 \leq TD_{T}(UID^{k}, UID^{m})$. For example, by taking

UID^k = UID^m = UID¹, *then*, the topological distance: TD_T(UID¹, UID¹) = $\sum_{i=1}^{4} \sum_{j=1}^{4} \left| \delta(e_{ij}^{1}) - \delta(e_{ij}^{1}) \right| = 0$.

(3) *Minimum Value Non-Zero Property:* If
$$TD_{T}(UID^{k}, UID^{m}) = 1$$
 then the topological distance betwenn these two relations is a *minimum value non-zero* and equal to one. And this property is called by a *minimum value non-zero property*. For example, the topological relation UID^{17} has three *minimum values non-zero* with three different relations which are the relations UID^{16} , UID^{23} , and UID^{30} . We take the two relations $(k = 17 \text{ and } m = 23)$ given by the matrix of UID model as following:

Then the topological distance is given by:

$$\begin{split} \mathrm{TD}_{\mathrm{T}}(\mathrm{UID}^{k},\mathrm{UID}^{m}) &= \mathrm{TD}_{\mathrm{T}}(\mathrm{UID}^{17},\mathrm{UID}^{23}) = \overset{4}{\underset{i=1}{\overset{4}{\overset{5}{=}1}}} \overset{4}{\underset{j=1}{\overset{6}{\overset{6}{=}1}}} \left| \delta(\mathbf{e}_{ij}^{17}) - \delta(\mathbf{e}_{ij}^{23}) \right| \\ \mathrm{TD}_{\mathrm{T}}(\mathrm{UID}^{17},\mathrm{UID}^{23}) &= |1 - 1| + |1 - 1|$$

(4) Maximum Value: The maximum topological distance is equal to 14 only in two cases. The first Case (1) is: For the topological relations (k = 63 and m = 136) given by the matrix of *UID* model:

Then the topological distance between these two relations $(UID^{63} \text{ and } UID^{136})$ can be computed by (5) as follows:

$$TD_{T}(UID^{k}, UID^{m}) = TD_{T}(UID^{63}, UID^{136}) = \sum_{i=1,j=1}^{4} \left| \delta(e_{ij}^{63}) - \delta(e_{ij}^{136}) \right|$$

$$\begin{aligned} \text{TD}_{\text{T}}(\text{UID}^{\text{OS}},\text{UID}^{\text{OS}}) &= |l-1| + |0-1| + |0-1| + |0-1| + |1-0| + |1-0| + |1-1| + |0-1| \\ &+ |1-0| + |0-1| + |1-0| + |1-0| + |1-0| + |1-0| + |1-0| + |1-0| + |1-0| + |1-0| \end{aligned}$$

And the *second Case (2)* is: the two topological relations (k = 84 and m = 103) given by the *matrix* of *UID model*:

Then the topological distance between these two relations $(UID^{84} \text{ and } UID^{103})$ can be computed by (5) as follows:

$$TD_{T}(UID^{k}, UID^{m}) = TD_{T}(UID^{84}, UID^{103}) = \sum_{i=1}^{4} \sum_{j=1}^{4} \left| \delta(e_{ij}^{84}) - \delta(e_{ij}^{103}) \right|$$

$$\begin{split} \mathrm{TD}_{\mathrm{T}}(\mathrm{UID}^{84},\mathrm{UID}^{103}) &= \left| 1 - 1 \right| + \left| 0 - 1 \right| + \left| 0 - 1 \right| + \left| 0 - 1 \right| + \left| 1 - 0 \right| + \left| 0 - 1 \right| + \left| 0 - 1 \right| + \left| 0 - 1 \right| \\ &+ \left| 0 - 1 \right| + \left| 0 - 1 \right| + \left| 1 - 0 \right| + \left| 1 - 0 \right| + \left| 1 - 0 \right| + \left| 0 - 1 \right| + \left| 1 - 1 \right| + \left| 1 - 0 \right| \\ \end{split}$$

(5) Triangular

 $0 \leq TD_{T}(UID^{k}, UID^{m}) \leq 14$

Inequality:

$TD_{T}(UID^{k}, UID^{m}) + TD_{T}(UID^{n}, UID^{n}) \ge TD_{T}(UID^{k}, UID^{n}).$

In the properties from (1) to (6) of the topological distance, the notations UID^k , UID^m and UID^n represent three topological relations obtained by the UID model, respectively. Compared to the definition of distance in metric space, it is easily observed that the topological distance is very similar to *Manhattan distance*. Therefore, the topological distance can be understood as another measure of topological relations in addition to the topological complexity defined in the previous section.

