
HAL Id: hal-03763188
https://hal.science/hal-03763188

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed Architecture for Flexible Multimedia
Management and Retrieval

Mihaela Brut, Dana Codreanu, Stefan Daniel Dumitrescu, Ana-Maria
Manzat, Florence Sèdes

To cite this version:
Mihaela Brut, Dana Codreanu, Stefan Daniel Dumitrescu, Ana-Maria Manzat, Florence Sèdes. A
Distributed Architecture for Flexible Multimedia Management and Retrieval. 22nd International
Conference on Database and Expert Systems Applications (DEXA 2011), Aug 2011, Toulouse, France.
pp.249-263, �10.1007/978-3-642-23091-2_22�. �hal-03763188�

https://hal.science/hal-03763188
https://hal.archives-ouvertes.fr

A Distributed Architecture for Flexible Multimedia
Management and Retrieval

Mihaela Brut, Dana Codreanu, Stefan Dumitrescu,
Ana-Maria Manzat, and Florence Sedes

Universite de Toulouse – IRIT – UMR 5505,
31062 Toulouse, France

{Firstname.lastname}@irit.fr

Abstract. Developing an efficient system that manages distributed multimedia
content supposes to minimize resource consumption while providing the most
relevant results for a user’s query in the shortest time. This paper presents
LINDO, a generic architecture framework for distributed systems that acquires
efficiency in multimedia indexing and retrieval. Three characteristics
particularize it: (1) it differentiates between implicit algorithms executed over
all the multimedia content at the acquisition time, and explicit algorithms,
executed on demand for answering a specific need; (2) it stores and processes
multimedia content and metadata locally, instead of transferring and indexing it
on a central server; (3) it selects a set of relevant servers for query execution
based on the user query semantic processing and on the system knowledge,
including descriptions of distributed servers, multimedia content and indexing
algorithms. The paper relies on a concrete implementation of the LINDO
framework in order to validate this contribution.

1 Introduction

The development of a distributed multimedia system must balance the efficiency
principle to minimize resource consumption while providing the most relevant results
for a user’s query in the shortest time. The system needs to locate relevant multimedia
contents in an environment that consists of an increasing number of machines with
different capabilities, each hosting large multimedia collection. The efficient content
indexation is a key issue for the management and retrieval of relevant information.
Indexing is based on a set of algorithms, which generate diverse and heterogeneous
multimedia metadata, but which are usually highly resources consuming.

Designing a distributed multimedia system requires a number of choices [1]:
indexing based on a fixed or variable set of algorithms, algorithms executed over the
entire multimedia collection or only over a filtered sub-collection, the whole set of
algorithms being itself filtered or not before their effective execution, indexing in a
distributed manner, on the same location as the content, or in a centralized one, by
transferring the content to an indexation server (e.g., Web services), a decision
regarding the distributed or the centralized placement of the multimedia metadata.

The LINDO1 project (Large scale distributed INDexation of multimedia Objects),
specifies a generic architectural solution that guides the design and the development
of any distributed multimedia information system relying on indexing facilities. The
paper illustrates how LINDO differentiates from other multimedia distributed systems
by capitalizing and improving the state of the art results concerning the above
mentioned decisions. Thus, three characteristics of the LINDO framework are
elicited:

• it differentiates between implicit algorithms executed over all the multimedia
content at acquisition time, and explicit algorithms, executed on demand for
answering a specific need;

• it processes multimedia content locally, instead of transferring and indexing it on a
central server;

• it selects a set of relevant servers for query execution based on the user query
semantic processing and on the system knowledge, including descriptions of
distributed servers, multimedia content and indexing algorithms.

In this way, the solution we adopted in LINDO prevents from executing at once all
indexing algorithms by defining a method that determines the relevant set of
algorithms for a user’s query. These algorithms are executed only on a multimedia
sub-collection, which is also selected according to the query. Indexing algorithms will
only be run on the multimedia content location. Algorithms and multimedia content
filtering is done with respect to a developed centralized knowledge repository. This
repository gives an overview of the system, including semantic descriptions of the
distributed servers and indexing algorithms functionalities, as well as summaries of
the multimedia metadata extracted and stored on each remote server. It also enables
the selection of the relevant remote servers where the user’s query will be executed.

