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Abstract
This paper deals with the use of SO(3)-Equivariant
Neural Networks for processing spherical images
such as those acquired with bi-directional fish-eye
lenses. By using Generative Adversarial Networks
trained on the Planesnet dataset to generate aug-
mented training sets, we first confirm recent results
according to which the use of SO(3)-equivariance
mechanisms is more efficient than training data
augmentation techniques for processing data with
a native spherical geometry. We then explain how
the action of SO(3) on the 2d-sphere can be pro-
jected on tangent planes, leading to an equiva-
lent reformulation of the SO(3)-convolution oper-
ator in euclidean spaces and allowing to achieve
a wider range of robustness properties through
the design of appropriate local pooling mecha-
nisms. Finally, we articulate our projected SO(3)-
convolution with recent works on fish-eye image
processing in which SU(1, 1) and SL(2,R) Equiv-
ariant Neural Networks are coupled with hyper-
bolic projection mechanisms, drawing the path to-
ward a consolidated approach for processing inputs
represented as signals on homogeneous spaces.

1 Introduction
In the following, we motivate our work by reminding our-
selves of the generic lack of robustness of Deep Learning al-
gorithms, by then discussing the state-of-the-art regarding the
use of data augmentation and Equivariant Neural Networks as
a remediation, and by finally stating our contributions.

1.1 Data Augmentation and Equivariance
Conventional Deep Learning algorithms only encode lim-
ited priors about robustness to perturbations into their de-
sign. Taking the example of computer vision tasks, Convolu-
tional Neural Networks (CNN) enforce local robustness with
respect to translations through equivariance, weights sharing
and pooling mechanisms but have been shown to lack of ro-
bustness with respect to other types of relevant transforms
such as rotations, scaling, lightening effects, small noise, etc.

∗The first author contributed to this work during an internship at
Thales Research and Technology France in 2022.

To remedy this issue, a practical approach referred to as
data augmentation consists in increasing the size of the train-
ing set by applying well chosen transformations to the orig-
inal training set, typically on-the-fly during the gradient de-
scent routine [Shorten and Khoshgoftaar, 2019]. Data aug-
mentation has been shown to be empirically successful and
is widely used for practical applications. Several approaches
such as [Cubuk et al., 2019], subsequently improved in [Lim
et al., 2019] can be used to derive efficient data augmentation
strategies for a given purpose by optimizing over a possible
set of transformations sequences.

Although widely applied by practitioners because of its
simplicity and implementation convenience, data augmenta-
tion is not fully satisfactory. In particular, learning invari-
ances directly from the data consumes significant algorith-
mic capacity and therefore requires models with a large num-
ber of trainable parameters. Depending on the targeted ap-
plications, this process may therefore not be aligned with
operational constraints such as memory footprint limitation
or inference timing performance. Also, the training time is
impacted by data augmentation as more epochs will typi-
cally be required to reach convergence. Another caveat with
this type of approach is that, although recent attempts have
been made with respect to the formalization of the method
through group theory [Dao et al., 2019; Lyle et al., 2020;
Chen et al., 2020], we are still generally lacking of theoretical
guarantees with respect to the behavior the algorithms trained
with augmented data. Data augmentation has also been
shown sub-optimal in term of sample complexity [Elesedy
and Zaidi, 2021], a more efficient approach consisting in us-
ing architectures where group-based invariance/equivariance
is natively enforced. These results were recently experimen-
tally confirmed in [Gerken et al., 2022] for spherical image
processing.

Equivariant Neural Networks (ENN) [Cohen and Welling,
2016a; Gerken et al., 2021], which belong to the field of
Geometric Deep Learning [Bronstein et al., 2021] are be-
coming more and more popular thanks to their conceptual
soundness and to their ability to reach state-of-the-art accu-
racies for a wide range of applications [Bekkers et al., 2018;
Cohen et al., 2018b; Finzi et al., 2020]. In particular, the
underlying equivariant and/or invariant layers of ENN allow
building architectures robust to generic geometrical trans-
forms, therefore making the use of ENN a reasonable alter-



native to data augmentation techniques.