VII.NEIGHBORHOOD RELATIONS AND CONCEPTUAL NEIGHBORHOOD GRAPH

From the property of *minimum value non-zero*, it has shown that the *minimum distance between different topological relations is equal to one* [4]: $TD_{\tau}(UID^{k}, UID^{m}) \ge 1$ **For** $UID^{k} \ne UID^{m}$

Where: UID^{k} and UID^{m} represent the *uncertain intersection and difference matrix* of two different relations. Therefore we define **neighborhood relation** to be two relations satisfying the same condition of the *minimum value non-zero property*: $TD_{r}(UID^{k}, UID^{m}) = 1$. In other words: If $\text{TD}_{T}(\text{UID}^{k}, \text{UID}^{m}) = 1$ then the topological relation UID^{k} is a **neighborhood relation** to the relation UID^{m} . For example, the topological relation UID^{17} has three neighborhood relations which are the relations UID^{16}, UID^{23} , and UID^{30} . We take the two relations (k = 17 and m = 30) given by the matrix of UID model as following:

Then the topological distance is given by:

$$\begin{split} \mathrm{TD}_{\mathrm{T}}(\mathrm{UID}^{k},\mathrm{UID}^{m}) &= \mathrm{TD}_{\mathrm{T}}(\mathrm{UID}^{17},\mathrm{UID}^{30}) = \sum_{i=1}^{4} \sum_{j=1}^{4} \left| \delta(\mathbf{e}_{ij}^{17}) - \delta(\mathbf{e}_{ij}^{30}) \right| \\ \mathrm{TD}_{\mathrm{T}}(\mathrm{UID}^{17},\mathrm{UID}^{30}) &= |\mathbf{l}-\mathbf{l}| + |\mathbf{l}-\mathbf{l}| + |\mathbf{l}-\mathbf{l}| + |\mathbf{l}-\mathbf{0}| + |\mathbf{l}-\mathbf{l}| + |\mathbf{l}-\mathbf{l}| + |\mathbf{l}-\mathbf{l}| \\ &+ |\mathbf{l}-\mathbf{l}| + |$$

By considering the topological complexity ($C_T(UID)$) defined above, a conceptual neighborhood graph for the 152 binary topological relations can be obtained, as illustrated in Fig. 11 using MATLAB, where each node (represented by square form) represents a topological relation, each solid arc (in red) represents the neighboring property of topological relations, and each dashed arc represents the same level of complexity (represented by $C_T(UID)$). From this network graph, one can see clearly that on the one hand the 152 relations between uncertain spatial regions have different complexity, and that a transformation order exists between them on the other hand. For the latter configuration presented in Fig. 9, it is particularly useful to predict the most likely topological relations after a change in geometry of one or two objects occurs. For example, *Disjoint* relation will most likely be *Meet*, and *Meet* relation will most likely be *Overlap* after a change occurs.

VIII. APPLICATIONS AND DISCUSSION

For GIS applications, satellite images and geospatial databases, these two models (4*4-intersection and UID) can determine the topological relations between uncertain spatial regions. For that, we need to know how to generate uncertain spatial regions from satellite images and to find the four components of our definition (interior, interior's boundary, boundary and exterior's boundary) for satellite images and GIS objects. We can adopt processed data such as classification or segmentation results of satellite images as presented in Fig. 10 (extracted from [19]). For example, Land Use and Land Cover (LULC), most of which is obtained from the classification results of satellite images, may be a good example of a spatial region with uncertainties as in [19]. These two models can be used in order to evaluate the change detection process (for Land Cover changes)of geographical objects (Beach, Forest, Residential Area...) represented in GIS and satellite imagery (TM and SPOT images) databases as in [14] [19] [20].

For example, between two uncertain regions A and B, the topological relation is given by the UID matrix:

 $\operatorname{UID}(A,B) = \begin{bmatrix} \phi & \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \phi & \neg \phi & \neg \phi & \neg \phi \end{bmatrix} = \operatorname{UID}_{2}^{2}; \text{ Another example, for the two}$

uncertain regions A and C, the topological relation is given $\begin{bmatrix} \phi & \phi & \neg \phi \\ \neg \phi & \neg \phi \end{bmatrix}$

Figure 10. (a) SPOT Satellite Image (b) Classification Result (From [19])

By the UID model, all topological relations between the uncertain regions in GIS, geospatial database and image database can be computed.

