
HAL Id: hal-03763189
https://hal.science/hal-03763189

Submitted on 30 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework to Manage Knowledge from Defect
Resolution Process

Grégory Claude, Marc Boyer, Gaël Durand, Florence Sèdes

To cite this version:
Grégory Claude, Marc Boyer, Gaël Durand, Florence Sèdes. A Framework to Manage Knowledge from
Defect Resolution Process. 13th IEEE Conference on Commerce and Enterprise Computing (CEC
2011), IEEE, Sep 2011, Luxenbourg, Luxembourg. pp.10-17, �10.1109/CEC.2011.11�. �hal-03763189�

https://hal.science/hal-03763189
https://hal.archives-ouvertes.fr

A Framework to Manage Knowledge from Defect
Resolution Process

Grégory ClaudeA,B, Marc BoyerC, Gaël DurandB, Florence SèdesA
A Université de Toulouse, Université Paul Sabatier, IRIT UMR 5505, France

{Gregory.Claude, Florence.Sedes}@irit.fr
B Intercim LLC, Eagan, USA / Intercim, Paris, France

{GClaude, GDurand}@intercim.com
C Université de Toulouse, Université Paul Sabatier, Inserm UMR 825, France

Marc.Boyer@iut-tlse3.fr

Abstract—This paper presents a framework for the
management, the processing and the reuse, of information
relative to defects. This framework is based on the fact that
each defect triggers a resolution process in which information
about the detected incident (i.e. the problem) and about the
applied protocol to resolve it (i.e. the solution) is collected.
These different types of information are the cornerstone of the
optimization of corrective and preventive processes for new
defects. Experimentations show that our prototype provides a
very satisfactory quality of results with good performances.

Keywords-maintenance; defect; knowledge management;
information processing; information reuse.

I. INTRODUCTION

To ensure the quality of a final product, processing and
tracking defects that occur during its manufacturing process
have become essential activities. Indeed, information relative
to defects may represent a large percentage of the final
volume of product information. In maintenance activities, we
can notice many benefits in leveraging information from
defects [1], especially in aeronautical, aerospace and
pharmaceutical industries where complex highly regulated
and often manual production activities result in high rates of
defects during the manufacturing process. A first benefit, in
the short run and in an online mode, is to make corrective
maintenance activities easier by assisting the maintainer in
his task of finding a solution to solve a problem. A second
benefit, in the long run and in an offline mode, is to prevent
the emergence of recurrent defects by highlighting the
reasons of their emergence.

Thus, creating knowledge by generalization or expansion
[2] (also called probability estimates view and enacted
salience view [3] respectively), storing it and making it
available is necessary. To make it available and reusable, this
knowledge has to be structured. For this, patterns are widely
used. They link a problem, that we can often describe as
recurrent, with a template of solution to be applied to solve
it. Another kind of information can be associated to a
pattern: the context in which the problem appears [4], [5],

variations or minor changes that can be applied to the pattern
to obtain slightly different effects [6] or indicators like the
source (internal or external), the frequency, the severity [7].

The aim of this paper is to propose a framework that
automatically takes advantage of information relative to
defects in order to identify various defects groups that we put
at the heart of corrective and preventive maintenance
activities. To achieve this, this framework uses information
about past defects not only to give assistance to solve a new
defect but also to improve manufacturing process quality by
feeding back this information from manufacturing teams to
design teams. The identified groups are comparable to
patterns. They describe a problem and one or more solutions
are associated to them. They are not defined a priori, since
past defects are analyzed to generate relevant groups. These
groups can evolve with the addition of new defects (e.g. a
new solution to solve a problem).

The paper is structured as follows. First, in section II, the
defect resolution process is described. Section III presents
the related works in our context of maintenance and defects
processing systems. In section IV, the framework we
propose to take advantage of information relative to defects
is described. Section V is dedicated to the evaluation of the
software prototype both in terms of quality and performance,
scalability. Section VI concludes and discusses future work.

II. THE DEFECT RESOLUTION PROCESS

During a manufacturing process, when a variation is
noticed between what is defined by the standard process and
what is actually being executed, a document, which we call
defect form, is instantiated to materialize this gap and to try
to solve it. Whether paper or electronic, this form serves as a
support for a defect. Based on industrial experience, we
represent the resolution of a defect as a process initiated by a
trigger (defect detection), during which data about the
problem and the solution are filled in a form (Fig. 1). Once
the solution has been put in place or if the gap is acceptable
(no solution needed), the defect is closed. This form is
composed of fields that store information about the defect.

