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Abstract

We develop a comprehensive framework for analyzing optimal economic policy during a
Pandemic crisis in a dynamic economic model that trades off pandemic-induced mortality costs
against the adverse economic impact of policy interventions. We use the comparison between
planner problem and dynamic decentralized equilibrium to highlight the margins of policy
intervention and describe optimal policy actions. As our main conclusion, we provide a strong
and novel economic justification for the current approach to dealing with the Pandemic, which
is different from the existing health policy rationales. This justification is based on a simple
economic concept, the shadow price of infection risks, which succinctly captures the static and
dynamic tradeoffs between economic prosperity and mortality risk as the Pandemic unfolds.
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1 Introduction

The COVID-19 pandemic raises challenging new policy questions: How should governments manage

the spread of a contagious disease? How should they weigh containing the pandemic against other

policy objectives such as limiting its economic fallout? Ultimately, how should governments ponder

economic prosperity and mortality risk?

Most governments have responded to COVID-19 with a combination of lockdown policies that

temporarily limit economic activity to control the spread of the pandemic, and economic rescue

packages to shield firms and households from negative economic spill-overs of the pandemic crisis.

Yet there are important cross-country differences in the lockdown intensities, durations, and in

the reliance on public enforcement or agent’s private incentives. The path towards recovery raises

additional questions: How should optimal de-confinement be structured? How fast should lock-down

measures be lifted? How much should policy be guided by economic principles, how much by

epidemiological considerations? How much can policy makers rely on private incentives, and how

strong are the normative justifications for coercive policy interventions?

In this paper, we develop a framework to clarify the tradeoffs between competing economic

and health policy objectives during a pandemic crisis. Two features make COVID-19 especially

challenging to control: its fast propagation and the fact that many infections and transmissions

are asymptomatic and go undetected. We compare the equilibrium and socially optimal policy

responses to a pandemic with these two characteristics.

As our main policy conclusion, we argue that the strategies to control COVID-19 from an

epidemiological perspective are also based on sound economic principles: slowing the speed of

propagation has economic benefits that go well beyond the medical benefits of reducing congestion

in hospitals or gaining time to develop a cure or vaccine. But these prescriptions must be qualified

by the distinction between individual and common interests.

We embed a stylized economic interaction game into a dynamic S-I-R model of epidemic

propagation.1 Agents in our model interact on two levels: an economic level that determines
1Starting with Atkeson (2020) and Eichenbaum, Rebelo, and Trabandt (2020a), a rapidly growing literature

has followed this appraoch to study the impact of COVID-19 in quantitative economic models. We complement
these quantitative studies by focusing on theoretical results and quantitative illustrations from a stylized interaction
game that keeps the analysis simple, flexible and comprehensive: simple enough to capture the key policy tradeoffs,
comprehensive enough to identify principles that can guide policy choices without depending too closely on model
specifics, and flexible enough to provide a basis for further extensions and additional margins that are omitted from
the present analysis. As a result, we are also able to unify within a single model a number of insights, observations
and results that have emerged in this literature.
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instantaneous utilities, and a sanitary level that determines the likelihood with which economic

interactions result in the transmission of an infectious, potentially lethal disease. The economic

interaction is kept deliberately stylized and only assumes that the static economic equilibrium is

efficient. The model is thus general enough to encompass many textbook economic models that

satisfy sufficient conditions for the 2nd Welfare Theorem, or similar principles developed for other

forms of economic interactions.2 We allow for multi-dimensional actions, and are thus able to

address sectoral differences in equilibrium and policy responses to the pandemic crisis.

We model infections through a ”confinement game”, which determines individual infection

probabilities as a function of individual and aggregate actions in the economic stage game. We

assume that the confinement game satisfies an analogue of the static efficiency assumption: there

exists an extreme confinement equilibrium that minimizes global infection risks. Any rationale for

policy interventions then comes from the tradeoff between competing economic and health care

objectives.

We embed this structure into a dynamic S-I-R model: agents are initially at risk (susceptible).

They risk being infected by interacting with other infected agents. Once infected, they subsequently

either recover or die from the disease. Recovery confers permanent immunity. We assume that

agents do not know their own health state (only death is observable).3 This assumption is formally

convenient (all agents are symmetric, except those who have died), and it captures the reality of

asymptomatic infections in COVID-19.

By defining a shadow price of infection risks, we decompose the planner’s problem and equilibrium

characterization into a sequence of hybrid static interaction games and a recursive characterization

of the dynamics of this shadow price from the S-I-R–implied population dynamics. In addition, we

re-cast the dynamic problem as a reduced form interaction game with a static tradeoff between

infection risk choices and instantaneous utilities.

The shadow price of infection risks summarizes the static tradeoff between current utility and

future mortality that the agents or the planner face at a given point in time.4 Static policy tradeoffs
2By keeping the nature of economic interactions unspecified, our framework encompasses centralized and decentral-

ized market interactions, non-market interactions in hierarchies and organizations, search and assignment markets
etc., always under the assumption that the pre-pandemic equilibrium satisfies a generalized efficiency condition.

3In addition, we abstract from a symptomatic phase with illness prior to death. This is a convenient simplification
- adding such a phase is certainly possible and may be of interest for many extensions, especially ones considering the
role of the medical sector or the markets for medical equipment, but this is beyond the scope of this paper.

4If face masks are used with the sole purpose of reducing infection risks, then the spot price and equilibrium use of
face masks serve as a good proxy for the shadow price of infection risks. We explore the economics of face masks,
along with testing and contact-tracing, as two natural extensions of our baseline model.
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(i.e. which sectors to open and which ones to close) all revolve around aligning private and social

marginal rates of substitution to this shadow price. Optimal policy and equilibrium dynamics

all evolve around the dynamics of this shadow price in equilibrium and at the planner’s solution.

The optimal policy and dynamic equilibrium coincide, if and only if static efficiency conditions are

augmented by a dynamic efficiency condition that requires offsetting static and dynamic spill-overs,

a condition that is generically violated as the pandemic progresses.

The equilibrium dynamics without policy interventions are characterized by two phases: a

strong initial confinement phase that brings new infections under control, and a subsequent phase

of gradual deconfinement during which the epidemic slowly progresses until the population reaches

a state of herd immunity. During this second phase, the pandemic is neither completely suppressed

nor allowed to take off again. In reference to Pueyo (2020), who discusses exactly this approach as

a possible deconfinement strategy, we call these phases the Hammer and the Dance.

The socially optimal policy follows a similar pattern of a strong confinement phase to bring new

infections under control, and a subsequent phase of gradual deconfinement with slow progression

towards herd immunity. However, the planner’s solution differs from the equilibrium in the timing

and intensity of early lockdown measures, as well as the speed of convergence towards a long-term

recovery. These differences stem from the interplay of different externalities.

In our benchmark model, we abstract from the prospect of cures and congestion in hospitals.

Without these elements, the planner’s best long-term plan is to reach herd immunity quickly, but

without infecting more agents than necessary. The planner thus allows the pandemic to peak early,

brings it under control and then lets it progress very slowly towards herd immunity, with minimal,

but long-lasting economic restrictions. This early peak in infections and mortality is optimal because

preventing these infections through harder lockdown would merely postpone, but not avoid them,

and prolonging the course of the pandemic carries important economic costs. Agents at equilibrium

instead voluntarily opt for strong early confinement to ”wait out the storm”: herd immunity is

a collective good, and while everyone shares the benefits, no one is eager to help building it by

catching an infection. But if everyone holds out until the worst is over, the pandemic progresses

much more slowly and lasts longer, which significantly amplifies its economic costs.

What’s more, the externality changes sign during the recovery: once the peak of the epidemic

has passed, agents grow impatient to return to their prior activities, without internalizing that by

risking an infection they expose others to higher future infection risks. The equilibrium recovery

thus starts from too low a level and occurs too fast, which exacerbates the death toll in the long

run. These dynamic infection externalities can be arbitrarily strong: Since the epidemic’s basic
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reproduction coefficient is very close to 1 during deconfinement, each additional infection generates a

large number of follow-up infections. Between confining too much too soon and exiting confinement

much too fast, the equilibrium generates unnecessary economic hardship and a high number of

avoidable deaths.

These differences become particularly striking when we let the speed of epidemic propagation

tend to infinity. In this instantaneous propagation limit, the optimal policy brings the population

immediately to a state that optimally balances economic prosperity and mortality in the long-run,

and then stalls the pandemic at this long-run optimum without ever reaching herd immunity. In this

limit, the Hammer happens instantly and the Dance lasts forever: the faster is the pandemic’s natural

speed of propagation, the longer it takes to reach a full recovery. In contrast, fast propagation

reinforces the hold-out motive in equilibrium, resulting in a gradual propagation and long-run

convergence that features neither the economic benefits of the high initial peak of infections, nor

the mortality benefits of slowing down the pandemic forever.

We then add medical congestion or the prospect of a vaccine or cure to the model. These additions

have only small effects on private incentives and equilibrium dynamics, but they substantially alter

the planner’s incentives by making the initial peak of infections very costly: the immunization

externality is offset or overturned by a congestion externality in the medical sector or by the option

value to delay infections in hopes for a vaccine. The planner now favors early, decisive interventions

as much or even more than agents at equilibrium, and opts for a far more gradual and economically

costly path to recovery in hopes of saving more lives for a longer period of time. The path to

deconfinement is similar to before and still implies that agents do not sufficiently internalize infection

risks for others, resulting in a faster than optimal recovery and higher than necessary mortality.

These results follow from simple cost-benefit analysis of individual and social utility-mortality

tradeoffs. Economic restrictions in place today extend or save lives in the future, which explains why

it is beneficial to flatten the curve for both the equilibrium and the optimal policy. The two differ by

how they treat costs and benefits: in equilibrium, agents only consider the static tradeoff between

instantaneous utilities and concurrent infection risks, but take as given future aggregate dynamics:

hence they favor early confinement when infection risks are rising and early deconfinement when

infection risks are falling. The planner instead internalizes the full dynamic consequences of current

actions, from the economic benefits of building herd immunity to the costs of higher subsequent

infection rates.

Faster propagation strengthens the benefits of confinement by reducing the temporal distance

between instantaneous utility and future mortality. Instantaneous propagation makes this gap
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disappear altogether, resulting in a quasi-static tradeoff between economic prosperity and mortality

for both the planner and agents at equilibrium. At the limit, the planner’s solution stalls the epidemic

at precisely the resulting static optimum, while the equilibrium just offsets faster propagation through

stronger hold-out incentives.

Our results identify how epidemiological factors and economic incentives jointly shape equilibrium

and optimal policy responses. Conceptually our policy design problem maximizes welfare, subject

to the constraints imposed by pandemic propagation. One reason why optimal policy stays close to

the approach favored by epidemiologists is that even the best economic policy cannot, on its own,

escape the reality of epidemic propagation: easing restrictions too fast renews the propagation of

the disease, which increases the shadow price of infection risks, pushing optimal policy back towards

stronger confinement measures.

While epidemiological constraints determine what the policy maker can hope to achieve, economic

incentives determine the impact of these constraints on policy design. Optimal deconfinement policy

eases economic restrictions under the constraint that the basic reproduction rate stays close to

1 as the infection makes its way through the population. Interventions that lower infection risk

then have very strong substitution effects towards economic activity: health policy measures such

as testing or use of face masks that lower the natural progression rate of the epidemic allow the

government to ease economic restrictions along this transition path. Likewise, at equilibrium, the

pandemic shapes agents’ static tradeoffs between instantaneous utilities and infection risks, which

are summarized by the equilibrium shadow price. Our analysis thus highlights the role of economic

incentives and behavioral responses to the pandemic.

Related Literature: Goenka, Liu and Nguyen (2014, 2019) are among the rare papers to integrate

epidemic dynamics into economic models prior to the COVID-19 pandemic, but they have focused

more on the long-run consequences for growth, human capital accumulation and health policy.

Many recent papers have integrated economic decisions in an S-I-R framework. Atkeson (2020),

Alvarez, Argente, and Lippi (2020), and Gonzalez-Eiras and Niepelt (2020) study the trade-offs

between economic activity and infection risks that a social planner faces. Atkeson (2020) frames

mitigation policies as reduced-form hump-shaped infection rates and shows that mitigation reduces

and delays the peak infection rate.5 Alvarez, Argente, and Lippi (2020) and Gonzalez-Eiras and

Niepelt (2020) characterize optimal lockdown policies on the intensive (output drop) and extensive
5Chang and Velasco (2020) warns against the use of estimated transition probabilities in SIRD models, since

forward-looking behavior modifies the actual diffusion of the virus. As in the Lucas critique, elements of the transition
matrix are not deep parameters but are function of expected policies.
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(duration) margin. In these papers, the social planner internalizes that economic activity increases

infection risks, and that current choices determine future dynamics of infection. Piguillem and Shi

(2020) study a similar planner’s problem augmented by testing and quarantine measures.

Bethune and Korinek (2020), Eichenbaum, Rebelo, and Trabandt (2020a), Eichenbaum, Rebelo,

and Trabandt (2020b), Farboodi, Jarosch, and Shimer (2020), Jones, Philippon, and Venkateswaran

(2020a) and Jones, Philippon, and Venkateswaran (2020b) all highlight differences between the

competitive equilibrium and the planner’s solution because infection has a higher shadow cost for the

planner than for an individual agent.6 Farboodi, Jarosch, and Shimer (2020) share our conclusion

that optimal confinement policies may be long lasting and carefully balanced to keep new infections

under control. In these models the planner wants to mitigate sooner than private agents. Individual

agents’ high activity in the short-run is socially inefficient, which ? label a fatalism effect. We

complement these quantitative studies with theoretical results on static and dynamic spill-overs.

Among other things we highlight that optimality of early lockdowns at the planner solution is

the result of medical congestion externalities present in their models, and is easily reversed when

immunization spill-overs dominate the short-run policy tradeoffs.7

Toxvaerd (2020), Garibaldi, Moen, and Pissarides (2020), and Krueger, Uhlig, and Xie (2020)

emphasize private incentives for flattening the infection curve. Toxvaerd (2020) studies the non-

cooperative equilibrium of an economy with infection spillovers and shows that costly social distancing

may substantially slow down the rate of new infections. Garibaldi, Moen, and Pissarides (2020)

discuss social distancing based on insights from search theory and contrast static and dynamic

externalities similar to our set-up. They distinguish between infection costs and immunization

benefits, but stop short of a full comparison of planner solution and equilibrium. Compared to their

”bottom-up” approach to social distancing based on insights from search theory, we adopt a ”top-

down” approach that abstracts from the specifics of a given interaction to focus on general principles,

and we characterize the full dynamics of infection and immunization spill-overs. Krueger, Uhlig, and

Xie (2020) emphasize the role of static substitution across sectors and sorting by susceptible agents
6The flow utility u(a) = .25[log a − a] and infection probability β ({ai}) in ? can be directly mapped into the

static utility and infection rate in our paper. Farboodi, Jarosch, and Shimer (2020) models the infection externality
as a quadratic matching technology. They show that the laissez-faire equilibrium is closer to the optimal dynamics
than to the exogenous infection SIR one. Eichenbaum, Rebelo, and Trabandt (2020a) use a consumption tax as the
policy instrument. Eichenbaum, Rebelo, and Trabandt (2020b) consider testing and smart (health-status contingent)
containment policies.

7Other dynamic externalities in the economic model, including Jones, Philippon, and Venkateswaran (2020b)’s
learning-by-doing in a mitigation technology (working from home) also modify the planner’s incentives to reduce
activities in the short run.
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into low risk activities. As in our setup, a planner would subsidize (or tax) certain sectors according

to their specific infection risk externalities. Compared to these papers, our analysis highlights that

private incentives for social distancing may go too far, if the planner values early immunization.