IX.CONCLUSION & PERSPECTIVE

In this paper, we have proposed a new definition of uncertain spatial region by decomposing the spatial region into four components: interior, interior's boundary, boundary and exterior's boundary. Based upon these four components, a 4*4-intersection matrix is introduced to identify all topological relations between two uncertain spatial regions. Then, in order to reduce the computational complexity of the 4*4-intersection model, the Uncertain Intersection and Difference (UID) model is developed based on the 4*4intersection matrix. The main contribution of this work is these two models 4*4-intersection and UID. 152 topological relations can be identified by using the 4*4-intersection and UID models based on empty/non-empty contents. Among these 152 relations, 100 new relations can't be discriminated or identified as different relations by other models. The topological complexity and topological distance of the 152 topological relations are computed in details with their properties by using the UID model. Based upon this study of topological complexity and topological distance, a conceptual neighborhood graph for the 152 binary topological relations is obtained. The utility of the UID model in many applications as in GIS, geopsatial database and satellite image processing.

In our persepctives, we will try to grouping and classifying the 152 topological relations between uncertain spatial regions under the terms of RCC8 System: *DC*, *EC*, *PO*, *TPP*, *NTPP*, *TPPi*, *NTPPi*, and *EQ*. Then, queries on these 152 topological relations between two spatial regions with uncertainties are computationally very expensive. In this context, the basic strategy for such queries is the construction of decision trees that partitions the search space at each node. We will search the decision trees that minimize the computational cost of these 152 relations. In order to get the most representative relations in geospatial database such as GIS, the use of multi-representation is necessaire.

Figure 11. A Comprehensive Conceptual Neighborhood Graph of the 152 Relations under the Uncertain Intersection and Difference (UID) Model

REFERENCES

- M.J. Egenhofer, "A formal definition of binary topological relationships," The Third International Conference of Foundations of Data Organization and Algorithms (FODO), Paris, France, Springer-Verlag, pp. 452-472, 1989.
- [2] M.J. Egenhofer, and R. Franzosa, "Point-set topological spatial relations," International Journal of Geographic Information Systems, Vol.5, N°2, pp. 161-174, 1991.
- [3] M.J. Egenhofer, and J.R. Herring, "A mathematical framework for the definition of topological relationships," Proceedings of the 4th International Symposium on Spatial Data Handling, Zurich, Columbus, OH, International Geographical Union, pp. 803-813, 1990.
- [4] M. Deng, T. Cheng, X. Chen, and Z. Li, "Multi-level topological relations between spatial regions based upon topological invariants," Springer Science, GeoInformatica, Vol.11, N°2, pp. 239-267, 2007.
- [5] A. Alboody, J. Inglada, and F. Sèdes, "Enriching the spatial reasoning system RCC8," 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS 2008), The SIGSPATIAL Special, Vol.1, N° 1, pp. 14-20, 2009.
- [6] A. Alboody, F. Sèdes, and J. Inglada, "Multi-level topological relations of the spatial reasoning system RCC-8," The International Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA), IEEE Computer Society, pp. 13-21, 2009.
- [7] M.J. Egenhofer, E. Clementini, and P. D. Felice, "Topological relations between regions with holes," International Journal of Geographic Information Systems, Vol.8, N° 2, pp. 129-144, 1994.
- [8] E. Clementini, "Objects with broad boundaries," Book of S. Shekhar and H. Xiong: Encyclopedia of GIS, Springer US, pp. 793-799, 2008.
- [9] E. Clementini, and P. Di Felice, "An algebraic model for spatial objects with indeterminate boundaries," P. Burrough, A. Frank (Eds.), Geographic Objects with Indeterminate Boundaries, Taylor & Francis, London, pp. 155–169, 1996.
- [10] S. Du, Q. Qin, Q. Wang, and H. Ma, "Reasoning about topological relations between regions with broad boundaries," International Journal of Approximate Reasoning, Vol.47, N° 2, pp. 219-232, 2008.