2011 IEEE Conference on Commerce and Enterprise Computing

DOI 10.1109/CEC.2011.11

Figure 1. Our vision of the defect resolution process.

Here are some explanations about the objects involved in
the activity diagram shown above:

• Detected defect: the user has to choose which defect
form template should be used to solve the defect. We
consider a set of templates because all defects are
not solved in the same way according to their type.
Several templates are defined to allow the user to
choose the most appropriate one to solve the defect.

• Created defect form: it is an instance of a defect
form template, data must be collected in its fields.

• Filled in defect form: defect description is filled in
by several actors at different times. However, all
actors have an overall vision about the defect. The
defect form is not a set of fragmented elements that
everyone has to fill in regardless of the other
elements but a unique instance completed as the
process evolves overtime.

• Stored defect form / Closed defect: defect resolution
process is complete, the defect is closed, and the
form that serves as a support for it is stored.

A defect resolution ends with the storage of its form. We
would propose an approach that goes beyond this process,
the latter being the base on which we can elaborate an
effective defects processing. Without any use of the
information contained in the defect forms, i.e. without
processing extracting knowledge, this resolution process
suffers from several issues:

• Slow process: filling in fields is a manual activity, no
assistance is given to the user to guide him during
the defect resolution, whether it comes to entering

data about the problem or the solution. The time to
propose a solution should be reduced by using
experience-based knowledge from past defects. The
less time-expensive or the less cost-expensive
solution should be preferred to solve a problem.

• Costly process: following the previous point, the
longer the defect resolution, the more expensive the
process is, since it blocks the manufacturing process
that depends on the resolution of the defect, and
sometimes the whole production of the final product.

• No knowledge creation: no assistance to analyze past
defect forms is carried out. Understanding recurrent
defects should avoid their emergence by feeding
back this knowledge from manufacturing teams to
process design teams.

III. RELATED WORKS

A. Background
In the literature, maintenance is divided into several

categories. In the industrial context, three major categories
emerge: preventive (or proactive) maintenance, corrective
(or reactive) maintenance and self-maintenance [8]. We can
also notice the predictive and holistic (process oriented)
categories [9] and the condition-based and intelligent
categories [10]. In the software context, Swanson had
already presented corrective, adaptive and perfective
maintenances in the mid 70s [11]. The evolutionary and
preventive maintenances have been added to these first
categories and are still valid nowadays. We do not want to
cover all these categories; we focus here on the corrective
and preventive dimensions. The role of corrective
maintenance is to solve a new defect’s problem so that the
element on which it is noted becomes again compliant with
specifications. Preventive maintenance is intended to
anticipate and prevent the emergence of known defects
(recurrent defects management).

B. Defects Processing Systems
Regarding preventive maintenance, some analytical

methods such as Failure, Mode, Effects and Criticality
Analysis (FMECA) widely used in automobile [12],
aerospace [13] and railway [14] sectors or Hazard Analysis
and Critical Control Points (HACCP) derived from FMECA
and used in chemical, pharmaceutical and food industries are
used to prevent the emergence of defects. These methods,
involving persons with various skills and experiences, aim at
(1) searching and describing potential failures of a system
from their origins (causes) to their consequences (effects),
(2) quantifying the associated risks of these failures to the
user thanks to a criticality indicator and (3) prioritizing
corrective actions on the process definition to optimize it and
maintain system reliability. Our goal is the same. We want to
apply corrective actions on the manufacturing process
template to prevent the emergence of defects. However,
while these methods aim at manually identifying potential
failures, a task that can be long and tedious, we prefer to use

the information contained in past defect forms. Grouping
similar defects in an automatic way will allow defining
corrections to put on the manufacturing process template.