To conclude we highlight two distinctive features of our work relative to these concurrent COVID-

19 papers. First, we complement these primarily quantitative studies by proposing a theoretical

framework and results that shed light on different forces in play. Our model unifies a number of

contrasting results which follow from specific assumptions about static and dynamic externalities,

as described in the preceding paragraphs. Second, we assume that health status is unobservable.

Most of the existing studies assume that health status is observable to the individual if not the

planner, yet then focus on simple policies that do not condition on this information.8 Sophisticated

policies would instead use this information, if necessary by elliciting it through direct revelation

mechanisms that exploit differential responses to exposure risks. By assuming that health status is

not observable, we are able to directly address policies that are designed to deal with this lack of

information during the COVID-19 pandemic.

2 Setting the stage

We consider a dynamic game in which a mass Λt of agents interacts in each period t = 1, 2, ... in an

economic stage game which determines their instantaneous utilites or payoffs each period. But these

decisions and economic interactions with their peers also expose agents to the risk of being infected

with and potentially dying from an infectious disease.

Hence, we start by juxtaposing the economic stage game with a confinement stage game, which

summarizes how the agents’ decisions determine their risk of infection. In the dynamic game, we

will represent the strategic interaction in each period as a hybrid of these two stage games, with a

weight on minimizing infection risks that varies with the concurrent prevalence of infections.

Actions: Let X ⊂ RK be a compact, convex set of feasible economic actions or choices, with

non-empty interior int (X ). Let x ∈ X denote an individual action, and X ∈ X the aggregate choice

of the other agents.9 Individual and aggregate choices jointly determine the agents’ instantaneous

utility in the economic stage game and their risk of infection in the confinement stage game.
8Piguillem and Shi (2020) or Eichenbaum, Rebelo, and Trabandt (2020b) introduce lack of observability but focus

mainly on optimal testing policies.
9To simplify exposition and notation, we will focus throughout on symmetric pure strategy profiles and equilibria.

We will use x and X to draw the distinction between individual choices and aggregate variables.
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Allowing for multi-dimensional X allows us to address sectoral differences in economic spill-overs

or infection risks. The public policy discussion is well aware of such differences when drawing a

distinction between essential and non-essential sectors, and when discriminating against sectors that

increase infection risk, such as mass transport, travel or entertainment events.

Economic stage game: Let U (·) : X × X →
[
0, V

]
denote the static flow utility of choosing

x ∈ X , when all other agents choose X. U (·) is continuous, strictly concave and twice continuously

differentiable over the interior of X × X . Let V (·) : X →
[
0, V

]
denote the value of making the

same choice as all other agents: V (X) = U (X,X). We assume the following about U (·) and V (·):

Assumption 1: There exists X∗, such that V (X∗) = V .

Assumption 1 states that the agent’s utility in the static game is maximized at an interior

optimum X∗. Moreover, since U (x,X∗) ≤ V = V (X∗) for all x ∈ X , X∗ also represents a symmetric

Nash equilibrium of the static game in which each agent chooses x ∈ X , i.e. the symmetric Nash

equilibrium X∗ decentralizes the utilitarian planner’s solution, which represents the economic

best-case scenario. Assumption 1 says that our static economy admits a variant of the second welfare

theorem or its analogue in frictional economies, which focuses our discussion on a benchmark in which

the economy operates efficiently ”in normal times”. Any rationale for active policy interventions

then comes as a direct consequence of inefficient collective responses to the epidemic risk.

Confinement stage game: Let R denote the probability with which an agent is infected within a

given period, conditional on being susceptible to infection. We assume that R varies with individual

and aggregate choices, and in addition that it is proportional to the fraction of agents that are

already infected, denoted by π (i). Specifically, suppose that as a function of her choice x ∈ X

and the aggregate action X ∈ X , an agent is infected with probability R (x,X) · π (i), where

R (·) : X × X → [R, 1] is continuous, strictly convex and twice differentiable over the interior of

X × X . The aggregate infection rate at X is then given by R (X) · π (i), where R (X) = R (X,X).

We make the following additional assumption about R (·) and R (·):

Assumption 2: There exists X̂ ∈ int (X ), such that R
(
X̂
)

= R ≥ 0. Moreover X̂ 6= X∗.

Assumption 2 states that the agent’s infection rate R is minimized at an interior optimum

X̂ 6= X∗, and since R
(
x, X̂

)
≥ R

(
X̂
)

= R, this action also aligns private and social returns from

reducing infection risks. Assumption 2 is the direct analogue of assumption 1 for infection risk and

implies that X̂ represents a symmetric Nash equilibrium in the confinement game in which all agents

aim to minimize infection risk R (x,X). We interpret X̂ as the ”extreme confinement equilibrium”,
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which is best-case scenario from a health policy perspective.10 In the dynamic model, it is also the

action that maximizes the long-term survival rate within the population. The assumption X̂ 6= X∗

generates a conflict between maximizing economic well-being V (·) and minimizing infection risk

R (·) that is at the core of our analysis.

We let R = R (X∗) > R denote the infection risk at the economic optimum and V = V
(
X̂
)
∈(

0, V
)

denote the instantaneous utility at the extreme confinement equilibrium. Any collective

action with a strictly higher infection risk than R or lower welfare than V would be worse from the

perspective of both economics and health care.

Remark: Both stage games implicitly assume scale invariance, i.e. that instantaneous utilities

U (·) and infection probabilities R (·) are independent of the mass of participating players Λ. Scale

invariance is common to many economic and epidemiological models in which interactions depend

on the proportion of different types of agents in the population, rather than their absolute numbers.

It is not critical for our analysis, but generates some useful simplifications along the way.

3 Economic well-being vs. infection risk: Static tradeoffs

Consider now a hybrid stage game in which agents’ payoffs are given by

U (x,X)− φR (x,X) ,

where φ represents a shadow price associated with infection risk that measures its importance in

agents’ decisions relative to economic well-being: At φ = 0, we recover the economic stage game,

and when φ converges to ∞ the hybrid stage game converges to the confinement game.

The planner’s solution X∗ (φ) within this hybrid stage game satisfies

∇V (X) = φ∇R (X) .

We recover the standard result: the planner’s solution equates the marginal rates of substitution in

V (·) to the marginal rates of substitution in R (·), i.e. the planner equates the marginal tradeoffs in

instantaneous utility and infection rates when substituting between different dimensions of X.

The Nash equilibrium Xeq (φ) of the hybrid game satisfies

∇1U (X,X) = φ∇1R (X,X) ,
10For example, X̂ may be interpreted as a form of ”extreme social distancing” to the point where there are no

face-to-face interactions between any two agents at equilibrium: Suppose that an infection only occurs through physical
contact between two individuals. Then if literally no one else is out on the streets, I will not be able to encounter
anyone and hence not risk an infection, even if I am out on the street.
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where ∇1 denotes the gradient with respect to the individual action x. Thus the same margin of

substitution between different dimensions operates in the private decisions, but the tradeoffs that

individual agents are facing may be different from the ones faced by the planner.

Proposition 1 asks under what condition the planner’s solution coincides with the Nash equilib-

rium of the hybrid game:

Proposition 1 The solution X∗ (φ) to the planner’s problem is a Nash equilibrium of the hybrid

game indexed by φ, if and only if

∇2U (X∗ (φ) , X∗ (φ)) = φ∇2R (X∗ (φ) , X∗ (φ)) ,

where ∇2 denotes the gradient with respect to the aggregate choice X.

Proposition 1 follows immediately from observing that ∇V (X) = ∇1U (X,X) + ∇2U (X,X)

and ∇R (X) = ∇1R (X,X) +∇2R (X,X). ∇2U (X,X) measures the utility spill-overs from the

aggregate choice towards any individual agent, holding constant that agent’s decision. ∇2R (X,X)

measures the infection rate spill-overs from the aggregate choice X, or infection externalities from

the other agents, scaled by the shadow price φ of infection risks. This proposition states that the

decentralization result extends from the two stage games to the hybrid game if and only if utility

spill-overs of individual choices are exactly offset by infection risk spill-overs at X∗ (φ).

The necessary and sufficient condition in proposition 1 states that

∂U(x,X)
∂Xi

∂R(x,X)
∂Xi

∣∣∣∣∣∣
x=X=X∗(φ)

= φ

for any dimension of activity i. This condition says that along all dimensions of X, the marginal rate

of substitution between utility and infection risk spill-overs, which we will call the spill-over marginal

rate of substitution, must be the same, and equal to the shadow price of infection risk: a marginal

change of activity in any two sectors leads to the same marginal tradeoff between instantaneous

utility and infection risk spill-overs as the one imposed in the planner’s objective. Coupled with the

first-order conditions for the planner’s problem and the equilibrium, we obtain:

∂U(x,X)
∂Xi

∂R(x,X)
∂Xi

∣∣∣∣∣∣
x=X=X∗(φ)

=
∂U(x,X)
∂xi

∂R(x,X)
∂xi

∣∣∣∣∣∣
x=X=X∗(φ)

=
∂V(X)
∂Xi

∂R(X)
∂Xi

∣∣∣∣∣∣
x=X=X∗(φ)

= φ,

i.e. the planner’s solution is an equilibrium, if and only if private, spill-over, and social marginal

rates of substitution are all equal to the shadow price φ. This condition is equivalent to stating

that X∗ (φ) is a global maximizer of U (x,X) − φR (x,X) with respect to both of its arguments,

11



which is the generalization of assumptions 1 and 2 in the economic and infection risk stage games.

Proposition 1 thus states that the planner’s solution can be decentralized if and only if the spill-over

marginal rate of substitution is aligned with private and social marginal rates of substitution at the

planner’s solution.

We do not need to take a stance on the direction of these spill-overs: actions can have positive

or negative economic or infection risk spill-overs. In particular agents in our model may fail to

internalize that (i) reducing activities as privately optimal precaution against infection risk exposes

others to negative economic spill-overs and (ii) that their own economic activity exposes others to

increased infection risks. Proposition 1 shows that the planner doesn’t weigh them in terms of their

absolute, but their relative strengths.

Policy Implications: What does this result tell us about optimal policy? Consider a planner

who can impose restrictions X̂ ⊂ X on the choice sets of agents to bring the equilibrium in line

with the planner’s solution.

The main policy insight is that such restrictions must serve to equate private and social marginal

rates of substitution with each other and with φ. The efficiency condition suggests that we should

restrict activities in which the spill-over marginal rate of substitution is lower than φ, and conversely

subsidize or protect activities in which this marginal rate of substitution in spill-overs is higher

than φ, i.e. economic spill-overs are large relative to infection risk spill-overs. Moreover, the further

the spill-over marginal rate of substitution is from φ, the larger the intervention should be. Hence,

activities in which the marginal infection risk spill-overs are very high, relative to their marginal

economic spill-overs, such as socializing, going out to restaurants, entertainment events (large scale

concerts or sports events) or inessential long-distance travel, should be the most heavily restricted at

any point in time, while activities that generate important economic spill-overs but whose infection

risk spill-overs are not too large should be subsidized. This is not a statement about the absolute

magnitude of the spill-overs but about their relative magnitudes: there may be sectors, like groceries

or healthcare, that have substantial infection risk spill-overs but keeping them open is justified

by the important positive economic spill-overs of their activity. A similar argument may apply to

public education, if the positive economic spill-overs associated with public education exceed the

negative infection risk spill-overs through children at school.

Second, the proposition informs us how these policy restrictions change as we vary φ, the shadow

price of infection risk. When φ increases, the optimality conditions imply that agents are privately

and socially more inclined to give up utility to control infection risk. Proposition 1 then states

that the equilibrium is efficient if and only if the spill-over marginal rates of substitution scale one
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for one with the private and social marginal rates of substitution. Hence, restrictions should be

eased or even reversed on activities whose spill-over marginal rate of substitution changes less than

proportionally with the private marginal rate of substitution at X∗ (φ), and restrictions should be

introduced or tightened on activities whose spill-over MRS changes more than one-for-one with the

private MRS at X∗ (φ). Importantly, an increase in φ will not automatically result in an across

the board tightening of restrictions: since agents already have a private incentive to change to

the increase in φ, all sectors will simultaneously shift towards higher private marginal rates of

substitution, so the key question for tightening or relaxing restrictions on any given activity is

whether the spill-over MRS changes more or less than the private MRS.

These insights also inform us about optimal strategies for deconfinement, the periods in which

the shadow price of infection risk φ converges back to 0: suppose that we can order sectors by their

spill-over marginal rate of substitution. Restrictions and subsidies should then be lifted from ”the

center” to the ”extremes”, starting with those sectors whose spill-over MRS are the closest to the

current shadow price of infection risk, and gradually expanding outwards.11

Third, the absolute magnitude of spill-overs matters for the urgency of intervention in each

sector. Certain activities may rank poorly in terms of their spill-over marginal rate of substitution,

but because both economic and infection risk spill-overs are small in absolute values, the private

and social marginal rates of substitution remain closely aligned with each other.

To summarize, simple but sound policy advice consists of the following points which are illustrated

by Figure 1.

(i) Restrict activities that generate strong infection risk externalities but weak economic exter-

nalities, but protect or subsidize essential economic activities that have strong positive economic

spill-overs especially if they have weak infection risk externalities,

(ii) Very carefully manage activities that are both economically essential and critical from an
11The shadow price of infection risk can also be used to think about re-organizing activities within sectors or

even organizations. For example, face-to-face interactions may generate a natural trade-off between productivity
and infection risks that can also be captured by the tradeoff between U and R. Agents then modulate face-to-face
interactions with their clients to internalize the private marginal rate of substitution between productivity and infection
risks while the planner also internalizes the spill-over marginal rates of substitution. These spill-overs are bound
to be important in places that naturally generate additional face-to-face contacts with third parties - such as large
workplaces, public spaces like universities, or open public spaces. Whether the resulting private incentives to mitigate
infection risks are also sufficient from a social point of view then really comes down to the relative spill-over effects:
Our principle that efficiency requires alignment of private and social marginal rates of substitution and the ensuing
implications apply very broadly - broadly speaking to any decision margin under the control of private agents that
results in a tradeoff between economic outcomes (utility or productivity) and infection risk.
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Figure 1: Simple Policy Advice
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infection risk point of view (high negative infection rate spill-overs), since these are the sectors that

have the strongest impact on whether the economic-infection risk tradeoff is resolved efficiently.

(iii) Interventions should scale with the magnitude of φ, the shadow price of infection risk, and

be largest in those dimensions of activities whose spill-overs are furthest from φ. If φ scales with

the fraction of infected agents in the population, this also shows that efficient interventions must

happen fast, and may require almost day-to-day management during the onset of a pandemic like

COVID-19, whose initial growth has been extremely fast.

A Useful Decomposition: In the remainder of this section, we decompose the planner’s solution

and equilibrium characterization into implementation rules X∗ (·) and Xeq (·) that determine X∗

and Xeq as functions of the implemented infection risk R, and a reduced form interaction game over

the choice of R. These functions further describe Pareto and equilibrium frontiers V∗ (R) and Veq (R)

between instantaneous utilities and infection risks for the planner and for agents at equilibrium.

These decompositions allow us to study dynamic optimal policy and equilibrium through the lens of

a reduced-form tradeoff, treating infection risks R as the policy variable. We then provide necessary

and sufficient conditions for decentralization of the planner’s solution in terms of this reduced-form

representation.

As φ varies from 0 to ∞, the planner’s solution in the hybrid game traces out a Pareto frontier

between V (X∗ (φ)) and R (X∗ (φ)), and inverting R (X∗), we find the implementation rule X∗ (R),

the Pareto frontier V∗ (R) = V (X∗ (R)), and the shadow price function φ∗ (R) = V∗′ (R). V∗ (R) is

strictly increasing, concave and satisfies the Inada conditions V∗
(
R
)

= V , V∗ (R) = V , V∗′
(
R
)

= 0

and limR→R V∗′ (R) =∞.12

Likewise, the equilibrium action Xeq (φ) in the hybrid game determines the equilibrium infection

risk R (Xeq (φ)). Inverting the latter, we obtain the equilibrium implementation rule Xeq (R), from

which we define the equilibrium efficiency frontier Veq (R) = V (Xeq (R)). Notice that Veq (·) ≤ V∗ (·),

and they are equal, if and only if Xeq (·) = X∗ (·), i.e. if and only if the equilibrium implementation

rule is efficient (which holds automatically if K = 1).

