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We study optimal policy in an economy in which public debt serves as collateral or buffer stock.

Issuing more public debt can raise welfare by easing the underlying friction; but it also reduces the premium that the private sector is willing to pay for this service, which in turn raises interest rates. This trade off shapes the optimal long-run quantity of public debt. It justifies larger deficits during financial crises. It may subsume other considerations, such as whether public debt crowds out, or in, capital. And it clarifies the circumstances under which a low risk-free rate represents an opportunity of cheap borrowing by the government.
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. Note, though, that this literature has focused on the interest-rate spread between government bonds and high-grade corporate bonds, which is only a small fraction of the relevant theoretical object: the "premium" that shapes optimal policy is the wedge between the interest rate paid on public debt and the underlying social discount rate, or equivalently between the former and the interest rate that would have obtained under complete markets.

. But the essence of the problem remains the same, and so do our results.

Turning to a technical aspect of our paper, we observe that the policy problem at hand is non-convex.

 overestimates the tax burden of the services provided by public debt and, thereby, underestimates its optimal long-run quantity.

. The issues that preoccupy this literature, such as "rg " and debt sustainabil-

Introduction

The persistently low real interest rates on US public debt have prompted calls for higher deficit spending to exploit the low cost of borrowing (e.g., [START_REF] Delong | A Free Lunch for America[END_REF][START_REF] Delong | We Need Bigger Deficits Now[END_REF][START_REF] Krugman | Time to Borrow[END_REF][START_REF] Krugman | Learn to Stop Worrying and Love Debt[END_REF]. This argument seems particularly tempting in turbulent times, such as the Great Recession or the COVID pandemic: a flight to safety during such episodes appears to reduce the government's cost of borrowing exactly when fiscal stimulus is needed the most. However, this argument finds no place in the basic, completemarkets, Ramsey paradigm [START_REF] Barro | On the Determination of the Public Debt[END_REF][START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF]: in this benchmark, there is never a real opportunity for "cheap" government borrowing, and tax smoothing is optimal regardless of the level and the cyclicality of interest rates. Our objective in this paper is to revisit this issue in the presence of financial frictions and to draw the implications for optimal fiscal policy.

Financial frictions are not only conspicuous in the real world. They also endow public debt with a special function: government borrowing contributes to the aggregate supply of assets that private agents-households, firms, financial institutions-can use as collateral or buffer stock, which in turn can ease the frictions (Woodford, 1990;[START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF][START_REF] Holmström | Private and Public Supply of Liquidity[END_REF]. Corroborating this idea, [START_REF] Krishnamurthy | The Aggregate Demand for Treasury Debt[END_REF] document that the spread between government bonds and high-grade corporate bonds, an empirical measure of the market's valuation of the "services" provided by public debt, decreases with the quantity of public debt.

This mechanism allows government borrowing to be cheap in a sense that we will make precise, but does not provide an unlimited "free lunch." Instead, it gives rise to a novel policy trade off: the flip side of easing the friction and improving market allocations is an increase in the cost of government borrowing.

Our contribution is to show how this trade off, in conjunction with the desire to smooth tax distortions, shapes optimal policy in both short and the long run.

Framework. We work primarily with a reduced-form Ramsey problem, which is similar to that in [START_REF] Barro | On the Determination of the Public Debt[END_REF], except that it lets public debt be non-neutral for two reasons in addition to distortionary taxation.

First, it carries a lower interest rate than the underlying social discount rate by an amount that reflects the private value of the liquidity, collateral, or other "convenience" services provided by it. Second, for given taxes welfare also depends on public debt , reflecting the corresponding social value of these services.

In its most literal interpretation, our problem corresponds to an economy with public debt in the utility function. But the same reduced form also characterizes two other economies: one in which public debt plays a dual role as a vehicle for life-cycle savings [START_REF] Diamond | National Debt in a Neoclassical Growth Model[END_REF] and as a buffer stock against idiosyncratic risk [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF]; and another in which public debt serves as collateral [START_REF] Holmström | Private and Public Supply of Liquidity[END_REF]. Although the offered micro-foundations are highly stylized, they help illustrate how the trade off we emphasize may transcend various applications. They also corroborate the following interpretations: the "service" provided by public debt is to ease a financial friction within the private sector; the "scarcity" of this service is inversely related to the private sector's own capacity to cre-1 ate assets or "inside" liquidity; and the private value of this service may differ from it social counterpart because of pecuniary externalities in collateral constraints.

Main lessons.

The optimal policy is dictated by the interplay of three forces: (i) the desire to smooth the tax distortion over time; (ii) the desire to ease the financial friction and improve the allocation of resources within the private sector; and (iii) the desire to maximize the rents, or "seigniorage," that the government can extract from the private sector in the form of a low interest rate on its debt.

While the first force reigns supreme in the textbook Ramsey paradigm [START_REF] Barro | On the Determination of the Public Debt[END_REF][START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF], here it has to be balanced against the other two. The second force, in particular, calls for raising public debt towards a certain "bliss" point, defined by the level of public debt that satiates the economy's demand for collateral or, more generally, that equates the interest rate on public debt with the underlying social discount rate. The third force, on the other hand, involves a Laffer curve: the relevant rents are maximized at a quantity of public debt strictly less than the bliss point.

Because taxes are smooth in a steady state, one may expect the long run to be shaped solely by the other two forces. This intuition has to qualified in two ways. First, there is a fixed-point relation between the steady-state quantity of public debt and the relative importance of the aforementioned forces. Second, the desire to smooth taxes acts as an adjustment cost that, in certain cases, may help rationalize multiple locally determinate steady states, each with its own basin of attraction. Notwithstanding these qualifications, the aforementioned intuition applies : the long-run quantity of public debt trades off the desire to ease the financial friction against the desire to depress interest-rate costs.

The same trade off also figures in the optimal response to shocks, except that now the desire to smooth taxes naturally gains prominence. Consider, e.g., an unanticipated, uninsured, positive shock to government spending (a "war"). In the textbook Ramsey paradigm, this triggers a permanent increase in taxes by an amount equal to the annualized innovation in the present discounted value of government spending. In our setting, instead, the optimal response is front-loaded: taxes increase relatively more early on in order to keep interest rates on debt low, enabling a smaller tax burden later on.

Consider next an inefficient recession, modeled as a labor-wedge shock that not only reduces output but also justifies a fiscal stimulus in the form of a payroll tax cut. Suppose further that the financial friction is aggravated. This has an ambiguous effect on the trade-off we emphasize: while it encourages liquidity provision, it also raises the rents that can be extracted by preserving the shortage of collateral, which pulls in the opposite direction. But it unambiguously increases fiscal space by reducing the interest rate on public debt, thereby supporting a larger fiscal stimulus.

This result provides a formal basis for the argument made by, among others, Paul Krugman and Brad DeLong that the Great Recession called for high deficits not only because of the need to stimulate aggregate demand but also because of the apparent drop in the government's cost of borrowing. As already mentioned, this argument has no place in the textbook paradigm. But it makes sense insofar as a lower interest rate is a symptom of higher idiosyncratic risk, a shortage of collateral, or a flight to safety.

where g is government spending (time-invariant for simplicity). Welfare is given by

W = ˆ+∞ 0 e -ρt [U (s(t )) + V (b(t ))]dt ,
where ρ > 0 is the social discount rate, U (•) captures the social cost of taxation, and V (•) captures the social value of the liquidity or other services provided by public debt. Finally, the interest rate satisfies

r (t ) = ρ -π(b(t )),
where π(•) captures the premium that private agents pay in equilibrium for the aforementioned services. 1Let s > 0 represent the maximal feasible tax revenue, corresponding to the peak of the Laffer curve for taxes; let s ≤ 0 be an arbitrary lower bound; and let b ≡ s-g ρ > 0 be the maximal sustainable level of debt. These are fixed parameters, like g and ρ.

The planner's problem is as follows:. We finally impose the following restrictions on the reduced form:

Main Assumptions. [A0] U , V, and π are continuously differentiable.2 

[A1] U is concave in s, with a maximum attained at s = 0.

[A2] There exists a b bliss ∈ (0, b) such that V ′ (b), π(b) > 0 if b < b bliss , and V ′ (b), π(b) ≤ 0 otherwise.

Assumptions A0 and A1 require little explanation: the former is technical; the latter captures the distortionary effects of taxation. In particular, [START_REF] Barro | On the Determination of the Public Debt[END_REF] is nested by letting π(b) = 0 for all b (equivalently, r = ρ). What is new, therefore, is only Assumption A2. This assumption represents the role of public debt as an essential vehicle for life-cycle saving [START_REF] Diamond | National Debt in a Neoclassical Growth Model[END_REF], as a buffer stock against idiosyncratic risk [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF], or as a form of collateral [START_REF] Holmström | Private and Public Supply of Liquidity[END_REF].

A Detour: Stylized Micro-foundations

In this section, we corroborate the interpretation of our reduced-form problem, and shed additional light on the economics behind it, with the help of a few micro-founded examples. For the purposes of these examples, we momentarily switch from continuous time to discrete. Readers eager to see the main results can jump to Section 4.3.

Example 1. Diamond (1965) meets Aiyagari and McGrattan (1998)

There are overlapping generations of two-period-lived households. Households work when they are young, consume in both periods of life, and do not care about future generations. In the version considered here, saving takes place only in a risk-free bond, whose net supply is controlled by the government;

an extension discussed in Section 6 adds capital accumulation, without affecting the results. More crucially, individuals are subject to uninsurable idiosyncratic risk; this introduces a precautionary motive for saving and lets public debt play a similar role to that in [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF].

Setup. Individuals are indexed by (i , t ), where t ∈ {0, 1, ...} stands for their birth date and i ∈ [0, 1] for their idiosyncratic identity. Life-time utility is given by

U i t = c y i t -v(h i t ) + δE i t u(c o i t +1 ) ,
and the budget constraints in the two periods of life are given by c y i t + q t a i t = (1 -τ t )w t h i t and c o i t +1 = e i t +1 + a i t .

c y i t and c o i t +1 are the individual's consumption when young and old, respectively; h i t is her labor supply; a i t is her saving in the risk-free asset; q t is the asset's price (i.e., the reciprocal of the gross interest rate between t and t + 1); w t is the wage; and e i t +1 is a random endowment received when old. The latter is i.i.d. across (i , t ) and takes values e i t ∈ {k -ϵ, k + ϵ}, with respective probabilities ϕ and 1 -ϕ, for some k > 0, ϵ ∈ (0, k), and ϕ ∈ (0, 1). Finally, u and v satisfy the following properties: u ′ > 0, u ′′ < 0, u ′′′ > 0 (preferences exhibit risk aversion and prudence); v ′ > 0 and v ′′ > 0 (the disutility of labor is convex); lim c→0 u ′ (c) = lim h→∞ v ′ (h) = ∞ and lim c→∞ u ′ (c) = lim h→0 v ′ (h) = 0 (the usual Inada conditions hold).

Labor is employed by a representative competitive firm, which produces the final good according to a linear returns technology: y t = Ah t , for some fixed A > 0. It follows that, in equilibrium, the pre-tax wage is given by w t = A and firm profits are zero.

The model is completed by the government (the Ramsey planner). Its budget constraint is given by b t -1 + g = q t b t + τ t w t h t

(3) where b t -1 is the inherited stock of debt, q t b t are the proceeds from new debt issuance, s t ≡ τ t w t h t is tax revenue, and g is the exogenous government spending. Finally, its objective is to maximize the following welfare measure:

W ≡ ∞ t =0 β t ˆUit d i ,
where β ∈ (0, 1) is the social discount factor.

The demand for safe assets. Since young households are identical, they make the same choices: for all i and t , c y i t = c y t , h i t = h t , and a i t = a t . Furthermore, optimal saving solves the following FOC:

q t = δE t [u ′ (c o i ,t +1 )] = δ ϕu ′ (k -ϵ + a t ) + (1 -ϕ)u ′ (k + ϵ + a t ) . ( 4 
)
Together with market clearing in the bond market (a t = b t ), this gives

q t = Q(b t ; ϵ, k), ( 5 
)
where the function Q is defined by the right-hand side of (4) replacing a t with b t . This function can be viewed interchangeably as the equilibrium price function for government debt and as the inverse of the aggregate demand for it. Risk aversion and prudence (u ′′ < 0 < u ′′′ ) imply the following properties:

Proposition 1. The demand for public debt is downward slopping (Q b < 0); it shifts up with idiosyncratic risk (Q ϵ > 0); and it shifts down with k (Q k < 0).