Similar approaches adopted by distributed multimedia systems are exposed in
Section 2. The architecture, as well as the content indexation and retrieval
mechanisms of these systems are presented, while emphasizing the characteristics that
differentiate them from LINDO. The LINDO framework is described in Section 3
through its generic architecture, as well as through its indexing and querying
mechanisms. A testing implementation of the LINDO system is presented in Section
4, also detailing the architecture topology and the indexing and retrieval mechanisms.
Finally, conclusions and future work directions are provided.

2 Related Work

The requirements to design an information system that manages distributed
multimedia contents are:

R1. Fixed or variable set of indexing algorithms (IA) for multimedia contents
indexation;

R2. Algorithms executed at acquisition time or at user’s query;
R3. Selection of algorithms or not, according to the user’s query;

1 http://www.lindo-itea.eu/

R4. Distributed executing, in the same location as the multimedia contents
storage, or centralized, on an indexation server where the multimedia
contents are transferred;

R5. Filtering multimedia content or not before indexing;
R6. Management of multimedia metadata obtained as results of indexing process

in distributed way, on each server that stores multimedia content, or in
centralized one, through a unique metadata collection;

R7. At the query moment, selection or not of the relevant remote servers (RS)
according to the query, in order to only send the query to these servers.

In the design of the LINDO framework we considered all these aspects after a
careful study of the existing state of the art. Systems and approaches in which
multimedia contents are distributed adopt various techniques to accomplish content
indexing and retrieval. A large part of these approaches addresses only partially the
above mentioned issues according to their main objective.

The CANDELA project (Content Analysis and Network DELivery Architectures)2
proposes a generic distributed architecture for video content analysis and retrieval [2].
Multiple domain specific instantiations are realized (e.g., personal mobile multimedia
management [3], video surveillance [4]). The indexation is done on the distributed
servers at acquisition time. The resulting metadata can be distributed over the
network. However, the indexation algorithms are a priori selected and pre installed.

The KLIMT project (Knowledge InterMediation Technologies) [5] proposes a
Service Oriented Architecture middleware for easy integration of heterogeneous
content processing applications over a distributed network. The indexing algorithms
are considered as web services. The query is limited to pre-defined patterns that
match a set of rules for the algorithms’ execution sequence. After such a secquence
selection, the content is analyzed and the metadata is stored in a centralized database.

The WebLab3 project proposes an integration infrastructure that enables the
management of indexation algorithms as web services in order to be used in the
development of multimedia processing applications [6]. These indexing services are
handled manually through a graphical interface. For each specific application a fixed
set of indexing tools is run. The obtained metadata is stored in a centralized database.

The VITALAS4 project (Video & image Indexing and retrieval in the Large Scale)
capitalizes the WebLab infrastructure in a distributed multimedia environment [7].
The architecture enables the integration of partner’s indexation modules as web
services. The multimedia content is indexed off-line, at acquisition time, on different
indexing servers. No selection of indexing algorithms based on user query is done.

In [8], the authors propose a system that implements a scalable distributed
architecture for multimedia content processing. The architecture is service oriented
allowing the integration of new indexing tools. The indexation is distributed and the
metadata produced are attached to the multimedia document.

In order to avoid the transfer of the multimedia content in the context of a
distributed search engine, [9] propose to use mobile agents that migrate from one
server to another for indexing the content. The resulted metadata can be either

2 http://www.hitech-projects.com/euprojects/candela
3 http://weblab-project.org/
4 http://vitalas.ercim.org/

centralized or distributed over the network. In the latter case, a user’s query is sent to
all the remote servers. The authors prove that transferring the indexing algorithms at
the content location is more efficient than transferring the content to a central
indexing facility.

Table 1. A comparative overview of some representative systems

System
name

Set of
IA

IA
execution
moment

IA
selection

IA
execution
location

MM
content
filtering

Metadata
manage-

ment

RS
selec-
tion

Candela
Fixed

Acquisi-
tion time

Not done
Distributed

servers
Not done

Distributed
DB

Not
specified

KLIMT Variable
Query

moment
Done

Indexation
servers

Not
specified

Centralized
DB

Not
done

Weblab Fixed
Query

moment
Done

manually
Indexation

servers
Not

specified
Centralized

DB
Not
done

Vitalas Variable
Acquisi-
tion time

Not done
Indexation

servers
Not

specified
Distributed

DB
Not

specified

[8] Variable
Acquisi-
tion time

Not
specified

Distributed
servers

Not done Distributed
Not

specified

[10] propose to store on a central server a hierarchy of interest concepts that
describe the content stored in the distributed servers. This hierarchy is used to select
the servers that are relevant to a query. It is a priori constructed and maintained
manually. The authors prove that sending the query to some servers only answers
faster than sending the query to each server, while the same precision is maintained.

