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Abstract—This paper presents a framework for the 
management, the processing and the reuse, of information 
relative to defects. This framework is based on the fact that 
each defect triggers a resolution process in which information 
about the detected incident (i.e. the problem) and about the 
applied protocol to resolve it (i.e. the solution) is collected. 
These different types of information are the cornerstone of the 
optimization of corrective and preventive processes for new 
defects. Experimentations show that our prototype provides a 
very satisfactory quality of results with good performances. 

Keywords-maintenance; defect; knowledge management; 
information processing; information reuse. 

I. INTRODUCTION

To ensure the quality of a final product, processing and 
tracking defects that occur during its manufacturing process 
have become essential activities. Indeed, information relative 
to defects may represent a large percentage of the final 
volume of product information. In maintenance activities, we 
can notice many benefits in leveraging information from 
defects [1], especially in aeronautical, aerospace and 
pharmaceutical industries where complex highly regulated 
and often manual production activities result in high rates of 
defects during the manufacturing process. A first benefit, in 
the short run and in an online mode, is to make corrective 
maintenance activities easier by assisting the maintainer in 
his task of finding a solution to solve a problem. A second 
benefit, in the long run and in an offline mode, is to prevent 
the emergence of recurrent defects by highlighting the 
reasons of their emergence. 

Thus, creating knowledge by generalization or expansion 
[2] (also called probability estimates view and enacted
salience view [3] respectively), storing it and making it
available is necessary. To make it available and reusable, this
knowledge has to be structured. For this, patterns are widely
used. They link a problem, that we can often describe as
recurrent, with a template of solution to be applied to solve
it. Another kind of information can be associated to a
pattern: the context in which the problem appears [4], [5],

variations or minor changes that can be applied to the pattern 
to obtain slightly different effects [6] or indicators like the 
source (internal or external), the frequency, the severity [7].  

The aim of this paper is to propose a framework that 
automatically takes advantage of information relative to 
defects in order to identify various defects groups that we put 
at the heart of corrective and preventive maintenance 
activities. To achieve this, this framework uses information 
about past defects not only to give assistance to solve a new 
defect but also to improve manufacturing process quality by 
feeding back this information from manufacturing teams to 
design teams. The identified groups are comparable to 
patterns. They describe a problem and one or more solutions 
are associated to them. They are not defined a priori, since 
past defects are analyzed to generate relevant groups. These 
groups can evolve with the addition of new defects (e.g. a 
new solution to solve a problem). 

The paper is structured as follows. First, in section II, the 
defect resolution process is described. Section III presents 
the related works in our context of maintenance and defects 
processing systems. In section IV, the framework we 
propose to take advantage of information relative to defects 
is described. Section V is dedicated to the evaluation of the 
software prototype both in terms of quality and performance, 
scalability. Section VI concludes and discusses future work. 

II. THE DEFECT RESOLUTION PROCESS

During a manufacturing process, when a variation is 
noticed between what is defined by the standard process and 
what is actually being executed, a document, which we call 
defect form, is instantiated to materialize this gap and to try 
to solve it. Whether paper or electronic, this form serves as a 
support for a defect. Based on industrial experience, we 
represent the resolution of a defect as a process initiated by a 
trigger (defect detection), during which data about the 
problem and the solution are filled in a form (Fig. 1). Once 
the solution has been put in place or if the gap is acceptable 
(no solution needed), the defect is closed. This form is 
composed of fields that store information about the defect. 
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Figure 1.  Our vision of the defect resolution process. 

Here are some explanations about the objects involved in 
the activity diagram shown above: 

• Detected defect: the user has to choose which defect
form template should be used to solve the defect. We
consider a set of templates because all defects are
not solved in the same way according to their type.
Several templates are defined to allow the user to
choose the most appropriate one to solve the defect.

• Created defect form: it is an instance of a defect
form template, data must be collected in its fields.

• Filled in defect form: defect description is filled in
by several actors at different times. However, all
actors have an overall vision about the defect. The
defect form is not a set of fragmented elements that
everyone has to fill in regardless of the other
elements but a unique instance completed as the
process evolves overtime.

• Stored defect form / Closed defect: defect resolution
process is complete, the defect is closed, and the
form that serves as a support for it is stored.