Regarding corrective maintenance, two approaches are
differentiated. The first one consists in searching relevant
defect forms, similar to the new defect form in some parts,
using keywords. For this, the user is prompted to enter one or
more keywords. This starts a searching process of these
keywords in the database containing the solved defect forms
and thus selects and presents similar defect forms to the user.
Using information from some of these defect forms, and in
particular information about the solution used, the user can
find a solution more easily and more quickly. However, this
method is rather addressed to users familiar with the domain
and able to provide significant and discriminatory keywords
for the search. The second approach consists in organizing
defect forms according to an a priori defined structure to
allow the user to browse by selecting different categories.
Used to process industrial defects management in aerospace,
this approach was recently proposed [1] using a faceted
classification [15], [16]. It allows grouping similar defects
and setting up a feedback between the maintenance
department and the design department that defines the
templates of industrial manufacturing processes on which
defects occur. Nevertheless, a major effort must be made
upstream to design a fully usable classification scheme of the
defect forms database. Analyzing and taking advantage of
the defect forms structure would make this work easier.

To overcome the limits of these approaches (domain
expert knowledge, considerable upstream work), we propose
a framework that automatically classifies defect forms thanks
to a preliminary analysis of defect forms structure. Thus, we
can identify various defect forms groups that we put at the
heart of corrective and preventive maintenance activities. In
this way, we use past defects information to solve a new one
but also to improve the quality of the manufacturing process
by feeding back this information from manufacturing teams
to design teams, feedback rarely existent within companies
[17].

IV. REVEALING KNOWLEDGE FROM DEFECTS FORMS

A. Defect Form Description
Considering nominal defects (i.e. those that can be

foreseen), forms involve fields that can be qualified as
regular. Indeed, all of them are distinctly named and the data
a user fills in are clearly identifiable. Some of these fields
define structured data, e.g. with a finite list of values and
some others define unstructured data, such as free text.
Considering non-nominal defects (i.e. those that cannot be
foreseen), the form involves non-regular fields. These fields
are, for example, comments or description of the first
occurrence of a new kind of defect. They define unstructured
data. Thus, a defect form is a semi-structured document that
involves various fields containing structured and
unstructured data. In the literature relative to the
maintenance, we note a lack of such a formalization of a

defect form because authors are more interested in the
formalization of the maintenance process, whether in an
industrial context [18], [19], [20] or in a software context
[21], [22], [23], [24]. Although this process leads to make the
defect resolution easier, it does not define how to process
and reuse the information contained in defect forms.

The document that serves as a support for a defect
contains data about the characteristics of the detected
incident (i.e. the problem) and about the applied protocol to
resolve it (i.e. the solution). It involves elements we call
“attributes” in which data are contained. We define these
attributes by two features: their structure and their
descriptive quality (Table I).

The structure feature divides attributes between
constrained and loose attributes. Constrained attributes
contain accurate, structured data. The set of values these
attributes can take is known, beforehand or not. Even if this
set is not defined beforehand, the value of such an attribute is
not unique among the set of defect forms and can frequently
be found in other ones. Loose attributes contain unstructured
data, in a textual form. Among them, we will particularly
note the problem description of the defect and its solution
description. The value of such an attribute is a free text.
Constrained attributes can be compared to closed questions
whereas loose attributes may be compared to open ones. We
present this first classification in order to emphasize the need
to apply a specific processing to loose attributes to extract
information from them as easily as this could be done from
constrained attributes.

Defect forms templates set up many attributes during the
resolution process. However, all attributes do not provide the
same kind of information. The descriptive quality feature
divides them into three groups: the problem descriptive, the
solution descriptive and the non-descriptive attributes.
Thanks to this second categorization, we emphasize
attributes that contain relevant data. Therefore, we give the
possibility to partition attributes into:

• Problem descriptive attributes, which provide
information about the encountered problem;

• Solution descriptive attributes, which explain how to
solve the problem;

• Non-descriptive attributes, which do not fit into
either of the two previous partitions.

An expert must decide the classification of attributes in
the proposed partitions. Indeed, while the structure feature of
an attribute can be automatically found, its descriptive
quality feature is knowledge that must be provided by an
expert who well knows the defect form template. Of course,
the cost of this work increases with the number of attributes.
To minimize human interaction, one can imagine that the
expert is assisted in his choices by a tool giving a first
classification using, for example, an ontology.

An attribute can contain data filled in by the user but also
data the user did not directly fill in for the needs of

traceability. Data in these contextual attributes is related to
the time the defect has been entered. An example of
contextual attribute is the creation date of the defect or the
person who entered it. By definition, such an attribute is
constrained. But it can be problem descriptive, solution
descriptive or non-descriptive. In [25], authors go even
beyond our vision since they distinguish contextual defects
from other ones. These defects are created in a specific
context and their forms have contextual and behavioral
attributes and have their own preventive processing. In our
case, we do not make this distinction. We do not want to
leave out potentially useful information contained in
attributes, contextual or not.