Now, fix R and Xeq (R) and consider the agents’ problem of maximizing U (x,Xeq (R)) subject

to an upper bound constraint on R (x,Xeq (R)):

Ueq (r,R) = max
x∈X
U (x,Xeq (R)) , subject to R (x,Xeq (R)) ≤ r.

This reduced-form utility function Ueq (r,R) is strictly increasing, concave, and satisfies the Inada

conditions at R (R) = maxx∈X R (x,Xeq (R)) ≥ R (Xeq (R)) and R (R) = minx∈X R (x,Xeq (R)) ≤
12Alternatively, V∗ (R) and X∗ (R) aregiven by the constrained planner’s problem V∗ (R) = maxX∈X ,R≥R(X) V (X).
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R (Xeq (R)) whenever arg minx∈X R (x,Xeq (R)) ∈ int (X ).13 Hence if infection rates are minimized

on the interior of X , we recover the same Inada conditions for the private efficiency frontier as for

the planner, but its support varies with the aggregate infection rate R. This allows us to reduce the

hybrid game ot a one-dimensional interaction game in the choice of R, with reduced-form payoffs

Ueq (r,R)− φ · r.

In addition, Veq (R) = Ueq (R,R), and the equilibrium shadow price function is φeq (R) = Ueqr (R,R).

Figure 2: Equilibrium and Pareto Frontiers
V (R)

R

V

V

R R

Pareto Frontier
(Planner, V∗(R))

Equilibrium Frontier
(Veq(R))

The characterization of V∗ (·) (in green) and Veq (·) (in blue) is summarized in Figure 2. The

general shape of Veq (·) depends on economic and infection risk spill-overs. However, Veq (·) satisfies

the same Inada conditions as V∗ (R) at R and R, since the equilibria and planner’s solutions both

converge to the same limit when the hybrid game converges to either the economic stage game

(Assumption 1) or the confinement game (Assumption 2). Without these assumptions, the Inada

conditions no longer hold and Veq (·) can take any shape inside V∗ (R) at its boundaries.
13When K = 1, the solution to the constraint optimization problem is determined directly from the constraint:
U (r,R) = U (x (r,R) , Xeq (R)), where x (r,R) solves r = R (x,Xeq (R)).
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Proposition 2 provides necessary and sufficient conditions for decentralizing the planner’s solution

X∗ (R) as an equilibrium of the reduced-form hybrid game. This proposition combines efficient

implementation (Xeq (R) = X∗ (R) and Veq (R) = V∗ (R)) with an additional condition that

decentralizes the planner’s choice of R.

Proposition 2 For any R ∈
[
R,R

]
, X∗ (R) is implemented in a Nash equilibrium of the hybrid

game with Ueq (·), if and only if (i) Veq (R) = V∗ (R) and (ii) UeqR (R,R) = φ∗ (R)− φeq (R).

This proposition gives two necessary and sufficient conditions for efficiency in the reduced form

game: (i) Efficient implementation and (ii) ”Offsetting spill-overs”: any marginal spill-over from

R in the reduced form marginal utility function UeqR (R,R) must be matched at equilibrium by an

offsetting spill-over in shadow values φ∗ (R)− φeq (R). We call φ∗ − φeq the dynamic spill-over, as

opposed to the static spill-over captured by UeqR (R,R), since the shadow values of infection risk are

derived from the planner’s and agents’ discounted continuation values in the dynamic model.

The planner’s implementation rule X∗ (·) can be globally decentralized, if and only the efficient

implementation and offsetting spill-overs conditions hold for all R ∈
[
R,R

]
. Assuming that the off-

setting spill-overs condition holds globally is extremely stringent: when φ∗ and φeq are endogenously

determined by the dynamics of infection, this condition requires that dynamic spill-overs are identical

for any two states that lead to the same policy choice R.

Condition (ii) is necessary since Veq′ (R) = UeqR (R,R)+φeq (R) 6= φ∗ (R) = V∗′ (R), together with

Veq (R) = V∗ (R) implies that Ueq (R± ε,R) > V∗ (R) for some small perturbation ε, contradicting

that R was an equilibrium of the reduced form game. Moreover, Conditions (i) and (ii) together

imply that φeq (R) = V∗′ (R)− UeqR (R,R) = Veq′ (R)− UeqR (R,R) = Ueqr (R,R), and hence that R

is implemented in a Nash equilibrium of the hybrid game, along with Xeq (R) = X∗ (R).

To re-cap, this section has accomplished three objectives:

First, we have formulated the tradeoff between economic prosperity and control of an infectious

disease as a static interaction game with competing objectives of maximizing contemporaneous

utility and minimizing future infection risk. In doing so we have introduced a hybrid game which

weighs the competing objectives by a shadow price on infection risk.

Second, we have given a necessary and sufficient condition for efficiency of the equilibrium of the

hybrid game. This condition is much more restrictive than our baseline assumptions of efficiency at

equilibrium for the two benchmark games.

Third, we have decomposed the equilibrium interaction in the hybrid game into a reduced

form interaction game in infection rates along with an implementation rule that determines the
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equilibrium or planner’s optimal action for a given targeted infection risk R, and then expressed

the conditions for efficiency in terms of reduced-form tradeoffs between instantaneous utility and

infection risks at the Pareto frontier and in equilibrium.

These results summarize static tradeoffs between economic activity and infection risks, and they

also set the stage for the dynamic model. By decomposing the characterization of the planner’s

problem and the equilibrium in each period into a stationary implementation rule and a reduced

form interaction game between instantaneous utility and infection risks, we are able to analyze the

dynamic model recursively as a sequence of hybrid stage games with given reduced form payoffs

V∗ (R) for the planner’s problem and Ueq (r,R) for the equilibrium, augmented by shadow prices

φ∗ and φeq that summarize the planner’s and agents’ concern about their future and that are

endogenosuly linked to the dynamics of infection risks. We can therefore treat infection risk R

as our basic choice variable in the dynamic model and compare planner’s problem and dynamic

equilibrium through the lens of static reduced form utilities V∗ (R) and Ueq (r,R) and the dynamics

of shadow prices φ∗ and φeq.

4 Economic well-being vs. infection risk: Dynamic tradeoffs

We now consider a dynamic game with an unfolding epidemic. The economic stage game is infinitely

repeated among a mass Λt of agents who remain alive in period t. The epidemic is summarized

by a simple S-I-R structure: initially, a positive fraction is already infected with the disease, while

the remainder is susceptible to infection. Susceptible agents become infected by interacting with

other infected agents. After infection, an agent dies with constant probability δ and recovers with

constant probability γ within each period; with probability 1− γ − δ the agent remains infected the

next period. Recovery confers immunity and is permanent. Only death is observable, so agents

never know whether they are susceptible to infection, infected or have already recovered. Consistent

with this assumption, their instantaneous utility function U (·) is independent of their health status.

Hence they are all ex ante identical.

Conditional on surviving, each agent takes a sequence of decisions x∞ = {xt}∞t=0 ∈ X∞ to

maximize expected discounted utility flows, taking as given the choices X∞ = {Xt}∞t=0 ∈ X∞ of the

other agents. We assume perfect foresight, i.e. despite idiosyncratic uncertainty about infection

incidence, aggregate population shares of the different types are perfectly predictable. We focus on

a symmetric equilibrium, in which all agents take the same equilibrium action.

We represent this dynamic game using the proportions πt (s) and πt (i) of susceptible and
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infected agents as state variables, taking the initial distribution as given with π0 (i) > 0 and

π0 (s) = 1− π0 (i) < 1. We then characterize the planner’s problem recursively as a function of the

vector π =
(
πt (s) πt (i)

)′
, and the equilibrium as a Markov-perfect equilibrium in π. The vector

π admits the representation

πt+1 = Λt/Λt+1 · T (Rt)πt, where T (R) =

 1−R 0

R 1− γ − δ


where Rt = R (xt, Xt) · πt (i) denotes the probability with which an agent is infected in period t, as

described above for the confinement game. The mass of surviving agents evolves according to

Λt+1 = (1− δπt (i)) Λt,

or Λ (π) = γ/ (γ + δ (1− π (i)− π (s))), as a function of the current population state π.

An agent’s expected discounted utility flow is

V0 = (1− β)
∞∑
t=0

βtΛt
(
xt−1, Xt−1

)
U (xt, Xt)

where Λt
(
xt−1, Xt−1) is the probability that the agent survives to period t, which is a function of

the initial distribution π0, individual and aggregate choices
(
xt−1, Xt−1) up to period t − 1, and

β ∈ (0, 1) is the time discount factor. This welfare criterion summarizes the dynamic tradeoff

between instantaneous utilities U (xt, Xt) and survival probabilities Λt
(
xt−1, Xt−1).

A symmetric Nash equilibrium in the dynamic game is a sequence of choices X∞ ∈ X∞ that are

optimal given that all agents also adhere to X∞. Agents internalize the impact of their choices on

their own infection and survival probabilities, but take aggregate transition rates as given.

Dynamic planner problem: The utilitarian social planner’s objective is

V ∗0 = max
X∞∈X∞

(1− β)
∞∑
t=0

βtΛt
(
Xt−1, Xt−1

)
V (Xt)

where Λt
(
Xt−1, Xt−1) represents the fraction of agents alive in period t. Using the recursive

characterization of Λt
(
Xt−1, Xt−1), we represent the planner’s value in period t as V ∗t = Λt · v∗ (πt),

where v∗ (π) satisfies the Bellman equation

v∗ (π) = max
X∈X

{(1− β)V (X) + β (1− δπ (i)) v∗ (π+1)}

where π+1 = (1− δπ (i))−1 · T (R (X)π (i)) · π

We let X∗ (π) denote the corresponding social planner’s decision rule.
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In the dynamic model, current choices affect instantaneous utilities directly, and continuation

values indirectly through their effect on the resulting infection rate R (x,X). Making use of the

observations from the previous section, we restate this planner’s problem as a choice over R:

v∗ (π) = max
R∈[R,R]

{(1− β)V∗ (R) + β (1− δπ (i)) v∗ (π+1)}

where π+1 = (1− δπ (i))−1 · T (Rπ (i)) · π

and V∗ (R) ≡ max
X∈X ,R(X)≤R

V (X) .

Hence we decompose the planner’s decision rule X∗ (π) into a target infection rate R∗ (π) and the

static implementation rule X∗ (R) for a given target R that we derived in the previous section.

Since R affects π+1 linearly as a one-for-one increase in π (i) and reduction in π (s), we can

represent the planner’s optimal choice through the planner’s shadow price of infection risk Φ∗ (π):

V∗′ (R) = Φ∗ (π) ≡ β

1− βπ (s)π (i)
(
∂v∗ (π+1)
∂π (s) − ∂v∗ (π+1)

∂π (i)

)∣∣∣∣
R=R∗(π)

The planner’s shadow price of infection risk is equal to the discounted marginal social cost of an

additional infection, scaled by the product of the proportion of infected and susceptible agents.

This product measures the rate of interactions between these two groups, which scales the primitive

infection risk in our model. Φ∗ (·) is a function of the current state π.

Markov-Perfect Equilibrium: Consider now the dynamic decision problem of an individual agent.

Let X (π) denote the aggregate decision rule followed by the other agents, and let πk denote agent

k’s private posterior about her own infection state. The probability that the agent survives until

next period is 1− δπk (i).14 Her decision problem is stated as follows

v̂
(
πk, π;X (·)

)
= max

x∈X

{
(1− β)U (x,X (π)) + β

(
1− δπk (i)

)
v̂
(
πk+1, π+1;X (·)

)}
where πk+1 =

(
1− δπk (i)

)−1
· T (R (x,X (π))πt (i)) · πk

π+1 = (1− δπ (i))−1 · T (R (X (π))π (i)) · π

An aggregate choice function Xeq (·) is a symmetric Markov-perfect equilibrium if given an initial

private belief πk = π, Xeq (·) is a best response to itself.
14Individual survival probabilities evolve recursively according to Λt+1

(
xt, Xt

)
= Λt

(
xt−1, Xt−1) · (1− δπkt (i)

)
,

or Λ
(
πk
)

= γ/
(
γ + δ

(
1− πkt (i)− πkt (s)

))
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We similarly decompose the Markov-perfect equilibrium characterization into a static implemen-

tation rule Xeq (R) that implements R as the equilibrium choice in the static hybrid game, and a

reduced form dynamic interaction that determines the equilibrium infection rate Req (π). Restating

the agent’s decision problem as a choice over r ∈
[
R,R

]
, we obtain:

v̂
(
πk, π;R (·)

)
= max

r∈[R,R]

{
(1− β)Ueq (r,R) + β

(
1− δπk (i)

)
v̂
(
πk+1, π+1;R (·)

)}
where πk+1 =

(
1− δπk (i)

)−1
· T (rπt (i)) · πk

π+1 = (1− δπ (i))−1 · T (R (π)π (i)) · π

and Ueq (r,R) ≡ max
x∈X ,R(x,Xeq(R))≤r

U (x,Xeq (R))

The function Ueq (r,R) is the reduced-form indirect utility of choosing r when the aggregate action

Xeq (R) implements an equilibrium infection rate R. The equilibrium target infection rate Req (·) is

a fixed point to the best response correspondence that is associated with this value function.

Taking first-order conditions, exploiting the linearity of continuation values with respect to r,

and evaluating at πk = π, we obtain the equilibrium shadow price of infection risk Φeq (·):

Ueqr (R,R) = Φeq (π) ≡ β

1− βπ (s)π (i)
(
∂v̂ (π+1, π+1;Req (·))

∂πk (s) − ∂v̂ (π+1, π+1;Req (·))
∂πk (i)

)∣∣∣∣
R=Req(π)

The equilibrium shadow price weighs the discounted private marginal cost of being infected by the

probability with which the agent privately risks being infected, evaluated at πk = π. The latter

multiplies the aggregate infection rate π (i) with the individual probability of being susceptible

πk (s) = π (s). The difference between the private and social shadow price comes down to the

private and social marginal costs of an infection. They differ because at equilibrium the agent does

not internalize that becoming infected increases the risks of subsequent infection for other agents.

Efficient Decentralization: By Proposition 2, the planner solution is decentralized as a Markov-

perfect equilibrium if and only if static spill-overs exactly offset dynamic spill-overs at R = R∗ (π), or

Φ∗ (π)−Φeq (π) = UeqR (R∗ (π) , R∗ (π)) for all π. At equilibrium, agents internalize neither the static

spill-overs their choice of r has on their peers, nor the dynamic spill-overs of their choices through

higher future infection rates, but if (and only if!) the two just offset each other they have no incidence

on the equilibrium outcome. In addition to the static efficiency condition Ueq (R,R) = V∗ (R),

we require an equalization of private, social and spill-over marginal rates of substitution between

current utility and continuation values at all states:

V∗′ (R∗ (π))
Φ∗ (π) = U

eq
r (R∗ (π) , R∗ (π))

Φeq (π) = U
eq
R (R∗ (π) , R∗ (π))
Φ∗ (π)− Φeq (π) = 1
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This offsetting spill-overs condition requires that any two states that deliver the same policy

R∗ (π) also generate exactly the same dynamic spill-overs. With a ”hump-shaped” policy that we

will show below is the natural response to the pandemic at both the equilibrium and the planner’s

solution, this offsetting spill-overs condition can hold only if dynamic spill-overs at a given value

R∗ (·) = R are the same at the onset of the pandemic and during the recovery phase. But that

can’t happen with the evolution of dynamic spill-overs that we describe below. In addition, the

above characterizations suggest that shadow prices scale with π (s)π (i)β/ (1− β), and hence any

dynamic spill-over is bound to swamp the static one when β is close to 1.