- [11] X. Tang, Y. Fang, and W. Kainz, "Fuzzy topological relations between fuzzy spatial objects," LNCS in Springer Berlin, Fuzzy Systems and Knowledge Discovery, Vol.4223, pp. 324-333, 2006.
- [12] X. Tang and W. Kainz, "Analysis of topological relations between fuzzy regions in a general fuzzy topological space," Proceedings of Symposium on Geospatial Theory, Processing and Applications, Canada, Ottawa, 2002.
- [13] X. Tang, Y. Fang, and W. Kainz, "Topological matrices for topological relations between fuzzy regions," Proceedings of the 4th International Symposium on Multispectral Image Processing and Pattern Recognition (SPIE), 6045: 604524, Wuhan, China, 2005.
- [14] X. Tang and W. Kainz, "Spatial object modelling in fuzzy topological spaces with applications to Land Cover change," Ph.D Thesis, 9 January 2004. www.itc.nl/library/Papers_2004/phd/xinming.pdf
- [15] A. Alboody, F. Sèdes, and J. Inglada, "Fuzzy Intersection and Difference Model for Topological Relations," In International Fuzzy Systems Association World Congress and Conference of the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT 2009), Calouste Gulbenkian Foundation, Lisbon, Portugal,<u>IFSA-EUSFLAT</u> 2009 Proceedings, p. 1079-1084, July 2009.
- [16] C. L. Chang, "Fuzzy topological spaces," Journal of Math. Anal. Appl. Vol.24, pp. 182 - 190, 1968.
- [17] X. Tang, W. Kainz, and H. Zhang, "Some topological invariants and a qualitative topological relation model between fuzzy regions," 4th International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, Vol.1, N° 24-27, pp. 241- 246, 2007.
- [18] M. Egenhofer and K. Al-Taha, "Reasoning about gradual changes of topological relationships," in A. Frank, I. Campari, and U. Formentini (Eds.), Proceedings of the International Conference GIS—from Space to Territory: Theories and Methods of Spatio-temporal Reasoning in Geographic Space, Pisa, Italy,Lecture Notes in Computer Science, Vol. 639. Springer: Berlin Heidelberg New York, 196 - 219, 1992.
- [19] A. Bassiri, A. Alesheikh, and M. R. Malek, "Spatio-temporal object modelling in fuzzy topological space," The International Archives of the Photogrammetric, Remote Sensing and Spatial Information Sciences, Vol.XXXVII, N° B2, pp. 131-134, 2008.
- [20] W. Shi and K. Liu, "A fuzzy topology for computing the interior, boundary, and exterior of spatial objects quantitatively in GIS," Computers & Geosciences, Elsevier, Vol.33, pp. 898 - 915, 2007.