B. Our Framework to Manage Defects Information
To assist the user in his solution proposal and to prevent

the emergence of recurrent defects, we take advantage of
information from past defect forms, whose problem has been
already solved. For this, we organize the defect forms
database in a scheme allowing us to meet quickly and
precisely our searching and grouping objectives.

At first, as mentioned previously, all defects are not
solved in the same way. Thus, it is meaningless to make
comparisons between all defect forms in a database. What
relevant similarity relationship may be established between a
documentation defect and a defect that occurs during a drill
activity? One can imagine that the drilling defect was caused
by the documentation defect but it would be difficult to find
similarity between their corresponding forms, between their
problem and/or their solution. Therefore, we make a
distinction between defect forms categories inside a unique
defect forms database. These categories are defined
according to various discriminatory elements.

The interest of creating defect forms categories is to have
a first simple grouping in order to avoid comparing all defect
forms whereas it is known that distinct populations exist. The
difficulty is to identify discriminatory criteria leading to
relevant categories creation. Because of the unstructured
information they contain, these criteria cannot be loose
attributes, it would require an important work of analysis by
an expert or the use of a text processing algorithm that we
want to apply only later. Therefore we have to consider only
constrained attributes. As we want to facilitate the search for
defect forms that are similar to a new defect form whose
solution is obviously unknown, this classification must
separate defect forms only according to their problem.
Therefore, we are particularly interested in constrained and
problem descriptive attributes. Some of them will define so
characteristic values that searching similarity between defect
forms that do not have the same value for one of these
attributes does not seem to make sense.

Consequently, among the set of attributes, only some of
them are used to define categories. Thanks to the defect
description we propose, attributes that can serve as defect
forms categories criteria can be filtered. A first filtering is
performed through the structure feature, only constrained
attributes are retained. Then, a second filtering is performed

through the descriptive quality feature, only problem
descriptive attributes are retained. Among the remaining
attributes, whose number could be quite large in spite of the
filtering step, an expert, who knows the domain well,
identifies those that are really discriminatory. This work is
necessarily specific to the domain, no attribute can be
defined as a category criterion by default.

After that, within each category, defect forms groups, in
which problems are similar, are identified. A clustering
algorithm uses these comparisons to build problems groups.
Then, within each problems group, defect forms groups, in
which solutions are similar, are identified. In the same
manner that problems groups are created, a clustering
algorithm uses these comparisons to make solutions groups.

For each problems and solutions group, a prototype is
defined, i.e. a defect form automatically constructed that is
representative of the defect forms of the group. Thus,
problem information of a problems group’s prototype is used
to calculate similarity in comparison with the problem
information of a new defect form. Therefore, it is not
necessary to compare the new defect form to all defects that
belong to the problems group. With regards to solutions
groups, on the one hand, solution information of the
prototype is used to present a summary of a possible
solution. On the other hand, to identify the solution of the
problems group’s that is best suited to a new problem,
problem information of the prototype and of the defect form
are compared.

C. The Framework Architecture
To implement this framework, two processes must be

established, one offline to perform the classification of defect
forms and another one online to search for similar defect
forms (Fig. 2). This second activity relies on results obtained
from the first one.

Regarding the classification of defect forms process, we
call “defined attributes” the fact that the structure and
descriptive quality features have been defined for each
attribute and if the attribute serves as defect forms category
criterion. Before the processing of defect forms, i.e. the
similarity computation between them, keywords are
extracted from attributes value. Keywords about the problem
(extracted from problem descriptive attributes) and keywords
about the solution (extracted from solution descriptive
attributes) are retrieved. The result is a descriptor for each
defect form; each defect form is represented as a couple of
vectors of keywords, a problem vector and a solution vector.
Clustering on problem information is performed by
computing the similarity between problem vectors. In the
same manner, clustering on solution information is
performed by computing the similarity between solution
vectors. As they have to be constructed defect forms,
prototypes are also represented as a couple of
problem/solution vectors.