Shadow Prices and Continuation Values: We complete this section with a more complete

characterization of the shadow prices and continuation values. Fix a sequence {Rt,Ut}∞t=0 of

infection rate choices and instantaneous utilities, and let Vt denote the expected life-time utility of

agents and πt the population state in period t. Vt and πt must satify

Vt = (1− β)Ut + β (1− δπt (i))Vt+1

πt+1 = (1− δπt (i))−1 · T (Rtπt (i)) · πt

The sequence of population states {πt}∞t=0 is uniquely determined from the initial state π0 and the

sequence of target infection rates {Rt}∞t=0. The sequence of expected life-time utilities satisfies

Vt = πt (s)V s
t + πt (i)V i

t + (1− πt (s)− πt (i))V r
t ,

where V s
t , V i

t , V r
t denote the life-time utility of an agent who at date t is in state s, i, or r.15

Denoting by v∗s (π), v∗i (π) and v∗r (π), the life-time utility of a susceptible, infected and recovered

agent at the planner’s solution, v∗ (π) admits the following representation

v∗ (π) = π (s) v∗s (π) + π (i) v∗i (π) + (1− π (s)− π (i)) v∗r (π)

which gives us the following expressions:

−∂v
∗ (π)

∂π (i) = v∗r (π)− v∗i (π)− π (s) ∂v
∗
s (π)

∂π (i) − π (i) ∂v
∗
i (π)

∂π (i) − (1− π (s)− π (i)) ∂v
∗
r (π)

∂π (i)

−∂v
∗ (π)

∂π (s) = v∗r (π)− v∗s (π)− π (s) ∂v
∗
s (π)

∂π (s) − π (i) ∂v
∗
i (π)

∂π (s) − (1− π (s)− π (i)) ∂v
∗
r (π)

∂π (s)

The expression −∂v∗(π)
∂π(i) measures the social marginal value of recovery, i.e. of shifting an agent from

state i to state r. This marginal value consists of the direct benefit of recovery v∗r (π)− v∗i (π) > 0

that an agent enjoys by recovering from the disease, and the indirect effects a marginal decrease
15It is easy to prove this step by substituting this guess into the above recursion for Vt.
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of the infection rate has on susceptible, infected and recovered agents. These terms, in particular

−∂v∗s (π)
∂π(i) , capture dynamic infection externalities: reducing the infection rate lowers infection risks

for other susceptible agents in the future.

The expression −∂v∗(π)
∂π(s) measures the social marginal value of immunization, i.e. of shifting an

agent from state s to state r. Again this marginal value consists of a direct benefit of immunization

v∗r (π) − v∗s (π) > 0, and indirect effects through which lowering the share of susceptibles affects

the rest of the population. These expressions reveal the presence of a second externality: higher

immunization reduces the need for economic restrictions.

We subtract the marginal value of immunization from the marginal value of recovery to obtain
∂v∗(π)
∂π(s) −

∂v∗(π)
∂π(i) , the social marginal cost of an additional infection. This social marginal cost also

combines a direct cost of infection v∗s (π) − v∗i (π) with indirect costs coming from the spill-over

effects of the additional infection for other agents: increasing infection risks for other susceptibles,

but relaxing future economic restrictions.16

A similar decomposition applies at equilibrium, but the equilibrium doesn’t internalize the

indirect benefits of recovery and immunity. An agent’s equilibrium value function can be represented

as a probability-weighted expectation of V s
t , V i

t , and V r
t , using the private beliefs to weight the

three different states:

v̂
(
πk, π

)
= πk (s) v̂s

(
πk, π

)
+ πk (i) v̂i

(
πk, π

)
+
(
1− πk (s)− πk (i)

)
v̂r
(
πk, π

)
.

With v̂eqs (π) = v̂s (π, π), v̂eqi (π) = v̂i (π, π), and v̂eqr (π) = v̂r (π, π), we obtain

v̂
(
πk, π

)
≥ πk (s) v̂eqs (π) + πk (i) v̂eqi (π) +

(
1− πk (s)− πk (i)

)
v̂eqr (π) ,

for πk close to π. The RHS represents the expected value to the agent of implementing the same

sequence {Rt}∞t=0 as prescribed by the equilibrium at π, which is feasible, though not necessarily

optimal, for the agent starting from private belief πk close to π. Since the RHS is linear in πk, and

equals v̂eq (π) when πk = π, we obtain the private marginal cost of infection:∂v̂
(
πk, π

)
∂π (s) −

∂v̂
(
πk, π

)
∂π (i)

∣∣∣∣∣∣
πk=π

= v̂eqs (π)− v̂eqi (π)

At equilibrium, the private marginal cost of an additional infection corresponds just to the value

difference between being susceptible and being infected, but taking as given the values associated
16This interpretation of marginal effects is adopted from Garibaldi, Moen and Pissarides (2020), though they do not

distinguish between the direct and indirect effects, and they stop well short of fully characterizing the dynamics of
these externalities.
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with each state, which are determined by the dynamics of the aggregate population state. Hence, the

equilibrium does not internalize the probability-weighted indirect effects of an additional infection

on the continuation values of each type.

Basic value function accounting yields the following additional properties for V s
t , V i

t and V r
t :

V r
t = (1− β)

∞∑
s=0

βsUt+s ∈
[
V , V

]
V i
t = (1− β)

∞∑
s=0

βs
(

γ

γ + δ
+ δ

γ + δ
(1− γ − δ)s

)
Ut+s ∈

[
γ

γ + δ
V r
t , V

r
t

]
with V i

t −
γ

γ + δ
V r
t ∈

[
δ

γ + δ

1− β
1− β + β (γ + δ)V ,

δ

γ + δ

1− β
1− β + β (γ + δ)V

]
and limβ→1 V

i
t = γ

γ+δV
r
t , and

V s
t = V i

t + (γ + δ)
∞∑
s=0

βs+1
(
V i
t+s+1 −

γ

γ + δ
V r
t+s+1

) s−1∏
k=0

(1−Rt+kπt+k (i)) ∈
[
V i
t , V

r
t

]
with

δ

1− β + β (γ + δ)V ≥ V
s
t − V i

t ≥
δ

1− β + β (γ + δ)V (1− β)
∞∑
s=0

βs
s−1∏
k=0

(1−Rt+kπt+k (i))

where
s−1∏
k=0

(1−Rt+kπt+k (i)) is the probability of remaining without infection from t until t + s.

Since these probabilities are uniformly bounded away from 0 under the SIR dynamics, V s
t − V i

t is

then uniformly bounded away from 0. As we will discuss below, the same is not necessarily true for

the social marginal cost of infection risks ∂v∗(π+1)
∂π(s) −

∂v∗(π+1)
∂π(i) .

5 Dynamic Equilibrium and Optimal Policy

S-I-R Dynamics: We now link these recursive equilibrium conditions to the dynamics of π that are

generated by the SIR model. Since 1− πt (s)− πt (i) is monotonically increasing and bounded, the

population state {πt} must converge to a limit π∞ at which π∞ (i) = 0, π∞ (s) ∈ (0, 1), and Λt

converges to a finite limit

Λ∞ = γ

γ + δ − δπ∞ (s) = 1− δ (1− π∞ (s))
γ + δ (1− π∞ (s)) ∈

(
γ

γ + δ
, 1
)

The dynamics of πt (i) satisfy

πt+1 (i) = Rtπt (s) + 1− γ − δ
1− δπt (i) πt (i) .
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For constant Rt, this leads to a hump-shaped profile for πt (i), which is at first increasing, and then

decreasing once Rtπt (s) ≤ γ + δ (1− πt (i)).

Let {R∗t , π∗t } and {Reqt , π
eq
t } denote the sequential planner’s solution and equilibrium for given

initial distribution π0. {R∗t , π∗t } and {Reqt , π
eq
t } must satisfy

R∗t = R∗ (π∗t ) and π∗t+1 = (1− δπ∗t (i))−1 · T (R∗ (π∗t )π∗t (i)) · π∗t

Reqt = Req (πeqt ) and πeqt+1 = (1− δπeqt (i))−1 · T (Req (πeqt )πeqt (i)) · πeqt .

Combining the above dynamics with the two first-order conditions yields the following result:

Proposition 3 Suppose that there is an (arbitrarily) small, positive fraction π0 (i) > 0 of infected

agents in the initial population , and that R > γ + δ. Then the sequential planner’s solution and

equilibrium {R∗t , π∗t } and {Reqt , π
eq
t } both satisfy the following properties:

(i) Flatten the Curve (Short Run): Starting from R∗0 and Req0 arbitrarily close to R, both

policy sequences are initially decreasing to ”flatten the curve” and delay infections.

(ii) Herd Immunity (Long-run): In the long run, R∗t and Reqt converge to R, and the

economy returns to the pre-pandemic equilibrium in a state of herd immunity:

π∗∞ (s) , πeq∞ (s) ≤ (γ + δ) /R and Λ∗∞,Λeq∞ ≤ Λ
(
R
)
≡ γR

(γ + δ)
(
R− δ

) .

We consider the economic and pandemic dynamics with a small initial fraction of infected agents.

The assumption that R > γ + δ implies that the basic reproductive rate R0 = R/ (γ + δ) at the

pre-pandemic equilibrium exceeds 1, and hence the initial infection, however small, can take hold

within the population. If in addition γ + δ > R, then there is the possibility to immediately contain

the disease by lowering R0 below 1.

Proposition 3 highlights two properties of the economic response to the epidemic which are true

at both the equilibrium and at the social planner’s solution.

First, both the planner and the agents at equilibrium optimally flatten the infection curve by

moving away from the utility maximizing action towards the infection risk minimizing one at the

onset of the pandemic. This slows the rate at which the pandemic progresses and therefore slows

down the rate at which agents are infected and subsequently die. Infections peak later and at a

lower level than without a behavioral response.

Importantly, we obtain the rationale for flattening the infection curve without reference to the

usual medical arguments in favor of such policies: flattening the curve neither serves to gain time
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until a vaccine or cure is found, nor does it serve to decongest the medical sector.17 Instead this

shape of the optimal policy is a result of its economic benefits: Flattening the curve slows the

propagation of the infection, which improves the survival rates for each individual agent. This is

true both at the planner solution and at the equilibrium.

Second, the proposition shows that there are nevertheless stark limits on the equilibrium and

planner’s solution in the long run. Eventually, the epidemic must subside, and both equilibrium and

planner’s solution convert back to the pre-pandemic equilibrium. This however is possible only once

a sufficiently large number of agents has been infected and recovered from the disease to establish

herd immunity. In turn, this also bounds the number of agents that can be saved in the long run,

since for each γ agents that recover from the disease, δ will have died.

Observing a full recovery of the equilibrium to the pre-pandemic steady-state is not overly

surprising, since private incentives for confinement disappear when the risk of infection disappears.

The result is perhaps more surprising for the planner, who could in principle commit to policies that

lower instantaneous utilities and mortality risk in the long run by permanently lowering R. Facing a

long-run tradeoff between V∗ (R) and π∗∞ (s) = (γ + δ) /R, and noticing that V (R) is maximized at

R, there would appear to be long-run welfare gains from a permanent marginal utility distortion that

generates a first-order gain in survival probabilities. However, the planner also factors in the delay

between the marginal benefit of increasing R today and the marginal cost of higher future mortality.

With discounting, this delay explains why the planner wants to slow down the propagation of the

pandemic enough to heavily discount the welfare cost of future mortality in the planner’s objective,

but not permanently raise the agents’ survival probability.

Both results follow from Φ∗ (π) ,Φeq (π) ∼ π (s)π (i)β/ (1− β), i.e. the shadow value of infection

risk, and hence the marginal utility costs of equilibrium and optimal policy responses, are proportional

to the fraction of currently infected agents π (i). Coupling this observation with the short-run and

long-run properties of the S-I-R dynamics then leads to the above proposition.

Figure 3 illustrates the economic benefits of flattening the curve in a simulation.18 The three

panels in the top row show the fractions of susceptible agents πt (s), infected agents πt (i) and

recovered agents πt (r) = 1−πt (s)−πt (i) over the course of the pandemic in a purely epidemiological

benchmark with Rt = R, at the equilibrium and at the planner’s solution.19 The three panels in the
17We will discuss these channels as quantitative extensions to our baseline model in section 6.1.
18The parameters are the same as the ones chosen for our benchmark calibration in section ??, except that we have

raised the baseline mortality rate δ/ (γ + δ) from 0.5% to 1.5% to better illustrate our main results. Herd immunity is
reached when πt (s) ≤ 0.303.

19Cumulative mortality is equal to (δ/γ)πt (r) and thus proportional to the fraction of agents who recovered.
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Figure 3: The Hammer and the Dance (Proposition 3)
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bottom row show the shadow price of infection risks, the equilibrium and optimal policies and the

basic reproductive rates R0.

Equilibrium and optimal policy substantially dampen the overall rate of infection early on, the

equilibrium more so than the optimal policy. They do not let the infection run its natural course,

but seek to reduce the initial peak of infection at a lower level, and thereby substantially reduce the

long-run rate of mortality, to near the minimum level necessary to establish herd immunity.

Interestingly, the planner’s solution is less restrictive early in the course of the pandemic than the

equilibrium, and subsequently recovers faster and with lower long-run mortality than the equilibrium.

This points to immunization externalities being more important than infection externalities early in

the pandemic, and infection externalities becoming very important later on, while immunization

externalities disappear with convergence to herd immunity: early on, the planner internalizes that a

recovery requires establishing herd immunity, or in other words, preventing too many infections

early on will just postpone them in time and delay the recovery. Once the pandemic has immunized

a sufficient number of agents, the optimal policy shifts towards controling further infections to keep

long-run mortality under control, while the economy fully recovers.

At equilibrium instead, agents respond to the onset of the pandemic with strong voluntary

confinement to ”wait out the storm”. But this results in a hold-out externality that has the nature

of a zero sum game: If everyone waits out the storm, then the pandemic progresses very slowly,
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infections take longer to materialize, and agents stay locked up for longer than necessary. In

addition, once herd immunity builds up and agents gradually exit their confinement, they do not

internalize infection externalities and therefore the long-run mortality at equilibrium eventually

exceeds mortality at the planner’s solution, even though it was way lower early on.

We sharpen this dynamic characterization for the cases in which β or V /V are close to 1.

Interpreting β/ (1− β) as the speed of propagation, the limit when β → 1 focuses on a case where

the spread is extremely fast. The ratio V /V instead captures the relative magnitudes of economic

surplus vs. mortality costs, and when V /V → 1, mortality risk takes priority over economic

distortions at all times: The flow utility of keeping an agent alive for another period is bounded

below by V , while the the cost of economic distortions is bounded above by V − V . If V = V ,

we have an infinite repetition of the confinement game in which all agents have as their primary

objective to maximize their own survival probability. This is achieved at the extreme confinement

equilibrium with R = R in all periods.

Proposition 4 For any η > 0, there exists ξ > 0, such that with max
{
β, V /V

}
> 1−ξ, equilibrium

has the following structure:

(i) Req (πt) < R+ η whenever πt (i) > η.

(ii) Starting from π0 (i) > η, equilibrium policy dynamics consist of two phases:

1. The Hammer: An initial phase of massive confinement in which Req (πt) are kept below

R+ η until πt (i) < η.

2. The Dance: A subsequent phase of gradual deconfinement, in which πt (i) remains stabilized

within (0, η), while Req (πt) are close to (γ + δ) /πt (s) and πt (s) slowly declines at rate less than

Rtη.