	Matrix UID $\begin{pmatrix} \phi & \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \end{pmatrix}$		Matrix UID (2)		Matrix UID (3) $\phi \phi \neg \phi \neg \phi$ $\phi -\phi \neg \phi -\phi$		(37) (37)		(38) (3		(39) (3)) (3))
00					(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(40) $\begin{bmatrix} 0 & -0 & -0 & 0 \\ 0 & -0 & -0 & -0 \\ 0 & 0 & -0 & -$		$(41) \begin{bmatrix} \phi & \neg \phi & \neg \phi & \phi \\ \neg \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \neg \phi & \neg \phi & \neg \phi \end{bmatrix}$		(42) (42)
			(8) (8) (8) (8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9		(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)		(43) $\begin{bmatrix} \neg \phi & \neg \phi & -\phi & \phi \\ \neg \phi & \neg \phi & \neg \phi & -\phi \\ \neg \phi & \phi & \neg \phi & -\phi \\ \neg \phi & \neg \phi & -\phi & -\phi \end{bmatrix}$		(44) $\begin{pmatrix} -\phi & \phi & \phi \\ -\phi & -\phi & -\phi \\ -\phi & \phi & -\phi \\ -\phi & -\phi &$		$ (45) \begin{bmatrix} -0 & 0 & \phi & \phi \\ -0 & -\phi & -\phi & -\phi \\ \phi & \phi & -\phi & -\phi \\ -\phi & -\phi &$
							(46) $\begin{bmatrix} 0 & -0 & -0 & 0 \\ -0 & -0 & -0 & -0 \\ 0 & 0 & -0 & 0 \\ -0 & -0 &$		(47) $\begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & \phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \end{bmatrix}$		$(48 \begin{vmatrix} -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi \\ -\phi & -\phi &$
			(4) (0) (0) (0) (0) (0) (0) (0) (0		(5) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0		$(49)\begin{bmatrix} \neg\phi & \phi & \phi \\ \neg\phi & \neg\phi & \neg\phi \\ \neg\phi & \phi & \neg\phi & \phi \\ \neg\phi & -\phi & -\phi \end{bmatrix}$		(50) $\begin{bmatrix} -\phi & \phi & \phi \\ -\phi & -\phi & -\phi \\ \phi & \phi & -\phi & \phi \\ -\phi & -\phi &$		(51) $\begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & \phi & -\phi & \phi \\ \phi & -\phi & -\phi & -\phi \end{bmatrix}$
13	() (.	14	(15	(***) (****) (************************		(52) $\begin{pmatrix} 0 & \neg \phi & \neg \phi & \phi \\ \neg \phi & \neg \phi & \neg \phi & \phi \\ \phi & \phi & \neg \phi & \phi \\ \phi & \neg \phi & \neg \phi & \neg \phi \end{bmatrix}$		(53) $\begin{bmatrix} \neg \phi & \neg \phi & \phi \\ \neg \phi & -\phi & -\phi \\ \neg \phi & \phi & -\phi \\ \phi & \phi & -\phi & -\phi \end{bmatrix}$	1	$(54) \begin{bmatrix} -0 & 0 & 0 & 0 \\ -0 & -0 & -0 & -0 \\ 0 & 0 & -0 & 0 \\ 0 & -0 & -$
16	(16) -• -• -• -• -• -• -• -•]	17	(17) -++++++++++++++++++++++++++++++++++++	18	(18)		(55) $\begin{bmatrix} -\phi & -\phi & -\phi \\ \phi & -\phi & -\phi \\ \phi & \phi & \phi \\ \phi & -\phi & -$	6	(56) $\begin{bmatrix} -0 & -0 & -0 & 0 \\ 0 & -0 & -0 & -0 \\ -0 & 0 & 0 & 0 \\ 0 & -0 & -$		(57) $\begin{bmatrix} -0 & 0 & 0 & 0 \\ -0 & -0 & -0 & -0 \\ -0 & 0 & -0 & 0 \\ 0 & -0 & -0 & -0 \end{bmatrix}$
	(19 -++++++++++++++++++++++++++++++++++++	20	(20) -\$\phi\$ - \$\phi\$ -\$\phi\$ - \$\phi\$ -\$\phi\$ - \$\phi\$ -\$\phi\$ - \$\phi\$ -	21	(21) $\begin{array}{c} -\phi & -\phi & -\phi \\ \phi & -\phi & -\phi \\ \phi & -\phi & -$		(58) (58)		(59) $\left[\begin{array}{c} \phi & -\phi & -\phi & \phi \\ \phi & -\phi & -\phi & \phi \\ \phi & \phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & -\phi \end{array} \right]$		(60) $\begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & \phi \\ \phi & \phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & -\phi \end{bmatrix}$