Regarding the search for similar defect forms process, the
first activities are identical to the process described above,

namely the categorization of the new defect form and the
extraction of its descriptor. With this information and the
database of classified defect forms obtained with the process
described above, the problem vector of the new defect form
is compared with the problem vector of the prototype of all
problems groups in the category. Those with sufficient
similarity are retained. Each of these prototypes represents a
problems group in which solutions groups are identified. The
problem vector of each prototype of the solutions group is
compared with the problem vector of the new defect form.
Thus, solution groups are ranked according to their relevance
between the problem they solved and the problem described
in the new defect form.

The first activity enables improving preventive
maintenance. Recurrent defects can easily be deduced using
problems groups that have been identified. The analysis of
large groups by an expert allows to understand the reasons of
their emergence and to set up ways to prevent their
recurrence. Production issues are capitalized and experience-
based knowledge is fed back from manufacturing teams to
process design teams. The second activity enables improving
corrective maintenance. The framework automatically and
quickly browses the problems groups to find the most similar
one to the problem described in the new defect form. The
solutions groups in the elected problems group that are
presented to the user, are the most suited solutions to solve
the new problem. Thus, the time spent by a user to process a
defect is reduced. By referring to experienced solutions,
every user can propose a better solution than if he had to find
one using his own experience.

V. EXPERIMENTATION

This framework has been tested on a database containing
more than 7000 real software defects from the bugs’
database of the Intercim Company, involved in this research
project. Intercim offers manufacturing execution and
optimization systems for, especially in the aerospace and
pharmaceutical industries. All defects relate to only one
software but possibly various versions of it. They have been
recorded by persons in charge of quality assurance (not final
users) during more than 3 years, from Sep. 2005 to Dec.
2008.

All of the 7216 defects come from the same form
template that involves 8 steps. These steps are not executed
sequentially, the succession of steps is defined during the
defect resolution, based on collected data. In this form
template, 91 attributes have been identified. Partition
according to the structure feature has revealed 20 loose
attributes and 71 constrained attributes. One of the experts
who defined this form template indicated the following
partition according to the descriptive quality feature: 6
attributes are problem descriptive among which only one is
loose. The major issue in this dataset is that there is not any
attribute that describes the solution, in other words, no
attribute can be defined as solution descriptive. After having
used a list of stop words and applied a suffix stripping
algorithm, 2680 keywords from problem descriptive

Figure 2. The framework activities.

attributes have been extracted. Thanks to the definition of
defect forms categories, these 2680 keywords are not used at
the same time to perform the similarity computation. One of
our 59 categories reaches 1098 keywords in the computation,
the average being 213.

A. Implementation
Our software prototype, implemented in Java, is divided

into several modules running sequentially. Once the
categories are created and assigned to defect forms,
keywords extraction is run. Regarding loose attributes, the
text (their value) is split into words according to spaces and
special characters. A list of general English stop words
(containing 671 terms) and a list of field-specific stop words
(poorer for the moment) are used to remove common words.
Porter’s suffix stripping algorithm [26], well-suited to
Information Retrieval, is also applied to produce more
relevant groups by considering only the root of the words. To
improve similarity between defect forms, an algorithm of
dimension reduction such as Singular Value Decomposition
(SVD) [27], Principal Components Analysis (PCA) [28],
Latent Semantic Analysis (LSA) [29] aka Latent Semantic
Indexing (LSI), etc. could also be used.

Then, concerning the similarity computation, we chose to
use the Vector Space Model with the TF-IDF measure (Term
Frequency – Inverse Document Frequency), widespread in
Information Retrieval [30], [31] and in Text Mining [32],
[33]. This statistical measure evaluates the importance of a
word with respect to a document from a corpus of documents
and to the corpus itself. The obtained values are used to
calculate the similarity between descriptors of defect forms
using the cosine measure, according to the problem vector
then the solution one. These similarity measures are then
used in a hierarchical ascendant classification. Unlike most
of the other algorithms, this clustering algorithm does not
require a preliminary setting of the number of groups to
obtain. It only requires the setting of a similarity threshold.
In a category, all defect forms whose similarity between
descriptor’s problem vectors exceeds the threshold constitute
a problems group. Solution groups are built in the same
manner. Finally, a prototype is created for each group.