These properties translate to our reduced form by letting π(b) ≡ Q(b)-β and help proxy the demand for safe assets in a larger class of models. In particular, Q ϵ > 0 and Q b < 0 mimic two core predictions of the incomplete-markets literature: that the equilibrium risk-free rate falls with more idiosyncratic risk [START_REF] Bewley | The Optimum Quantity of Money[END_REF][START_REF] Aiyagari | Uninsured Idiosyncratic Risk and Aggregate Saving[END_REF] and increases with the aggregate supply of the "buffer stock" provided in the form of government debt [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF]. Similarly, Q k < 0 mimics the role of physical capital and/or that pledgeable income à la [START_REF] Holmström | Private and Public Supply of Liquidity[END_REF]; these points will become clear in Example 2 below and also in the extension with capital discussed in Section 6. Finally, note that here π(b) can turn negative for b high enough, but this is not the case in Examples 2 and 3 below: there, π(b) is positive whenever a collateral constraint binds and zero otherwise.

Let us now switch attention from the private value of public debt to the social counterpart. By the resource constraint (c y t + ´co i t d i = Ah t + k) and aggregation of the old-age budgets ( ´co Proposition 2. The optimal path for taxes and public debt solves the following problem:

i t d i = b t -1 + k), we have c y t = Ah t -b t -1 and W ≡ ∞ t =0 β t ˆUit d i = ∞ t =0 β t {Ah t -v(h t ) + V (b t -1 ; ϵ, k)} , where V (b; ϵ, k) ≡ ϕδu(k -ϵ + b) + (1 -ϕ)δu(k + ϵ + b) -b defines the (total) social value of public debt. Note then that π(b) ≡ Q(b)/β -1 = V ′ (b), that is, the ( 
max {s t ,b t } ∞ t =0 ∞ t =0 β t [U (s t ) + V (b t -1 )] (6) subject to Q(b t )b t = b t -1 + g -s t (7)
which is nested in our reduced form. Furthermore, Assumptions A0-A2 are readily satisfied.

We have so far emphasized the function of government debt as a buffer stock against idiosyncratic risk. But in the present example, government debt has one more function: similarly to [START_REF] Diamond | National Debt in a Neoclassical Growth Model[END_REF], it regulates the allocation of aggregate consumption between the young and the old. It follows that, in the present example, Q and V encapsulate both of these functions. The example provided below shuts down the second function, while also recasting the first one in a way that bridges the analysis to [START_REF] Holmström | Private and Public Supply of Liquidity[END_REF]. Put together, these examples illustrate that, while the distinction between the three functions of public debt under consideration-collateral, buffer stock, or vehicle for life-cycle savingsmay be important in general, it is not essential for our own purposes.

Example 2. An infinite-horizon variant with a Holmström and Tirole (1998) flavor

As already mentioned, our second example seeks to stylize the role of public debt as collateral. It does so by introducing a trading/financial friction and by letting private assets ease that friction.

Setup. Households are infinitely-lived and there are two edible goods, consumed in different halves of each period. The first good is the (exogenous) fruit of a tree that becomes ripe in the "morning" and whose trade is subject to a financial friction. The second good is the (endogenous) output of a representative firm, which is produced in the afternoon with the labor of the households. Each good has to be consumed in the respective sub-period, or else it perishes. 3Let h i t , x i t , and c i t denote, respectively, labor supply, consumption of the morning good, and consumption of the afternoon good. The household's expected life-time utility is given by

E 0 ∞ t =0 β t c i t + θ i t log x i t -ν(h i t ) , (8) 
and its budget constraint at the end of each period is given by

c i t + p t x i t + q t a i t = a i t -1 + (1 -τ t )w t h i t + p t e i t , (9) 
where β ∈ (0, 1), v satisfies the same properties as in the previous example, a i t is the household's saving in the risk-free asset, q t is its price, p t is the price of the morning good, and e i t and θ i t are the household's idiosyncratic endowment of and taste for the morning good. These shocks serve the purpose of inducing a desire for trading the morning good between the agents. For simplicity, we assume only two idiosyncratic states: either the household has a high taste for the morning good but no endowment, (θ i t , e i t ) = (1 + ϵ, 0), or it has a low taste and a positive endowment, namely (θ i t , e i t ) = (1, 1/(1 -ϕ)), with respective probabilities ϕ and 1 -ϕ, for some ϕ, ϵ ∈ (0, 1). 4

In addition to (9), the household faces a liquidity, or collateral, constraint in the morning of each period. Let z i t ≡ p t (x i te i t ) denote the household's net trade of the morning good. When z i t > 0, the household is a "borrower" in the sense that it finances its net purchase of the morning good by issuing an IOU against its afternoon labor income; and conversely, the household is a "lender" when z i t < 0. Once the afternoon arrives, a borrower may be tempted to renege on her promise to pay back. If she does so, her lenders can confiscate a fraction ξ ∈ (0, 1) of her labor income as well as all of her assets. For default to be averted in equilibrium, the following constraint must therefore hold:

z i t ≡ p t (x i t -e i t ) ≤ ξy def t + a i t -1 (10) 
where y def t denotes the income received in the (off-equilibrium) event of default. 5 The presence of a i t -1 on the right hand side of this constraint explains the precise sense in which holdings of the risk-free asset-and thereby public debt-serve as collateral in our example. 6 Finally, the production side of the economy is the same as in the previous example, the government's budget constraint is the same as well, and its objective is the maximization of (8) behind the veil of ignorance, i.e., for a random i .

Reduced form. The collateral constraint (10) can bind only under the high taste shock. When public debt is absent (b t = 0), this in turn happens if and only if the "inside collateral" is sufficiently scare, in the sense that ξ < ξ for some ξ > 0. Assuming that this is true (or else the friction is inactive and policy problem is trivial), and after some tedious derivations, we can reach the following result. Proposition 3. (i) Proposition 2 extends to the present economy. That is, the planner's problem is again nested in our reduced form and Assumptions A0-A2 continue to hold.

(ii) For b < b bliss , the financial friction is binding and the private value of collateral is higher than the social one, implying that π(b) > V ′ (b) > 0. For b > b bliss , on the other hand, the financial friction is not binding and π(b) = V ′ (b) = 0. Finally, the threshold b bliss and the value of π for all b < b bliss increase with ϵ, the amount of idiosyncratic risk, and decrease with ξ, the pledgeable income. 4 This particular specification of the idiosyncratic risk facilitates part (ii) of Proposition 3, but is not needed for part (i), which is all we really need. The linearity of preferences in the afternoon good, on the other hand, plays a similar role as in [START_REF] Lagos | A Unified Framework for Monetary Theory and Policy Analysis[END_REF]: it guarantees that the cross-sectional distribution of wealth is not a relevant state variable.

5 For simplicity, we let income not be taxed in the event of default. It follows that y def t ≡ w t h def t , with h def t ≡ (v ′ ) -1 (w t ). 6 Applying the same logic to inter-period borrowing yields the additional constraint -a i t ≤ ξy def t . In the present version of Example 2, this constraint never binds in equilibrium, because a i t = b t by equilibrium and b t ≥ 0 by assumption. We can thus ignore it and focus on ( 10). An earlier version introduced additional heterogeneity so as to accommodate "inside liquidity" (i.e., issuance of private debt by some agents, which in turn could be used as buffer stock or collateral by other agents, in place of public debt). This allowed the constraint -a i t ≤ ξy def t to bind sometimes but did not change the essence.

Part (i) verifies that our reduced-form approach is still applicable. Part (ii) sheds additional light on the role of debt in the present example. π(b) is now directly related to the Lagrange multiplier on (10).

Put differently, π(b) measures the equilibrium value of collateral, echoing [START_REF] Holmström | Private and Public Supply of Liquidity[END_REF].

This value is strictly positive for b < b bliss , but becomes null for b > b bliss , because after that point (10)

does not bind for either the low or the high taste shock and the economy's demand collateral is satiated.

The last property differs from its counterpart in our first example, where π(b) was negative for b > b bliss , reflecting excessive saving by the young. In other words, the region b > b bliss has changed from "harmful excess" in the previous example to "harmless satiation" in the present one. Another difference is that the present example features a wedge between the private and the social value of public debt, due to the pecuniary externality operating via p t in (10). Intuitively, agents fail to internalize how their collateral pushes up the price of the morning good, which in turn tightens the constraints of others. The accommodation of these differences further illustrates the versatility of our reduced form.

Example 3. From consumer frictions to production frictions

In Online Appendix A we study a variation of the previous example, in which a constraint similar to (10) impedes the efficient allocation of capital and labor across firms. This changes the usage of collateral and lets b t enter the economy's aggregate production function. The reduced form is a bit more complicated, but the essence remains the same.

Optimal Policy

This section contains our main results. We first shine the spotlight on the key policy trade off. We next characterize the optimal long-run target for public debt and the transitional dynamics towards it.

Preamble: Liquidity provision versus interest-rate suppression

To build intuition, consider momentarily a two-period version of the problem. Suppose further that any debt issued at t = 1 must be retired at t = 2. Under these simplifications, the problem reduces to max

s 1 ,b 1 ,s 2 [U (s 1 ) + V (b 0 )] + β [U (s 2 ) + V (b 1 )] s.t. Q(b 1 )b 1 + s 1 = b 0 + g 1 and s 2 = b 1 + g 2 .
Let λ 1 and βλ 2 be the respective Lagrange multipliers. Then, the optimal debt issuance at t = 1 is

b ⋄ = arg max b 1 λ 1 Q(b 1 )b 1 + βV (b ! ) -βλ 2 b 1 . ( 11 
)
The first term captures the benefit of relaxing the budget at t = 1. The second term captures the benefit of easing the financial friction at t = 2. The last term captures the tax burden of retiring the debt at t = 2.

Replace Q(b) = β(1 + π(b)) and let λ 1 = λ 2 = λ, which, as it will become clear later, helps proxy for the steady state of the infinite-horizon problem. Condition (11) then reduces to

b ⋄ = b ⋄ (λ) ≡ arg max b Ω(b, λ), where Ω(b, λ) ≡ V (b) + λπ(b)b. ( 12 
)
The first term in Ω captures the social value of the "liquidity services" of public debt, that is, the welfare gain from easing the financial friction. The second term captures the shadow value of the total "rents" that the government extracts from the private sector for providing these services. This rent reminds of seigniorage in monetary models; it emerges because the financial friction depresses the interest rate on public debt relative to the underlying social discount rate; and it explains-indeed defines-the sense in which government borrowing can be "cheap" when interest rates are low. The stronger the need for fiscal space, as measured by λ, the closer b ⋄ is to b seig .

By

Clearly, such fiscal considerations are present only when λ > 0, i.e., when taxation is distortionary.

That is, distortionary taxation is necessary for satiation to be suboptimal-but it may not be sufficient.

To see this, suppose that π(b) was invariant to b bliss , and zero thereafter. Then, b ⋄ would have equaled b bliss , no matter λ. This underscores the following point:

Observation. On the margin, the cost of more liquidity provision is not higher debt burden per se but rather higher interest rates: preserving the shortage of aggregate collateral, b ⋄ < b bliss , is optimal because, and only because, it helps suppress the government's cost of borrowing. The higher the need for fiscal space, as measured by λ, the higher the importance of this consideration, and the smaller b ⋄ .

Consider now how b ⋄ depends on the severity of the financial friction. In Example 2, b ⋄ turns out to increase in ϵ, the amount of idiosyncratic risk (see Online Appendix C.4). At first glance, this property may seem intuitive: shouldn't the government provide more liquidity/collateral when the demand for it is high? The answer is, however, subtler, because the size of idiosyncratic risk, or the severity of the financial friction, affects both the value of providing liquidity and the value of depressing interest rates.

To see this, suppose that we scale both V (b) and π(b) by a scalar δ > 1. Clearly, this scales Ω(b) by δ as well, but leaves b ⋄ unchanged. We therefore conclude:

Observation. In general, a tighter financial friction can have an ambiguous effect on the government's provision of liquidity/collateral (i.e., on optimal debt issuance), because it affects both V (b) and π(b).

To sum up, the above analysis has highlighted the trade off between liquidity provision and interestrate suppression. But it has abstracted from the interaction of these two objectives with that of tax smoothing, the distinction between the short run and the long run, and the optimal dynamics. We address these issues below.

Balancing the three objectives

Return to our infinite-horizon, continuous-time problem, let λ denote its costate, and consider its Hamiltonian:

H (s, b, λ) ≡ U (s) + V (b) + λ s -R(b)b -g .
This can be rewritten as

H (s, b, λ) = U (s) + λ s -ρb -g + Ω(b, λ),
where Ω(b, λ) has the same meaning and definition as in our two-period heuristic above. But whereas there we treated λ as an exogenous constant, here we recognize that the path of λ is endogenous and is the mirror image of the optimal path of taxes. Indeed, since s ought to maximize the Hamiltonian, we have that λ = -U ′ (s), that is, λ measures the tax distortion. Furthermore, the optimal path for λ must satisfy the planner's Euler condition, which can be written as

λ = Ω b (b, λ). ( 13 
)
In a steady state, this condition reduces to Ω b = 0, which suggests that a steady state of our problem is akin to the solution of the two-period problem used earlier. We verify and qualify this intuition at the end of this section. Away from a steady state, on the other hand, condition (13) equates Ω b , the net effect of public debt on welfare and interest rates, with λ, the change in the tax distortion. This underscores how the optimal policy balances the two objectives emphasized above-liquidity provision and interest-rate suppression-with the traditional objective of smoothing the tax distortion over time.