1.2 Previous Work and Contributions

ENN have already been proposed for processing spherical
data, starting with the work [Cohen et al., 2018a] where lift-
ing mechanisms and SO(3)-convolution operators are intro-
duced to enforce equivariance properties in neural networks,
together with efficient numerical schemes relying on spher-
ical harmonics decomposition and Fast Fourier Transform.
Steerable Neural Networks [Cohen and Welling, 2016b],
which achieve equivariance through the choice of constrained
kernel functions, have also been introduced to achieve SO(3)
equivariance by leveraging on Clebsch-Gordan decomposi-
tion [Lang and Weiler, 2020]. More recently, the relevance of
using other equivariance groups than SO(3) for spherical data
processing has been highlighted by leveraging on adequate
projection techniques, including the use of the Lie groups
SL(2,C) [Mitchel et al., 2022] or SU(1, 1) and SL(2,R) [La-
grave and Barbaresco, 2022].

Comparing the benefits of using equivariance mechanisms
with that of applying widely used data augmentation tech-
niques has been recently considered from both theoretical
[Elesedy and Zaidi, 2021; Wang et al., 2022] and practical
standpoints. Although still limited, the available results show
that ENN are superior to data augmentation techniques for
the considered set-ups and datasets.

The contribution of this paper is twofold:

• After giving some reminders with respect to group-
based convolution operators and their equivariance prop-
erties, we first confirm the superiority of using ENN
when compared to data augmentation techniques for the
classification of spherical images that we built using the
Planesnet dataset1, a set of colored 20x20 aerial images
with and without planes. We also emphasize that, com-
pared to the existing work [Gerken et al., 2022], we have
investigated here a data augmentation with respect to the
full data distribution P = Pd⊗Pθ by leveraging on Gen-
erative Adversarial Networks (GAN), while only aug-
mentation with respect to the orientation of the images
Pθ was considered in [Gerken et al., 2022].

• Anchoring in [Mitchel et al., 2022] and [Lagrave and
Barbaresco, 2022] which exploit projection mechanisms
to introduce equivariance mechanisms to process spher-
ical signals, we show that the action of SO(3) can be
projected onto tangent planes. This leads to an equiv-
alent reformulation of the SO(3)-convolution operator
in such spaces, which in particular allows to achieve a
wider range of robustness properties through the design
of appropriate local pooling mechanisms. We finally ar-
ticulate this approach with those leveraging on SL(2,C),
SU(1, 1) and SL(2,R) equivariance properties, paving
the way toward a unified approach of coupling projec-
tions with adequate groups actions when working with
signals defined on homogeneous spaces.

1https://github.com/rhammell/planesnet

2 Geometric Deep Learning and Equivariant
Neural Networks

In this section, we introduce the mathematical framework to
generalize the equivariance property of the standard CNNs.
To do so, we present a more general convolution operator de-
fined on abstract groups (seen as a set of geometric trans-
forms) and homogeneous spaces (accounting for the struc-
ture of the data). We then introduce the main implementation
challenges for such operators.

2.1 Generalized Convolution
In computer vision, standard CNNs achieve translational
equivariance by computing a convolution between the in-
put image and a kernel containing the network’s parameters.
The kernel slides over the image and an accumulation is per-
formed on the image pixels :

[K ⋆ f ](y) =
∑
x∈Z2

K(y − x)f(x) (1)

where f : Z2 → Rd is the image and K : Z2 → Rd×d′
is the

kernel. The integers d, d′ correspond to the number of input
and output channels.
This operation is designed to be linear with respect to the in-
put image and translational equivariant :

Lu[K ⋆ f ] = [K ⋆ Luf ] (2)

where Lu is the translational operator for u ∈ Z2, defined as
Lu(f)(x) = f(x− u).