To evaluate the proposed framework both in terms of
quality of the obtained clusters and in terms of performance
of the hierarchical ascendant clustering algorithm, three
methods of this algorithm have been implemented:

• The single-link method (aka MIN), which produces
large groups potentially heterogeneous due to the
chain effect it suffers (complexity: O(n²));

• The complete-link method (aka MAX), which solves
the problem of the chain effect and produces smaller
homogeneous groups (complexity: O(n².log(n)));

• The incremental method which solves the problem
of the quadratic complexity of the methods
mentioned above but which is sensitive to the

selection order of documents [34], [35], [36]
(complexity: O(n.log(n))).

B. Qualitative Evaluation
A study was conducted in a category containing 92 defect

forms. This category possesses the advantage to have enough
defect forms to obtain interesting results using our automatic
approach and to have a sufficiently limited number of defect
forms to compare the results with those we would accept
using manual clustering. First, groupings have been
manually identified, thus serving as a reference
classification. This manual classification results in 70
groups.

Then, to identify the threshold value of similarity that
produces the most relevant groups, different classifications
have been obtained by varying the similarity threshold
between 0.9 and 0.3 and compared with the reference
classification. To assess the quality of classification, we
present the precision-recall (Fig. 3), and the F-measure
(Fig. 4) curves. The numbers shown besides the points of
Fig. 3 indicate the best threshold value of similarity.

Fig. 3 shows a curve for each method of the algorithm.
Each curve presents the proportion of correct groupings
made by the algorithm among all the groups found (the
precision) with respect to the proportion of correct groupings
made by the algorithm among all the groups we would like
to obtain (the recall). It shows that, whatever the method, the
algorithm proposes a best classification for a similarity
threshold between 0.43 and 0.5. Outside this range of values,
the precision decreases, there is too much noise (i.e. too
many incorrect groups), or it is the recall that decreases,
there is too much silence (i.e. not enough correct groups).

In the precision-recall curve, the objective is to maximize
the precision and the recall. However, it is very difficult to
estimate a good similarity threshold because when the
precision increases the recall decreases and inversely. The F-
measure considers both the precision and the recall. Fig. 4
shows a curve for each method of the algorithm that
represents a weighted average of the precision and the recall.
The best similarity threshold can easily be identified at 0.45.

The three methods give very similar results. The chain
effect does not seem to be very important on our dataset
since the values obtained with the single-link method are
close to the two other methods. Whatever the method, on our
dataset, results point out relevant clusters of defect forms for
a similarity threshold of 0.45. With this value, we have:

• For the single-link method, a precision and a recall
of about 0.8;

• For the incremental method, a precision of 0.9 and a
recall slightly lower than 0.8;

• For the complete-link method, a precision equal to 1
and a recall at 0.7;

• For all the methods, an F-measure score upper than
0.8.

Figure 3. Precision-recall for the three methods.

Figure 4. F-measure for the three methods.

C. Performance and Scaling Assessment
To evaluate the performance of the algorithm,

classifications have been executed on defect forms categories
of various sizes (from 17 to 1232 defect forms) to identify
problems groups. The similarity threshold has been set to
0.45 since the best classification is obtained in every method
with this value. The execution time represents the time spent
by the methods of the algorithm to identify groups and the
time to create each group prototype. Since the incremental
method necessarily creates all prototypes for its own
execution, this second time is included in the first one.

As expected, the incremental method is really faster than
non-incremental ones even if the time to create group
prototypes is not included (Fig. 5). Considering the category
containing 1005 defect forms, the single-link method is 60%
and the complete-link method is 85% more time consuming
than the incremental method. When this time is included, the
gap widens (Fig. 6). Considering the same category as
previously, the single-link method is 5.5 times and the
complete-link method is 9 times more time consuming than
the incremental method. The execution time depends on the
number of defect forms but also on the number of involved
keywords, that explains the slight decrease of time around
the category containing 950 defect forms.

Figure 5. Execution time without prototypes creation.

Figure 6. Execution time with prototypes creation.

Moreover, it is logical to see that the complete-link
method is slower than the single-link one because it needs
more comparisons between defect form descriptors during
the potential addition of a defect form in a group (Fig. 5) and
it creates more groups, which requires the creation of more
group prototypes (Fig. 6).

Thus, the incremental method seems to be able to process
a large volume of data within a reasonable processing time
while preserving a good quality of clustering. The creation of
group prototypes, required in the framework we propose, is
inherent to this method, it does not add a new step contrary
to the non-incremental methods.