A defect resolution ends with the storage of its form. We 
would propose an approach that goes beyond this process, 
the latter being the base on which we can elaborate an 
effective defects processing. Without any use of the 
information contained in the defect forms, i.e. without 
processing extracting knowledge, this resolution process 
suffers from several issues: 

• Slow process: filling in fields is a manual activity, no
assistance is given to the user to guide him during
the defect resolution, whether it comes to entering

data about the problem or the solution. The time to 
propose a solution should be reduced by using 
experience-based knowledge from past defects. The 
less time-expensive or the less cost-expensive 
solution should be preferred to solve a problem. 

• Costly process: following the previous point, the
longer the defect resolution, the more expensive the
process is, since it blocks the manufacturing process
that depends on the resolution of the defect, and
sometimes the whole production of the final product.

• No knowledge creation: no assistance to analyze past
defect forms is carried out. Understanding recurrent
defects should avoid their emergence by feeding
back this knowledge from manufacturing teams to
process design teams.

III. RELATED WORKS

A. Background
In the literature, maintenance is divided into several

categories. In the industrial context, three major categories 
emerge: preventive (or proactive) maintenance, corrective 
(or reactive) maintenance and self-maintenance [8]. We can 
also notice the predictive and holistic (process oriented) 
categories [9] and the condition-based and intelligent 
categories [10]. In the software context, Swanson had 
already presented corrective, adaptive and perfective 
maintenances in the mid 70s [11]. The evolutionary and 
preventive maintenances have been added to these first 
categories and are still valid nowadays. We do not want to 
cover all these categories; we focus here on the corrective 
and preventive dimensions. The role of corrective 
maintenance is to solve a new defect’s problem so that the 
element on which it is noted becomes again compliant with 
specifications. Preventive maintenance is intended to 
anticipate and prevent the emergence of known defects 
(recurrent defects management). 

B. Defects Processing Systems
Regarding preventive maintenance, some analytical

methods such as Failure, Mode, Effects and Criticality 
Analysis (FMECA) widely used in automobile [12], 
aerospace [13] and railway [14] sectors or Hazard Analysis 
and Critical Control Points (HACCP) derived from FMECA 
and used in chemical, pharmaceutical and food industries are 
used to prevent the emergence of defects. These methods, 
involving persons with various skills and experiences, aim at 
(1) searching and describing potential failures of a system
from their origins (causes) to their consequences (effects),
(2) quantifying the associated risks of these failures to the
user thanks to a criticality indicator and (3) prioritizing
corrective actions on the process definition to optimize it and
maintain system reliability. Our goal is the same. We want to
apply corrective actions on the manufacturing process
template to prevent the emergence of defects. However,
while these methods aim at manually identifying potential
failures, a task that can be long and tedious, we prefer to use



the information contained in past defect forms. Grouping 
similar defects in an automatic way will allow defining 
corrections to put on the manufacturing process template. 

Regarding corrective maintenance, two approaches are 
differentiated. The first one consists in searching relevant 
defect forms, similar to the new defect form in some parts, 
using keywords. For this, the user is prompted to enter one or 
more keywords. This starts a searching process of these 
keywords in the database containing the solved defect forms 
and thus selects and presents similar defect forms to the user. 
Using information from some of these defect forms, and in 
particular information about the solution used, the user can 
find a solution more easily and more quickly. However, this 
method is rather addressed to users familiar with the domain 
and able to provide significant and discriminatory keywords 
for the search. The second approach consists in organizing 
defect forms according to an a priori defined structure to 
allow the user to browse by selecting different categories. 
Used to process industrial defects management in aerospace, 
this approach was recently proposed [1] using a faceted 
classification [15], [16]. It allows grouping similar defects 
and setting up a feedback between the maintenance 
department and the design department that defines the 
templates of industrial manufacturing processes on which 
defects occur. Nevertheless, a major effort must be made 
upstream to design a fully usable classification scheme of the 
defect forms database. Analyzing and taking advantage of 
the defect forms structure would make this work easier. 

To overcome the limits of these approaches (domain 
expert knowledge, considerable upstream work), we propose 
a framework that automatically classifies defect forms thanks 
to a preliminary analysis of defect forms structure. Thus, we 
can identify various defect forms groups that we put at the 
heart of corrective and preventive maintenance activities. In 
this way, we use past defects information to solve a new one 
but also to improve the quality of the manufacturing process 
by feeding back this information from manufacturing teams 
to design teams, feedback rarely existent within companies 
[17]. 