Intuitively, when Ω b > 0, there is value to increasing public debt, which requires raising taxes tomorrow relative to today. And the converse is true when Ω b < 0. If this tilt in the time profile of taxes were of no consequence for welfare, the government would move to the steady state instantaneously. The desire to smooth taxes acts as an adjustment cost that slows down convergence to the steady state.

Full characterization

At this point, we have not required V (b) and π(b)b to be concave over the region [0, b bliss ). But even if we do so, concavity is a lost cause in the neighborhood of a satiation point: around it, π(b)b turns from positive to zero, which is necessarily non-concave. As a result, there generally exist multiple paths for debt and taxes that satisfy the budget constraint, the Euler condition, and the transversality condition;

each of these paths represents a local maximum; and additional arguments are necessary to identify the global maximum. Skiba (1978) provides such arguments. The general case is studied in Online Appendix D. Here, we sharpen the analysis by making the following simplifications:

Auxiliary Assumptions. [B0] For b > b bliss ,V ′ (b) = π(b) = 0. [B1] For b < b bliss , the ratio V ′ (b)/π(b) is a constant ω. [B2] The elasticity σ(b) ≡ -π ′ (b)b/π(b) is increasing in b ∈ (0, b bliss ).
[B3] The government's need for tax revenue, as parameterized by g , is sufficiently large.

As discussed in Section 4.5, these assumptions are not strictly needed for our main insights. Still, let us explain what they mean and why they represent a useful benchmark. B0 is motivated by our second example: it identifies b bliss with the supply of collateral beyond which the financial friction ceases to bind and the only remaining distortion is taxation. B1 nests the case in which pecuniary externalities are absent and the private and social values of liquidity are equated (i.e., π = V ′ ). B2 guarantees that the debt Laffer curve is single-peaked. Finally, B3 implies a sufficiently large shadow value for depressing the government's cost of borrowing. Together, these assumptions suffice for the following result: (ii) For b 0 ≥ b skiba , optimal debt and taxes stay constant at their initial levels.

This result identifies b * as the unique steady-state level of debt below satiation and [0, b skiba ) as its basin of attraction. The threshold b skiba , in turn, is an example of the "Skiba points" [START_REF] Dechert | A Note on Optimal Growth with a Convex-Concave Production Function[END_REF] that emerge in non-convex, dynamic-optimization problems. As the problem's state variable crosses such a point, the globally optimal plan switches from one local optimum to another.

Here, this means that tax smoothing does not hold and the economy converges to b * if b 0 < b skiba , whereas tax smoothing holds and the economy stays put at its initial position if b 0 > b skiba .

A detailed proof is provided in Online Appendix D. Here, we sketch out the main ideas with the help of the phase diagram in Figure 1.

Consider the ḃ = 0 locus, which corresponds to balanced budget and is given by λ = -U ′ (S(b)) with

S(b) ≡ g + ρ -π(b) b.
This locus is upward slopping because a higher level of debt requires a higher rate of taxation for the budget to be balanced.7 

Next, consider the λ = 0 locus, which captures tax smoothing. There are three scenarios to consider, corresponding to the regions L, M and H in the figure.

In region L, which corresponds to the upward-slopping portion of the debt Laffer curve (b < b seig ), increasing b raises both V (b) and π(b)b. In this sense, there is a "free lunch" in this region. But the desire to smooth taxes means that this lunch has to be eaten slowly. Formally, the λ = 0 locus does not exist,8 

and instead λ > 0 necessarily, reflecting the unambiguous optimality of issuing more debt. Note that λ = γ(b) is the inverse of the mapping b = b ⋄ (λ) defined as in the previous subsection.

As noted there, b ⋄ (λ) decreases in λ because a higher λ favors interest-rate suppression (a b closer to b seign ) over liquidity provision (a b closer to b bliss ). It follows that γ(b) is also decreasing, that is, the λ = 0 locus is downward slopping. The ḃ = 0 locus, on the other hand, is upward slopping, reflecting the fact that higher debt maps to higher taxes under balanced budget. It follows that the two lines intersect at a unique point (b, λ) = (b * , λ * ), which identifies the unique steady state within regions L and M .

Finally, consider region H, which corresponds to levels of debt above satiation. In this region, we have that V (b) is flat and π(b)b is zero, so λ = Ω b (b, λ) = 0 for every λ. That is, the locus of λ = 0 is now all of region H. Although this property may sound peculiar, it actually mirrors the textbook Ramsey paradigm [START_REF] Barro | On the Determination of the Public Debt[END_REF][START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF]. In that benchmark, both the liquidity-provision and the interestrate concerns are absent, so λ = Ω b = 0 over the entire phase diagram. Here, an analogous property holds in the portion of the phase diagram above satiation. This also explains why, in region H, there exists a continuum of apparently optimal steady states, corresponding to the segment of the ḃ = 0 locus inside that region. All these steady states represent local maxima: for any b 0 > b bliss , the "Barro-like" plan that smooths the tax distortion and keeps b(t ) at b 0 for ever trivially satisfies both the Euler condition and the transversality condition. However, for b 0 ∈ (b skiba , b bliss ), this plan is not the global maximum: it is dominated by an alternative plan, illustrated in Figure 1 by the segment of the saddle path that starts inside region H and enters in region M.

Debt falls gradually along this plan, crossing b bliss in finite time and converging asymptotically to b * . This plan requires a departure from tax smoothing (higher taxes early, lower taxes later), which is costly.

But it allows the government to make a profit in terms of a positive liquidity premium, or equivalently a lower cost of borrowing, once debt falls below b bliss . Provided that this happens fast enough, which is the case when b 0 ∈ (b bliss , b skiba ), the sacrifice in terms of tax smoothing is justified and this plan dominates the Barro-like alternative. The converse is true if b 0 > b skiba .

The optimal long-run quantity of public debt

Suppose that b 0 < b skiba . This rules out the uninteresting scenario of a never binding financial friction.. Proposition 4. The optimal long-run levels of debt and taxes solve the following fixed point:

b * = arg max b∈[0,b bliss ] V (b) + λ * π(b)b (14) with λ * = -U ′ (s * ) and s * = g + (ρ -π(b * ))b * .
This connects the steady state to the earlier, two-period exercise: b * balances the desire to ease the financial friction with the value of extracting "seigniorage," or suppressing the government's cost of borrowing. A key difference, however, is that here the solution takes into account the fixed-point relation between the b * that maximizes Ω and the Lagrange multiplier λ * that appears inside Ω.

It is worth contrasting this result to the predictions of the textbook Ramsey paradigm [START_REF] Barro | On the Determination of the Public Debt[END_REF][START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF]). In the latter, the long-run level of debt is indeterminate, in the sense that it moves in tandem with the initial level of debt, by direct implication of the optimality of tax smoothing.

Here, instead, the long-run level of debt is uniquely pinned down by the trade off between liquidity provision and interest-rate suppression.

Finally, it is useful to clarify how our result relates to [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF]. Here, we characterize the optimal policy path starting from an arbitrary initial condition b 0 , establish that this path converges to a point b * that is itself invariant to b 0 , and also characterize this point. By contrast, Aiyagari and McGrattan (1998) maximize welfare over steady-state policies, which in our context means the following: impose budget balance in all periods, and hence also b t = b 0 for all t ; and then maximize welfare over b 0 . As explained in Online Appendix C.3, this over-estimates the opportunity cost of liquidity provision and, therefore, under-estimates the optimal long-run quantity of public debt.9 

Relaxing Auxiliary Assumptions B0-B3

We conclude this section by relaxing Auxiliary Assumptions B0-B3. A detailed treatment can be found in Online Appendix D. Here, we summarize the main ideas.

Consider first B3. This requires that the value of fiscal space, as parameterized by g , be sufficiently

high. If we relax this assumption, it becomes possible that ( 14) admits a corner solution at b * = b bliss .

That is, satiation can be optimal in the long run, despite distortionary taxation. While logically possible, and also reminiscent of the literature on the Friedman rule, this scenario seems empirically implausible in our context. Finally, consider B1 and B2. Without them, there can exist multiple steady states below b bliss , each one with its own basin of attraction. Intuitively, the "adjustment cost" of a long-lasting departure from tax smoothing helps justify remaining at one steady state when another, seemingly superior, steady state exists but is sufficiently far away (see Online Appendix D for a detailed explanation). Nonetheless, the local dynamics around any such steady state remain the same as those around b * in Figure 1. By the same token, our upcoming characterization of the optimal response to shocks remains the same as well (provided, of course, that shocks are small enough).

Optimal Response to Shocks

We now study how the tripartite trade off between liquidity provision, interest-rate suppression and tax smoothing shapes the optimal policy response to shocks. The main ideas are exposed by studying the comparative dynamics of the phase diagram. For further illustration, we also use the numerical, nonlinear solution of a stochastic example. 10

Government spending. Figure 2 considers an unexpected, once and for all, increase in g . Prior to the change, the economy rests at the steady-state point b * ol d . The increase in g causes the ḃ = 0 locus to shift upwards, reflecting the need for higher taxes. By contrast, the λ = 0 locus does not move, because g does not enter π and V, and hence it does not enter the planner's Euler condition either. As a result, we solve the correct policy problem but in a simpler model. Future research may attempt to solve the correct policy problem in the richer setting.

10 Throughout this section, we let public debt be risk-free, as in [START_REF] Barro | On the Determination of the Public Debt[END_REF] and [START_REF] Aiyagari | Optimal Taxation without State-Contingent Debt[END_REF]. The case of fully statecontingent debt is considered in Online Appendix C.1. As in [START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF], this allows the government to insure its budget against shocks; but now the optimal state-contingency balances such insurance with the objectives of providing liquidity and suppressing interest rates.

the steady-state level of debt drops from b * ol d to b * new and the optimal dynamic response is as follows: taxes initially increase by more than the increase in g , in order to allow debt and interest rates to fall; and because of this, taxes in the long run increase by less than the increase in g . Compare this result to [START_REF] Barro | On the Determination of the Public Debt[END_REF] and [START_REF] Aiyagari | Optimal Taxation without State-Contingent Debt[END_REF], henceforth referred to as "Barro/AMSS."

There, the optimal response to a fiscal shock gives prominence to tax smoothing. Here, the optimal response deviates from tax smoothing in order to squeeze liquidity and allow the government to enjoy a profit by means of lower interest rates.

The same logic applies to "wars," namely, temporary fiscal shocks. We illustrate this in Figure 3, using an example in which g follows a symmetric two-state Markov process. In the Barro/AMSS benchmark (orange lines), the war leaves a permanent mark on debt and taxes, reflecting the supremacy of tax smoothing. In our setting (black lines), instead, the economy eventually reverts to its initial position, reflecting the existence of a well-defined long-run target for debt. Finally, the accumulation of debt during the war is less pronounced than that in Barro/AMSS, because doing so allows the planner to moderate the increase in interest rates, which would have further tightened the budget.11 Flight to safety. Consider a shock that tightens the financial friction and raises the demand for public debt, without however affecting aggregate output, tax revenue, and the wedge between the private and social value of liquidity. Formally, let π(b) = δ π(b) and V (b) = δ Ṽ (b), for fixed π and Ṽ , and consider an increase in δ. We think of this situation as a "flight to safety."

Because this raises the social value of liquidity and the profit from interest-rate suppression in proportion to each other, it leaves the λ = 0 locus unaffected. If the ḃ = 0 locus had also stayed the same, the Of course, reality is more complicated than the scenario just described. A financial shock may also shrink the tax basis, which can have a countervailing effect. Still, our insights provide a rationale for why financial shocks may justify larger deficits than other shocks, a point we expand on below. They also qualify the conventional intuition that an increase in the demand for liquidity calls for an increase in the government's provision of it: this intuition fails to take into account how such a shock may also raise the marginal return to interest-rate suppression, which pulls in the opposite direction.

Traditional vs Financial Recessions. Let us represent a Keynesian/inefficient recession as an exogenous shock to the labor wedge. This naturally leads to lower aggregate output and tax revenue, and an increase in the deficit. 12 Next, let us distinguish between two flavors of such a recession: a "traditional" one, which leaves the functions π and V unaffected, and a "financial" recession, which shifts these functions up by tightening the underlying financial constraints.