	$(22) \begin{bmatrix} -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi \\ \phi & -\phi & -$	23	$ \begin{array}{c} \begin{array}{c} -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi \\ -\phi & -\phi &$	24	$(24) \begin{bmatrix} \phi & -\phi & -\phi & -\phi \\ -\phi & -\phi & \phi & \phi \\ \phi & -\phi & -$	61	(61) $\begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & \phi \\ -\phi & \phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & -\phi \end{bmatrix}$	62	$(62)\begin{bmatrix} -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi \\ -\phi & \phi & -\phi \\ -\phi & -\phi &$		(63) (-9)
25	$(25) \begin{bmatrix} -\psi & -\psi & -\psi \\ \phi & -\psi & -\psi & -\psi \\ \phi & -\psi & \phi & \phi \\ \phi & -\psi & -\psi & -\psi \end{bmatrix}$	26	$(26) \begin{bmatrix} \phi & -\phi & -\phi & \phi \\ \phi & -\phi & -\phi & -\phi \\ \phi & -\phi & -$	27	$(27) \begin{vmatrix} \phi & -\phi & -\phi & \phi \\ \phi & -\phi & -\phi & -\phi \\ \phi & -\phi & -$		(64) $\begin{bmatrix} -\phi & \phi & \phi \\ -\psi & -\psi & -\psi & \phi \\ \phi & \phi & -\phi & -\phi \\ -\phi & -\phi & -\phi \end{bmatrix}$	65	(65) $\begin{pmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & \phi \\ \phi & \phi & -\phi & -\phi \\ \phi & -\phi & -\phi & -\phi \end{pmatrix}$	66	$(66) \begin{bmatrix} 0 & -0 & 0 \\ -0 & -0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & -0 \end{bmatrix}$
28	$(28) \begin{bmatrix} \phi & \neg \phi & \neg \phi & \phi \\ \neg \phi & \neg \phi & \neg \phi & \neg \phi \\ \phi & \neg \phi & \neg \phi & \neg \phi \\ \neg \phi & \neg \phi & \neg \phi & \neg \phi \end{bmatrix}$	29	(29) (29) (-0) $-0)$ $-0)$ $-0)-0$ -0 -0 $-0)-0$ -0 -0 $-0)$		(30) $[-\phi - \phi - \phi - \phi]$ $[-\phi - \phi - \phi - \phi]$ $[-\phi - \phi - \phi - \phi]$		(67) $\begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & \phi \\ -\phi & \phi & -\phi & \phi \\ -\phi & -\phi &$		$\left[\begin{array}{cccc} \phi & \phi & \phi & \phi \\ \phi & \phi & \phi & \phi \\ \phi & \phi &$		
31	(31) $\left[\begin{array}{cccc} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \\ \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \end{array} \right]$		(32) $\left[\begin{array}{cccc} 0 & -0 & -0 & 0 \\ -0 & -0 & -0 & -0 \\ -0 & -0 & -0 & 0 \\ -0 & -0 & -0 & -0 \end{array} \right]$		$(33) \begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \\ \phi & -\phi & -$		(70) (7		(71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (71) (7) (7) (7) (7) (7) (7) (7) (7		$(72) \begin{bmatrix} -\phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & \phi \\ -\phi & \phi & -\phi & \phi \\ \phi & -\phi & -$
	(34) $\begin{pmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & \phi \\ \phi & -\phi & -\phi & -\phi \end{pmatrix}$		(35) (35)		(36) $[-\phi - \phi - \phi + \phi]$ $-\phi - \phi - \phi - \phi$ $-\phi - \phi - \phi + \phi$		(73) -0 0 0 0 -0 -0 0 0 -0 -0 0		(74) (7	0	(75) $\begin{bmatrix} -\psi & -\psi & -\psi & \phi \\ \phi & -\psi & -\psi & \phi \\ \phi & \phi & \phi & \phi \\ \phi & -\psi & -\psi & -\phi \end{bmatrix}$
	(76) -		(77) $\begin{pmatrix} \phi & \neg \phi & \neg \phi & \phi \\ \phi & \neg \phi & \neg \phi & \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \end{bmatrix}$		(78) (78) (78) (78) (78) (78) (78) (78) (78) (78) (78) (78) (78) (78) (78) (78) (79) (70) (7		(115) (1		(116) $\begin{pmatrix} -\psi & -\psi & \phi \\ \phi & -\psi & -\psi & -\psi \\ \phi & \phi & \phi & \phi \\ \phi & -\psi & -\psi & \phi \\ \end{pmatrix}$	117	(117) (117)