Deconfinement ends when πt (s) reaching the herd immunity threshold (γ + δ) /R, πt (i) converg-

ing to 0, and Req (πt) converging back to R.

Optimal policy R∗ (·) follows the same pattern, but the onset of the Hammer phase is delayed

until ∂v∗(π+1)
∂π(s) −

∂v∗(π+1)
∂π(i) is bounded sufficiently far away from 0.

Proposition 4 describes equilibrium and optimal policy with a fast speed of propagation, or

small economic surplus. At equilibrium, the shadow price of infection risks Φeq (π) then becomes

arbitrarily large, relative to the marginal values V∗′ (·) and Ueqr (·) for all R > R, whenever π (i)

is sufficiently far from 0 (at least η). When faced with such a situation, agents enact a massive

voluntary confinement, close to the extreme confinement equilibrium (”The Hammer”) with Req (πt)

arbitrarily close to R until the proportion of infected agents is controlled within a narrow band
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π (i) ∈ (0, η).20,21 In the second phase, the equilibrium is delicately balanced to keep π (i) within this

narrow band (”The Dance”), letting the epidemic slowly progress until eventually herd immunity

is reached and it is allowed to fizzle out, with a return back to R. During the Dance phase, the

equilibrium policy Req (πt) cannot stray far from (γ + δ (1− π (i))) /πt (s), the level that maintains

the basic reproduction rate of the infection at 1. The speed of deconfinement is then dictated by

the speed at which πt (s) progresses towards herd immunity. Slower deconfinement would trigger

a decline in π (i), lowering the shadow values of infection risks and removing pressure to keep

confinement policies in place. Faster deconfinement instead will increase the infection rate, but this

raises shadow values and restores the pressure for stricter confinement policies.22 These dynamics

are summarized by Figure 4, with the red line at which the basic reproduction rate, R0, equals 1

gradually shifting to the right over time.

Figure 4: Dynamics

V (R)

R

V

V

R R

Pareto Frontier
(Planner)

Equilibrium Frontier

R0 = 1
Rt ' γ+δ(1−πt(i)

πt(s)

V eq(R)

V ∗(R)

20The labels ”The Hammer” and ”The Dance” refer to Pueyo (2020) who proposes these phases as a possible
strategy for deconfinement.

21This Hammer phase is not necessary if the pandemic starts from an initial share of infections below η.
22The Dance phase is not required if the initial population state has such a high initial infection rate π0 (i) that the

first phase is already sufficient to establish herd immunity.
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The optimal policy follows a similar pattern as the equilibrium, but with one important

qualification: where as the private cost of infection v∗s (π)− v∗i (π) is uniformly bounded away from

0, the social marginal cost ∂v∗(π+1)
∂π(s) −

∂v∗(π+1)
∂π(i) is not. This reflects the importance of immunization

externalities, captured by ∂v∗(π+1)
∂π(s) , early on during the pandemic. However, we show that these

immunization externalities diminish as the pandemic progresses, so eventually the social marginal

cost of infections becomes sufficiently large so that optimal policy follows the same Hammer and

Dance sequencing as the equilibrium.

These results illustrate how the planner’s and private shadow values stabilize the optimal and

equilibrium path of policy during the deconfinement phase. During the Dance, the path of policy is

dictated by the speed at which the epidemic progresses towards herd immunity. The equilibrium

and the planner control this speed through the width of the band (0, η) at which they find it optimal

to stabilize the epidemic, and bringing it back inside this band whenever the infection rate steers

too high or too low. And the more patient they are, or the faster the epidemic spreads, i.e. the

higher is β, the more the optimal plan tightens the band within which π (i) is stabilized.

The instantaneous propagation limit: We now develop further the limit, in which β → 1. As

noted above, the planner could, in principle, opt for permanent restriction policies that bound R∗ (·)

permanently away from R to lower the long-run mortality rate. Here, we show that optimization of

this long-run tradeoff re-emerges in the limit as β → 1. Define R∗ as the long-run optimal policy

that maximizes Λ (R∗) · V∗ (R∗):

R∗ = arg max
R∈[R,R]

γR

(γ + δ) (R− δ)V
∗ (R)⇐⇒ V

∗′ (R∗)R∗

V∗ (R∗) = δ

R∗ − δ

To distinguish between time discounting and the speed of propagation, let τ ≡ ∆t denote

calendar time, and let β = e−ρ∆, for a fixed time discount rate ρ. We index all equilibrium variables

by ∆, consider their limit in calendar time as ∆→ 0, holding constant the infection, recovery and

death probabilities Rtπt (i), γ and δ per time interval ∆, and write their continous-time limits as a

function of calendar time τ . In this limit, the infection has the potential to propagate instantaneously

in calendar time. We show the following result:

Proposition 5 (Instantaneous Propagation Limit): In the limit as ∆→ 0:

(i) The Dance never ends: the planner’s optimal choice of policy converges to R∗ (τ) = R∗

for all τ > 0. In addition, π (i, τ) converges to 0 and π (s, τ) converges to (γ + δ) /R∗ for all τ > 0.

(ii) Infinitely strong dynamic spill-overs: At the limit of the planner’s solution

lim
∆→0

Φeq

Φ∗ = 0 for all τ > 0,
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and therefore the planner’s solution cannot be decentralized as a Markov-Perfect equilibrium, if static

spill-overs are bounded.

(iii) Strong hold-out and infection externalities at equilibrium: In the limit as ∆→ 0,

the equilibrium policy lim∆→0R
eq (τ)π (s, τ) = γ + δ and lim∆→0 π (i, τ) = 0 for all τ > 0. In

addition, π (s, τ) gradually declines over time, converging to a finite limit π (s,∞) ∈
(
0, (γ + δ) /R

)
.

Proposition 5 shows that the long-run tradeoff between mortality risk and economic distortions

re-emerges in the instantaneous propagation limit. At instant τ = 0, the social planner lets the

pandemic progress and applies an instantaneous ”Hammer” to immediately bring the pandemic

close to a level of infection and recovery associated with the long-run optimum. This phase ends

with π (i, τ) arbitrarily close to 0 and π (s, τ) arbitrarily close to (γ + δ) /R∗ (they reach 0 and

(γ + δ) /R∗ at the limit when ∆→ 0).

Why does the planner let the pandemic progress to the level associated with R∗, but no further?

The planner controls the speed at which infections progress during the Dance phase. Since any

new infections lead to quasi-instantaneous death or recovery, π (s, τ) and Λ (τ) converge quasi-

instantaneously to the long-run values consistent with a given policy R∗ (τ). But then, at each

point during the Dance phase, the planner faces the same quasi-static tradeoff between economic

distortion and survival probability, which has a static optimum at R∗, the policy that maximizes

Λ (R) · V∗ (R). Hence, in the limit as ∆→ 0, it must be optimal for the planner to stall the Dance

phase immediately and permanently at the long-run optimal policy R∗. Nevertheless, the Hammer

still remains relevant: after an initial propagation, the planner applies a quick but powerful hammer

to bring R∗ (τ) to its long-run level R∗ from below: If instead the policy was set to R∗ (τ) = R∗ at

τ = 0 the epidemic will overshoot the long-run optimum, so that π (s, τ) < (γ + δ) /R∗ for τ > 0.

The fact that the restriction to R∗ becomes permanent at the instantaneous propagation limit

illustrates another important aspect of optimal policy: the planner responds to optimal policy by

slowing down the recovery phase. With discounting or finite speed of propagation, the tradeoff

between economic distortions and mortality risk is no longer instantaneous during the dance phase,

so the longer it takes today’s infections to pass through to higher future mortality, the more the

planner is willing ot let the pandemic progress. Hence at the planner’s solution, the actual speed of

progression is inversely related to its potential speed of progression: in response to fast progression

of the epidemic, the planner slows or stalls its long-run resolution into the very distant future. This

is the only way in which the planner can implement the optimal long-run tradeoff between mortality

risk and economic distortions.

Part (ii) of Proposition 5 shows that dynamic spill-overs are infinitely strong at the planner’s
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instantaneous propagation limit. At this limit, the private marginal cost of infection equals
δ

γ+δV
∗ (R∗), which weighs an agent’s long-run utility V∗ (R∗) by the probability that infection results

in death. The social marginal costs of an infection instead multiply δ
γ+δV

∗ (R∗) by a multiplier that

determines the number of additional infections generated by one further infection at the long-run

optimum. This multiplier turns out to be infinitely large, i.e. since the basic reproductive rate

of the virus equals 1, the long-run optimum is unstable: a fraction π (s) ε of additional infections

generates π (s) ε (1− ε) follow-up infections, which in turn trigger π (s) ε (1− ε)2 infections of their

own, and so on. Any infinitesimal perturbation π (s) ε of additional infections therefore generates

a large discrete mass proportional to π (s) of new infections and deaths, which moreover occur

instantaneously at the instantaneous propagation limit. The social costs of an infection can thus be

infinitely larger than the private costs.

Part (iii) of Proposition 5 shows that the equilibrium dynamics at the instantaneous propagation

limit are very different from the planner’s solution. The planner implements an instantaneous

convergence to a long-run optimum, which in the limit requires a discrete jump in mortality at

the very start of the pandemic, after which everything stabilizes with no further infections and

death. But this cannot be part of an equilibrium: if there was a positive jump in mortality at any

date, then agents would have a strict incentive to wait out the storm through massive voluntary

confinement just before the storm was expected to occur. In other words, at the onset of the

pandemic, immunization externalities generate a very strong hold-out motive that substantially

slow down the actual speed of propagation, so that even at the instantaneous propagation limit, the

pandemic must spread gradually. On the other hand, the long run recovery still requires building

herd immunity and thus a higher mortality rate than the planner’s long-run optimum.

The comparison between planner’s solution and equilibrium at the instantaneous propagation

limit highlights the two major sources of inefficiency in response to the pandemic: initially, the

immunization externality generates a hold-out motive that inefficiently slows the initial speed of

propagation, which amplifies the duration and severity of confinement policies. In the long run, due

to the infection externality, agents exit their confinement too fast, relative to the social optimum,

which generates higher than necessary long-run mortality. Figure 5 illustrates the insights from

propositions 4 and 5. Here, we use the path from Figure 3 as a benchmark and show what happens

when we let the pandemic propagate seven times faster: we assume that each infection and recovery

takes place over a few days, rather than a few weeks, but we report the results on the same calendar

time scale as the benchmark. We see that in the planner’s solution the pandemic peaks much faster

and is quickly stabilized at level very close to the long-run optimum: the basic reproductive rate R0
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Figure 5: Proposition 5

20 40 60 80 100

weeks

0.4

0.6

0.8

1.0

π(s)

20 40 60 80 100

weeks

0.00

0.05

0.10

0.15

π(i)

20 40 60 80 100

weeks

0.0

0.2

0.4

0.6

π(r)

20 40 60 80 100

weeks

0.00

0.05

0.10

0.15

Shadow Price (Φ)

20 40 60 80 100

weeks

0.4

0.6

0.8

1.0

R

20 40 60 80 100

weeks

1

2

3

R0

Equilibrium (High β), Central Planner (High β),
Equilibrium, Central Planner.

temporarily drops well below 1 to then recover quickly to 1, letting the pandemic continue its very

gradual progression towards herd immunity. The equilibrium instead slows down new infections

even more from the beginning, at a rate that just offsets the increase in propagation speed. We

clearly see the far slower speed of convergence of the pandemic at the equilibrium, the associated

higher economic costs (measured by the shadow price of infection risks), and the higher mortality in

the long run.

In this calibration, herd immunity is reached when π (s) ≤ 0.303, and the long-run optimum is

located at π (s) = 0.314. At the benchmark calibration, π (s) reaches 0.339 after 40 weeks and 0.305

after 100 weeks at the planner’s solution. With faster propagation, π (s) instead reaches 0.316 after

20 weeks only, and progresses only to π (s) = 0.313 after 100 weeks. This shows the convergence to

the long-term optimum and extremely slow long-run convergence at the planner’s solution. At the

equilibrium instead, we obtain π (s) = 0.287 after 100 weeks at the benchmark and π (s) = 0.301

after 100 weeks with fast propagation. This illustrates that the equilibrium features inefficiently

slow convergence and inefficiently high long-run mortality comparated to the planner’s solution.
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6 Quantitative Results

We now illustrate these results with a simple calibration that disentangles the underlying static

and dynamic externalities. We then cover three natural extensions: congestion externalities in the

medical sector, the probability of finding a vaccine, and the consequences of delay in the initial

response to the pandemic.

Calibration: We assume a utility function of the central planner that takes the form

(V∗ (R)− V
V̄ − V

)2
+
(
R− R̄
R̄−R

)2

= 1,

for R ∈
[
R, R̄

]
and V∗ (·) ∈

[
V , V̄

]
, or equivalently,

V∗ (R) = V +
(
V̄ − V

)√√√√1−
(
R− R̄
R̄−R

)2

.

This elliptic functional form ensures that V∗ (R) satisfies the Inada conditions limR→R V∗′ (R) =∞

and V∗′
(
R̄
)

= 0. We assume moreover that the individual utility function Ueq (r,R) is given by

(Ueq (r,R)− V
V̄ − V

)2
+ α

(
r − R̄
R̄−R

)2

+ (1− α)
(
R− R̄
R̄−R

)2

= 1.

At the symmetric equilibrium, we have Ueq (R,R) = V∗ (R), i.e. the equilibrium coincides with the

planner’s efficiency frontier (efficient implementation, Xeq (·) = X∗ (·)), and Ueqr (R,R) = αV∗′ (R).

If α = 1, the individual utility coincides with that of the central planner. Thus, the two static

spill-overs – the economic externality and the infection risk externality – exactly offset each other.

If instead α < 1, we have ur (R,R) < V∗′ (R) so the economic externality dominates the infection

externality. Conversely, if α > 1, the infection externality dominates.

Our benchmark calibration takes a period to be a week (β = 0.999), assumes a mortality rate
δ

δ+γ = 0.5% and a time to resolution 1
δ+γ of 3 weeks. These imply δ = 0.0016 and γ = 0.3317. The

initial infection rate is π0 (i) = 0.01%. The two bounds R, R̄ defining the interval of possible values

for the infection risk R are set such that (i) the basic reproduction coefficient R0 at the outbreak

of the pandemic is 3.3; and (ii) the ratio R̄/R is equal to 12, a value compatible with the Chinese

experience reported in Pueyo (2020). We normalize V̄ = 1 and set V to 5/6. Following Jones,

Klenow, and Hall (2020), this value equates V /V̄ to the value of a year of life equal to 250K$, and

the maximum instantaneous utility surplus 1− V /V̄ to annual per-capita consumption of 50K$.
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Finally, in our baseline scenario we assume that α = 1, and we explore the sensitivity of our results

to the value of α below in this section. 23

Baseline results: Figure 6 shows the dynamics of the epidemic in our baseline calibration. The

top three panels give respectively the shares of susceptible, infected, and recovered individuals. The

bottom three panels give respectively the shadow price of infections, the reproduction coefficient

R0, and the share of deceased inviduals.

Figure 6: Benchmark
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We already discussed the interpretation of these graphs in our discussion of Propositions 3 and

5 above. During the first 15 weeks of the epidemic, the optimal and equilibrium dynamics consist of

flattening the curve of infections: in both cases the fraction π (i) of infected agents rises less than half

as high as in the pure epidemiological model that does not take endogenous economic interactions

into account. Correspondingly, the R0 coefficient remains lower than in the pure S-I-R model during

this period. Delaying infections allows long-run herd immunity to be reached with a smaller fraction

of dead individuals. Note that the social and private incentives are roughly aligned during the

initial curve-flattening phase: the optimal and equilibrium shadow prices of infection rise in tandem.