Equivariance can naturally be generalized to other ge-
ometric transforms thanks to equation (2). Let G be a
group (whose elements should be seen as geometric trans-
forms). We define the convolution between the function
f ∈ L2(G,Rd) and the filter K ∈ L2(G,Rd×d′

) as :

[K ⋆ f ](g) =

∫
G

K(h−1g)f(h) dµ(h) (3)

where µ is the Haar measure on G. As for the case of trans-
lations, this operation satisfies an equivariance property, with
respect to the action of G:

Lg[K ⋆ f ] = [K ⋆ Lgf ] (4)

with Lg(f)(h) = f(g−1h) for g, h ∈ G. We mention
that this convolution operation is more general that it may
appear : as discussed in [Cohen et al., 2019], any linear and
equivariant mapping L2(G,Rd) → L2(G,Rd′

) is in fact a
convolution for some kernel K : G → Rd×d′

.

However, this framework is somewhat restrictive : it
requires feature maps and kernels to be defined on a group,
and therefore the symmetries associated with the convolution
operation are inherited from the data structure. As for
the case of the sphere and the rotational symmetry group
SO(3), we would rather need a geometrical space on which
images and kernels are defined and a group of geometric
transforms acting on this space. This is the context of
homogeneous spaces. A topological space X is said to be
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homogeneous with respect to a group G (or G-homogeneous)
if G acts transitively on X , that if there exists an action
(g, x) ∈ G × X 7→ g · x ∈ X such that for any x, y ∈ X ,
there exists a transform g ∈ G such that g · x = y. Under
those assumptions, the space X is isomorphic to a quotient
G/H for some H subgroup of G.

The standard example of homogeneous space is the
sphere Sn−1 = {x ∈ Rn, ∥x∥ = 1}, homogeneous
with respect to both the orthogonal group O(n) and the
special orthogonal group SO(n). This general framework
allows for more freedom in the choice of the group G which
is essential as it defines the symmetries of the neural network.

In these conditions, we now consider a feature map f :

X → Rd and a kernel K : X → Rd×d′
. There are differ-

ent ways to define homogeneous spaces convolutions : a first
possibility, introduced by [Cohen et al., 2018a], consists in
using a convolution to lift the feature map from X to G and
then use the group convolution (3). In this framework, we
would have therefore a first layer with the lifting operator (5)
and the group convolution (3) in all the subsequent layers.

[K ⋆ f ](g) =

∫
X

K(g−1 · x)f(x) dx (5)

Another convolution, defined by [Kondor and Trivedi,
2018], allows to keep feature maps on the space X itself, but
requires to introduce some reference point x0 ∈ X :

[K ⋆ f ](x) =

∫
G

K(g−1 · x)f(g · x0) dµ(g) (6)

However, thanks to the G-homogeneity of X , the choice
of x0 is irrelevant in the convolution : all points of X are
equivalents.

Homogeneous space convolution detaches the symmetry
group from the space, and therefore for a given space (as for
the case of the sphere) there are often many groups satisfying
the homogeneity condition. Although selecting bigger groups
may seem tempting, this would come with a computational
cost overhead and may also lead to a decreasing expressivity
of the neural network.

2.2 Numerical Considerations
Although the convolution operations previously defined
are perfectly equivariant, numerical constraints require to
discretize the space as well as the group, therefore the
numerical equivariance is only approximate. One of the
implementation challenges is to reduce to the maximum the
equivariance error.

However, in some cases, perfect equivariance can be
achieved, for example on the standard translational convo-
lution of 2D CNNs. In the same way, any convolution on a
finite group would reach perfect equivariance, provided that
its computation is done by exhausting all the group elements.

For an image f : X → Rd, a kernel K : X → Rd×d′
and a

geometric transform g ∈ G, we define the equivariance error
of the convolution K ⋆ f :

∆g,K(f) =
Std (K ⋆ Lg(f)− Lg(K ⋆ f))

Std (K ⋆ f)
(7)

where the standard deviation is taken over the pixels of the
image. We therefore aim at minimizing the general error
associated with the operator : ∆ = ⟨∆g,K(f)⟩g,K,f averaged
over the filters, images and transforms.