As can be noticed, each information system for distributed multimedia
management considers only a part of the above mentioned issues that contribute to the
overall system efficiency. This is the reason why the LINDO framework was
developed such as to provide solutions for each issue.

Further we present the LINDO framework and explain how it provides support for
acquiring efficiency for the mentioned requirements.

3 The LINDO Framework Architecture

The LINDO project’s idea was not to define yet another multimedia information
indexing solution but rather to reuse existing indexing frameworks into a common
architecture. As illustrated latter, this architecture was designed such as to provide
efficient solutions to the mentioned issues in order to enable reduced resource
consumption and to enhance the context for giving relevant results to the user query.

We have defined the LINDO generic architecture over two main components: (1)
remote servers (§3.1) which acquire, index and store multimedia contents, and (2) a
central server (§3.2) which has a global view of the overall system. Even though our
proposal is based on this classical approach for distributed systems, it presents two
advantages. First, each remote server is independent, i.e., it can perform uniform as
well as differentiated indexations of multimedia contents. For instance, some remote
servers may index in real time acquired multimedia contents, while others may

proceed to an off-line indexation. Secondly, the central server can send relevant
indexation routines or queries to relevant remote servers, while the system is running.

In the following, the role of each framework’s component in the fulfillment of the
requirements R1 to R7 mentioned in the beginning of Section 2 is presented.

Fig. 1. LINDO Framework Architecture

3.1 The Remote Server Components

The remote servers in LINDO-based systems store and index all acquired multimedia
contents, to provide answers to user queries. Hence, several modules have been
defined and linked together in order to cover all these tasks:

• The Storage Manager (SM) stores the acquired multimedia contents. Through the
Transcode module, acquired multimedia contents can be transcoded into several
formats. This allows a user to download different encodings of the desired content.

• The Access Manager (AM) provides methods for accessing multimedia contents
stored in the SM. Apart from accessing an entire content, different fragments of
one multimedia content can be selected (for multimedia filtering, in case of R5).

• The Feature Extractors Manager (FEMrs) is in charge of managing and executing
a set of indexing algorithms over the acquired multimedia contents. At any time,
new algorithms can be uploaded into this module, while others can be removed or
updated. It can permanently run the algorithms over all the acquired contents or it
can execute them on demand only on certain multimedia contents (thus enabling
the deployment of the necessary algorithms for a user query for R1 and R2).

• The Time Remote Server handles time synchronization with the central server.
• The Metadata Engine (MDErs) collects and aggregates all extracted metadata

about the multimedia contents stored in the SM. Naturally, the metadata stored in

this module can be queried in order to retrieve some desired information (thus, the
distributed management of metadata is enabled for R6).

• The Service Description Controller (SCD) stores the remote server description,
e.g., its location, its capacities, the acquisition context (useful for enabling the
remote servers selection for R5 and R7).

3.2 The Central Server Components

The central server can control the remote indexation processes, and it can answer or
forward user queries. Thus, a central server is composed of the following
components:

• The Terminal Interface (TI) enables a user to specify queries and displays the
obtained results. Other functionalities are included in the TI, such as visualization
of metadata collections and management of indexing algorithms (thus a variable
set of indexing algorithms is possible for R1).

• The Metadata Engine (MDEcs) gives a global view of the system. It can contain
some extracted metadata about multimedia contents, some contextual information
about the system, the remote servers’ descriptions, the descriptions of the available
indexing algorithms, etc. It is a system knowledge repository that enables efficient
solutions for multiple issues: algorithm selection according to a user query (for R2
and R3); filtering of the multimedia content for R5; distributed metadata
management for R6; the selection of relevant remote servers for R7.