Figure 4 illustrates the optimal policy response to two such recessions of comparable size, in the sense that the exogenous shock to the labor wedge is the same in both cases. The difference is whether the shock comes together with an increase in π (black lines) or not (orange lines). The figure indicates that it is optimal to run a larger deficit in the former case. And yet, the higher deficits do not translate into faster debt accumulation. This is because the government is able to roll over its original debt at lower interest rates, as well as to pay less interest on newly issued debt. For the same reason, the government is also able to afford a larger optimal stimulus in the form of a larger "payroll tax cut." Clearly, the same is true for government spending if we endogenize g and let the recession raise its marginal value (proxing for the value of a fiscal stimulus in a New Keynesian economy during a liquidity trap). This provides a basis for the argument made by Paul Krugman, Brad DeLong and others that the drop in risk-free rates during a financial crisis makes it optimal to run larger deficits. But it is important to emphasize the part of the statement that says "during a financial crisis": what is key is not the drop in the risk-free rate per se, but rather the extent to which this represents an increase in the wedge between it and the counterfactual rate that obtains in a frictionless world. Had r and ρ ρ to dropped together, leaving π the same, government borrowing would not be cheaper.

Discussion

In this section we return to the micro-foundations behind our reduced form so as to shed additional light on the following issues: the possibility that public debt crowds out (or, in) capital; the reason why public debt is non-neutral; and the precise liquidity premium that shapes optimal policy.

Crowding out (or in) capital. Revisit the first example in Section 3 and let the risk-free asset exist in two flavors: government bonds and physical capital. For simplicity, capital takes the form of a storage technology available to the young. 13 If a household invests x units of the final good when young, she gets back k = f (x) units of the final good when old, where

f satisfies f ′ (•) > 0, f ′′ (•) < 0, and f (0) = 0.
This endogenizes the safe endowment k in the original model, without upsetting the equality of the private and social value of saving. Indeed, the property π(b) = V ′ (b) continues to hold because there is no pecuniary externality, and so does Proposition 2, with the following change in V :

V (b) ≡ max k ϕδu(k -ϵ + b) + (1 -ϕ)δu(k + ϵ + b) -f -1 (k) -b .
Furthermore, the equilibrium level of capital is given by the value of k that solves the above maximization problem. It it then immediate to see that public debt crowds out capital, similarly to [START_REF] Diamond | National Debt in a Neoclassical Growth Model[END_REF] and [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF]. Summing up:

Proposition 7. In the extension described above, public debt crowds out capital. Nonetheless, the reducedform representation of the policy problem continues to hold, and so do all our paper's lessons.

A similar result obtains if we add physical capital in our second example and let it serve as collateral in morning transactions. Together, these extensions illustrate how our insight can be robust to the possibility that public debt can crowd out other private sources of collateral." But note that such crowding out is not an additional, separate element of the costs and benefits of debt issuance, it is already subsumed in the trade off we have analyzed.

Finally, one can reverse the crowding-out property, again without affecting our results. We offer such an example in Online Appendix A. Compared to [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF] and the examples discussed so far, the key difference of that example is to let public debt ease a financial friction in production rather than in consumption. Intuitively, this lets aggregate TFP increase with "the aggregate supply of collateral," thus also letting the returns to investment increase with public debt issuance. The crowding-out property is thereby reversed, but the policy problem is not fundamentally changed: π and V remain "sufficient statistics" for the costs and benefits of public debt issuance.

Public debt as private collateral. In the micro-foundations that underly our reduced form, public debt is non-neutral only because private borrowing capacity is not reduced one to one with future tax obligations. To see this, modify Example 2 in Section 3 so that the private sector's pledgeable income moves one-to-one with future tax obligations. This preserves the financial friction but renders public debt neutral: any increase in aggregate collateral in the form of additional public debt is perfectly offset by an equal reduction in pledgeable private income. The same point applies to, inter alia, Woodford (1990), [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF], [START_REF] Holmström | Private and Public Supply of Liquidity[END_REF], [START_REF] Brunnermeier | Debt As Safe Asset[END_REF] and [START_REF] Reis | The constraint on public debt when r<g but[END_REF]: if financial constraints adjusted appropriately to future tax obligations, public debt would be neutral in all these papers, too. This clarifies why public debt issuance can ease the financial friction and can thereby have a causal effect on welfare and interest rates.

Public debt as money. Our framework brings to mind models with money in the utility function and the literature on the Friedman rule (e.g., [START_REF] Chari | Optimality of the Friedman Rule in Economies with Distorting Taxes[END_REF]. We share with this literature the idea that the government is the net supplier of a scarce "service," but depart from it in that we equate this supply with the sum of the government's liabilities instead of a particular component of it ("money").

This assumption is consistent not only with the aforementioned theoretical literature on public debt as buffer stock/collateral, but also with two key facts: the low interest rate on public debt [START_REF] Blanchard | Public Debt and Low Interest Rates[END_REF]; and the premium government bonds command over other similarly safe assets [START_REF] Krishnamurthy | The Aggregate Demand for Treasury Debt[END_REF][START_REF] Greenwood | Bond Supply and Excess Bond Returns[END_REF].

In order to explain how this assumption matters for our results, revisit Example 2 from Section 3 and suppose that the government enacts a regulation that outlaws the use of private ("corporate") bonds as collateral in morning transactions. Clearly, this eliminates the liquidity premium on private bonds (r priv = ρ) while preserving the liquidity premium on government bonds (r gov = r = ρπ < ρ). But it also raises the possibility: that the government could borrow in the cheap, money-like asset (here, government bonds) and at the same time save in the high-return, non-money asset (here, corporate bonds) If such portfolio is unrestricted and costless, the government's net borrowing is disentangled from its provision of liquidity: the interest rate the government must pay for any marginal net borrowing is simply ρ.

The trade off we have emphasized then ceases to apply, tax smoothing reigns supreme, and the optimal policy is determined in exactly the same fashion as in [START_REF] Barro | On the Determination of the Public Debt[END_REF]. But as long as the aforementioned kind of arbitrage is sufficiently restricted or costly,14 our insights go through.

This discussion, which is made formal in Online Appendix C.2, highlights that the main, high-level difference between our analysis and the literature on the Friedman rule is the intertwining of liquidity provision and debt management. Another, subtler issue regards the conditions under which long-run "satiation" (i.e., b t → b bliss ) might be optimal in our framework notwithstanding this intertwining. This is not the case in our micro-founded examples and seems improbable more broadly, as it requires a corner solution in the trade off between liquidity provision and interest-rate suppression. But as illustrated in

Online Appendix D, it cannot be ruled out for arbitrary V and π.15 

Inside liquidity. In Example 2, all private agents were net buyers in the market for safe assets (i.e., they were net savers in the afternoon of each period), and the government was the only supplier. More generally, though, some private agents may also be on the supply side. For instance, this is the case in a variant of Example 2 that adds heterogeneity in the ability to pledge future income and issue private bonds in the afternoon of each period. In this variant, "outside liquidity" in the form of safe public debt may naturally crowd out "inside liquidity" in the form of safe private debt, similarly to, inter alia, [START_REF] Holmström | Private and Public Supply of Liquidity[END_REF]Tirole (1998), Stein (2012) and [START_REF] Azzimonti | The Optimal Public and Private Provision of Safe Assets[END_REF]. Nevertheless, this possibility, too, can be subsumed in our reduced form, leaving our main results unaffected.

Clearly, this echoes our discussion of the question of whether public debt crowds out physical capital.

Perhaps more interestingly, the following complementary insight emerges about the regulation mentioned above, which taxes or outlaws the use of privately-issued assets as collateral: by crowding out inside liquidity, the regulation aggravates the financial friction, which in turn reduces private welfare but also suppresses the interest rate on government debt. This regulation, versions of which have indeed been used in practice, is therefore subject to a similar trade off as that highlighted in our analysis.

Which r or π? Although we view the evidence in Krishnamurthy and Vissing-Jorgensen (2012) and [START_REF] Greenwood | Bond Supply and Excess Bond Returns[END_REF] as supportive of the mechanisms we are after in this paper, it is important to recognize that the particular premium measured in these papers, namely the wedge between government bonds and similarly safe, high-grade, corporate bonds, does not map to π (nor to V ′ ) in our setting. In the examples of Section 3, private and government bonds were perfect substitutes, so that r priv = r gov = r ≡ ρπ and therefore r privr gov = 0. At the other extreme, in the variant mentioned above, where private bonds could not serve as collateral by law, we had r priv = ρ and r gov = ρπ, and therefore r privr gov = π. More generally, if we let private assets enter collateral constraint (10) with a discount relative to public debt, we can get π ≥ r privr gov ≥ 0. But no matter how large or small the spread r privr gov might be, or how much public debt crowds out private safe assets, π = ρr gov remains the relevant "sufficient statistic" for the policy problem in all the cases.

A similar point applies to the difference between the expected return to capital, r K , and the interest rate on government debt: if this difference reflects only a compensation for aggregate risk, it need not matter for optimal policy. This is precisely the case in the example in the beginning of this section where we let capital be risky: regardless of the size of this risk and the associated equity premium, π = ρr gov remains the relevant sufficient statistic for the policy problem. 16 All in all, this discussion shifts the focus to the interpretation and measurement of ρ. This parameter represents more generally the risk-free rate that obtains in a counterfactual world without idiosyncratic risk and financial frictions. As such, ρ may reflect not only intertemporal preferences but also aggregate risk. For instance, one can read [START_REF] Barro | r minus g[END_REF] as an example of how "disaster risk" can rationalize a low effective ρ within a frictionless, representative-agent model. As mentioned before, such a model leaves no space for "cheap" government borrowing: it restricts r gov = ρ, no matter how low or volatile ρ may happen to be. But if the real world is ridden with financial frictions, the gap π between r gov and ρ may be sizable. And while r privr gov provides a lower bound, this lower bound is likely to be too conservative, for the reasons explained above.

Conclusion

We have studied optimal policy in a setting where public debt management helps not only smooth taxes, as in [START_REF] Barro | On the Determination of the Public Debt[END_REF] and [START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF], but also regulate a financial friction, as in Woodford (1990), Aiyagari and[START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF][START_REF] Holmström | Private and Public Supply of Liquidity[END_REF][START_REF] Holmström | Private and Public Supply of Liquidity[END_REF]. Issuing more public debt helps 16 To illustrate, suppose that investing x in period t returns Ak in period t + 1, where k = f (x) like before but now A is an i.i.d. random variable with finite support A ⊂ R + and probabilities {λ A } A∈A . Then, the implicit equity premium is of course positive, but the entire analysis-including the property π(b) = V ′ (b) and Propositions 2 and 7-goes through with the following inconsequential change in the definition of V :

V (b) ≡ max k A∈A λ A ϕδu(Ak -ϵ + b) + (1 -ϕ)δu(k + ϵ + b) -f -1 (k) -b .
ease the friction and improve welfare by raising the aggregate supply of safe assets that private agents can use as buffer stock or collateral. But the flip side of this benefit is a reduction in fiscal space: easing the friction depresses the fee that the government can charge for its provision of collateral/liquidity and, equivalently, it raises the government's cost of borrowing relative to the relevant social discount rate.

This trade off explains why the government may optimally limit its provision of liquidity, and may even enact regulations that restrict the use of other equally safe but privately-issued assets as collateral. It helps pin down a unique long-run target for debt and taxes. It necessitates a departure from tax smoothing in the short run, so as to help attain the aforementioned long-run targets. And it provides new insights on the optimal response to shocks. In particular, it becomes optimal to run smaller deficits during wars, so as to contain the increase in interest rates, and larger deficits during financial crises, because such episodes present a greater opportunity for cheap borrowing.

These insights were delivered with the help of a reduced-form Ramsey problem, whose main difference from the textbook, complete-markets counterpart [START_REF] Barro | On the Determination of the Public Debt[END_REF][START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF]) was letting the quantity of government debt enter social welfare and the government's cost of borrowing, via some functions V and π, respectively. These functions were shown to be "sufficient statistics" for the benefits and costs of public debt in a few micro-founded examples. While highly stylized, these examples differed from one another in a number of interesting ways, such as: the precise function of public debt; a possible wedge between the relevant private and social values, due to pecuniary externalities operating via collateral constraints; the possibility that public debt crowds out, or perhaps crowds in, physical capital; the equity premium on capital; and the interest-rate differential between government bonds and comparable private assets.

Needless to say, we do not mean to suggest that one can always abstract from these issues or the relevant micro-foundations: our reduced form relied on strong, simplifying assumptions, which will not hold in richer, more realistic, applications. Still, by spelling out a number of examples where our reduced form and results remained exactly valid as we varied all the aforementioned "details," we hope to have accomplished three goals. First, to identify the relevant trade off and explain how it drives optimal policy.

Second, to clarify when government borrowing is truly cheap and by what metric. And finally, to illustrate how our insights may transcend a variety of applications and micro-foundations. We hope that this prism will help guide future work on both the theoretical and the quantitative front. 

Online Appendices

A An Example with Capital and Production Frictions

In this Online Appendix we develop Example 3 of Section 3. This translates the "morning trades" in Example 2 to reallocation of capital across entrepreneurs. Such reallocation is impeded by a financial friction, which in turn can be eased by an increase in the government's provision of liquidity/collateral.

This example therefore stylizes the production-side, liquidity-enhancing role of public debt found in, inter alia, Woodford (1990), Holmström and Tirole (1998), [START_REF] Bassetto | A Ramsey theory of financial distortions[END_REF] and Brunnermeier,

Merkel and Sannikov (2021).