However, the shadow price is slightly lower for the central planner, implying that the share of
23In the Appendix we run several robustness checks. We show the sensitivity of our results to the death rate δ, and

to the calibration of the utility gap V /V̄ .
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infected agents rises higher, and the R0 drops slightly more slowly, than in equilibrium. The second

phase of the epidemic, during which the shadow price of infections slowly decreases, corresponds to

the controlled deconfinement period. During this phase, the shadow price is significantly higher for

the central planner, implying that the socially optimal R0 continues its sharp drop below 1 before

reaching its long-run value from below. As before, there is more initial confinement at equilibrium

than at the planner’s solution, and the subsequent convergence to herd immunity is slower, but the

difference is smaller than in the previous graphs which had assumed a higher mortality rate. The

relative positions of the shadow prices results from the combination of dynamic externalities that

we discuss below.

Figure 7: Utility U/V and Consumption (U − V ) /
(
V − V

)
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Figure 7 plots the utility and consumption in the social optimum and in equilibrium. Both

show a sharp drop during the curve-flattening phase due to the economic lockdown, followed by

a slow recovery during the deconfinement. In the long-run, the economy converges back to the

optimum with utility V̄ . Mirroring the discussion in the previous paragraph, the fall in consumption

optimally chosen by the central planner is initially more gradual, but it reaches a lower depth and

the deconfinement starts later, than in equilibrium. Our simulation suggests a ca. 20% drop in

consumption at equilibrium. The planner’s solution reaches its trough slightly later with a 24%

consumption drop, but a faster subsequent recovery.

Dynamic Spill-Overs: Figure 8 unpacks the dynamic externalities that drive the difference

between the equilibrium and socially optimal dynamics observed in Figures 6 and 7.

The solid curve in the first panel shows the social marginal cost of an additional infection,

µs − µi ≡ ∂v∗ (π)
∂π (s) −

∂v∗ (π)
∂π (i) .

The solid curve in the second panel gives the private marginal cost of an additional infection,

V s − V i ≡ v∗s (π)− v∗i (π) .
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Figure 8: Externalities
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The solid curve in the third panel is the difference between the social cost and the private cost,(
µs − µi

)
−
(
V s − V i

)
. It is therefore a measure of the dynamic externalities at play.

The middle panel shows that the direct cost of a new infection is always positive and increasing.

In the long-run, this direct cost is dwarfed by the additional cost created by the dynamic infection

externalities: individuals do not internalize the effect of being infected today on future infection risks

for other agents. As a result, the total marginal cost of an additional infection is about five times as

large as the direct cost faced by the agents. In the short-run, however, the dynamic externalities are

reversed: they are quickly decreasing and become negative. As a result, the social marginal cost of

a new infection is temporarily smaller than the private cost – it is, in fact, close to zero around week

10. This illustrates the immunization externality: individuals do not internalize that being infected

today brings the economy closer to the long-run herd immunity. That is, an infected individual

reduces the number of agents who will need to be infected in the future. The optimal path towards

herd immunity consists of letting the epidemic spread faster than in equilibrium in the very early

stages, which reduces economic costs during the recovery without raising long-run mortality.

Static Externalities: So far we have assumed α = 1, meaning that the static externalities offset

each other and the social optimum is an equilibrium of the hybrid game. We now explore the

sensitivity of our results to these static externalities. Figure 9 plots the results obtained for α = 0.5

and α = 1.5, and compares them to the planner’s solution which remains unchanged, and to the

equilibrium without static externalities (α = 1).

When α = 1.5, the short-run spill-overs from infection risk dominate: agents do not internalize

that their actions raise short-term infection risks for others. We observe offsetting spill-overs at

work in the short run: the fact that agents do not fully internalize static infection risks partly offsets

the fact that the dynamic immunization externality, resulting in an equilibrium policy that tracks

37



Figure 9: Varying α

20 40 60 80 100

weeks

0.2

0.4

0.6

0.8

1.0

π(s)

20 40 60 80 100

weeks

0.00

0.05

0.10

0.15

0.20

π(i)

20 40 60 80 100

weeks

0.0

0.2

0.4

0.6

0.8

π(r)

20 40 60 80 100

weeks

0.00

0.05

0.10

0.15
Shadow Price

20 40 60 80 100

weeks

1

2

3

R0

20 40 60 80 100

weeks

0.000

0.001

0.002

0.003

0.004

Share of Deads

Equilibrium, Central Planner,
Equilibrium (α = 0.5), Equilibrium (α = 1.5).

the first-best more closely until reaching the infection peak. However, past the peak, the static

infection risk externality reinforces the dynamic infection externality, resulting in excessively fast

deconfinement and a higher level of long-run mortality.

When α = 0.5, the economic externality dominates, i.e. agents do not internalize the adverse

static utility consequences of their actions for other agents. Here, the static economic externality

reinforces the immunization externality in the short-run, resulting in a lower peak infection rate

and a slower than efficient path of deconfinement. Offsetting spill-overs now appear in the long run:

static economic externalities offset the dynamic infection externality, resulting in a slower path to

recovery and a lower level of long-run mortality.

6.1 Extensions and applications

Medical Sector Congestion: Here we introduce a congestion externality in the medical sector by

letting the death rate be increasing in the fraction of infected agents. For our simulations we follow

Jones, Philippon, and Venkateswaran (2020b) and assume that the conditional death rate δ(·) takes

the form

δ(π(i)) = δ + exp(ϕπ(i))− 1,
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where δ corresponds to the conditional death rate that prevails in the model without congestion. In

the spirit of Piguillem and Shi (2020), we calibrate ϕ so that when the economy reaches an infection

rate of 1% the unconditional death rate in the economy doubles. This leads to the value ϕ = 0.1682.

The results are presented in Figures 10 and 11.24

Figure 10: Congestion Effects
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Figure 11: Congestion Effect: externalities
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Compared to the baseline model, the shadow price of infections rises to a much higher level,

and the infection rate peaks at a much smaller level. This is the case both in the equilibrium

and for the central planner, but for two different reasons. In the central planner’s optimum, the

infection externality is now far more costly, as an additional infection today raises the future death
24Figures 17 and 18 in the Appendix show the same graphs over a longer horizon.
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rate more than linearly due to the congestion externality. The third panel of Figure 11 shows

clearly that the dynamic externality is much larger than in our baseline model, indicating that the

infection externality strongly dominates the herd-immunity externality even in the early stages of

the epidemic. As a result, the total marginal cost of an additional infection (first panel) remains

large and positive throughout the duration of the epidemic. Because of this very high infection

externality, the social planner implements a much stronger initial “hammer” phase, with a much

lower R0 at time 0, than in the equilibrium and in the baseline model.

Since this externality is not internalized by private agents, the rate of infections, and in turn

the death rate, grows much faster in equilibrium than they should under the optimal policy. It is

for this reason (rather than because of the infection externality) that the private shadow price of

infections shoots up and catches up with that of the central planner. But the subsequent reduction

in economic activity occurs too late: the share of deaths rises much faster in equilibrium and reaches

a much higher long-run level than in the central planner’s solution (see Figure 17 in the Appendix).

Adding medical sector congestion highlights the importance of the lower-bound condition on the

social marginal costs of infection risks: proposition 4 shows that bounding this social marginal costs

away from 0 is a necessary condition for immediate, strong policy interventions to be optimal. This

principle extends to the model with medical congestion, but here we see that medical congestion

amplifies the social costs of infection due to its impact on mortality.25 The congestion externality

thus works against the immunization externality in the short run, and it strengthens the infection

externality in the long run, resulting in slower long-run convergence.

Hoping for Vaccines or Cures: Next, we introduce the possibility of a vaccine: in each period,

there is a possible probability that all the susceptible individuals move immediately to the recovered

state. This vaccine comes too late for agents who are already infected. Like the medical congestion

model, vaccines primarily alter the computation of spill-overs, while the baseline FOC only changes

marginally, discounting the shadow prices Φ∗ (π) and Φeq (π) by a factor 1− ξ, where ξ denotes the

weekly probability of of discovering a vaccine.

We set ξ to 1/52 = 0.0192, so that a vaccine is expected to arrive after one year.26 The results

are presented in Figures 12 and 13.

The dynamics of equilibrium resemble those of the baseline calibration. Individuals do understand

that a vaccine may be found, so they are even more willing to hold out and reduce economic activity
25Formally, the planner’s and agent’s FOCs remain unchanged, but the calculation of dynamic spill-overs changes.
26A cure would have a similar effect in the model by instantaneously lowering the death rate for infected agents, so

this parameter can be viewed as the overall arrival rate for a ”game-changing” long-term exit strategy.
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Figure 12: Possibility of a Vaccine
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Figure 13: Possibility of a Vaccine: Externalities
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in the short run, but the private benefits of a vaccine are too remote to significantly change their

behavior.

The planner, however follows a markedly different path relative ot the baseline dynamics of Figure

6. As in the case of medical sector congestion, the shadow price of infection risks is initially much

higher than in equilibrium, leading to a very strong “hammer” phase at time 0 that immediately

brings R0 down and saving as many lives as possible until the discovery of a vaccine. Doing so

allows the planner to delay the peak of infections, as shown by the dynamics of π (i), in the hope

that a vaccine is discovered before herd immunity is reached. Correspondingly, the total social cost

of infections represented in Figure 13 is bounded away from zero due to large infection externality

that dominates the herd-immunity externality from the start: the prospect of a vaccine mutes the

immunization externality and gives the planner a better long-term perspective than aiming for herd

immunity in the early stages of the pandemic.

Because the equilibrium doesn’t internalize this value of delaying the pandemic to develop a

vaccine, it reaches a much higher level of long-run mortality than the planner’s solution.

As a robustness check, we report the effects of a vaccine that is available at a 2-year horizon

(ξ = 1/104 = 0.0096) in the appendix. The effects turn out to be much smaller than with a 1-year

horizon: the planner is willing to delay the peak infection rate merely by a few weeks, before

”giving up hope” for a vaccine and letting the pandemic run its course towards herd immunity.

This highlights that the horizon at which cures or vaccines are expected to be available are really

important to determine whether the optimal policy response in the short run should focus on

acquiring herd immunity or holding out for a better exit strategy.

Delaying the Optimal Response: For our last quantitative exercise, we plot the optimal and

equilibrium dynamics after the epidemic has been allowed to propagate naturally for two months,

as described by the S-I-R dynamics without any adjustment in economic behavior. The results are

presented in Figure 14 where we super-impose the baseline dynamics of Figure 6 starting from the

same date.

The optimal and equilibrium responses are qualitatively and quantitatively close to those obtained

in the baseline calibration. The shadow prices and the peak of infections rise slightly higher, and

the long-run share of dead individuals is slightly larger. But overall, the overall cost of not acting

as soon as the epidemic starts is extremely low in our benchmark calibration. The reason for this

is that in the beginning the delay in policy action is not costly, either at the equilibrium, or for

the planner, if it can be compensated by a further tightening of policy in the short-run without

affecting long-run outcomes - in other words, in the initial stages of the pandemic, policy is easily
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Figure 14: Illness Idle for 2 Months
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Note: The economy is first simulated for 2 months using the model without behavior (basic SIR model), then the
economy (equilibrium and central planner allocations) is started from the state reached by the SIR model.

substitutable in time, as long as this substitution does not compromise the long-run convergence

towards herd immunity.

To see how the long-term consequences matter for the urgency of short-run interventions, we

re-run the same experiment in the presence of medical congestion externalities, and find that delay

is far more consequential.

6.2 Policy Implications

We conclude this section by summarizing what our theoretical and quantitative results imply for

optimal policy design. The main conceptual insight from our analysis is that the dynamics of

equilibrium and optimal policy are governed by the dynamics of the shadow values Φeq and Φ∗.

These are shaped by the dynamics of the epidemic, but in turn also determine how the dynamic

policy choices shape how the epidemic progresses.

Our theoretical and quantitative results highlight the interplay between dynamic immunization

externalities at the start of the pandemic and infection externalities as the pandemic progresses. At

our baseline, the planner internalizes the social value of herd immunity and therefore lets the initial

outburst run far enough to implement a controlled convergence towards a long-run recovery with a
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minimal level of mortality. At the instantaneous propagation limit, this controlled recovery takes

the extreme form of instantaneous convergence to the long-run optimum, i.e. small, but long-lasting,

if not permanent economic restrictions: the planner responds to faster propagation with a slower

recovery.

At equilibrium, instead, the immunization externality takes over in the short run: for obvious

reasons, agents are far less eager to participate in the collective effort to build herd immunity

than the planner would like to see, i.e. they have strong private incentives for confinement. The

resulting hold out slows down the pandemic as well as the progression towards herd immunity - the

epidemic peaks later and at a lower level than at the planner’s solution, and the economic costs

are longer-lasting than at the planner’s solution. Moreover, past its peak, infection externalities

take over, i.e. agents do not internalize that by risking an infection they risk infecting others later

on. Deconfinement occurs too fast in equilibrium, which leads to higher long-run mortality. The

equilibrium thus results in an inefficiently slow recovery, and still results in higher long-run mortality

than the planner’s solution.

Static spill-overs may either reduce the need for short run interventions and increase the need for

long-run interventions, or do the opposite – offsetting spill-overs can occur either at the beginning

or at the end of the pandemic, but never throughout.

Long-term perspectives determine how much and how fast the planner should intervene at the

beginning: the prospect of cures or vaccines reduces the value of herd immunity, and medical sector

congestion amplifies infection externalities. This reduces the importance of short-run immunization

externalities at the onset, resulting in swifter and far more decisive short run action, in line with the

equilibrium. These interventions are optimal because they save lives, rather than merely delaying

infections over short horizons. However, they need to be complemented with stronger restrictions

along the recovery path, where they amplify the agents’ private incentives to exit confinement at a

faster rate than optimal.

Finally, getting policy right during the deconfinement period is at least as difficult and as

important as during the initial confinement period or at the peak of the pandemic where private

and social incentives were strongly aligned on bringing new infections under control. First, how

well the policy manages static spill-overs determines whether outcomes are close to the Pareto

frontier, which minimizes the static economic costs of pandemic control. Second, the gap between

private and public incentives really opens up during deconfinement, and the equilibrium incentive to

confine faster than optimal really impacts long-term mortality. The dynamic spill-overs can become

arbitrarily large: the closer the policy is to the level at which R0 = 1, the larger is the multiplier
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effect of follow-up infections from each additional infection. Controlling the pandemic by keeping R0

below 1 is akin to an upper bound constraint on policy Rt ≤ (γ + δ − δπt (i)) /πt (s), limiting how

far economic restrictions can be relaxed without letting the epidemic grow again. Managing static

inefficiencies is paramount to implementing these restrictions with the least amount of economic

sacrifice.

We translate these observations into simple policy priorities:

(i) The top policy priority must be to be able to control new infections at all times.

(ii) Early, decisive action (”The Hammer”) is warranted if it helps to save lives in the long run.

Otherwise, if it merely delays infections in the short run, it just lengthens the recovery and inflicts

higher economic costs on the population. Likewise, being slow to act is costly only once it causes

deaths that could have been avoided.

(iii) Optimal deconfinement (”The Dance”) keeps R0 below 1 and relaxes economic restrictions

as much as possible within this bound. Policy must control the epidemic, not the other way around.

(iv) Beware of infection risk spill-overs during deconfinement: do not pay for faster recovery

with higher mortality, and do not count on private agents to fully understand the risks they pose to

others.

(v) The social value of herd immunity really depends on whether there exist better long-term

perspectives, and at what horizon.

In many respects, these policy prescriptions are not too far from the ones suggested by epi-

demiologists. This is not surprising because the dynamics of optimal policy are dictated by the

dynamics of the epidemic. They are nevertheless well grounded in basic economic principles: the

shadow value of infection risks, the long-run tradeoff between mortality and economic prosperity,

dynamic immunization and infection risk spill-overs, and the economics of discounting the future.