IV. REVEALING KNOWLEDGE FROM DEFECTS FORMS

A. Defect Form Description
Considering nominal defects (i.e. those that can be

foreseen), forms involve fields that can be qualified as 
regular. Indeed, all of them are distinctly named and the data 
a user fills in are clearly identifiable. Some of these fields 
define structured data, e.g. with a finite list of values and 
some others define unstructured data, such as free text. 
Considering non-nominal defects (i.e. those that cannot be 
foreseen), the form involves non-regular fields. These fields 
are, for example, comments or description of the first 
occurrence of a new kind of defect. They define unstructured 
data. Thus, a defect form is a semi-structured document that 
involves various fields containing structured and 
unstructured data. In the literature relative to the 
maintenance, we note a lack of such a formalization of a 

defect form because authors are more interested in the 
formalization of the maintenance process, whether in an 
industrial context [18], [19], [20] or in a software context 
[21], [22], [23], [24]. Although this process leads to make the 
defect resolution easier, it does not define how to process 
and reuse the information contained in defect forms. 

The document that serves as a support for a defect 
contains data about the characteristics of the detected 
incident (i.e. the problem) and about the applied protocol to 
resolve it (i.e. the solution). It involves elements we call 
“attributes” in which data are contained. We define these 
attributes by two features: their structure and their 
descriptive quality (Table I).  

The structure feature divides attributes between 
constrained and loose attributes. Constrained attributes 
contain accurate, structured data. The set of values these 
attributes can take is known, beforehand or not. Even if this 
set is not defined beforehand, the value of such an attribute is 
not unique among the set of defect forms and can frequently 
be found in other ones. Loose attributes contain unstructured 
data, in a textual form. Among them, we will particularly 
note the problem description of the defect and its solution 
description. The value of such an attribute is a free text. 
Constrained attributes can be compared to closed questions 
whereas loose attributes may be compared to open ones. We 
present this first classification in order to emphasize the need 
to apply a specific processing to loose attributes to extract 
information from them as easily as this could be done from 
constrained attributes. 

Defect forms templates set up many attributes during the 
resolution process. However, all attributes do not provide the 
same kind of information. The descriptive quality feature 
divides them into three groups: the problem descriptive, the 
solution descriptive and the non-descriptive attributes. 
Thanks to this second categorization, we emphasize 
attributes that contain relevant data. Therefore, we give the 
possibility to partition attributes into: 

• Problem descriptive attributes, which provide
information about the encountered problem;

• Solution descriptive attributes, which explain how to
solve the problem;

• Non-descriptive attributes, which do not fit into
either of the two previous partitions.

An expert must decide the classification of attributes in 
the proposed partitions. Indeed, while the structure feature of 
an attribute can be automatically found, its descriptive 
quality feature is knowledge that must be provided by an 
expert who well knows the defect form template. Of course, 
the cost of this work increases with the number of attributes. 
To minimize human interaction, one can imagine that the 
expert is assisted in his choices by a tool giving a first 
classification using, for example, an ontology. 

An attribute can contain data filled in by the user but also 
data the user did not directly fill in for the needs of 



traceability. Data in these contextual attributes is related to 
the time the defect has been entered. An example of 
contextual attribute is the creation date of the defect or the 
person who entered it. By definition, such an attribute is 
constrained. But it can be problem descriptive, solution 
descriptive or non-descriptive. In [25], authors go even 
beyond our vision since they distinguish contextual defects 
from other ones. These defects are created in a specific 
context and their forms have contextual and behavioral 
attributes and have their own preventive processing. In our 
case, we do not make this distinction. We do not want to 
leave out potentially useful information contained in 
attributes, contextual or not. 

B. Our Framework to Manage Defects Information
To assist the user in his solution proposal and to prevent

the emergence of recurrent defects, we take advantage of 
information from past defect forms, whose problem has been 
already solved. For this, we organize the defect forms 
database in a scheme allowing us to meet quickly and 
precisely our searching and grouping objectives. 

At first, as mentioned previously, all defects are not 
solved in the same way. Thus, it is meaningless to make 
comparisons between all defect forms in a database. What 
relevant similarity relationship may be established between a 
documentation defect and a defect that occurs during a drill 
activity? One can imagine that the drilling defect was caused 
by the documentation defect but it would be difficult to find 
similarity between their corresponding forms, between their 
problem and/or their solution. Therefore, we make a 
distinction between defect forms categories inside a unique 
defect forms database. These categories are defined 
according to various discriminatory elements. 