Setup. There is only one good, which can be either consumed or converted into capital. There are no taste shocks and per-period utility is given by c i t -ν(h i t ), where c i t denotes consumption and h i t denotes labor supply. Each household comprises a "worker", who supplies h i t in a competitive labor market, and an "entrepreneur", who runs a private firm. The latter's output is given by

y i t = θ i t f (k i t , n i t ),
where

k i t
is the firm's capital input, n i t is the firm's employment, θ i t is an idiosyncratic productivity shock, and f is strictly increasing and strictly concave.

Let κ i t denote the amount of capital owned by household i in the morning of period t . It is given by

κ i t = (1 -δ)κ i t -1 + ι i t -1
, where δ denotes depreciation and ι i t -1 denotes last period's saving. The firm's input k i t can differ from κ i t insofar as entrepreneurs can rent capital from one another. Such trades are beneficial because κ i t is fixed prior to the realization of the current shocks, whereas k i t and n i t adjust ex post. In short, there are gains from reallocating capital.

Importantly, this reallocation is impeded by a financial friction. Let p t denote the rental rate of capital. To use k i t > κ i t , the entrepreneur must borrow z i t = p t (k i t -κ i t ) in a short-term IOU market. As in the second example of Section 3, he can do so by pledging φ and/or by posting his financial assets, a i t , as collateral. Moreover, he can use a fraction of the invested capital and/or the firm's output as additional collateral. That is, the relevant constraint is

z i t ≤ φ + a i t + ξ k k i t + ξ y y i t
where ξ k , ξ y ∈ (0, 1) are the fractions of invested capital and of anticipated income that can serve as collateral. Finally, the agent can also borrow in the afternoon, if he wishes so, but only subject to the constraint

a i t +1 ≤ φ + κ i t +1
; that is, his net worth cannot fall below φ.

Reduced form.

Relative to Example 2 of Section 3, the model described above allows the quantity of public debt to enter the economy's aggregate production function. In particular, by improving the allocation of capital, more aggregate collateral in the form of more public debt can map to higher aggregate TFP. Furthermore, as we illustrate momentarily, public debt can have an ambiguous effect on capital accumulation: it can crowd out capital for a similar reason as in [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF], but it can also crowd in capital by raising production efficiency. Notwithstanding these novelties, the policy problem remains essentially the same. In particular, the following reduced form applies.

Proposition 8. There exist functions W,Q, and S such that the optimal policy path {τ t , b t +1 } ∞ t =0 solves the following problem:

max {τ t ,b t } ∞ t =0 ∞ t =0 β t W (τ t , b t ) (15) s.t . Q(τ t +1 , b t +1 )b t +1 = b t + g -S(τ t , b t ) (16)
W , Q and S capture, respectively, the per-period welfare flow, the market price of public debt and the tax revenue. As we move from examples studied in the main text to the present model, the microfoundations and functional forms of these objects change. In particular, τ t and b t jointly determined both the price of government debt and the tax revenue, because the tax distortion and the aggregate supply of collateral jointly determine all of the following: the allocation of capital and labor; aggregate productivity and income; the returns to capital; the shadow multiplier on the collateral constraint; and the tax base.17 Nevertheless, the strategy for obtaining the reduced-form representation is similar to that in Section 2. same: the key step is to define W as the welfare flow that obtains when the planner takes as given (τ t , b t ) and optimizes over the set of the cross-sectional allocations of labor, capital, and asset holdings and the aggregate supplies of capital and labor; Q and S are then defined by, respectively, the interest rate that supports the best implementable allocation and the primary surplus induced by it. Importantly, the only reason why W , Q and S depend on b is that the latter regulates the bite of the financial friction, similarly to the main text. this is the analogue to the level of debt that maximized seigniorage in the models of Section 3, except that now we accommodate the possibility that the quantity of aggregate collateral affects the government budget, not only via the interest rate on public debt, but also via aggregate output and tax revenue.

Adjusting the notion of "liquidity plus seigniorage" accordingly gives

Ω(b, λ) ≡ max τ {W (τ, b) + λ[π(τ, b)b + S(τ, b)]} .
We can express the planner's Euler condition as

λ = Γ(b, λ) ≡ Ω b (b, λ),
which has basically the same interpretation as its counterpart in Section 4.3. Similarly, we can express the budget constraint as ḃ = Ψ(b, λ),

where

Ψ(b, λ) ≡ [ρ -π(T (λ), b)]b -S(T (λ), b) and T (λ) = arg max τ {W (τ, b) + λ[π(τ, b)b + S(τ, b)]} .
We therefore obtain basically the same ODE system as in Section 3; some details are different but the essence remains the same. Crowding out or crowding in?. We close this Online Appendix by illustrating how the present model allows for public debt to crowd in capital, in contrast to [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF]. This is done in Figure 6, for two parameterizations of the micro-founded, discrete-time, model: one with relatively low level of government spending, and another with relatively high levels. For each parameterization, the left pannel of the figure considers the following exercise: we fix taxes at their optimal Let us now zero in on the two dots in the left panel. These represent the optimal steady states for the two parameterizations. Note that the economy with higher g features a lower b * for the reason discussed in the main text: the increased need for fiscal space encourages the government to squeeze liquidity out of the economy. It follows that this economy features a lower capital stock in steady state for two reasons: both because taxes are higher and because liquidity is (optimally) lower.

Let us finally turn to the right panel of Figure 6. This illustrates the aggregate capital dynamics along the optimal transition to b * , starting from a b 0 < b * . Along this transition, the increase in public debt crowds in capital by easing the underlying financial friction. But taxes increase in tandem with public debt, and this pulls in the opposite direction by discouraging labor supply. It follows that capital could either increase or decrease along the transition to the steady state. But it is interesting to note that, as illustrated by the low-g scenario in the figure, it is possible that the crowding-in effect of public debt is so strong that it dominates the crowding-out effect of taxes.

It's an open question which scenario is empirically relevant in the US context. But our analysis suggests that the answer to this question might not be as essential as previously thought: regardless of whether public debt crowds out or in capital, the main trade off remains that between easing the private sector's friction and easing the government's cost of borrowing. On the other hand, a recent paper by [START_REF] Bassetto | A Ramsey theory of financial distortions[END_REF] suggests that this trade off may depend more critically on the interaction between rent-extraction and capital taxation. We leave a further exploration of this issue for future work.

B Proofs

Proof of Proposition 1. The result follows directly from the derivations in the main text together with concavity and prudecence (u ′′ (x) < 0 < u ′′′ (x)).

Q.E.D.

■

Proof of Proposition 2. The result follows directly from the main text.

Q.E.D.

■

Proof of Proposition 3. The household solves the problem

max E 0 ∞ t =0 β t c i ,t + θ i ,t log(x i ,t ) -v(h i ,t ) (19) 
subject to

c i ,t + p i ,t x i ,t + q t b i ,t +1 = b i ,t + (1 -τ t )w t h i ,t + p t e i ( 20 
)
p t (x i ,t -e i ) ⩽ ξ + b i ,t (21) 
where θ i t is i.i.d., drawn from the binary support {θ H , θ L }, for some θ H > θ L > 0. Let ϕ be the share of high types, H , in the population and, to simplify the exposition, set

θ L = 1, θ H = 1 + ϵ, ϵ > 0, implying E[θ] = 1 + ϕϑ and V[θ] = ϕ(1 -ϕ)ϵ 2 .
A greater ϵ is hence associated to a greater type dispersion. Endowments are set to e H = 0, and e L = 1/(1 -φ), such that the total endowment, e = ϕe H + (1 -ϕ)e L = 1. The rest of the notation is identical to that used in Section 3.2.

In equilibrium, the borrowing constraint ( 21) can bind at most for the high type. Letting µ t be the associated multiplier, we can thus write the conditions that characterize the equilibrium in the market for the afternoon good in period t as follows:

1 + ϵ x H t = p t (1 + µ t ) (22) 1 x Lt = p t (23) p t x H t ≤ ξ + b t (24) µ t ≥ 0 ( 25 
)
µ t (ξ + b t -p t x H t ) = 0 ( 26 
)
ϕx H t + (1 -ϕ)x Lt = 1 (27)
The Euler condition for the optimal savings in period t , on the other hand, reduces to

π t ≡ q t -β = βϕµ t +1 ≥ 0 (28)
The first-best allocation, (x * H , x * L ), solves 1 + ϵ

x * H t = 1 x * L ( 29 
)
ϕx * H + (1 -ϕ)x * L = 1 (30)
and trivially satisfies x * H > 1 > x * L and ∂x * H /∂ε > 0 > ∂x * L /∂ε. In particular, we get

x * H = 1 + ϵ 1 + ϕϵ and x * L = 1 1 + ϕϵ .
Clearly, this allocation can be attained in equilibrium if and only if

p t = 1 + ϵ x * H t and p t x * H ≤ ξ + b t .
Let us define b bliss such that the constraint exactly binds. b bliss is unique and is given by b bliss ≡ 1 + ϵξ.

We immediately have that b t ≥ b bliss is sufficient for the borrowing constraint not to bind (µ t = 0) and the first best allocation to obtain. Conversely, when b t < b bliss , the first best allocation is unattainable.

This establishes the first part of (ii) in Proposition 3.

When the borrowing constraint binds, still assuming u(x) = log x, the equilibrium yields

x H t = b t + ξ 1 -ϕ + ϕ(b t + ξ) , x Lt = 1 1 -ϕ + ϕ(b t + ξ)
, and

µ t = 1 + ϵ -(b t + ξ) b t + ξ .
Using the definition of b bliss , this rewrites as

x H t = 1 + ϵ -(b bliss -b t ) ϕ(1 + ϵ -(b bliss -b t ) + 1 -ϕ , x Lt = 1 ϕ(1 + ϵ -(b bliss -b t )) + 1 -ϕ , and µ t = (b bliss -b t ) 1 + ϵ -(b bliss -b t ) ,
which makes clear how the equilibrium allocation converges monotonically to the first-best counterpart, and how µ t converges monotonically to 0 from above, as b t converges to b bliss from below.

Using these results, we then also have the following closed-form solution for the premium π: 

π(b) =      βϕ (b bliss -b)
≡ β ϕ(1 + ϵ) log(x H ) + (1 -ϕ) log(x L ) V (b) =      β ϕ(1 + ϵ) log(1 + ϵ -(b bliss -b)) -(1 + ϕϵ) log(1 + ϕϵ -ϕ(b bliss -b)) for b < b bliss V bliss ≡ β ϕ(1 + ϵ) log(1 + ϵ) -(1 + ϕϵ) log(1 + ϕϵ) for b ⩾ b bliss
We therefore reach the following result:

Lemma 1. Suppose ξ < 1 + ϵ, we have (i) There exists a unique threshold b bliss > 0, given by b bliss = 1 + ϵξ, such that the following properties hold for all b < b bliss : Note that, for any b < b bliss , the marginal social value of debt, V ′ (b) is given by

π(b) > 0, π ′ (b) < 0, π ′′ (b) > 0, V (b) < V bliss , V ′ (b) > 0, V ′′ (b) < 0.
V ′ (b) = β ϕ(1 + ε) 1 + ε -(b bliss -b) - ϕ(1 + ϕε) 1 + ϕε -ϕ(b bliss -b)
and can, after some algebraic manipulation, be rewritten as

V ′ (b) = π(b) + e(b) with e(b) ≡ - βϕ 2 (b bliss -b) 1 + ϕε -ϕ(b bliss -b)
where e(b) captures the negative pecuniary externality at work in the model. The intuition is simple:

as long as the constraint binds, a higher b means a higher p because it facilitates a more efficient allocation of the morning good. A higher price has a negative aggregate welfare effect because it tightens the constraint and distorts the allocation. As long as the constraint binds, we therefore have e(b) < 0, or equivalently π(b) > V ′ (b).

Q.E.D.

■

Proof of Theorem 1. Assumption B3 corresponds to the case g > g of Lemma 7, such that Ψ bliss > γ bliss .

Then Proposition 12 applies and establishes part(i) of the theorem. Q.E.D.

■

Proof of Propositions 5 to 7. Follow directly from the discussions in the main text.

Q.E.D.

■

Proof of Proposition 8. Let us start with the entrepreneur. He chooses his production plan by solving the following problem:

max k≥0,n≥0 θ f (k, n) + (1 -δ)k -pk -wn subject to z ≤ φ + a + ξ k k + ξ y θ f (k, n) z = p(k -κ)
Using the second constraint in the first one, and defining x ≡ a + pκ, as the net worth in period t , we obtain that the profit of the entrepreneur net of investment and labor costs is

ω(x, p, w; θ) ≡ max k≥0,n≥0 θ f (k, n) + (1 -δ)k -pk -wn subject to pk ≤ φ + x + ξ k k + ξ y θ f (k, n)
The production plan consists of the demand for labor, n(x, p, w; θ), and the demand for capital, k(x, p, w; θ).