• The Feature Extractors Manager (FEMcs) manages the entire set of indexing
algorithms available in the system. This module communicates with its equivalent
on the remote server side in order to install new indexing algorithms if it is
necessary or to ask for the execution of a certain indexing algorithm on a
multimedia content, or part of multimedia content. Thus, the management of a
variable algorithms set is possible for R1. Their remote deployment and execution
is also possible for R4.

• The Request Processor (RP) treats some queries on the MDEcs or forwards them
to specific remote server metadata engines. Moreover, through the FEMcs, it can
decide to remotely deploy some indexing algorithms. Thus, the RP has an essential
contribution to the content filtering and to the selection of the relevant algorithms
and remote servers for R3, R5 and R7.

• The Results Aggregator (RA) aggregates the results received from all the queried
metadata engines and sends them to the TI, which displays them.

• The Translation module homogenizes the data stored into the MDEcs coming from
the MDErs, the remote SDCrs and the FEMcs. Hence, this module unifies all
descriptions in order to provide the system global view.

• The Time Central Server provides a unique synchronization system time.
• The Service Description Controller (SDCcs) collects all remote server descriptions

(useful for enabling the remote servers selection for R5 and R7). It manages the
integration in the system of new remote servers, their removal and the change in
their functioning state (e.g., if the server is temporarily down or it is active).

3.3 Indexing and Querying Mechanisms

In order to reduce resource consumption, the architecture allows the multimedia
contents indexation to be accomplished at acquisition time (i.e., implicit indexation)
and on demand (i.e., explicit indexation). This avoids executing all indexing
algorithms at once (thus a solution for R2 issue is available).

When a remote server acquires new multimedia content, the SM stores it and then
the FEMrs starts its implicit indexation by executing a predefined set of indexing
algorithms. This algorithm set is established according to the server particularities.

Once the execution of an indexing algorithm is achieved, the obtained metadata is
forwarded to the Filtering module. The filtered metadata is then stored by the MDErs
in its metadata collection. In order to avoid the transmission of the whole collection of
metadata computed on the remote servers, the MDErs only sends, at a given time
interval, a summary of these metadata to the Translation Module on the central server.
[11] (the distributed metadata management is adopted for R6). Once translation is
done, the metadata are sent to the MDEcs to be stored and further used in the
querying process. Thus, the implicit indexation process is achieved.

The query process begins with the query specification through the TI. The user’s
query is sent to the RP module in order to be executed over the metadata collections.
In this process, the RP analyses the query in order to select, based on the metadata
summaries from MDEcs, the active remote servers that could provide answers to the
query. Among the servers that were not thus selected there could be some servers that
contain relevant information, but that has not been indexed with the suitable
algorithms (the servers’ selection relies upon their metadata summary, obtained
mainly from the implicit algorithms’ metadata; so, maybe among these algorithms
there are not the most relevant for the current query). For this reason, our solution
detects such supplementary algorithms [12] and starts their execution (i.e., explicit
indexation) on a sub-collection of multimedia contents (developing thus efficient
solution for R3 and R5). The query is sent for execution to all the selected servers.
The top-ranked relevant results obtained from these remote servers are sent to the RA,
which combines them in order to obtain a global ranked results list that is displayed to
the user in the TI.

An important remark is that the two kinds of indexation can be mixed in the
LINDO system, i.e., on some remote servers only the implicit indexation can be
accomplished, while on others only the explicit indexation is done, and finally on
others both indexation processes can be performed. The implementation of these two
workflows will be detailed in the next section.

4 LINDO System Evaluation

As illustrated before, the LINDO framework was conceived to provide support for
efficient handling of all the seven design requirements. The aim of the project was to
build a real system, so we could evaluate our framework in different scenarios.

We further present the topology of the system employed in the evaluation. We will
also illustrate with some examples how the multimedia indexing and the query
processes are flexibly accomplished on this topology:

(1) Multimedia indexing is performed locally, on each remote server, while
being coordinated at the central server level;

(2) Explicit indexing is employed only when necessary, namely when a query
doesn’t receive satisfactory results. Thus, for a certain query, all the suitable
results are located and retrieved.

We will emphasize, while presenting this concrete implementation, how all the
seven issues receive an efficient solution.