VI. CONCLUSION AND PERSPECTIVES

We have presented a framework for the processing and
the reuse of information contained in past defect forms. It
reveals knowledge in order to make corrective maintenance
activities easier by assisting the user in his search for a
solution. It is suited to preventive maintenance since an
analysis can be made on each problems group in order to
identify their causes of emergence.

To assess the interest of our framework, we plan to do
other tests on a larger database containing around 75000
industrial manufacturing defect forms. These defect forms
should have problem descriptive attributes but also solution
descriptive ones. Moreover, in this context, tasks are

repetitive (more than in software development). We should
therefore find more recurrent defects since a kind of defect
may be repeated on numerous products.

Eventually, we could take into account the user’s profile
in the solution ranking. By considering his skills on one
hand, and the way he is used to executing a kind of solution
to solve a problem on the other hand, we could re-rank the
list of proposed solutions to be adapted to his profile. A
solution he usually fails to execute could be depreciated in
the list.

REFERENCES
[1] Y. M. Goh, M. D. Giess, C. A. McMahon, and Y. Liu, “From Faceted

Classification to Knowledge Discovery of Semi-Structured Text
Records,” Foundations of Computational Intelligence Volume 6,
Studies in Computational Intelligence, Springer, Heidelberg, vol. 206,
pp. 151–169, 2009.

[2] J. W. Clark, “Exceptions and Other Rare and Irregular Events: Two
Modes of Learning in Business Intelligence (research in progress),”
Hawaii International Conference on System Sciences, pp. 1–10, 2011.

[3] J. Lampel, J. Shamsie, and Z. Shapira, “Experiencing the Improbable:
Rare Events and Organizational Learning,” Organization Science,
vol. 20(5), pp. 835–845, 2009.

[4] A. Persson, and J. Stirna, “How to Transfer a Knowledge
Management Approach to an Organization: A Set of Patterns and
Anti-Patterns,” International Conference on Practical Aspects of
Knowledge Management, LNCS, vol. 4333, pp. 243–252, 2006.

[5] D. May, and P. Taylor, “Knowledge Management with Patterns,”
Communication of the ACM, vol. 46(7), pp. 94–99, 2003.

[6] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou, U.
Kannengiesser, and A. Wise, “Exception Handling Pattern for
Process Modeling,” IEEE Transactions on Software Engineering,
vol. 36(2), pp. 162–183, 2010.

[7] Y. Somekh, M. Peleg, and D. Dori, “Classifying and Modeling
Exceptions through Object Process Methodology,” Proceedings of the
International Conference on Systems Engineering and Modeling,
pp. 60–70, 2007.

[8] K. Komonen, “A Cost Model of Industrial Maintenance for
Profitability Analysis and Benchmarking,” International Journal of
Production Economics, Elsevier, vol. 79(1), pp. 15–31, 2002.

[9] I. Alsyouf, “The Role of Maintenance in Improving Companies’
Productivity and Profitability,” International Journal of Production
Economics, Elsevier, vol. 105(1), pp. 70–78, 2007.

[10] D. Dowlatshahi, “The Role of Industrial Maintenance in the
Maquiladora Industry: an Empirical Analysis,” International Journal
of Production Economics, Elsevier, vol. 114(1), pp. 298–307, 2008.

[11] B. Swanson, “The Dimensions of Maintenance,” IEEE Computer
Society Press, International Conference on Software Engineering,
pp. 492–497, 1976.

[12] J. B. Bowles, “An Assessment of RPN Prioritization in a Failure
Modes Effects and Criticality Analysis,” Reliability and
Maintainability Symposium, pp. 380–386, 2003.

[13] E. Balaban, P. Bansal, P. Stoelting, A. Saxena, K. F. Goebel, and S.
Curran, “A Diagnostic Approach for Electro-Mechanical Actuators in
Aerospace Systems,” IEEE Aerospace Conference, pp. 1–13, 2009.

[14] Y.-H. Li, Y.-D. Wang, and W.-Z. Zhao, “Bogie Failure Mode
Analysis for Railway Freight Car based on FMECA,” International
Conference on Reliability, Maintainability and Safety, pp. 5–8, 2009.

[15] R. Prieto-Diaz, and P. Freeman, “Classifying Software for
Reusability,” IEEE Software, vol. 4(1), pp. 6–16, 1987.