The interest of creating defect forms categories is to have 
a first simple grouping in order to avoid comparing all defect 
forms whereas it is known that distinct populations exist. The 
difficulty is to identify discriminatory criteria leading to 
relevant categories creation. Because of the unstructured 
information they contain, these criteria cannot be loose 
attributes, it would require an important work of analysis by 
an expert or the use of a text processing algorithm that we 
want to apply only later. Therefore we have to consider only 
constrained attributes. As we want to facilitate the search for 
defect forms that are similar to a new defect form whose 
solution is obviously unknown, this classification must 
separate defect forms only according to their problem. 
Therefore, we are particularly interested in constrained and 
problem descriptive attributes. Some of them will define so 
characteristic values that searching similarity between defect 
forms that do not have the same value for one of these 
attributes does not seem to make sense.  

Consequently, among the set of attributes, only some of 
them are used to define categories. Thanks to the defect 
description we propose, attributes that can serve as defect 
forms categories criteria can be filtered. A first filtering is 
performed through the structure feature, only constrained 
attributes are retained. Then, a second filtering is performed 

through the descriptive quality feature, only problem 
descriptive attributes are retained. Among the remaining 
attributes, whose number could be quite large in spite of the 
filtering step, an expert, who knows the domain well, 
identifies those that are really discriminatory. This work is 
necessarily specific to the domain, no attribute can be 
defined as a category criterion by default. 

After that, within each category, defect forms groups, in 
which problems are similar, are identified. A clustering 
algorithm uses these comparisons to build problems groups. 
Then, within each problems group, defect forms groups, in 
which solutions are similar, are identified. In the same 
manner that problems groups are created, a clustering 
algorithm uses these comparisons to make solutions groups. 

For each problems and solutions group, a prototype is 
defined, i.e. a defect form automatically constructed that is 
representative of the defect forms of the group. Thus, 
problem information of a problems group’s prototype is used 
to calculate similarity in comparison with the problem 
information of a new defect form. Therefore, it is not 
necessary to compare the new defect form to all defects that 
belong to the problems group. With regards to solutions 
groups, on the one hand, solution information of the 
prototype is used to present a summary of a possible 
solution. On the other hand, to identify the solution of the 
problems group’s that is best suited to a new problem, 
problem information of the prototype and of the defect form 
are compared. 

C. The Framework Architecture
To implement this framework, two processes must be

established, one offline to perform the classification of defect 
forms and another one online to search for similar defect 
forms (Fig. 2). This second activity relies on results obtained 
from the first one. 

Regarding the classification of defect forms process, we 
call “defined attributes” the fact that the structure and 
descriptive quality features have been defined for each 
attribute and if the attribute serves as defect forms category 
criterion. Before the processing of defect forms, i.e. the 
similarity computation between them, keywords are 
extracted from attributes value. Keywords about the problem 
(extracted from problem descriptive attributes) and keywords 
about the solution (extracted from solution descriptive 
attributes) are retrieved. The result is a descriptor for each 
defect form; each defect form is represented as a couple of 
vectors of keywords, a problem vector and a solution vector. 
Clustering on problem information is performed by 
computing the similarity between problem vectors. In the 
same manner, clustering on solution information is 
performed by computing the similarity between solution 
vectors. As they have to be constructed defect forms, 
prototypes are also represented as a couple of 
problem/solution vectors.  

Regarding the search for similar defect forms process, the 
first activities are identical to the process described above, 



namely the categorization of the new defect form and the 
extraction of its descriptor. With this information and the 
database of classified defect forms obtained with the process 
described above, the problem vector of the new defect form 
is compared with the problem vector of the prototype of all 
problems groups in the category. Those with sufficient 
similarity are retained. Each of these prototypes represents a 
problems group in which solutions groups are identified. The 
problem vector of each prototype of the solutions group is 
compared with the problem vector of the new defect form. 
Thus, solution groups are ranked according to their relevance 
between the problem they solved and the problem described 
in the new defect form.  