4.1 The LINDO System Topology Used for Evaluation

In the development of the testing system architecture, we considered multiple remote
servers, located in different countries that instantiate modules of the proposed
architecture, and that concern different domains (video surveillance, broadcast).

The topology of the LINDO testing system is composed of a central server and
three remote servers, located in Paris and in Madrid. Two remote servers are
dedicated to video surveillance and they store, index and query video contents
acquired in real time. The third remote server manages multimedia contents for the
broadcast domain.

In the following, we detail the particularities of each architecture module
instantiation on each one of these servers, either remote or central.

Fig. 2. The LINDO testing system topology

The generic architecture of a remote server was instantiated for each one of the
three remote servers. The instantiations maintained the architecture’s modules, while
adopting a different implementation of their functionalities:

• For the SM module, a proprietary software developed in C language by one of the
partners was adopted for a video surveillance remote server as well as for the

broadcast remote server; for the other video surveillance remote server, a software
produced by another partner was employed. It manages the splitting, naming and
storing manner of the multimedia content (Thales CCTV, WiLix).

• Similarly, two different implementations (in Java and C#) of the FEM module
were adopted for the two video surveillance remote servers, while the broadcast
and the central server employed the Java implementation;

• The same MDE module was integrated in all the three remote servers. This module
was developed in Java and uses the XML native Oracle Berkley DB XML5

database for storing the metadata;
• The Filtering module was not included in the broadcast remote server;
• A Java implementation of the Service Description Controller was instantiated on

each remote server and on the central server as well.

This topology proves that the LINDO architecture enables each partner to develop
his own implementation of each module, while respecting the interfaces and data
format requirements.

The characteristics of each remote server in terms of multimedia content and
implicit indexing algorithms are presented in the following.

First video surveillance remote server, installed in Paris:

• Manages multimedia contents acquired from two video surveillance cameras
situated in a train station and watching the main hall and parking.

• Stores audio and video contents acquired in real time in the SM module, which in
this case is the software developed in C language.

• Contains implicit indexing algorithms managed by the FEMrs. The indexing
algorithms (executed on Windows and Linux environments) for video content are
in charge with person and car counting and intrusion detection for indoor and
outdoor environments, as illustrated in Table 1. For audio content, the speaker
change detection is available.

Table 2. Indexing algorithms for video content on the Paris video surveillance remote server

Indoor Outdoor
Intrusion - Presence of people - Presence of people & vehicles

Counting - Number of people
- Main color of the upper part
of the people

- Number of people, number of vehicles
- Main color of the people upper part.
- Main color of vehicles

5 http://www.oracle.com/technology/products/berkeley-
 db/xml/index.html

• Handles the metadata provided by the indexing algorithms in a uniform XML data
format [13] as well as the descriptions of the installed indexing algorithms. All this
information is stored by the MDErs. A fragment of the person detection indexing
algorithm description is shown in Table 2.

Table 3. XML algorithm description

<AlgorithmModel AlgoName="Person Detection" MediaType="Video">
<InputParameters>
 <InputParamFileFormat>xml</InputParamFileFormat>
<ImageParameters/>
<Feature>Local Semantic Features</Feature>
</InputParameters>
 <OutputObject Type="Metadata">
 <MetadataObject>
 <MetadataObjectDescription>location of the detected persons</MetadataObjectDescription>
 </MetadataObject>
 </OutputObject></AlgorithmModel>

• The SDC module contains an XML based description of the specific characteristics
and context for this remote server (e.g., the IP address, the deployed indexing
algorithms, the spatial topology of the location, the installed cameras and their
characteristics). An example of such description is provided in Table 3.

Table 4. Remote server description

<RemoteServer id="rs1" name="Remote Server 1">
 <localisation>train station, Paris, France</localisation>
 <description>Manages content from cameras located in the main hall of the station and in the
parking of the station</description>
 <devices>
 <camera id="c1Paris"> <description>located in the main hall </description> </camera>
 </devices>
 <indexingAlgorithms>
 <indexingAlgorithm id="ia2rs1" name="pedestrian detection" mediaType="video">
 <description>Detects pedestrians in a parking and their predominant color</description>
 </indexingAlgorithm>
 </indexingAlgorithms>
</RemoteServer>

The second video surveillance remote server, installed in Madrid:

• Manages and stores video contents acquired in real time from a video surveillance
camera situated at the entrance into a security control room, using a software
produced by a local partner;

• Contains an indexing algorithm for person and color detection in indoor
environments. The description of this algorithm and its output follow the same
formats as the algorithms installed on the Paris remote server;

• The SDC stores locally the description of the remote server, which is similar with
the one provided in Table 3.