Regarding the numerical implementation, a first method
to implement such a convolution is to use a numer-
ical integration scheme to compute the integral over
the space or the group. Depending on the data struc-
ture and the size of the group, the use of a Monte
Carlo method as introduced in [Finzi et al., 2020;
Lagrave and Barbaresco, 2021] could be of interest. In
the case of the sphere S2 and symmetry group SO(3), a
simple median point method gives a convergence rate pro-
portional to p−2/3, p being is the total number of integration
points, which is better than a Monte Carlo method. These
methods require significant sampling to converge and can
lead in practice to substantial equivariance error when timing
performance constraints are considered.

The alternative is to use Fourier theory on the group G.
This method has been extensively used in spherical convo-
lutions [Gerken et al., 2021; Lang and Weiler, 2020] and
has proven to reach very low equivariance errors while being
quite effective in calculation duration. For instance, [Cohen
et al., 2018a] reach an approximation error around 10−7 with
their equivariant neural network on the sphere (using the lift
method in equation (5)). The main constraint of this type of
implementation is that it requires a well established Fourier
theory on the group of interest. Although this is the case
for standard transforms as translations and rotations, with
corresponding efficient numerical schemes (e.g., FFT), some
generalized version of Fourier theory needs to be considered
when dealing with more exotic structures (e.g., non compact
groups) as it was done in [Lagrave et al., 2021] with the use
of the Helgason-Fourier transform for computing SU(1, 1)-
convolutions between signals defined on the Poincaré disk D.

3 SO(3) Equivariance for Images
We now deal with the particular case of spherical images
and equivariance with respect to the group SO(3) of 3D
rotations, which is of high interest thanks to a wide range of
applications (Fisheye images, autonomous cars, data at the
surface of the Earth, ...).

We first prove the equivariance interest with a simple data
augmentation numerical experiment, then explore the possi-
bility to project spherical features on the plane to directly per-
form equivariant convolution in 2D. Finally, we go through
several applications of equivariance methods in image classi-
fication.



Figure 1: Examples of images inside the Planesnet dataset. Top
left : images containing planes. Top right : images with no planes.
Bottom left : images containing portions of planes. Bottom right
: images with objects looking like planes. Images of the last three
categories are labeled with no plane.

3.1 Confirming the Equivariance Benefits
We confirm the theoretical [Elesedy and Zaidi, 2021;
Wang et al., 2022] and previous numerical results [Gerken
et al., 2022] about equivariant neural networks versus data
augmentation methods. To do so, we compare the learning
performance of a standard 2D CNN and a SO(3) equivariant
CNN on the sphere.

The dataset we used for this comparison is the Planesnet
dataset (https://github.com/rhammell/planesnet). It is com-
posed of RGB satellite images of size 20×20 with a label ac-
counting for the presence of a plane on the image. Although
the CNN task amounts to a simple binary classification, the
dataset contains misleading images such as ones containing
only portion of planes or objects with sharp edges looking
like planes. All of these are labeled with no plane. Examples
of such images are shown in figure 1.

Before any learning, the images are first projected on the
sphere by using the representation in spherical coordinates,
offering the possibility to apply random rotations during
the projection. This process is shown in figure (2) for an
expressive MNIST sample. Mapping the randomly rotated
image in spherical coordinates causes non-linear distorsion.
The fact that this distorsion is only local and depends on the
position of the features on the sphere makes it very difficult
for standard CNNs to reach reasonable performance on this
task. We used three neural networks for our comparison,
one spherical equivariant CNN (denoted S2CNN in the
following) designed by [Cohen et al., 2018a] with 2 convo-
lutional layers, and two others standard CNNs, one with 2

Figure 2: Illustration of the projection algorithm on the sphere. Left
: original image in (x, y) coordinates. Middle : image projected
on the sphere with random rotation. Right : visualization of the
projection in spherical coordinates (ϕ, θ).