[16] M. D. Giess, P. J. Wild, and C. A. McMahon, “The Generation of
Faceted Classification Schemes for Use in the Organisation of

Engineering Design Documents,” International Journal of
Information Management, Elsevier, vol. 28(5), pp. 379–390, 2008.

[17] E. Levner, D. Zuckerman, and G. Meirovich, “Total Quality
Management of a Production-Maintenance System: A Network
Approach,” International Journal of Production Economics, Elsevier,
vol. 56-57(1), pp. 407–421, 1998.

[18] G. Waeyenbergh, and L. Pintelon, “Maintenance Concept
Development: a Case Study,” International Journal of Production
Economics, Elsevier, vol. 89(3), pp. 395–405, 2004.

[19] A. Despujols, “Approche Fonctionnelle de la Maintenance,”
Techniques de l’Ingénieur, AG4710, pp. 1–14, 2004.

[20] I. P. S. Ahuja, and J. S. Khamba, “Total Productive Maintenance:
Literature Review and Directions,” International Journal of Quality &
Reliability Management, Emerald, vol. 25(7), pp. 709–756, 2008.

[21] M. Haziza, J. F. Voidrot, E. Minor, L. Pofelski, and S. Blazy,
“Software Maintenance: an Analysis of Industrial Needs and
Constraints,” Conference on Software Maintenance, pp. 18–26, 1992.

[22] P.-Y. Lambolez, “Recherche d’Informations pour la Maintenance
Logicielle,” PhD thesis, Université Paul Sabatier, Toulouse 3, 1994.

[23] S. Barros, “Analyse a priori des Conséquences de la Modification de
Systèmes Logiciels: de la Théorie à la Pratique,” PhD thesis,
Université Paul Sabatier, Toulouse 3, 1997.

[24] I. Alloui, “Conciliating Property Stability and System Evolution
through Software Model Analysis,” GDR Génie de la Programmation
Logicielle 2009, pp. 224–231, 2009.

[25] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys, vol. 41(3), pp. 1–58, 2009.

[26] M. F. Porter, “An Algorithm for Suffix Stripping,” Program:
Electronic Library and Information Systems, vol. 40(3), pp. 211–218,
2006.

[27] G. W. Stewart, “On the Early History of Singular Value
Decomposition,” SIAM Review, Society for Industrial and Applied
Mathematics, vol. 35(4), pp. 551–566, 1993.

[28] H. Abdi, and L. J. Williams, “Principal Components Analysis,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 2(4),
pp. 433–459, 2010.

[29] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman, “Indexing by Latent Semantic Analysis,” Journal of the
American Society for Information Science, Wiley, vol. 41(6),
pp. 391–407, 1990.

[30] G. Salton, and M. J. McGill, “Introduction to Modern Information
Retrieval,” McGraw-Hill, New York, 1983.

[31] G. Salton, and C. Buckley, “Term-Weighting Approaches in
Automatic Text Retrieval,” Information Processing and Management,
Elsevier, vol. 24(5), pp. 513–523, 1988.

[32] R. Feldman, M. Fresko, Y. Kinar, Y. Lindell, O. Liphstat, M.
Rajman,Y. Schler, and O. Zamir, “Text Mining at the Term Level,”
PKDD, Second European Symposium. LNCS, Springer, Heidelberg
vol. 1510, pp. 65–73, 1998.

[33] I. T. Fatudimu, A. G. Musa, C. K. Ayo, and A. B. Sofoluwe,
“Knowledge Discovery in Online Repositories: A Text Mining
Approach,” European Journal of Scientific Research, EuroJournals,
vol. 22(2), pp. 241–250, 2008.

[34] I. Gurrutxaga, O. Arbelaitz, J. I. Martín, J. Muguerza, J. M. Pérez,
and I. Perona, “SIHC: A Stable Incremental Hierarchical Clustering
Algorithm,” International Conference on Enterprise Information
Systems, pp. 300–304, 2009.

[35] B. Raskutti, and C. Leckie, “An Evaluation of Criteria for Measuring
the Quality of Clusters,” Joint Conference on Artificial Intelligence,
pp. 905–910, 1999.

[36] Q. H. Nguyen, and V. J. Rayward-Smith, “Internal Quality Measures
for Clustering in Metric Spaces,” International Journal Business
Intelligence and Data Mining, Inderscience, vol. 3(1), pp. 4–29, 2008.