The third remote server, designed for the broadcast domain:

• Stores video content resulted from BBC journals using the same software for the
SM as the video surveillance remote server from Paris;

• Contains a speech-to-text indexing algorithm based on Microsoft technology,
which processes the audio stream of video files. The output of this algorithm
follows the metadata format defined in the project.

The Central Server complies with the architecture presented in Figure 1 and has the
following characteristics:

• FEMcs manages the indexing algorithm global collection where, alongside with all
the implicit indexing algorithms installed on the remote servers, a supplementary
set of explicit indexing algorithms are installed (abandoned luggage detection [14],
shape detection, color detection, shout detection, etc. [15])

• MDEcs manages multiple data: descriptions of each remote server, abstracts of the
multimedia metadata from each remote server, descriptions of indexing algorithms.

• Contains also the TI, the RP and the RA modules.

4.2 Multimedia Indexing

The indexing algorithms enumerated above for each remote server are implicit
indexing algorithms that are selected according to each server’s characteristics. These
algorithms index all the multimedia contents at the acquisition time. For example, on
the remote server from Madrid only the algorithm for person detection in indoor
environments is installed because it is a priori enough for processing the video
captured with a camera at the entrance of a security control room. On the contrary, all
the indexing algorithms presented in Table 1 are necessary on the video surveillance
remote server in Paris because this server manages content from the main hall and
parking of a train station.

These implicit video indexing algorithms produce metadata for each video frame. In
order to reduce the size of the generated metadata, the Filtering module aggregates the
metadata associated with consecutive frames that refer to the same detection. For
example, for the Paris server, Table 4 contains the metadata obtained after the Filtering
process was applied on the metadata generated by the person detection algorithm.

Table 5. Metadata aggregation result

<document src=”stream1”>
 <video capturedBy="cam1_Paris">
 <object type="Person" id="0">
 <localisation confidence="100">
 <period start_time="2010-07-28T11:07:35" end_time="2010-07-28T11:07:55"/>
 <area>control room</area>
 </localisation>
 <property name="color">red</property>
 </object>
 </video> </document>

Periodically, a Web service sends to the central server a metadata summary that
contains the essential detected information on each remote server (thus the R6 is
handled). In our experiments we send this abstract each hour. Because we are dealing
with multimedia contents from two different domains (i.e., video surveillance and
broadcast) the metadata summary is built differently, according to the domain:

• for video surveillance: the summary consists in statistics based on the metadata
obtained in the last hour of recording;

• for broadcast: the summary will be also accomplished on the metadata that was
generated by the indexation of the multimedia content during the last hour, but will
consist in the titles and participants for each broadcast content (article, show, etc.).

This summary is concatenated to the other information in the MDEcs, and thus a
complete view of the system is obtained on the central server. This overview is the
basis for further treatment of the user’s query, in the context of explicit indexation, as
detailed in the next section.

4.3 Query Processing

The user formulates the query in the TI through a graphic interface that enables him to
specify five query components: the query itself (as free text), the location (free text),
time span (calendar-based), domain (checkbox list) and the media format (video,
image, audio or text).

As further detailed, the query is processed in order to select the remote servers
(according R7) that are currently in a functional state (active), the sub-set of explicit
indexing algorithms (R3), as well as the sub-collection of the multimedia content
(R5). Figure 3 shows the logical steps that happen when a user queries the system.

Fig. 3. Query processing diagram

In order to process the query, the first task of the RP is to select a set of active
nodes on which the query will be executed. The selection is done into two steps. In

the first step every node that does not match for its location and domain with the user
query (location and domain fields) is rejected. The set of remaining nodes then goes
into the second filter. In this step, the user’s query is applied to the metadata summary
stored on the central server that corresponds to all of these remote servers. Two sub-
sets of nodes will result, the first containing nodes that match the query, and the
second one containing the remaining nodes that do not match the query.