The aggregate quantities are n(x, p, w) = ˆn(x, p, w; θ)ϕ(θ)dθ

(31) k(x, p, w) = ˆk(x, p, w; θ)ϕ(θ)dθ (32)
The problem of the household is

max E 0 ∞ t =0 β t (c i t -ν(h i t )) s.t. c i t + κ i t +1 + q t a i t +1 = a i t + t κ i t + (1 -τ t )w t h i t + ω i t
where we assumed that a i t < φ + κ i t . ω i t denotes the profit received by household i . Note that (i) due to the linearity of the utility of consumption, all households supply the same amount of hours; and (ii)

E[c i t ]
is aggregate consumption, c t . Use the asset market clearing condition ´ait di = b t , let κ t ≡ ´κit di denote aggregate investment, and define

Ω(x, p, w) ≡ β ˆω(x, p, w; θ)ϕ(θ)d θ.
The problem of the representative household can then be expressed as follows:

max ∞ t =0 β t (c t -ν(h t )) s.t. c t + κ t +1 + q t b t +1 = b t + p t κ t + (1 -τ t )w t h t + Ω(x t , p t , w t )
where x t = b t + p t κ t . The first order conditions are given by

ν ′ (h t ) = (1 -τ t )w t ( 33 
)
q t = β(1 + Ω x (x t +1 , p t +1 , w t +1 )) (34) 1 = β 1 + Ω x (x t +1 , p t +1 , w t +1 )p t +1 (35) 
where the last two conditions imply that p t +1 = 1/q t , reflecting arbitrage between financial assets and physical capital. Notwithstanding this fact, the interest rate is lower than 1/β when Ω x (•) > 0.

Clearing the labor and capital markets (h t = n t and k t = κ t ) implies

ν ′ (n(b t + p t k t , p t , w t )) = (1 -τ t )w t k t = k(b t + p t k t , p t , w t )
which can be solved for the wage w(b t , k t , τ t ) and the price of capital p(b t , k t , τ t ). Using them in the aggregate decisions for labor and capital, we have

h t = H (b t , τ t ) and k t = K (b t , τ t ) (36) 
so that

w t = W (b t , τ t ) and p t = P (b t , τ t ) (37)
Likewise, using the resource constraint, we get

c t = θ f (k t , n t ) + (1 -δ)k t -k t +1 -g = C (b t , τ t ) -k t +1 (38) 
Using ( 36) and ( 38) in the welfare function, we get

∞ t =0 β t C (b t , τ t ) - k t β -ν(H (b t , τ t )) + K (b 0 , τ 0 ) β
which can be written as

∞ t =0 β t W (τ t , b t ) + K (b 0 , τ 0 ) β
Likewise, using the preceding results in (34), we get

q t = Q(τ t +1 , b t +1 ) τ t w t h t -g = τ t W (b t , τ t )H (b t , τ t ) -g = S(τ t , b t )
and the government budget is

Q(τ t +1 , b t +1 )b t +1 = b t -S(τ t , b t )
Hence, the problem of the central planner reduces to

max {τ t ,b t } ∞ t =0 ∞ t =0 β t W (τ t , b t ) s.t . Q(τ t +1 , b t +1 )b t +1 = b t -S(τ t , b t ) Q.E.D.
■ market value of debt jumps down in response to the war, reflecting the state-contingency of the debt burden. But the drop is more modest in the presence of the financial friction (black line), reflecting the planner's desire to limit the reduction in aggregate collateral. By the same token, the planner in our setting opts to raise more taxes during the war, while in the Lucas-Stokey benchmark the tax rate does not change at all. To sum up, once public debt is non-neutral for the reasons accommodated in this paper, the difference between Barro/AMSS and Lucas-Stokey is attenuated, and the qualitative responses of the optimal tax and the optimal allocation are the same whether debt is state-contingent or not.

C.2 On the Friedman Rule

Our paper departs from the Friedman-rule literature by allowing all types of government-issued assets, rather than a subset of them, to facilitate private liquidity. This assumption seems both appropriate for the issues we are addressing and realistic (e.g., [START_REF] Krishnamurthy | The Aggregate Demand for Treasury Debt[END_REF]. To elaborate on the role played by it, revisit Example 2 in Section 3 and suppose that the government enacts a law that prohibits the use of corporate bonds as collateral in morning transactions. This means that, although both kinds of bonds can be used as stores of value, only government bonds convey money-like services. This in turn pegs the question of whether the government can not only issue the money-like asset (here, government bonds) but also save in the non-money asset (here, corporate bonds). If such saving is impossible, our analysis remains intact. At the other extreme, if such saving is not only possible but also completely unrestricted, the government's net borrowing is completely disentangled from liquidity provision and, by the same token, the interest rate the government must pay for any additional borrowing is ρ. The trade off we have emphasized therefore ceases to apply, and optimal policy is determined in exactly the same fashion as in [START_REF] Barro | On the Determination of the Public Debt[END_REF].

To see this more clearly, write the government's net liabilities as b = mn, where m is the stock of government bonds and n is the quantity of corporate bonds held by the government. The budget constraint is given by ṁ

-ṅ = [ρ -π(m)]m -ρn + g -s, or equivalently ḃ = ρb -π(m)m + g -s, ( 39 
)
where π(m)m are the rents from issuing the money-like asset and s is tax revenue. The following properties are then evident: government borrowing, b, is disconnected from liquidity provision, m; and the cost of borrowing is ρ, not ρπ. Therefore, when the government varies b, it does not any more face the trade off we emphasized in our paper. By the same token, the optimal supply of liquidity is disentangled from the optimal dynamics of debt and taxes, and the latter are determined in exactly the same fashion as in [START_REF] Barro | On the Determination of the Public Debt[END_REF].

To see this more clearly, integrate (39) over time to obtain the familiar intertemporal budget constraint:

b 0 +G = ˆ+∞ 0 e -ρt [π(m)m + S(τ)]dt . ( 40 
)
where G ≡ ´+∞ 0 e -ρt g dt is the present value of government spending. The planner's problem reduces to finding the paths of m and τ that maximize ex ante welfare,

ˆ+∞ 0 e -ρt [U (τ) + V (m)]dt ,
subject to the single integral constraint in (40). Let λ denote the Lagrange multiplier on the intertemporal budget. It is then immediate that the optimal supply of liquidity is given by

m ⋆ = arg max m Ω(m, λ), ( 41 
)
where Ω(m, λ) ≡ V (m) + λπ(m)m measures "liquidity plus seigniorage". Depending on primitives, m ⋆ may or may not coincide with satiation; that is, the Friedman rule may or may not apply. Regardless of this, however, debt management is disentangled from both liquidity provision and rent extraction; the trade off emphasized in our paper ceases to apply; tax smoothing reigns supreme; and the optimal path for τ and b is determined in exactly the same fashion as in [START_REF] Barro | On the Determination of the Public Debt[END_REF].

Finally, as mentioned in the main text, another difference between our paper and the literature on the Friedman rule is the answer to the question of whether satiation obtains in the long run. That literature has traditionally favored a positive answer to this question, but in general the answer is ambiguous:

it depends on assumptions about preferences, technologies, and tax instruments (see [START_REF] Chari | Optimality of the Friedman Rule in Economies with Distorting Taxes[END_REF]Correia and Teles, 1999, and references therein). As already explained, a similar ambiguity is present in our framework for arbitrary π and V, although not for those obtained in the examples of Section 3. How this translates in richer, more realistic, settings is an open question. But we have hard time thinking of satiation as the empirically relevant scenario for the context of this paper.

C.3 Relation to Aiyagari and McGrattan (1998)

In this Online Appendix we discuss why the solution strategy followed in [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF] both fails to recognize this trade off and offers a distorted answer to the question of interest.

That paper allows for more realistic micro-foundations than ours, including concave utility and an empirically calibrated labor-income risk. The role played by public debt is fundamentally similar (it eases the underlying borrowing constraint), but the wealth heterogeneity is a relevant state variable for aggregate outcomes, forcing the authors not only to rely on numerical simulations but also to take a certain short-cut. Instead of solving the problem of a Ramsey planner who chooses the dynamic path of taxes and debt so as to maximize ex-ante utility, they restrict taxes and debt to be constant over time, abstract from transitional dynamics, and maximize welfare in steady state. In summary, the solution strategy followed in [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF] not only abstracts from transitional dynamics (or, relatedly, the optimal response to shocks) but also offers a distorted perspective on optimal long-run quantity of public debt. At the same time, [START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF] accommodate two important effects that our main analysis abstracts from: the first is the role of inequality;

the second is the possibility that public debt may crowd out capital accumulation by offering a substitute form of buffer stock. Although our modeling choices prevent us from studying the first issue, this limitation does not extend to the second issue: in Section 6 we discuss how our insights are robust to the possibility that public debt crowds out private capital, as well as to the exact opposite scenario.

Finally, note that discussion here presumes, like the analysis in Section 4.3, that the Auxiliary Assumptions B0-B3 hold. As explained in Online Appendix D.3, the economy may feature multiple steady states when these assumptions do not hold. In these circumstances, the Aiyagari-McGrattan approach will never detect this multiplicity, for it is the (generically) unique solution to an essentially static optimization problem.

C.4 Optimal debt issuance in Example 2

Consider the problem introduced in Section 4.1, which as shown in Section 4.4 also informs the optimal steady state. Recall that this problem zeroed in on the trade off between liquidity provision and interestrate suppression (or rent extraction). We now illustrate how exactly this trade off works in Example 2 from Section 3.

We start by verifying that the debt Laffer curve is single-peaked, the function Ω is also single-peaked, and the former's peak is below the latter's one. Proof. Using our closed-form solution for π and V along with the fact b bliss = 1 + ϵξ, we can show that

∂ 2 Ω ∂b∂ϵ = βϕ(1 -ϕ) (b + ξ)(ϕ(b + ξ) + 1 -ϕ) + λ βϕξ (b + ξ) 2 > 0 Furthermore, ∂ 2 Ω ∂b∂λ b=b * = λΠ ′ (b ⋄ ) < 0
by the fact that b ⋄ > b seign . Applying the Implicit Function Theorem (IFT), we then have that

∂b ⋄ ∂ϵ > 0 and ∂b ⋄ ∂λ < 0.
Finally, consider how b ⋄ varies with ξ. Note that

∂ 2 Ω ∂b∂ξ = ∂ 2 V ∂b∂ξ + λ ∂ 2 Π ∂b∂ξ , ∂ 2 V ∂b∂ξ = V ′′ (b) < 0, and ∂ 2 Π(b) ∂b∂ξ = βϕθ(b -ξ) (β + ξ) 2 .
Because ∂ 2 Π(b) ∂b∂ξ sign with the position of b relative to ξ, the effect of ξ on b ⋄ is generally ambiguous. In particular, we have found numerically that b ⋄ is inversely U-shaped with respect to ξ.

Although b ⋄ can be decreasing in ξ, which means that more private collateral can crowd out the government-provided collateral, there is no complete crowding out: an increase in ξ always increases total collateral, b ⋄ + ξ. 19 It then also follows that, the optimal quantity of public debt, more private collateral depresses the liquidity premium ( ∂π(b ⋄ ) ∂ξ < 0), whereas the converse is true with an aggravation of liquidity needs ( ∂π(b ⋄ ) ∂ϵ > 0). To conclude, these findings complement the intuitions developed in Sections 4.4 and 5. Strictly speaking, they do not apply to the steady state of the infinite-horizon model, because they treat λ as exogenous. But we can use the government budget evaluated at the steady state to obtain λ as an increasing function of b, an increasing function of g , and a decreasing function of π (and thereby a decreasing function of θ and an increasing function of ξ). We can then readily translate the result to the steady-state level of debt, modulo the replacement of λ with g . That is, the value of fiscal space is re-parameterized by g . 19 To see this, let z ≡ b + ξ and re-express V , π, and Ω as functions of z instead of b :

π(b) = π(z) ≡ βϕ 1 + ϵ -z z V (b) = Ṽ (z) ≡ β ϕ(1 + ϵ) log(z) -(1 + ϕϵ) log(ϕz + 1 -ϕ Ω(b, λ) = Ω(z, λ) ≡ Ṽ (z) + λ π(z)(z -ξ)
Because Ṽ and π are invariant to ξ, it is immediate that ∂ 2 Ω ∂z∂ξ = -λ π′ (z) > 0, which via the IFT implies that z ⋄ ≡ arg max z Ω(z, λ) = b ⋄ + ξ increases with ξ. In fact, because the property that V and π are invariant to ξ conditional on z applies generally, so does the result that z ⋄ increases with ξ. 

σ(b) ≡ - π ′ (b)b π(b) ≥ 0
is the elasticity of the liquidity premium with respect to the quantity of public debt.