Figure 3: Comparison between ”plane” samples of the Planesnet
dataset (left) and outputs of a GAN trained on samples of the ”plane”
class of the same dataset (right).

layers (classic CNN) and the second with 3 convolutional
layers (deep CNN). All three networks have roughly 160k
parameters.

There are different ways to perform data augmentation on
such neural networks. It is possible to enrich the training set
by creating rotated copies of the original images as it was
done in [Elesedy and Zaidi, 2021]. Denoting Pd the distribu-
tion of the original (spherical) dataset, and Pθ that of random
3d-rotations by SO(3) elements, we observe that the augmen-
tation is only performed with respect to Pθ in their work.

In order to perform the data augmentation with respect to
the full data distribution P=Pd ⊗Pθ, we propose using here a
generative method such as a GAN architecture to create more
examples of images in the training set. This is the method
we have chosen for data augmentation and figure 3 compares
samples obtained with the GAN used to generate the class
”plane” (another one was trained to cover the ”no-plane”
case) with samples of the original Planesnet dataset. We
have then trained our three networks with 50 epochs on
data generated by the GANs for consistency purpose. We
measured their test accuracy for different sizes of training
sets and the results are presented in figure 4.

Before training, each image of the training set and the test-
ing set was projected and randomly rotated on the sphere. We
then used the same rotated dataset for each of the three neural
networks. Each data point on figure 4 is an average over 5
simulations.

The first conclusion is that the equivariant neural network
gets largely better performances than the 2D CNNs, no

https://github.com/rhammell/planesnet


Figure 4: Test accuracies for 2D CNNs (Classic and Deep) and S2
CNN as a function of the size of the training set.

matter the augmentation factor. With a sufficient amount
of data, the S2CNN almost reaches a perfect generalization
accuracy on the testset. On the side of the standard CNNs,
distorsion effects due to rotations are hardly handled, and
even though test accuracies are low for small datasets,
improvements with data augmentation tend to be modest. As
a striking result, test accuracies of 2D CNNs at the maximum
of data augmentation do not even reach the performance of
the S2CNN without any augmentation.

This is the benefit of equivariance : implementing the sym-
metries directly inside the convolution operators leads to ma-
jor savings in dataset sizes and therefore in learning time and
allows for more compact architectures with less parameters.

3.2 SO(3) Action on Planes
We now explain how the action of SO(3) on the sphere can
be projected onto tangent planes as to derive an equivalent
formulation of the SO(3)-convolution in those Euclidean
spaces, hence providing a way of reaching a wider range of
robustness properties through the choice of adequate pooling
mechanisms within the Neural Networks architectures.

Feature maps on the sphere can be represented as planar
images via some projection Π : S2 → R2. For the moment,
we do not specify any particular projection, but most com-
mon are stereographic and logarithm projections. Due to the
topology of the sphere, those projections have a singularity
at a single point, which is no problem as we eventually
discretize the space during implementation.

Starting from the homogeneous space convolution of equa-
tion (6), we assume the reference point x0 ∈ S2 to be the
north pole and that the projection is done via this point, that
is Π(x0) = 0 the origin of R2. We denote BΠ the image of
S2 by the projection. Given a feature map f : S2 → Rd, we
define its projection fΠ on BΠ : fΠ = f ◦ Π−1. Taking a
template kernel K : R2 → Rd×d′

, we define the projected
convolution, for v ∈ BΠ :

[K⋆fΠ](v) =

∫
SO(3)

K
(
Π ◦ g−1 ◦Π−1(v)

)
fΠ
(
Π(g·x0)

)
dµ(g)

(8)

Figure 5: Illustration of the projection process with the choice of
logarithm projection as stated in equation (11). Top left : origi-
nal MNIST image. Bottom left : logarithm projection with random
rotation. Top right : SO(3) rotation visualized via logarithm projec-
tion. Bottom right : convolution (10) of the projected image.