The query is then directly sent to the first set of matching nodes. For the nodes in
the second set, a list of relevant explicit algorithms is first determined. The required
algorithms are found by means of similarity between each algorithm description and
the user query. For each remote server, only the algorithms that have not been applied
will be deployed and executed. This ensures that these nodes will also be able to
provide a final answer to the query.

For illustrating these filtering operations during querying processing, we examine
in the following the query mechanism on some concrete query examples.

Q1. Location: Paris; Domain: broadcast; Time: 14 July 2010; Query content:
Sarkozy speech.
The first filtering step will select only the broadcast remote server from Paris
(location is matched directly). During the second filtering step, the query content is
searched inside the metadata summaries for the date of 14 July 2010 on the central
server (the text “Sarkozy speech” is matched over these metadata, based on a
semantic processing as will be presented at Q3). Supposing this search is successful,
the query is further sent to the metadata collection from the Paris broadcast server.
Based on this search, the concrete corresponding audio and video BBC news are
located and provided as results.

Q2. Domain: video surveillance; Time: 8 March 2011; Query content: woman in red.
The first filtering step will select the two video surveillance remote servers, from
Paris and Madrid. During the second filtering step, the query content is searched
inside the metadata summaries for the date of 8 March 2011 from the central server
(the text “woman in red” is matched over the metadata summaries corresponding to
the 8 of March, according the semantic processing described at Q3). Supposing the
both remote servers confirm the existence of such information, the query is sent to
Paris and Madrid. The returned results are merged by the RA and presented to the user
via the TI. It can be noticed that in both Q1 and Q2, the right branch of the diagram
represented in Figure 3 is followed.

Q3. Location: Paris; Domain: video surveillance; Time: 8 March 2011; Query
content: abandoned bag by women in red.
After first filtering, the Paris server is selected. In the second filtering step, the
metadata summaries are queried (using the same technique as described below), but
no result is obtained. This means that either no results actually exist, or on the Paris
server the algorithms that detect persons and static objects have not been executed.

We have to determine the appropriate algorithms to be run based solely on the
user’s query. For this purpose, an analysis is first performed on the query to obtain so-
called query chunks (usually, a chunk is a noun phrase composed of a noun and its

modifiers). A shallow parsing of the query will obtain two distinct chunks: “abandoned
bag” and “women in red”. Then, for each chunk, plural nouns are inflected (“women”-
>”woman”).

Next, the query chunks are matched to every algorithm description available on the
central server, which are themselves pre-processed in the same way. The matching is
done separately for every query chunk. For example, the algorithm that has the
description “stationary left or abandoned luggage or object” will match query chunk
“abandoned bag” due to the exact adjective match “abandoned” and to the fact that
“luggage” matches “bag” because both have “container” as hypernym. The chunk-
chunk match score is obtained by computing similarity between words, using the JCN
- Jiang and Conrath [16] similarity measure between their synonyms and also by
matching adjectives’ and adverbs’ synsets using WordNet6. JCN was chosen among
other similarity measures because of its better performance [17]. The same applies for
the person detection algorithm having the description “person and color detection
algorithm” that matches to the query chunk “women in red” due to the fact that
“woman” is a “person” and “red” is a “color” (direct hypernym relations mean good
JCN score). The final score for each algorithm is the sum of the highest similarity
scores between algorithm chunks and query chunks. This avoids score imbalance due
to variable algorithm description lengths. The top candidate algorithms are chosen.

A check is performed to see if they had already run on the selected remote server.
If every candidate algorithm has already run, that means that the initial search in the
metadata on the central server yielded correctly no results. In our case, the algorithm
that detects stationary objects was not run, and it is deployed for processing on the
remote server.

5 Conclusions

In this paper we presented a framework that supports the design of an efficient
distributed multimedia system by minimizing resource consumption while providing
the most relevant results in the shortest time.

This framework was developed in the context of the LINDO project, and acquires
efficiency in multimedia indexing and retrieval through three particularities: (1) it
differentiates between implicit and explicit indexation; (2) it processes multimedia
content locally, instead of transferring and indexing it on a central server; (3) it selects
a set of relevant servers for query execution. The paper presented also a concrete
implementation of the LINDO framework, which validates this contribution.