As a reference point, consider momentarily the case in which public debt has no liquidity value, so that v(b) = π(b) = 0 for all b. Condition (45) then reduces to λ = 0, which represents Barro's celebrated tax-smoothing result: when debt is priced at the social discount rate, λ is constant over time, and hence the optimal tax is also constant. Relative to this reference point, we see that whenever the right-handside of ( 45) is non-zero, optimality requires a non-zero drift in λ, that is, a deviation from tax smoothing. 

γ(b) ≡ v(b) π(b)(σ(b) -1)
.

We can then restate the Euler condition (45) as follows: The graph of γ can be quite complicated, in part because there may exist multiple "holes" in the domain ∆, that is, multiple points at which σ(b) = 1. To interpret these points, note that 

λ =    v(b) 1 -λ γ(b) if b ∈ ∆ 0 if b ∉ ∆ ( 
d [π(b)b] d b = π ′ (b)b + π(b) = -(σ(b) -1)π(b). ( 47 

D.2 The case studied in the main text

We now focus on a slightly more general case than the one studied in the main text-more specifically we dispense with Auxiliary Assumption B3 and only maintain the following assumptions

B0. For b > b bliss , V ′ (b) = π(b) = 0. B1. the ratio v/π is constant; B2. the elasticity σ is increasing in b ∈ (0, b bliss ).
The first assumption imposes that the wedge between the social and the private value of collateral is invariant to b, the second guarantees that π(b)b is single-peaked and also extends the aforementioned Together, these assumptions lead to following characterization of the optimal debt dynamics. Recall that the graph of γ identifies the λ = 0 locus in the region to the left of the satiation point, whereas the ḃ = 0 locus is given by the graph of ψ. By Lemma 3, ψ is positively valued and strictly increasing. Together with Lemma 4, this means that γ and ψ can intersect at most once. In particular, letting γ bliss ≡ lim b↑b bliss γ(b) and ψ bliss ≡ ψ(b bliss ), 22 we have the following property. everywhere in (b seign , b bliss ] and therefore they never intersect. In γ bliss < ψ bliss , (i)-(iii) imply that they intersect only once.

The two scenarios are illustrated in, respectively, Figures 8 and9. The latter is the same as Figure 1 in the main text, reproduced here to ease the exposition. similar across all three regions: ḃ > 0 below the graph of ψ and ḃ < 0 above it. By contrast, the dynamics of λ differ qualitatively across the three regions. In region L, γ is negatively valued; λ > 0 above the graph of γ; and λ < 0 below it. In region M, the reverse is true: γ is positively valued; λ < 0 above the graph of γ; and λ > 0 below it. Finally, in region H, γ is undefined and λ = 0 throughout. These properties also hold true in Figure 9. What distinguishes the two figures is whether γ and ψ admit an intersection within region M. In Figure 8, they do not. This is because we have imposed γ bliss > ψ bliss , which together with the monotonicity of γ and ψ guarantees that γ lies above ψ throughout region M. 

L M H

What do these properties imply for the solution to the planner's problem? Since γ and ψ never intersect for the case depicted in Figure 8, the ODE system ( 44)-( 46) admits no steady state to the left of the satiation point b bliss (regions L and M). By contrast, there is a continuum of such steady-state points to the right of the satiation point (region H): any point along the segment of ψ that lies to the right of b bliss trivially satisfies both λ = 0 and ḃ = 0. Whether the planner finds it optimal to rest at such a point or move away from it-i.e., whether these points correspond to a steady state of the optimal dynamics as opposed to merely a fixed point of the ODE system-remains to be seen. For now, let us note that the lowest of these fixed points is associated with b = b bliss and λ = ψ bliss ≡ ψ(b bliss ); the latter corresponds to the level of taxes that balances the budget when the economy rests at the satiation point.

For any b 0 < b bliss , there exists a unique value of the costate, λ 0 < ψ(b 0 ), such as the following is true:

if the economy starts from (b 0 , λ 0 ) and thereafter follows the dynamics dictated by ( 44)-( 46), then, and only then, the economy converges asymptotically to (b bliss , λ bliss ). In other words, there is a unique path that satisfies the planner's Euler condition and the budget constraint at all dates, and that eventually leads to satiation. This path is indicated with blue color in the figure. 23 The aforementioned path trivially satisfies the transversality condition, and is therefore a candidate for optimality. By contrast, any path that starts with λ(0) > λ 0 (higher taxes) and that follows the ODEs causes the level of debt to reach the lower bound b in finite time; at this point, λ would have to jump down, violating the Euler condition, which means that this path cannot be optimal. Similarly, any path that starts with λ(0) < λ 0 (lower taxes) causes the level of debt to increase past the satiation point b bliss and to reach the upper limit b in finite time; at this point, λ would diverge to infinity and the transversality condition would be violated, which means that neither this path can be optimal.

Consequently, for any b 0 < b bliss , the path that leads to satiation is the optimal path, and Proposition Using the fact that with satiation π(b) = 0, the approximate local dynamics around the satiation point are given by

Ẋ (t ) = JX (t ) with J =   ρ - ρ ψ ′ (b bliss ) V ′′ (b) -λ bliss π ′ (b bliss )(σ(b bliss ) -1) 0   23
One cannot rule out λ 0 < 0 for sufficiently low b 0 . When this is the case, the negative λ signals the high value that the planner attaches to issuing public debt. In fact, if it were feasible for b to jump, the planner would let b jump to the point where λ turns non-negative, and only thereafter we she follow the blue path in the figure. By the same token, if we allow the planner to make non-negative lump-sum transfers, these transfers will not affect the solution in the region where λ > 0, but would help speed up the accumulation of debt in the region where λ < 0. Although this resembles [START_REF] Barro | On the Determination of the Public Debt[END_REF], there is a key difference: the constant value of λ exceeds ψ(b) throughout this phase, which means that taxes are smoothed at a level that is higher than what is required for balancing the budget (in turn explaining why debt falls over time). In the second phase, which starts as soon as b has crossed b bliss from above, debt continues to fall, but tax smoothing no longer holds, for the reasons explained earlier on.

By construction, the path described above satisfies the ODE system (44)-( 46) at all t and asymptotically converges to (b * , λ * ), which means that it also satisfies the transversality condition. This verifies that, as long as it exists, this path is a candidate for optimality. But so is the Barro-like plan of "staying put" at the point of the graph of ψ that corresponds to the initial level of debt, that is, at (b, λ) = (b 0 , λ 0 ) with λ 0 = ψ(b 0 ). How can we tell which path is better?

To address this question, we use an elementary but powerful result from optimal-control theory.

Below, we first state the result, which holds true for any configuration of the planner's problem. We then use it to complete the characterization of the particular benchmark under consideration.

For any b 0 , let P (b 0 ) be the set of all the paths for (b, λ) that start from b 0 , satisfy the ODE system in all t , and also satisfy the transversality condition at infinity. Since these conditions are necessary for optimality, the optimal path is necessarily contained in P (b 0 ). More generally, we can reduce the planner's problem to that of choosing a path P (b 0 ). Next, note that any path in P (b 0 ) is associated with a different initial value for the costate and let Λ(b 0 ) be the set of such initial values for the costate.

Choosing a path in P (b 0 ) is therefore equivalent to choosing an initial value λ 0 in Λ(b 0 ). The following result is helpful for evaluating the welfare associated with any candidate path.

Lemma 6 (Skiba, 1978, Brock and[START_REF] Brock | The Generalized Maximum Principle[END_REF]. For any b 0 and any λ 0 ∈ Λ(b 0 ), the path in P (b 0 ) that starts from initial point (b 0 , λ 0 ) yields a value that is equal to H (b 0 , λ 0 )/ρ.

Proof. See [START_REF] Brock | The Generalized Maximum Principle[END_REF].

For any given b 0 , the above result allows one to rank the candidate paths in P (b 0 ) by simply inspecting how the value of the Hamiltonian, H (b 0 , λ 0 ), varies as λ 0 varies within the set Λ(b 0 ). But now note that H (b, λ) is strictly convex in λ, as it is defined as the upper envelop of functions that are linear in λ. It follows that, whenever P (b 0 ) is not a singleton, the optimal path is necessarily the path that starts with λ 0 either at the maximal or the minimal value inside Λ(b 0 ). This property is instrumental for identifying the optimal path starting from any given initial level of debt, not only in the benchmark under consideration, but also in the more general case studied later.

Let us now go back to Figure 9. Pick any b 0 ≥ b bliss and suppose there exists a continuous path that satisfies the ODEs and asymptotically converges to b * . As already noted, this path is a candidate for optimality. But so is the Barro-like plan that keeps b and λ constant for ever at, respectively, b 0 and ψ(b 0 ). Note, next, that the first plan is associated with a higher λ 0 (i.e., higher taxes) than the second, because the first runs a surplus whereas the second balances the budget. Finally, note that, along any candidate path, H λ (b, λ) = ḃ. For the path that leads the economy to b * , we have that ḃ < 0 at t = 0, and hence H λ (b 0 , λ 0 ) < 0. For the Barro-like plan, instead, ḃ = 0 and hence H λ (b 0 , λ 0 ) = 0. Since H is convex, this means that the Barro-like plan attains the minimum of H over the set of candidate paths.

It follows that, whenever the path that takes the economy to b * exists, this path strictly dominates the Barro-like, and Finally, note the path of b induced by the ODE system is continuous and monotonic in λ(0). It follows that there exists a critical value λ skiba ∈ (ψ bliss , ∞) such that, if we start with λ(0) = λ skiba , then and only then the economy converges asymptotically to b * . By continuity, this kind of path also exists for b 0 above but close enough to b bliss . Furthermore, because the planner's Euler condition dictates λ = 0 (tax smoothing) throughout region H, the plan under consideration keeps λ constant as long as b is above b bliss . It follows that the portion of this path that is to the right of the satiation point is flat at the level λ skiba .

Define next b skiba ∈ (b bliss , b) as the level of debt that balances the budget when taxes are set at the level corresponding to λ skiba ; that is, b skiba ≡ ψ -1 (λ skiba ). Note that ψ is continuous and monotone, and their respective derivatives, the matrix J, evaluated at (b * , λ * ), is

J =   ρ + V ′ (b * ) γ(b * ) -1 ψ ′ (b * ) ρ + V ′ (b * ) γ(b * ) γ ′ (b * ) V ′ (b * ) γ(b * ) -V ′ (b * ) γ(b * )  
First note that the trace of matrix J is given by ρ > 0, implying that the two eigenvalues of J sum up to a positive number. The determinant of the J matrix, evaluated at (b * , λ * ), is Note that, the stable root of the system is given by

det(J) = V ′ (b * ) γ(b * ) ρ + V ′ (b * ) γ(b * ) γ ′ (b * ) ψ ′ (b * ) -1 Given that b * < b bliss , σ(b * ) < 1, γ(b * ) > 0 and V ′ (b * ) > 0.
µ = ρ -∆ 2 where ∆ = ρ 2 -4 V ′ (b * ) γ(b * ) ρ + V ′ (b * ) γ(b * ) γ ′ (b * ) ψ ′ (b * )
-1 > 0 is the discriminant of the polynomial. Hence the eigenvector, (v 1 , v 2 ), associated to this eigenvalue satisfies For practical purposes, we think it is appropriate to restrict b 0 < b bliss , so that the financial distortion is present in the initial period. Under this restriction, the combination of Propositions 11 and 12 generates the following two key lessons.

ρ 2 + V ′ (b * ) γ(b * ) + ∆ 2 v 1 -S ′ (λ * )v 2 = 0 Consider the eigenvector is S ′ (λ * ), ρ 2 + V ′ (b * ) γ(b * ) + ∆ 2 . Given that V ′ (b * ) > 0,
The first lesson is that the economy can belong in one of two classes. In the one, debt converges to b bliss , which means that the planner extinguishes the financial distortion in the long run. In the other class, the opposite is true: the planner preserves the financial distortion in the long run. We will study below whether and how this taxonomy extends to the general case. For now, we wish to emphasize that both classes feature a deviation from tax smoothing along the transition.

The second lesson is that the condition ψ bliss > γ bliss is both necessary and sufficient for an economy to belong in the second of the aforementioned two classes. In order to derive an interpretation of this The proof of Proposition 10 is then completed by noting that ψ bliss > γ bliss if and only if g is high enough, a property that holds even outside our benchmark and that is proved in Lemma 7 below.

But: Do the lessons obtained above apply outside the benchmark under consideration? We address this question next.

D.3 Beyond the Benchmark: Relaxing Auxiliary Assumptions B1-B3

Thanks to Auxiliary Assumptions B1-B3, the benchmark studied above has two key properties: π(b)b is singled-peaked, so that the phase diagram can be organized in the three regions described above; and γ is decreasing over the region M, so that it can intersect at most once with ψ. If we modified the benchmark by allowing either for a non-monotone σ or for V ′ ̸ = π but maintained the aforementioned properties, then the preceding arguments go through and Propositions 11 and 12 continue to hold.

What if the aforementioned properties do not hold, as it may be the case for certain micro-foundations?