	(79) $\begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & \phi \\ \phi & \phi & -\phi & -$		(80) (80) (0) (0) (0) (0) (0) (0) (0) ((81) (91)		$(118) \begin{bmatrix} \phi & \phi & \neg \phi & \neg \phi \\ \neg \phi & \neg \phi & \neg \phi & \neg \phi \\ \phi & \neg \phi & \neg \phi & \phi \\ \phi & \phi & \neg \phi & \phi \end{bmatrix}$		$(119) \begin{bmatrix} \phi & -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & -\phi \\ \phi & -\phi & -$	120	$(120)\begin{bmatrix} \phi & -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & -\phi &$
	$ (82) \begin{bmatrix} \neg 0 & 0 & 0 & 0 \\ \neg 0 & \neg 0 & \neg 0 & 0 \\ \neg 0 & 0 & \neg 0 & \neg 0 \\ \neg 0 & 0 & \neg 0 & \neg 0 \\ \neg 0 & 0 & \neg 0 & \neg 0 \end{bmatrix} $		(83) (83) (83) (83) (83) (83) (83) (83)	1	(84) $\begin{bmatrix} \neg \phi & \phi & \phi \\ \neg \phi & \phi & \phi \\ \phi & \phi & \neg \phi \\ \neg \phi & \phi & \neg \phi \\ \neg \phi & \phi & \neg \phi \\ \neg \phi & \phi & \neg \phi \\ \hline \end{bmatrix}$		$(121)\begin{bmatrix} -\phi & -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & -\phi &$		$(122)\begin{bmatrix} \neg \phi & \neg \phi & \neg \phi & \neg \phi \\ \phi & \neg \phi & \neg \phi & \neg \phi \\ \neg \phi & \neg \phi & \phi & \phi \\ \phi & \phi & \neg \phi & \phi \end{bmatrix}$		(123) $\begin{bmatrix} -\phi & -\phi & -\phi \\ \phi & -\phi & -\phi \\ \phi & -\phi & \phi \\ \phi & \phi & -\phi & \phi \end{bmatrix}$
	(85) $\begin{bmatrix} \neg \phi & \phi & \phi \\ \neg \phi & \phi & \phi & \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \end{bmatrix}$		(86) (8) (8) (8) (8) (8) (8) (8) (8		(87) (87)		(124) $\begin{pmatrix} \phi & \neg \phi & \neg \phi \\ \neg \phi & \neg \phi & \neg \phi \\ \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \phi \\ \end{pmatrix}$		(125) $\begin{bmatrix} \phi & -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & \phi \\ \phi & \phi & -\phi & \phi \end{bmatrix}$		(126) $\begin{bmatrix} -\phi & -\phi & \phi \\ -\phi & -\phi & -\phi \\ -\phi & -\phi & \phi \\ \phi & \phi & -\phi & \phi \end{bmatrix}$
	(88) (88) (88) (88) (88) (88) (88) (88) (88) (88) (9) (9) (9) (9) (9) (9) (9) (9		(89) $\begin{pmatrix} -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi \\ -\phi & \phi & -\phi \\ -\phi & \phi & -\phi \\ -\phi & -\phi &$		(90) -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0		(127) (127		(128) (128)		(129) $\begin{pmatrix} 0 & -0 & -\phi & 0 \\ -\phi & -\phi & -\phi & -\phi \\ 0 & \phi & -\phi & 0 \\ 0 & \phi & -\phi & 0 \end{bmatrix}$
	(91) (91) (91) (91) (91) (91) (91) (91)		(92) (92) (92) (92) (92) (92) (92) (92)		(93) (93) (93) (93) (93) (93) (93) (93)		$(130) \begin{bmatrix} 0 & -0 & -0 & 0 \\ -0 & -0 & -0 & -0 \\ -0 & 0 & -0 & 0 \\ 0 & 0 & -0 & 0 \end{bmatrix}$		(131) $\begin{pmatrix} -\phi & -\phi & -\phi & -\phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & \phi & -\phi & \phi \\ \phi & \phi & -\phi & \phi \end{bmatrix}$		$ \begin{bmatrix} -\phi & \phi & \phi & \phi \\ -\phi & -\phi & -\phi & -\phi \\ -\phi & \phi & -\phi & \phi \\ \phi & \phi & -\phi & \phi \end{bmatrix} $
O	(94) (94)		(95) (9	6	(96) (96) (96) (96) (96) (96) (96) (96)		(133) $\begin{bmatrix} \neg \phi & \phi & \phi & \phi \\ \neg \phi & \neg \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \phi \\ \phi & \phi & \neg \phi & \phi \end{bmatrix}$		(134) $\begin{bmatrix} \neg \phi & \neg \phi & \neg \phi & \phi \\ \phi & \neg \phi & \neg \phi & \neg \phi \\ \phi & \phi & \phi & \phi \\ \phi & \phi & \neg \phi & \phi \end{bmatrix}$		(135) $\begin{bmatrix} -0 & -0 & -0 & 0 \\ 0 & -0 & -0 & -0 \\ -0 & 0 & 0 & 0 \\ 0 & 0 & -0 & 0 \end{bmatrix}$