7 Face masks, testing and contact-tracing

We complete the paper with two extensions that strike us as particularly relevant for optimal

deconfinement policies: the use of face masks, and testing along with contact-tracing.

Face masks: Here we include the use of face masks in the set of static decision variables. Wearing

a face mask confers no direct utility or disutility but reduces an agent’s infection risk by a factor

f (m,M) ∈ (F , 1] with F > 0, where m denotes the agent’s own use of masks, and M denotes

aggregate mask usage. Suppose that f (0, 0) = 1, fm (m,M) + fM (m,M) ≤ fm (m,M) ≤ 0, with
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Inada condition limm→0 fm (m,M) =∞, and individual and aggregate decreasing returns:

−(fm (M,M) + fM (M,M))M
f (M,M) ≤ −fm (m,M)m

f (m,M) ≤ 1

Mask production entails a production cost C (M), where C (M) displays decreasing returns to scale.

Planner’s solution: With face masks, the planner’s within period objective is to maximize

V (X)− φf (M,M)R (X)− C (M) .

The corresponding FOCs yield

∇V (X) = φf (M,M)∇R (X)

C ′ (M) = − (fm (M,M) + fM (M,M))φR (X)

Therefore, the use of masks directly equates the social marginal rate of substitution between

instantaneous utility and effective infection risks fR (X) to φ. When f < 1, this shifts X∗ in

the direction of maximizing instantaneous utilities. The efficient level of mask usage equates the

marginal cost of masks C ′ (M) to their marginal benefit − (fm (M,M) + fM (M,M))φR (X).27

Due to a behavioral response towards utility maximization, the effective infection risk fR (X) does

not decline one-for-one with face masks, but at a rate

−dfR (X)
df

= R (φf) (1− ER (φf))

where ER (φf) denotes the elasticity of R w.r.t. φ, evaluated at φf . Thus a fraction ER (φf) ∈ (0, 1)

is dissipated by substitution effects. In particular, ER (φ) is inversely related to φ and varies from

almost complete dissipation (ER (0) = 1) when the shadow price of infection risk small, to almost no

dissipation at the other extreme where φ→∞.

As before, we can trace out a modified Pareto frontier Ṽ
(
R̃
)

between effective infection risk

R̃ = fR and instantaneous utility. Since Ṽ ′
(
R̃
)

= φf − φC ′ (M (f))M ′ (f) ≤ φf , the new Pareto

frontier expands the set of attainable payoff and is strictly flatter than the previous one at each R̃.

Equilibrium: Let P denote the consumer price of a face mask. Then individual agents maximize

the following objective function, taking as given the aggregate choices (M,X):

max
m,x
U (x,X)− φf (m,M)R (x,X)− Pm

27We can translate the use of face masks into a reduced form game over the choice of f , given a cost function C (f).
As in the base-line game, this extends the analysis to other mitigation efforts that have direct utility or monetary costs.
Face masks can thus be seen as a broad stand-in for any effort that directly reduces private or aggregate infection
risks.
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which yields the following first-order conditions for a symmetric equilibrium:

∇1U (X,X) = φf (M,M)∇1R (X,X)

P = −fm (M,M)φR (X)

At equilibrium, agents equate their private marginal rate of substitution to the shadow value of

infection risks φ multiplied by f (M,M), and the price of face masks internalizes the private marginal

benefit of their use. The new equilibrium corresponds to Xeq (φf), the effective infection risk to

fR (Xeq (φf)).

As before, we can compute the equilibrium frontier between instantaneous utility and effective

infection risks R̃ = fR. Because of externalities, the new equilibrium frontier is not guaranteed to

be strictly higher than the old one. Figure 15 illustrates how the introduction of face masks changes

the planner’s and equilibrium frontiers.

Figure 15: Introduction of Face Masks
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Decentralization: The decentralization of the optimal policy requires the same alignment of

private and social marginal rates of substitution to the new shadow value φf (M,M), and in addition

it requires a Pigouvian price subsidy for face masks to cover the positive externalities from face
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mask usage for others:

P = (1− s)C ′ (M) , where s = fM (M,M)
fm (M,M) + fM (M,M) .

Furthermore, we can represent the shadow price φ as

φ = P

−fm (M,M)R (X)

i.e. the shadow price of infection risks is a function of the equilibrium price P and the quantity M

if face masks. Holding supply of masks constant at M = M , the shadow price φ is proportional to

P/R (φf), which yields an elasticity of φ w.r.t. P of Eφ,P |M=M = 1/ (1− ER (φf)) > 1. Controlling

for supply, the shadow price of infection risk thus fluctuates more than one-for-one with the spot

price for face masks. This spot price may thus offer a useful market signal to trace the dynamic

evolution of infection risks.

Dynamics: The impact of face masks on the dynamics of equilibrium and optimal policy is

entirely summarized by its effect on shifting the Pareto and equilibrium frontiers. Masks do not

fundamentally change the results of propositions 3 and 4, but modify two points. First, face masks

give the planner and agents at equilibrium an option to push infection risks even below R, thus

resulting in yet faster control of the epidemic. Second, during the ”Dance” phase, the use of masks

serves to relax the Pareto frontier: Since for given π (s), effective infection risk fR must stay close

to (γ + δ) /π (s) during this phase, reducing f through the use of face masks allows the planner to

increase R one for one, which relaxes economic restrictions and brings X closer to X∗. Therefore,

face masks are a short-run complement to relaxing economic restrictions, since for a given state of

epidemic progression and infection risk, they allow for a higher level of economic activity.

Similar arguments also apply to the equilibrium, except that here the face masks may locally

depress economic activity further if the new equilibrium frontier lies below the original one due to the

importance of spill-overs. On the other hand, face masks do not improve on the long-run convergence

towards a full recovery with herd immunity, since incentives for mask usage will disappear once the

economy approaches a complete recovery to R.

Facemasks also relax the long-run mortality-prosperity tradeoff. The optimal choice of R̃ = fR∗

shifts to
Ṽ ′
(
R̃
)
R̃

Ṽ
(
R̃
) = δ

R̃− δ
.

Since Ṽ ′ (R) /Ṽ (R) < V∗′ (R) /V∗ (R) for all R, the long run optimum with face masks satisfies

R̃ < R∗. Hence at the long-run optimum, the planner transfers some of the static gains from relaxing
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economic restrictions due to the use of face masks back to lower long-run mortality, i.e. the long-run

optimum relaxes economic restrictions less than one-for-one with the reduction in infection risks

brought about by face masks.

Therefore, while face masks are strong substitutes for economic restrictions in the short run, the

substitutability is weaker at longer horizons, and it may even be reverted in the very long run if by

slowing infections, face masks also slow the progression of the epidemic towards herd immunity and

a permanent recovery. The epidemic then takes a longer time to progress, and restrictions must

thus be kept in place for longer.

To summarize, face masks facilitate the economic recovery as much as they limit new infections.

The short-run substitution effects towards higher economic activity are especially important during

deconfinement, i.e. for a given bound on infection risks, face masks allow a deconfinement at a higher

level of economic activity than at the benchmark. In the long run, the substitutability between

use of face masks and economic restrictions is weakened by substitution towards lower long-run

mortality, or reversed if slower epidemic progression delays permanent recovery. In addition, they

do not improve on the long-run recovery with herd immunity.

If face masks have important positive spill-overs, i.e. they protect others from being infected

as much or more than they protect the person wearing a mask, then their provision may need to

be subsidized, along with a mandate for their use in public spaces. At the same time, efficient

management of face mask use has important side benefits: by lowering the shadow price of infection

risks, face masks not only relax economic restrictions, but also reduce the scope for harmful dynamic

spill-overs, and the need for other regulatory measures.

Finally, the analysis reveals a close link between the shadow price of infection risks and the price

and quantity of face masks. The market for face masks may thus provide a useful market signal for

tracking the shadow price of infection risks.

Testing and contact-tracing: Our second extension concerns the economic effects of testing and

contact-tracing. By testing and quarantining anyone with a positive test result, one can reduce the

number of undetected infections to

π̂ (i) = π (i) (1− Pr (test|i)) ,

where Pr (test|i) denotes the fraction of infected agents that have had a positive test result and are

thus in quarantaine, which we interpret as a temporary exit from the game.

Adding testing and quarantaines into the model comes with two challenges. First, we need to

add an addition state variable π̂ (i) to keep track of the fraction of agents in quarantaine, π (i)− π̂ (i).
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Second, testing alters agents’ beliefs about their own health status, if they are informed of a negative

test result. Hence, we need to keep track of heterogeneity across agents according to their test

history. By focusing on the instantaneous propagation limit, we can side-step those two issues.28

In this limit the infection rate converges to 0 along the path to deconfinement, and if the fraction

of agents being tested does the same, then the fraction of agents who are tested is negligible and

doesn’t affect aggregate population dynamics. Furthermore, instantaneous propagation implies

that the resolution of the quarantine phases and belief differences from past test results are very

short lived, and it allows us to simplify the short-run analysis on the impact of testing on optimal

policy by focusing on the policy that stabilizes the infection rate. Here, we develop the analysis by

assuming that π (i) is arbitrarily small, as in proposition 4, and then present the results for the

limit in which π (i)→ 0.

With testing, the law of motion for π (i) becomes

πt+1 (i) = 1− γ − δ
1− δπt (i)πt (i) + π̂t (i)πt (s)Rt

1− δπt (i)

= 1− γ − δ
1− δπt (i)πt (i) + (1− Pr (test|i))πt (s)Rt

1− δπt (i) π (i) ,

augmented by the law of motion for infected agents currently in quarantine, π (i) Pr (test|i). There-

fore, if testing reduces the fraction of infected agents in circulation by a factor 1− Pr (test|i), this

allows the planner to sustain the same effective infection risk R̃ with R increased by a factor an

offsetting factor 1/ (1− Pr (test|i)) > 0. As with face masks, this amounts to a shift in the efficiency

frontiers from V∗ (R) to V∗
(
R̃
)

and from Veq (R) to Veq
(
R̃
)
, where R̃ denotes effective infection

risks R̃ = R/ (1− Pr (test|i)). R̃ reaches R at R = R (1− Pr (test|i)), strictly to the left of the

original threshold, so testing lowers the threshold for a full recovery both at the equilibrium and the

planner’s solution. Testing also improves economic welfare and lowers mortality at the long-run

optimum. In summary, the short-run and long-run substitution effects of testing are similar to the

ones discussed above for face masks., and summarized in figure 16.

The key is thus to raise Pr (test|i), i.e. to test and catch agents once they are infected. By
28Berger, Mongey and Herkenhoff (2020) show how to include additional state variables in an SIR model to capture

the information generated through testing. Piguillem and Shi (2020) integrate such a structure into a simple dynamic
planner’s problem with capacity constraints in the medical sector, but focus on simple testing and quarantine policies.
Eichenbaum, Rebelo and Trabandt (2020b) extend their baseline model to allow for testing. Like us, these papers
emphasize the potential for testing to relax untargeted quarantine measures. However, they do not analyze such
measures from an optimal policy design perspective, and they do not combine testing with contact-tracing, which is
key to maximize the containment potential from testing and quarantine policies.
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Figure 16: Frontiers with Testing
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Bayes’ Rule, we express Pr (test|i) as

Pr (test|i) = ρPr (i|test) Pr (test)
π̂t (i)

Here Pr (test) ∈ (0, 1) represents the fraction of the population that can be tested within a

period, which we take as a parameter proportional to π̂ (i), and hence small - think of the ratio

Pr (test) /π̂ (i) the testing capacity relative to ongoing undetected infections. The parameterρ

represents the probability of returning a positive test result from an infected agent, 1 − ρ is the

proportion of false negative test outcomes.

If tests are completely random, Pr (test|i) = π̂t (i) and Pr (test|i) = ρPr (test), and they identify

only a small fraction ρPr (test) of agents who are actually infected. Testing is effective if it

concentrates on ”probable cases” that are most likely to return positive test results. This requires

some form of tracing agents who have come in with other infected agents.

To be specific, suppose that tests can be directed towards the contacts of the most recent set of

identified infections: each period, each agent randomly interacts with a finite number K of other

agents and these contacts can be traced into the next period. By identifying contacts of (i) the fraction

δπ̂t (i) of agents who passed away most recently without being in quarantaine, and (ii) a measure

µt of agents who tested positive in the last period, we have a fraction K (δπ̂t (i) + µt) / (1− δπt (i))
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of the population as potential test subjects. We assume that this pool exhausts the test capacity

Pr (test). Each of these test candidates had a probability π̂t (i) of being infected before meeting

one of the prior positive cases, and in turn has a probability πt (s)Rt/K of being infected at the

meeting.29 This conditional infection rate corresponds to the unconditional probability of catching

an infection π̂t (i)πt (s)Rt, divided by the probability of being in contact with an infected person

Kπ̂t (i). Hence they have a probability ρPr (i|test) of returning a positive test result, where

Pr (i|test) = π̂t (i) (1− γ − δ) + πt (s)Rt/K.

Substituting Pr (i|test) into Pr (test|i) and Pr (test|i) into the law of motion for πt+1 (i), we obtain

the modified law of motion for the model with testing.

Now recall that at fast propagation limit, optimal policy stabilizes the proportion of infected

agents. The policy that stabilizes πt (i) satisfies

γ + δ − δπ̂t (i) = (1− Pr (test|i))πt (s)Rt

Substituting Pr (i|test) into Pr (test|i) and then into this equation, we obtain a quadratic equation

for πt(s)Rt
γ+δ , which has as a solution as π̂t (i)→ 0:

πt (s)Rt
γ + δ

= 1−
√

1− 4C
2C , where C = ρPr (test)

Kπ̂t (i) (γ + δ)

measures the capacity of tests to detect new infections: it is the ratio of the maximum number

of positive test results, ρPr (test), to the undetected number of potential new cases, Kπ̂t (i), and

their expected duration, (γ + δ)−1. Notice that 1 ≤ πt(s)Rt
γ+δ ≤ 2, and πt(s)Rt

γ+δ is increasing in C,

and reaches 2 when C = 1/4. At that point, Pr (test|i) = 1/2, so half of infected individuals are

in quarantaine. Testing thus improves upon the test-free stabilizing policy, and can reduce new

infections by up to 50% through quarantaine in this stylized example.

Testing is similar to face masks in that they both improve the static tradeoff between utility

and infection risks. It will therefore also affect dynamics in a similar way: strong static substitution

towards economic activity during deconfinement, weaker substitution at the long-run optimum.

There is one major difference, however: testing lowers the threshold for herd immunity in a full

recovery, and hence reduces long-run mortality, by lowering the threshold value of πt (s) at which

the epidemic reaches herd immunity.30 This in turn will lead the planner to control the pandemic
29This is abstracting from the possibility that these agents may simultaneously catch the infection from other

sources. When πt (i) goes to zero, the probability that any agent incurs multiple simultaneous infections goes to 0.
30See Pollinger (2020) for a more detailed and complete analysis of the interaction of testing and confinement.
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faster in the beginning. The key difference between testing and face masks is that face masks are

untargeted. But as the risks of new infections subside, so do the private and social benefits from

wearing masks. In contrast, testing is targeted and affects a much smaller number of agents that

are traced from prior identified infections. This policy remains effective even as one approaches the

limit of herd immunity.31

8 Discussion

Our paper provides a parsimonious framework for analyzing economic responses during a pandemic

crisis. Here, we discuss the key assumptions that simplified the analysis and suggest potentially

interesting directions for future work.

The key step has been to decompose the analysis into a static and a dynamic part, and treat

the dynamic part as a repetition of the static game with evolving shadow price on infection risks.

This has allowed us to separately identify static spill-overs from infection risk and economic activity,

and dynamic propagation spill-overs. Such a static-dynamic decomposition is possible because

continuation values are linear in the entries of the transition matrix. It naturally generalizes to

other links from stage game decisions to population dynamics, through for example a ”recovery

game” that measures the impact of individual actions on the probability of recovering from the

disease γ, or a ”survival game” that summarizes how actions affect mortality risk δ.