The first activity enables improving preventive 
maintenance. Recurrent defects can easily be deduced using 
problems groups that have been identified. The analysis of 
large groups by an expert allows to understand the reasons of 
their emergence and to set up ways to prevent their 
recurrence. Production issues are capitalized and experience-
based knowledge is fed back from manufacturing teams to 
process design teams. The second activity enables improving 
corrective maintenance. The framework automatically and 
quickly browses the problems groups to find the most similar 
one to the problem described in the new defect form. The 
solutions groups in the elected problems group that are 
presented to the user, are the most suited solutions to solve 
the new problem. Thus, the time spent by a user to process a 
defect is reduced. By referring to experienced solutions, 
every user can propose a better solution than if he had to find 
one using his own experience. 

V. EXPERIMENTATION

This framework has been tested on a database containing 
more than 7000 real software defects from the bugs’ 
database of the Intercim Company, involved in this research 
project. Intercim offers manufacturing execution and 
optimization systems for, especially in the aerospace and 
pharmaceutical industries. All defects relate to only one 
software but possibly various versions of it. They have been 
recorded by persons in charge of quality assurance (not final 
users) during more than 3 years, from Sep. 2005 to Dec. 
2008. 

All of the 7216 defects come from the same form 
template that involves 8 steps. These steps are not executed 
sequentially, the succession of steps is defined during the 
defect resolution, based on collected data. In this form 
template, 91 attributes have been identified. Partition 
according to the structure feature has revealed 20 loose 
attributes and 71 constrained attributes. One of the experts 
who defined this form template indicated the following 
partition according to the descriptive quality feature: 6 
attributes are problem descriptive among which only one is 
loose. The major issue in this dataset is that there is not any 
attribute that describes the solution, in other words, no 
attribute can be defined as solution descriptive. After having 
used a list of stop words and applied a suffix stripping 
algorithm, 2680 keywords from problem descriptive 

Figure 2.  The framework activities. 



attributes have been extracted. Thanks to the definition of 
defect forms categories, these 2680 keywords are not used at 
the same time to perform the similarity computation. One of 
our 59 categories reaches 1098 keywords in the computation, 
the average being 213.  

A. Implementation
Our software prototype, implemented in Java, is divided

into several modules running sequentially. Once the 
categories are created and assigned to defect forms, 
keywords extraction is run. Regarding loose attributes, the 
text (their value) is split into words according to spaces and 
special characters. A list of general English stop words 
(containing 671 terms) and a list of field-specific stop words 
(poorer for the moment) are used to remove common words. 
Porter’s suffix stripping algorithm [26], well-suited to 
Information Retrieval, is also applied to produce more 
relevant groups by considering only the root of the words. To 
improve similarity between defect forms, an algorithm of 
dimension reduction such as Singular Value Decomposition 
(SVD) [27], Principal Components Analysis (PCA) [28], 
Latent Semantic Analysis (LSA) [29] aka Latent Semantic 
Indexing (LSI), etc. could also be used. 

Then, concerning the similarity computation, we chose to 
use the Vector Space Model with the TF-IDF measure (Term 
Frequency – Inverse Document Frequency), widespread in 
Information Retrieval [30], [31] and in Text Mining [32], 
[33]. This statistical measure evaluates the importance of a 
word with respect to a document from a corpus of documents 
and to the corpus itself. The obtained values are used to 
calculate the similarity between descriptors of defect forms 
using the cosine measure, according to the problem vector 
then the solution one. These similarity measures are then 
used in a hierarchical ascendant classification. Unlike most 
of the other algorithms, this clustering algorithm does not 
require a preliminary setting of the number of groups to 
obtain. It only requires the setting of a similarity threshold. 
In a category, all defect forms whose similarity between 
descriptor’s problem vectors exceeds the threshold constitute 
a problems group. Solution groups are built in the same 
manner. Finally, a prototype is created for each group. 

To evaluate the proposed framework both in terms of 
quality of the obtained clusters and in terms of performance 
of the hierarchical ascendant clustering algorithm, three 
methods of this algorithm have been implemented:   

• The single-link method (aka MIN), which produces
large groups potentially heterogeneous due to the
chain effect it suffers (complexity: O(n²));

• The complete-link method (aka MAX), which solves
the problem of the chain effect and produces smaller
homogeneous groups (complexity: O(n².log(n)));

• The incremental method which solves the problem
of the quadratic complexity of the methods
mentioned above but which is sensitive to the

selection order of documents [34], [35], [36] 
(complexity: O(n.log(n))). 