Ø	(97) (97)		(98) (98) (98) (98) (98) (98) (98) (98)		(99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (99) (9) ($(136) \begin{bmatrix} \neg \phi & \neg \phi & \neg \phi \\ \phi & \phi & \neg \phi & \neg \phi \\ \phi & \neg \phi & \phi & \phi \\ \phi & \phi & \phi & \phi \end{bmatrix}$	137	$(137)\begin{bmatrix} -\phi & -\phi & -\phi \\ \phi & \phi & -\phi & -\phi \\ \phi & \phi & \phi & \phi \\ \phi & \phi & \phi & \phi \end{bmatrix}$	$\bigcirc A^{i} = B^{i}$ 1.38	(138) $\begin{bmatrix} -\phi & \phi & \phi & \phi \\ \phi & -\phi & -\phi & \phi \\ -\phi & \phi & \phi & \phi \\ \phi & -\phi & -\phi & \phi \end{bmatrix}$
	(100) (1		(101) $\phi - \phi -$		(102) $\begin{pmatrix} -\psi & -\psi & -\psi \\ -\psi & -\psi & -\psi \\ -\psi & -\psi &$	- O	$(139)\begin{bmatrix} -0 & 0 & 0 & 0 \\ 0 & -0 & -0 & -0 \\ -0 & 0 & 0 & 0 \\ 0 & 0 & -0 & 0 \end{bmatrix}$		(140) $\begin{bmatrix} -\phi & 0 & \phi & \phi \\ \phi & -\phi & -\phi & \phi \\ -\phi & 0 & \phi & \phi \\ \phi & \phi & -\phi & -\phi \end{bmatrix}$		(141) $\begin{bmatrix} -\phi & \phi & \phi & \phi \\ \phi & \neg \phi & \neg \phi & \neg \phi \\ \neg \phi & \phi & \phi & \phi \\ \phi & \neg \phi & \neg \phi & \neg \phi \end{bmatrix}$
	(103) (1				$\left[\phi - \phi - \phi \phi \right]$ (105) $\left[\phi - \phi - \phi \phi \phi - \phi \phi \phi - \phi \phi \phi + \phi \phi \phi \phi$		(142) $\begin{bmatrix} -\phi & \phi & \phi & \phi \\ \phi & -\phi & -\phi & \phi \\ -\phi & \phi & \phi & \phi \\ \phi & -\phi & -$		$(143) \begin{bmatrix} -\phi & \phi & \phi \\ \phi & -\phi & -\phi & -\phi \\ -\phi & \phi & \phi & \phi \\ \phi & -\phi & -$	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$ (144) \begin{bmatrix} \neg & \phi & \phi & \phi \\ \neg & \neg \phi & \neg \phi & \phi \\ \phi & \phi & \neg \phi & \phi \\ \phi & \neg \phi & \neg \phi & \phi \end{bmatrix} $
			(107) [107] [1		$\begin{bmatrix} \phi & -\phi & -\phi & \phi \end{bmatrix}$ $(108) \begin{bmatrix} -\phi & -\phi & -\phi & \phi \\ \phi & -\phi & -\phi & -\phi \\ -\phi & -\phi &$		(145) $\begin{bmatrix} -\phi & -\phi & -\phi & \phi \\ \phi & -\phi & -\phi & \phi \\ \phi & \phi & \phi & \phi \\ \phi & -\phi & -\phi & \phi \end{bmatrix}$		(146) $\begin{bmatrix} -\phi & -\phi & -\phi & \phi \\ \phi & -\phi & -\phi & \phi \\ -\phi & \phi & \phi & \phi \\ \phi & -\phi & -\phi & \phi \end{bmatrix}$		(147) $\begin{bmatrix} -\phi & \phi & \phi \\ -\phi & -\phi & \phi \\ -\phi & \phi & -\phi & \phi \\ \phi & -\phi & -\phi & \phi \end{bmatrix}$
	(109) (109		(110) (1		(11)		(148) $\begin{pmatrix} \phi & \neg \phi & \neg \phi & \phi \\ \neg \phi & \neg \phi & \neg \phi & \phi \\ \phi & \phi & \neg \phi & \phi \\ \phi & \neg \phi & \neg \phi & \phi \end{pmatrix}$	() 149 A' = B'	(149) (149)	150 A' = B'	(150) (1
	(112) $\begin{bmatrix} -0 & -0 & -0 & 0 \\ -0 & -0 & -0 & -0 \\ -0 & 0 & -0 & 0 \\ 0 & -0 & -$		(113) $\begin{bmatrix} -\phi & \phi & \phi \\ -\phi & -\phi & -\phi \\ \phi & -\phi & -\phi$		[0 - 0 - 0 0] (114) $\begin{bmatrix} -0 & 0 & 0 & 0 \\ -0 & -0 & -0 & -0 \\ 0 & 0 & -0 & 0 \\ 0 & -0 & -$	$\bigcup_{151} A^{*} = B^{i}$	(151) (15) (15)	() 152 B' = A ¹	(152) $\begin{bmatrix} -\phi & -\phi & -\phi & \phi \\ \phi & \phi & -\phi & -\phi \\ \phi & -\phi & \phi & \phi \\ \phi & \phi & \phi & \phi \end{bmatrix}$		LT Y T

APPENDIX. (CONTRIBUTION UID MODEL): ONE HUNDRED AND FIFTY-TWO (152) TOPOLOGICAL RELATIONS BETWEEN TWO UNCERTAIN SPATIAL REGIONS BY USING THE UNCERTAIN INTERSECTION AND DIFFERENCE (UID) MODEL