The economic interaction embeds a wide range of economic models that satisfy static efficiency at

equilibrium (assumption 1). The main limitation of our structure is that focusing on static economic

interactions precludes any dynamic adjustment processes such as capital adjustment, dynamic labor

market flows, sectoral reallocation with adjustment costs and time to build, or dynamic economic

spill-overs, for example through net worth constraints and balance sheet multipliers.

A further simplification has been to focus on a model with symmetric agents. This leaves aside

demographic factors, cross-sectional heterogeneity in infection and mortality risks, or differential

access to treatment. It would be possible to introduce those using state-of-the-art heterogeneous

agents methods, but subject to the challenge of significantly enlarging the state space that needs to

be tracked.
Pollinger shows that a combination of extended testing, tracing, and quarantines in combination with confinement can
offer a fast exit from the pandemic, i.e. convergence to permanent containment without herd immunity, for any initial
infection level.

31Here, we have abstracted from the costs of implementing tests, but if the aggregate testing capacity has high
returns at low volumes of testing, then these costs also vanish during the return to a long-run steady-state.
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Infection risks were modeled through a second stage game that also satisfies static efficiency

at equilibrium (assumption 2). The two static efficiency assumptions imply that any rationale for

policy interventions in the model comes from the tradeoff between economics and epidemic. Most of

the qualitative predictions of our model would not change without this assumption, but the case for

interventionist policy during a pandemic would only be strengthened if there were direct infection

externalities at the equilibrium of the confinement stage game. A strong case for intervention

exists even without those direct infection externalities, if the private and social marginal rates of

substitution between utility and infection risks aren’t well aligned.

The S-I-R model was also kept deliberately simple. We have abstracted from symptomatic

transmissions and managing the flow of patients. Extending our approach in that direction or

otherwise enriching the epidemiological dynamics would be conceptually easy, but the practical

challenge comes from the need to keep track of extra states in the transition matrix, and hence

extra state variables in the population dynamics.32 Perhaps the simplest modification to our current

structure may be to assume that immunity is not permanent, so that agents transit with positive

probability from immunity back to being susceptible.

The assumption that only death is observable allowed us to treat all agents as identical. This

assumption mirrors the reality of asymptomatic transmissions with COVID-19, but it also abstracts

from a certain number of issues. First and foremost, our model illustrates a clear conflict of interest

between agents who have recovered and who would like to return to the pre-pandemic equilibrium

as fast as possible, those who are infected and who thus also have nothing to gain from further

confinement, and those who are still susceptible to infection who benefit from confinement policies.

In our model, the veil of ignorance equalizes these three types, but adding information about

infection and recovery will generate a stark conflict of interest between those who have nothing to

gain from further confinement and those who do.

Perfect foresight adds further simplification, since knowledge of the current population state π

allows the policy maker to manage further propagation perfectly. In reality, governments have to rely

on noisy estimates of the true infection rate, based on test results that are biased for example by the

aim to target and quarantaine those who are infected. When π is unknown and must be estimated

from medical test results, a new tradeoff emerges between using tests to catch infections and using

tests to estimate π (i) to make sure the infections stays under control. Simple intuition suggests that

the costs of straying from the equilibrium infection rate are asymmetric during deconfinement, and
32Presumably adding a symptomatic state this would be similar to the model with testing and quarantaines by

allowing exogenous entries into quarantaine when an infection becomes symptomatic.
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therefore when π is unknown the policy maker should stray on the side of caution, especially when

propagation happens sufficiently fast and actual infection rates are very sensitive to policy choices.

Finally, we have adopted a utilitarian welfare criterion, which again seems adequate from the

veil of ignorance perspective. It aligns private and social preferences over symmetric utility and

mortality outcomes, which also gives the equilibrium the best shot at decentralizing the planner’s

solution. One could equally well adopt other criteria. For example a Rawlsian criterion that

maximizes welfare for the worst off agents might place a higher weight on survival probabilities,

and favor policy interventions that are more decisive early on and longer-lasting. Strong myopia or

hyperbolic discounting by policy makers or economic agents, perhaps a stand-in for the political

economy of upcoming elections, would have the opposite effects of placing too strong a concern on

immediate economic prosperity, especially when immediate infection risks are small. In general,

a policy maker who does not fully internalize mortality risk will shift the policy towards higher

economic prosperity, while a policy maker who overweighs concerns about mortality risks shifts

policies towards stronger confinement. However, the tight link between the rate of deconfinement

and the rate of new infections limits how far policy makers can go to pursue their own objectives

before the epidemic catches up with them.

9 Conclusion

We have analyzed static and dynamic policy design during a pandemic crisis. At the core of

our model is a tradeoff between economic activity and dynamic infection risks: by engaging in

market activities, agents expose themselves and others to the risk of a potentially lethal infection.

Infections in our model go undetected, and they spread fast, in line with the challenges posed by

the ongoing COVID-19 pandemic. Static efficiency conditions follow the usual principle of aligning

private and social marginal rates of substitution between utility and infection risks. This implies

a differential regulation of economic activities, depending on whether infection risk externalities

are more important than economic spill-overs or vice versa. Dynamic efficiency conditions are

determined by the interplay between immunization and infection externalities in our benchmark

model, along with medical congestion effects and the option value of waiting for a vaccine in

extensions. They determine whether the equilibrium responds too much too soon early on during

the pandemic, resulting in higher than necessary economic costs, or too little, too late, resulting in

higher than necessary mortality. And once the peak of infections has passed, agents are tempted to

exit confinement too fast and too soon, increasing mortality more than is optimal.
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These results offer a novel economic perspective on optimal lockdown policies. They also

highlight the challenges that lie ahead during the deconfinement phase when private and social costs

of infection start to diverge. The stakes for optimal deconfinement policy are high, and they will

ultimately determine whether the initial lockdown truly saved lives, rather than postponing deaths

to a later phase of the pandemic.
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10 Appendix: Proofs

Propositions 1, 2 and 3: The proofs follow immediately from the arguments given in the text.

Proposition 4: Fix K and K ′ such that K ′ ≥ v̂eqs (π)− v̂eqi (π) ≥ R
γ+δK. This implies

1− β
β

Φeq (π) = π (s)π (i) (v̂eqs (π)− v̂eqi (π)) ≥ R

γ + δ
Kπ (s)π (i)

Therefore, the equilibrium policy satisfies 1−β
β U

eq
r (R,R) ≥ R

γ+δπ (s)Kπ (i), or 1−β
β U

eq
r (R,R) ≥

Kπ (i), whenever π (s) > (γ + δ) /R. Now fix κ < 1−δ
1−γ−δ+R < 1 and η > 0. There exists ξ > 0,

such that whenever max
{
β, V /V

}
> 1 − ξ and R > R + η, 1−β

β U
eq
r (R,R) < Kκη, and therefore

Ueqr (R,R) < Φeq (π), for π (i) ≥ κη. Therefore, starting with π (i) ≥ κη, policy remains within

[R,R+ η], until πt (i) ≤ κη.

Suppose next that πt (i) ≤ κη. It then follows that

πt+1 (i) = πt (i) 1− γ − δ +Rtπt (s)
1− δπt (i) ≤ ηκ1− γ − δ +R

1− δη < η
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Therefore, πt (i) ≤ κη impliesπt+1 (i) < η, and whenever πt+1 (i) ∈ (κη, η), it must be the case

that Rt+1 ≤ R + η, and hence πt+2 (i) ≤ πt+1 (i) ≤ η. Therefore, once πt (i) ≤ κη, we must have

πt+s (i) ≤ η for all subsequent periods at the planner’s solution.

In addition, there exists κ′ > 0, such that

1− β
β
Ueqr (R,R) > K ′κ′η for R <

γ + δ

π (s)

Therefore Ueqr (R,R) > Φeq (π) for R ≤ γ+δ
π(s) and π (i) < κ′η, which implies that it must be optimal

to set R∗t >
γ+δ
π(s) and Reqt > γ+δ

π(s) . But then πt+1 (i) > πt (i). But then, it follows that at the

equilibrium, πt (i) cannot permanently escape from the set (κ′η, κη).

Exactly the same steps also apply to the planner’s solution, provided that we can find constants

K and K ′ such that K ′ ≥ ∂v∗(π)
∂π(s) −

∂v∗(π)
∂π(i) ≥

R
γ+δK. For given π0 (i), we can construct an upper

bound K ′ by computing the envelope conditions from the planner’s problem:

∂v∗ (πt)
∂π (s) = (1−Rtπt (i))β∂v

∗ (πt+1)
∂π (s) +Rtπt (i)β∂v

∗ (πt+1)
∂π (i)

= Λt+1πt+1 (s)
Λtπt (s) β

∂v∗ (πt+1)
∂π (s) +

(
1− Λt+1πt+1 (s)

Λtπt (s)

)
β
∂v∗ (πt+1)
∂π (i)

∂v∗ (πt)
∂π (i) = −βδv∗ (πt+1) + (δ −Rt)πt (s)

1− δπt (i) β
∂v∗ (πt+1)
∂π (s) + 1− γ − δ +Rtπt (s)

1− δπt (i) β
∂v∗ (πt+1)
∂π (i)

= −βδv∗ (πt+1) +
(
πt+1 (s)− πt (s)

πt (i)

)
β
∂v∗ (πt+1)
∂π (s) + πt+1 (i)

πt (i) β
∂v∗ (πt+1)
∂π (i)

= −βδv∗ (πt+1) + πt+1 (i)
πt (i) β

(
∂v∗ (πt+1)
∂π (i) − ∂v∗ (πt+1)

∂π (s)

)
+ β

∂v∗ (πt+1)
∂π (s)

1− γ − δ + δπt (s)
1− δπt (i)

and therefore

∂v∗ (πt)
∂π (s) −

∂v∗ (πt)
∂π (i) = βδv∗ (πt+1) + β

∂v∗ (πt+1)
∂π (i)

γ

Λt+1

+ β

(
∂v∗ (πt+1)
∂π (s) − ∂v∗ (πt+1)

∂π (i)

)(
πt+1 (i)
πt (i) + Λt+1πt+1 (s)

Λtπt (s) − 1 + γ

Λt+1

)
≤
∞∑
s=0

βs+1πt+s (i)
πt (i)

(
δv∗ (πt+s+1) + β

γ

Λt+s+1

∂v∗ (πt+s+1)
∂π (i)

)
≤
∞∑
s=0

πt+s (i)
πt (i) δV

given that ∂v∗(πt+s+1)
∂π(i) < 0, β < 1 and v∗ (πt+s+1) < V . Now,

∑∞
s=0 πt+s (i) δ ≤

∑∞
s=0 πt+s (i) δΛt+s/Λ∞ =

(Λt − Λ∞) /Λ∞. For given π0 (i) > 0, it follows that ∂v∗(πt)
∂π(s) −

∂v∗(πt)
∂π(i) has a uniform (in β) upper

bound. On the other hand, ∂v∗(πt)
∂π(s) −

∂v∗(πt)
∂π(i) can not readily be bounded from below.

Proposition 5: Written in calendar time, the planner’s problem is

max
{R(n∆)}

(
1− e−ρ∆n

) ∞∑
n=0

e−ρ∆n γ

γ + δ (1− π (i,∆n)− π (s,∆n))V
∗ (R (n∆)) ,
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subject to the law of motion for π. Proposition 4 implies that there exists N > 0, such that

lim∆→0 π (i,∆n) = 0 and lim∆→0
(
R (n∆)− γ+δ

π(s,∆n)

)
= 0 for all n > N . It then follows that

lim
∆→0

max
{Rn∆}

1− e−ρ∆n

∆

∞∑
n=0

∆e−ρ∆n γ

γ + δ (1− π (i,∆n)− π (s,∆n))V
∗ (Rn∆)

= max
R(τ)

ρ

∫ ∞
0

e−ρτ
γ

γ + δ (1− π (s, τ))V
∗ (R (τ)) dτ , where π (s, τ) = γ + δ

R (τ) for τ > 0.

The expression γ
γ+δ(1−π(s,τ))V

∗ (R (τ)) with π (s, τ) = γ+δ
R(τ) reaches a maximum when R (τ) = R∗.

Abstracting therefore from the Law of Motion for π (s,∆n), the optimal policy thus sets R (τ) = R∗

and π (s, τ) = γ+δ
R∗ for any τ > 0.

We complete the proof of part (i) by showing that there exists a policy path {Rn∆} that

displays fast (geometric) convergence to R∗, and that enables the planner therefore to attain the

long-run optimum at the continuous time limit. Consider the path R (n∆) = γπ (s,∆n). Since

Λ (∆ (n+ 1))π (i,∆ (n+ 1)) = Λ (∆n)π (i,∆n) (1− δ), Λ (∆n)π (i,∆n) converges geometrically

with a rate 1− δ < 1 towards 0. With Λ (0) = 1, the total measure of surviving agents converges to

1−π (i, 0) as n→∞, and the total measure of agents who have recovered converges to (γ/δ) ·π (i, 0),

and the proportion of susceptible agents converges to

lim
n→∞

π (s,∆n) =
1− γ+δ

δ π (i, 0)
1− π (i, 0)

Set π (i) such that

1− γ+δ
δ π (i)

1− π (i) = γ + δ

R∗
⇐⇒ π (i) =

(
R∗

γ + δ
− 1

)
δ

R∗ − δ
.

If π (i, 0) ≤ π (i), there exists a path that converges geometrically to a limit with limn→∞ π (s,∆n) =
γ+δ
R∗ . If instead π (i, 0) > π (i), then the planner reaches π (i, n∆) ≤ π (i) by setting R (n∆) = R for

a finite number of periods. Therefore the planner’s objective function and optimal policy converge

to the long-run optimum at the instantaneous propagation limit.

For part (ii), we observe that lim∆→0 Φ∗ = V∗′ (R∗) > 0 for all τ > 0. We thus show that

lim∆→0 Φeq = 0. First, note that at the instantaneous propagation limit with R (τ) = R∗ for τ > 0,

V s (τ) − V i (τ) = δ
γ+δV

∗ (R∗). This result follows from the fact that V s (τ) = V r (τ) = V∗ (R∗)

when π (s, τ) is stabilized, and V i (τ) = γ
γ+δV

r (τ), when β → 1 (recovery and mortality are resolved

instantaneously).

Therefore lim∆→0 Φeq = 0 holds if and only lim∆→0 π (i, τ) / (r∆) = 0 for all τ > 0. To see this

must be the case, notice that

Λ (τ + ∆n)π (s, τ + ∆n)− Λ (τ)π (s, τ) =
n−1∑
k=0

∆R (τ + ∆k) Λ (τ + ∆k) η (i, τ + ∆k) ,
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where η (i, τ + ∆k) = π (i, τ + ∆k) /∆. Taking limits as ∆→ 0 on both sides with n = τ ′/∆, and

noting that for τ > 0, Λ (τ + ∆k) → Λ (τ) > 0, π (s, τ + ∆n) → π (s, τ) > 0, and R (τ + ∆k) →

R∗ > 0, we obtain

0 = lim
∆→0

τ ′/∆∑
k=0

∆η (i, τ + ∆k) = lim
∆→0

∫ τ ′−τ

0
η (i, τ + s) ds

but this holds for all τ ′ > τ > 0, if and only if lim∆→0 η (i, τ) = lim∆→0 π (i, τ) / (r∆) = 0 almost

everywhere.
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11 Additional Figures

Figure 17: Congestion Effects (Long Horizon)
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Figure 18: Congestion Effect: Externalities (Long Horizon)
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Figure 19: Possibility of a Vaccine (2 year average waiting time)
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Figure 20: Possibility of a Vaccine: Externalities (2 year average waiting time)
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