B. Qualitative Evaluation
A study was conducted in a category containing 92 defect

forms. This category possesses the advantage to have enough 
defect forms to obtain interesting results using our automatic 
approach and to have a sufficiently limited number of defect 
forms to compare the results with those we would accept 
using manual clustering. First, groupings have been 
manually identified, thus serving as a reference 
classification. This manual classification results in 70 
groups. 

Then, to identify the threshold value of similarity that 
produces the most relevant groups, different classifications 
have been obtained by varying the similarity threshold 
between 0.9 and 0.3 and compared with the reference 
classification. To assess the quality of classification, we 
present the precision-recall (Fig. 3), and the F-measure 
(Fig. 4) curves. The numbers shown besides the points of 
Fig. 3 indicate the best threshold value of similarity. 

Fig. 3 shows a curve for each method of the algorithm. 
Each curve presents the proportion of correct groupings 
made by the algorithm among all the groups found (the 
precision) with respect to the proportion of correct groupings 
made by the algorithm among all the groups we would like 
to obtain (the recall). It shows that, whatever the method, the 
algorithm proposes a best classification for a similarity 
threshold between 0.43 and 0.5. Outside this range of values, 
the precision decreases, there is too much noise (i.e. too 
many incorrect groups), or it is the recall that decreases, 
there is too much silence (i.e. not enough correct groups). 

In the precision-recall curve, the objective is to maximize 
the precision and the recall. However, it is very difficult to 
estimate a good similarity threshold because when the 
precision increases the recall decreases and inversely. The F-
measure considers both the precision and the recall. Fig. 4 
shows a curve for each method of the algorithm that 
represents a weighted average of the precision and the recall. 
The best similarity threshold can easily be identified at 0.45. 

The three methods give very similar results. The chain 
effect does not seem to be very important on our dataset 
since the values obtained with the single-link method are 
close to the two other methods. Whatever the method, on our 
dataset, results point out relevant clusters of defect forms for 
a similarity threshold of 0.45. With this value, we have: 

• For the single-link method, a precision and a recall
of about 0.8;

• For the incremental method, a precision of 0.9 and a
recall slightly lower than 0.8;

• For the complete-link method, a precision equal to 1
and a recall at 0.7;

• For all the methods, an F-measure score upper than
0.8.



Figure 3.  Precision-recall for the three methods. 

Figure 4.  F-measure for the three methods. 

C. Performance and Scaling Assessment
To evaluate the performance of the algorithm,

classifications have been executed on defect forms categories 
of various sizes (from 17 to 1232 defect forms) to identify 
problems groups. The similarity threshold has been set to 
0.45 since the best classification is obtained in every method 
with this value. The execution time represents the time spent 
by the methods of the algorithm to identify groups and the 
time to create each group prototype. Since the incremental 
method necessarily creates all prototypes for its own 
execution, this second time is included in the first one. 

As expected, the incremental method is really faster than 
non-incremental ones even if the time to create group 
prototypes is not included (Fig. 5). Considering the category 
containing 1005 defect forms, the single-link method is 60% 
and the complete-link method is 85% more time consuming 
than the incremental method. When this time is included, the 
gap widens (Fig. 6). Considering the same category as 
previously, the single-link method is 5.5 times and the 
complete-link method is 9 times more time consuming than 
the incremental method.  The execution time depends on the 
number of defect forms but also on the number of involved 
keywords, that explains the slight decrease of time around 
the category containing 950 defect forms. 

Figure 5.  Execution time without prototypes creation. 

Figure 6.  Execution time with prototypes creation. 

Moreover, it is logical to see that the complete-link 
method is slower than the single-link one because it needs 
more comparisons between defect form descriptors during 
the potential addition of a defect form in a group (Fig. 5) and 
it creates more groups, which requires the creation of more 
group prototypes (Fig. 6). 

Thus, the incremental method seems to be able to process 
a large volume of data within a reasonable processing time 
while preserving a good quality of clustering. The creation of 
group prototypes, required in the framework we propose, is 
inherent to this method, it does not add a new step contrary 
to the non-incremental methods. 

VI. CONCLUSION AND PERSPECTIVES

We have presented a framework for the processing and 
the reuse of information contained in past defect forms. It 
reveals knowledge in order to make corrective maintenance 
activities easier by assisting the user in his search for a 
solution. It is suited to preventive maintenance since an 
analysis can be made on each problems group in order to 
identify their causes of emergence. 