This encourages to define a projected version of SO(3),
that is Π(g) ≡ Π ◦ g ◦ Π−1 : BΠ → BΠ. SO(3) can now be
seen as acting transitively on BΠ. What’s more is that the ap-
plication g 7→ Π(g) is a group morphism, and the convolution
writes :

[K ⋆ fΠ](v) =

∫
SO(3)

K
(
Π(g)−1(v)

)
fΠ
(
Π(g)(0)

)
dµ(g)

(9)
And with the change of variable g 7→ Π(g), we get :

[K ⋆ f ](v) =

∫
Π(SO(3))

K
(
ω−1(v)

)
fΠ
(
w(0)

)
|J(w)|dω

(10)
where the jacobian J(ω) depends on the chosen projection Π.

Applications of this framework rely on the choice of the
projection. When Π is the stereographic projection, BΠ

corresponds to the full plane R2 and in order to keep a
bounded support when projecting the image, we shall restrict
features on the northern hemisphere, for instance.

A direct way of obtaining a bounded support for the pro-
jected images is to use the logarithm projection which orig-
inates from differential geometry. On the sphere, it simply
maps spherical coordinates to 2D cylindrical coordinates :

ΠL :

(
cos(ϕ) sin(θ)
sin(ϕ) sin(θ)

cos(θ)

)
∈ S2 7→

(
θ cos(ϕ)
θ sin(ϕ)

)
∈ R2 (11)

for ϕ ∈ [0, 2π] and θ ∈ [0, π]. As for the stereographic pro-
jection, it is ill defined at the south pole s, however it is a
diffeomorphism from S2\{s} onto the open ball of radius π,
{x ∈ R2, ∥x∥ < π}. See figure 5 for a visualization of rota-
tions and convolution through this projection.

The convolution operations in equation (6) and (10) are
perfectly equivalent. The real benefit of the projection
method is when pooling after performing the convolution.
Depending on the chosen projection, we can expect very



Figure 6: Left : Fisheye lens. Photo: Wikipedia. Right : First
high-resolution color image sent by Hazard Cameras (Hazcams) of
NASA’s Perseverance Mars vehicle after its landing on February 18,
2021. Distortion effects are in particular visible through the curved
horizon line. Photo: NASA / JPL-Caltech.

different results as features and pixels on images are shuf-
fled during projection. Theoretical and experimental results
should however support those hypothesis.

3.3 Application to Images Classification

The main application of SO(3) Equivariant Neural Networks
is the treatment of fisheye pictures which originate from
spherical shaped lenses (see figure 6). Due to the curvature
of the lens, the images have a native spherical shape, which
results in some distorsion when projected on the 2D plane.
Such images can be treated by an equivariant CNN after be-
ing projected back on the sphere, using the method describe
in section 3.1. Equivalently, using the adapted projection (that
is knowing the native projection mechanism of the lens), we
can use the framework introduced in section 3.2 and directly
compute convolutions on the plane. This allows to avoid a
pre-processing of the images before training, although it re-
strains the convolution algorithm to a particular projection.
Note that the knowledge of the lens projection mechanism is
also required to project back images on the sphere.

4 Conclusions and Further Work

By leveraging on GANs trained on the Planesnet dataset,
we have first confirmed in this paper the benefits of us-
ing equivariant architectures compared to data augmentation
techniques in the context of spherical image classification.
We have then shown that the action of SO(3) on the 2d-
sphere could be projected onto tangent planes and have high-
lighted some similarities with recent works coupling pro-
jection mechanisms with equivariance to other groups than
SO(3) to handle spherical images.

From a theoretical standpoint, further work will include
writing down a unified framework for coupling projection
techniques with equivariance to appropriate groups actions
when working with signals defined on homogeneous spaces.
From a more practical standpoint, the scalability of these ap-
proaches will be studied by working with bigger images and
larger datasets, and by investigating potential improvements
to the numerical schemes used to compute group-based con-
volution operators.
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