In the future, we will study how the LINDO indexing and retrieval mechanisms
could be applied on some existing multimedia distributed repositories in order to
intelligently handle their knowledge. In order to improve these mechanisms, we also
plan to develop semantically enhanced algorithm descriptions that will enable to
define better criteria for algorithm selection.

Acknowledgments. This work has been supported by the EUREKA project LINDO
(ITEA2 – 06011).

6 http://wordnet.princeton.edu/

References

1. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, Hardcover (2011)
2. Petkovic, M., Jonker, W.: Content-Based Video Retrieval, A Database Perspective.

Multimedia Systems and Applications, vol. 25 (2003)
3. Pietarila, P., Westermann, U., Järvinen, S., Korva, J., Lahti, J., Löthman, H.: CANDELA -

storage, analysis, and retrieval of video content in distributed systems. In: The IEEE
International Conference on Multimedia and Expo. pp. 1557–1560 (2005)

4. Merkus, P., Desurmont, X., Jaspers, E.G.T., Wijnhoven, R.G.J., Caignart, O., Delaigle, J.-
F., Favoreel, W.: Candela- Integrated storage, analysis and distribution of video content for
intelligent information system. In: European Workshop on the Integration of Knowledge,
Semantics and Digital Media Technology (2004)

5. Conan, V., Ferran, I., Joly, P., Vasserot, C.: KLIMT: Intermediations Technologies and
Multimedia Indexing. In: International Workshop on Content-Based Multimedia Indexing,
pp. 11–18 (2003)

6. Giroux, P., Brunessaux, S., Brunessaux, S., Doucy, J., Dupont, G., Grilheres, B.,
Mombrun, Y., Saval, A.: Weblab: An integration infrastructure to ease the development of
multimedia processing applications. In: the 21st Conference on Software & Systems
Engineering and their Applications (2008) (published online)

7. Viaud, M.-L., Thievre, J., Goeau, H., Saulnier, A., Buisson, O.: Interactive components for
visual exploration of multimedia archives. In: The International Conference on Content-
based Image and Video Retrieval, pp. 609–616. ACM Press, New York (2008)

8. Thong, J.M.V., Blackwell, S., Weikart, C., Hasnian, A., Mandviwala, A.: Multimedia
Content Analysis and Indexing: Evaluation of a Distributed and Scalable Architecture,
Technical report, HPL-2003-182 (2003)

9. Roth, V., Peters, J., Pinsdorf, U.: A distributed content-based search engine based on
mobile code and web service technology. Scalable Computing: Practice and
Experience 7(4), 101–117 (2006)

10. Hinds, N., Ravishankar, C.V.: Managing metadata for distributed information servers. In:
The 31st Hawaii International Conference on System Sciences, pp. 513–522 (1998)

11. Laborie, S., Manzat, A.-M., Sedes, F.: Managing and querying efficiently distributed
semantic multimedia metadata collections. IEEE MultiMedia Special Issue on Multimedia-
Metadata and Semantic Management 16, 12–21 (2009)

12. Brut, M., Laborie, S., Manzat, A.-M., Sèdes, F.: A Framework for Automatizing and
Optimizing the Selection of Indexing Algorithms. In: Sartori, F., Sicilia, M.Á.,
Manouselis, N. (eds.) MTSR 2009. Communications in Computer and Information
Science, vol. 46, pp. 48–59. Springer, Heidelberg (2009)

13. Brut, M., Laborie, S., Manzat, A.M., Sedes, F.: A Generic Metadata Framework for the
Indexation and the Management of Distributed Multimedia Contents. In: The Third
International Conference on New Technologies, Mobility and Security, pp. 1–5 (2009)

14. Gasteratos, A., Vincze, M., Tsotsos, J., Miezianko, R., Pokrajac, D.: Detecting and
Recognizing Abandoned Objects in Crowded Environments. In: Computer Vision
Systems. LNCS, pp. 241–250. Springer, Heidelberg (2008)

15. Snoek, C.G., Worring, M.: Multimodal video indexing: A review of the state of the art.
Multimedia Tools and Applications 25, 5–35 (2005)

16. Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E.G.M., Milios, E.E.: Semantic
similarity methods in wordNet and their application to information retrieval on the web.
In: the 7th International Workshop on Web Information and Data Management, pp. 10–16
(2005)

17. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy.
In: International Conference on Research in Computational Linguistics, pp. 19–33 (1997)