To assess the interest of our framework, we plan to do 
other tests on a larger database containing around 75000 
industrial manufacturing defect forms. These defect forms 
should have problem descriptive attributes but also solution 
descriptive ones. Moreover, in this context, tasks are 



repetitive (more than in software development). We should 
therefore find more recurrent defects since a kind of defect 
may be repeated on numerous products. 

Eventually, we could take into account the user’s profile 
in the solution ranking. By considering his skills on one 
hand, and the way he is used to executing a kind of solution 
to solve a problem on the other hand, we could re-rank the 
list of proposed solutions to be adapted to his profile. A 
solution he usually fails to execute could be depreciated in 
the list. 

REFERENCES 
[1] Y. M. Goh, M. D. Giess, C. A. McMahon, and Y. Liu, “From Faceted

Classification to Knowledge Discovery of Semi-Structured Text
Records,” Foundations of Computational Intelligence Volume 6,
Studies in Computational Intelligence, Springer, Heidelberg, vol. 206,
pp. 151–169, 2009. 

[2] J. W. Clark, “Exceptions and Other Rare and Irregular Events: Two
Modes of Learning in Business Intelligence (research in progress),”
Hawaii International Conference on System Sciences, pp. 1–10, 2011. 

[3] J. Lampel, J. Shamsie, and Z. Shapira, “Experiencing the Improbable:
Rare Events and Organizational Learning,” Organization Science,
vol. 20(5), pp. 835–845, 2009. 

[4] A. Persson, and J. Stirna, “How to Transfer a Knowledge
Management Approach to an Organization: A Set of Patterns and
Anti-Patterns,” International Conference on Practical Aspects of
Knowledge Management, LNCS, vol. 4333, pp. 243–252, 2006. 

[5] D. May, and P. Taylor, “Knowledge Management with Patterns,”
Communication of the ACM, vol. 46(7), pp. 94–99, 2003. 

[6] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou, U.
Kannengiesser, and A. Wise, “Exception Handling Pattern for
Process Modeling,” IEEE Transactions on Software Engineering,
vol. 36(2), pp. 162–183, 2010. 

[7] Y. Somekh, M. Peleg, and D. Dori, “Classifying and Modeling
Exceptions through Object Process Methodology,” Proceedings of the 
International Conference on Systems Engineering and Modeling,
pp. 60–70, 2007. 

[8] K. Komonen, “A Cost Model of Industrial Maintenance for
Profitability Analysis and Benchmarking,” International Journal of
Production Economics, Elsevier, vol. 79(1), pp. 15–31, 2002. 

[9] I. Alsyouf, “The Role of Maintenance in Improving Companies’
Productivity and Profitability,” International Journal of Production
Economics, Elsevier, vol. 105(1), pp. 70–78, 2007. 

[10] D. Dowlatshahi, “The Role of Industrial Maintenance in the
Maquiladora Industry: an Empirical Analysis,” International Journal
of Production Economics, Elsevier, vol. 114(1), pp. 298–307, 2008. 

[11] B. Swanson, “The Dimensions of Maintenance,” IEEE Computer
Society Press, International Conference on Software Engineering,
pp. 492–497, 1976. 

[12] J. B. Bowles, “An Assessment of RPN Prioritization in a Failure
Modes Effects and Criticality Analysis,” Reliability and
Maintainability Symposium, pp. 380–386, 2003. 

[13] E. Balaban, P. Bansal, P. Stoelting, A. Saxena, K. F. Goebel, and S.
Curran, “A Diagnostic Approach for Electro-Mechanical Actuators in
Aerospace Systems,” IEEE Aerospace Conference, pp. 1–13, 2009. 

[14] Y.-H. Li, Y.-D. Wang, and W.-Z. Zhao, “Bogie Failure Mode
Analysis for Railway Freight Car based on FMECA,” International
Conference on Reliability, Maintainability and Safety, pp. 5–8, 2009. 

[15] R. Prieto-Diaz, and P. Freeman, “Classifying Software for
Reusability,” IEEE Software, vol. 4(1), pp. 6–16, 1987. 

[16] M. D. Giess, P. J. Wild, and C. A. McMahon, “The Generation of
Faceted Classification Schemes for Use in the Organisation of

Engineering Design Documents,” International Journal of 
Information Management, Elsevier, vol. 28(5), pp. 379–390, 2008. 

[17] E. Levner, D. Zuckerman, and G. Meirovich, “Total Quality
Management of a Production-Maintenance System: A Network
Approach,” International Journal of Production Economics, Elsevier,
vol. 56-57(1), pp. 407–421, 1998. 

[18] G. Waeyenbergh, and L. Pintelon, “Maintenance Concept
Development: a Case Study,” International Journal of Production
Economics, Elsevier, vol. 89(3), pp. 395–405, 2004. 

[19] A. Despujols, “Approche Fonctionnelle de la Maintenance,”
Techniques de l’Ingénieur, AG4710, pp. 1–14, 2004. 

[20] I. P. S. Ahuja, and J. S. Khamba, “Total Productive Maintenance:
Literature Review and Directions,” International Journal of Quality &
Reliability Management, Emerald, vol. 25(7), pp. 709–756, 2008. 

[21] M. Haziza, J. F. Voidrot, E. Minor, L. Pofelski, and S. Blazy,
“Software Maintenance: an Analysis of Industrial Needs and
Constraints,” Conference on Software Maintenance, pp. 18–26, 1992. 

[22] P.-Y. Lambolez, “Recherche d’Informations pour la Maintenance
Logicielle,”  PhD thesis, Université Paul Sabatier, Toulouse 3, 1994. 

[23] S. Barros, “Analyse a priori des Conséquences de la Modification de
Systèmes Logiciels: de la Théorie à la Pratique,” PhD thesis,
Université Paul Sabatier, Toulouse 3, 1997. 

[24] I. Alloui, “Conciliating Property Stability and System Evolution
through Software Model Analysis,” GDR Génie de la Programmation
Logicielle 2009, pp. 224–231, 2009. 

[25] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys, vol. 41(3), pp. 1–58, 2009. 

[26] M. F. Porter, “An Algorithm for Suffix Stripping,” Program:
Electronic Library and Information Systems, vol. 40(3), pp. 211–218,
2006. 

[27] G. W. Stewart, “On the Early History of Singular Value
Decomposition,” SIAM Review, Society for Industrial and Applied
Mathematics, vol. 35(4), pp. 551–566, 1993. 

[28] H. Abdi, and L. J. Williams, “Principal Components Analysis,” Wiley 
Interdisciplinary Reviews: Computational Statistics, vol. 2(4),
pp. 433–459, 2010. 

[29] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman, “Indexing by Latent Semantic Analysis,” Journal of the
American Society for Information Science, Wiley, vol. 41(6),
pp. 391–407, 1990. 

[30] G. Salton, and M. J. McGill, “Introduction to Modern Information
Retrieval,” McGraw-Hill, New York, 1983. 

[31] G. Salton, and C. Buckley, “Term-Weighting Approaches in
Automatic Text Retrieval,” Information Processing and Management,
Elsevier, vol. 24(5), pp. 513–523, 1988. 

[32] R. Feldman, M. Fresko, Y. Kinar, Y. Lindell, O. Liphstat, M.
Rajman,Y. Schler, and O. Zamir, “Text Mining at the Term Level,”
PKDD, Second European Symposium. LNCS, Springer, Heidelberg
vol. 1510, pp. 65–73, 1998. 

[33] I. T. Fatudimu, A. G. Musa, C. K. Ayo, and A. B. Sofoluwe,
“Knowledge Discovery in Online Repositories: A Text Mining
Approach,” European Journal of Scientific Research, EuroJournals,
vol. 22(2), pp. 241–250, 2008. 

[34] I. Gurrutxaga, O. Arbelaitz, J. I. Martín, J. Muguerza, J. M. Pérez,
and I. Perona, “SIHC: A Stable Incremental Hierarchical Clustering
Algorithm,” International Conference on Enterprise Information
Systems, pp. 300–304, 2009. 

[35] B. Raskutti, and C. Leckie, “An Evaluation of Criteria for Measuring
the Quality of Clusters,” Joint Conference on Artificial Intelligence,
pp. 905–910, 1999. 

[36] Q. H. Nguyen, and V. J. Rayward-Smith, “Internal Quality Measures
for Clustering in Metric Spaces,” International Journal Business
Intelligence and Data Mining, Inderscience, vol. 3(1), pp. 4–29, 2008. 