There is a plethora of possibilities. To make progress, we will continue for a moment to assume that π(b)b is single-peaked, which preserves the tripartite structure of the phase diagram, but will let γ(b) be nonmonotone over region M . 24 In this case, the graphs of γ and ψ may intersect multiple times. Clearly, any such intersection identifies a steady-state point of the ODE system. What are the local dynamics around each of these points? Starting from a given initial b 0 , how many paths are candidates for optimality? And what are the properties of the optimal path? There is a multitude of possible answers to these questions. To illustrate, consider the case in which 

(i) saddle-path stable if γ ′ (b * ) < ψ ′ (b * ); (ii) explosive with real eigenvalues if ψ ′ (b * ) < γ ′ (b * ) < ψ ′ (b * ) + χ;
(iii) explosive with imaginary eigenvalues (i.e. with cycles

) if γ ′ (b * ) > ψ ′ (b * ) + χ.
Proof. The linear approximation of the system of the ODEs around a stationary point (b ♯ , λ ♯ ) is given by

Ẋ (t ) =   ρ + π(b * )(σ(b * ) -1) -S ′ (λ * ) V ′′ (b * ) -λ * π ′ (b * )(σ(b * ) -1) -λ * π(b * )σ ′ (b * ) -π(b * )(σ(b * ) -1)   X (t ) = JX (t )
24 Recall that γ is necessarily decreasing in a neighborhood to the right of b seign , because σ(b) ↓ 1 and γ(b) ↑ ∞ as b ↓ b bliss .

Allowing for a non-monotone γ therefore means that γ is increasing over a portion of region M. This in turn can happen when the elasticity σ and/or that the ratio π/V ′ is decreasing over a subset of (b seign , b bliss ).

with

X (t ) = (b(t ) -b * , λ(t ) -λ * ) ′ .
Using the definitions of the functions ψ(b), γ(b), ψ ′ (b) and γ ′ (b), we can rewrite the matrix J, evaluated at (b * , λ * ) as

J =   ρ + V ′ (b * ) γ(b * ) -1 ψ ′ (b * ) ρ + V ′ (b * ) γ(b * ) γ ′ (b * ) V ′ (b * ) γ(b * ) -V ′ (b * ) γ(b * )  
First note that the trace of matrix J is given by ρ > 0, implying that the two eigenvalues of J sum up to a positive number. The determinant of the J matrix, evaluated at (b * , λ * ), is The emergence of cycles is related to the real vs complex nature of the eigenvalues. This is established by looking at the discriminant, ∆, of the characteristic polynomial:

det(J) = V ′ (b * ) γ(b * ) ρ + V ′ (b * ) γ(b * ) γ ′ (b * ) ψ ′ (b * ) -1 Given that b * < b bliss , σ(b * ) < 1, γ(b * ) > 0 and V ′ (b * ) > 0.
∆ = (TrJ) 2 -4 det J = ρ 2 -4 V ′ (b * ) γ(b * ) ρ + V ′ (b * ) γ(b * ) γ ′ (b * ) ψ ′ (b * ) - 1 
The two roots are complex if the discriminant is negative

∆ < 0 ⇐⇒ γ ′ (b * ) > ψ ′ (b * ) + χ with χ ≡ ρ 2 ψ ′ (b * ) 4 ρ + V ′ ( * ) γ(b * ) V ′ (b * ) γ(b * )
Therefore establishing the condition for the emergence of complex vs real explosive eigenvalues.

This result restricts the local dynamics of the ODE system in the neighborhood of any steady state point, i.e. around the intersections of γ and ψ. Consistent with this result, Figure 10 First, recall that the value of any candidate path is given by the Hamiltonian as described in Lemma 6; that the Hamiltonian is convex in λ; and that its derivative is given by H λ = ḃ. Next, consider the value of ḃ at each of the two candidate paths. For all b 0 ∈ [ b, b), the path that leads to the lowest steady state starts from a point above the graph of ψ, meaning that ḃ < 0. But as b 0 gets closer to b, the starting points gets closer to the graph of ψ, meaning that value of ḃ gets closer to 0. In the knife-edge case in which b 0 = b, this path is associated with ḃ = 0. Conversely, the path that leads to the highest steady state is associated with ḃ > 0 for all b 0 ∈ ( b, b], and with ḃ = 0 in the reverse knife-edge case in which b 0 = b.

Combining these observations, we obtain the following properties. When b 0 = b, the path that leads to b * L features H λ = ḃ < 0, whereas the path that leads to b * H features H λ = ḃ = 0. By the convexity of H , the latter path is dominated. Conversely, when b 0 = b, it is the former path that now features H λ = ḃ = 0 and that is therefore dominated. By continuity,25 the path that leads to b * L is therefore optimal for b 0 close enough to b, whereas the path that leads to b * H is optimal for b 0 close enough to b. Finally, the assumption that U is convex in s guarantees that the optimal path for b is monotone. It follows that there exists a threshold b ∈ ( b, b) such that the unique optimal path is the path leading to the lowest steady state whenever b 0 < b and it is the path leading to the higher steady state whenever b 0 > b. See Comparing this result to our earlier benchmark, we see that one key property survives whereas another is lost: as in our benchmark, it is true that there exists a threshold b skiba > b bliss such that debt converges to a steady-state level below b bliss whenever the economy starts below b skiba ; but unlike our benchmark, the steady-state level is not the same for all initial conditions. We now turn to two variants of the case studied in Figure 10. One of these variants is illustrated in Figure 11, the other in Figure 12. These variants maintain the same qualitative configuration for the functions γ and ψ, the same steady-state points, and the same local dynamics around them, but perturb the global dynamics. One of the stable arms is now allowed to extend throughout region M instead of cycling back to b * M . This path then emerges as the optimal path for all initial conditions: in the case seen in Figure 11), it is optimal to converge to b * H for all b 0 < b skiba ; and in the case seen in Figure 12, it is optimal to converge to b * L . Let us fill in the details, starting with optimal: if the economy were to follow this path starting from any initial point b 0 , the economy would enter the aforementioned neighborhood in finite time; at that point, switching paths would increase welfare, which contradicts the optimality of the original path. We conclude that, contrary to what happens in Figure 10, the path that leads to b * H in Figure 11 is now the optimal path for all b 0 < b skiba . Consider next Figure 12. This illustrates a diametrically opposite scenario from that shown in Figure 11: it is now the stable arm that leads to b * L that fails to cycle back to b * M , extends past b * H , and dominates throughout. What the two scenarios share in common that distinguishes from the scenario depicted in Figure 10 is the following: even though the ODE system continues to admit multiple saddle-path stable steady states, the optimal policy now features a unique and globally stable steady state in the region to the left of the satiation point, that is, optimal debt converges monotonically to the same long run value b ⋆ for all initial values b 0 ≤ b bliss .

These findings illustrate the following more general points and qualify some of the properties of the benchmark model. To the extent that the ODE system admits multiple steady states below b bliss , any such point represents a point of indifference between the desire to depress the interest rate on public debt and the desire to improve liquidity and efficiency; this is our earlier observation that Ω b = 0 at any such point. Furthermore, to the extent that such a point is locally saddle-path stable, it is optimal to converge to it over time if the economy starts in a small enough neighborhood of this point and if in addition the planner is precluded from moving outside that neighborhood. In this regard, the local optimality of the steady state can be understood by inspecting the trade off between collateral creation and interest rate manipulation, as what we did in our benchmark. However, once the planner is free to move from one steady state to another, such local intuitions are no longer sufficient. Moreover, as we show below, there is no guarantee that the steady state can be rationalized as either a global or a local maximum of Ω, despite the fact that it satisfies Ω b = 0.

The number of possible scenarios would increase if we allowed γ and ψ to intersect more than three We illustrate this in Figure 13. As anticipated above, the phase diagram now looks like the product of patching together multiple pairs of L and M regions from our earlier examples. But the earlier lessons survive in the following sense: if the economy starts inside any of the L regions, it is optimal to exit this region in finite time and thereafter converge asymptotically either to an intersection point of γ and ψ within one of the M regions or to satiation. In the preceding analysis, the condition ψ bliss > γ bliss played a crucial role: it guaranteed that it is optimal to lead the economy to a steady state below satiation not only for all initial levels of debt below b bliss , but also over a range of initial levels above it. This generalized the related insight from the main text.

As already explained, the condition ψ bliss > γ bliss has a simple interpretation: it means that, in the neighborhood of b bliss , the shadow cost of taxation is sufficiently high so that the marginal value of depressing the interest rate on public debt outweighs the marginal cost of the financial distortion. Consistent with this interpretation, it is straightforward to show this case obtains when the level of government spending is sufficiently high.29 

Lemma 7. Suppose γ bliss < ∞. There exists a threshold ĝ such that ψ bliss > γ bliss if and only if g > ĝ .

Proof. Note that ψ bliss is continuous and increasing in g as long as g < g max and diverges to +∞ as g → g max . This is because a higher g requires higher taxes to balance the budget, and the marginal cost of these taxes explodes to infinity as we approach the peak of the Laffer curve. Furthermore, ψ bliss = 0 if and only if g = -ρb bliss < 0. Finally, note that γ bliss is (i) invariant to g ; (ii) positive for the reasons offered above; and (iii) finite by assumption. It then follows that there exists a threshold g , necessarily less than g max and possibly negative, such that ψ bliss > γ bliss if and only if g > g .

This generalizes the related point made in the main text. The only subtlety is the following. In the benchmark studied in the main text, ψ bliss > γ bliss (and by the same token g > ĝ ) was both sufficient and necessary for b skiba > b bliss and, equivalently, for the existence of a steady state below satiation. Sufficiency was established in Proposition 12, necessity in Proposition 11. In the more general case allowed here, sufficiency remains valid by Proposition 14, but necessity may not apply. 

D.5 Beyond the Benchmark: Relaxing Auxiliary Assumption B0

In the preceeding analysis we relaxed Auxiliary Assumptions B1-B3 but maintained B0. We now do the converse, that we let π(b) and V ′ (b) turn negative for b > b bliss . As mentioned in the main text, this amounts to changing the interpretation of region H (i.e., the region where b > b bliss ) from "harmless satiation" to "harmful excess."

In this case, the phase diagram takes the form illustrated in What if we relax both B0 and B1-B3? Clearly, this is a hybrid of the present and the previous scenarios: relaxing B1-B3 allows multiple intererior steady states below b bliss , while relaxing B0 guarantees that λ < 0 for b > b bliss and hence that the economy converges to a steady state below b bliss for any intial position and any g . We conclude that relaxing B0 substitutes for the requirement that g is high enough and only reinforces the rationale for focusing on the scenario in which the economy converges to a steady state below satiation.

D.6 Complete Characterization

Building on the preceding results, we can now offer a characterization of the optimal policy that nests all possible scenarios. To this goal, we henceforth let Proof. We prove this result with the help of Theorem 2 from [START_REF] Brock | The Generalized Maximum Principle[END_REF]. Consider the optimal policy rule for the co-state variable, namely the correspondence from any given b 0 to the optimal value for λ 0 . Denote this correspondence by Λ opt . Note that this is is a selection from the correspondence Λ (which was defined in the context of Lemma 6). To illustrate, consider 31 We wish to think of the empirically relevant case as one in which B # contains either a single or a "small" finite number of points. At the present level of abstraction, however, the best we can say is that B # is generically countable. 32 At first glance, the original version of Theorem 2 in [START_REF] Brock | The Generalized Maximum Principle[END_REF] appears to state the opposite; the apparent contradiction is resolved by noting that our co-state variable is defined with the opposite sign than theirs.

B

  Planner's Problem. Choose a path for(s, b) in A ≡ [s, s] × [0, b] so as to solve max ˆ+∞ 0 e -ρt [U (s(t )) + V (b(t ))]dt (1) subject to ḃ(t ) = ρπ(b(t )) b(t ) + gs(t ) ∀t(2)with initial condition b(0) = b 0 , for some b 0 ∈ [0, b).

  marginal) private and social values coincide. But this does not have to be true in general-indeed, it is not true in Examples 2 and 3 below, because of a pecuniary externality. Reduced form. The Inada conditions on u imply that lim b→∞ Q(b) = 0 and Q(0) > β for sufficiently high levels of risk (ϵ close to k). It follows that there exists a b bliss > 0, defined by Q(b bliss ) = β, such that V ′ (b) = π(b) > 0 for b < b bliss and V ′ (b) = π(b) < 0 for b > b bliss . That is, the example satisfies Assumption A2. The reduced form is completed by letting U (s) measure the joint utility from consumption and labor obtained in equilibrium when tax revenue equals s and verifying that U satisfies Assumption A1.

  Assumption A2, π(b)b > 0, when b ∈ (0, b bliss ) and π(b)b ≤ 0 otherwise. It follows that b seig ≡ arg max b π(b)b is necessarily both positive and strictly lower than the bliss point. In other words, one can think of the graph of π(b)b as a "debt Laffer curve," whose peak is attained at b = b seig . Had the government cared only about maximizing rents, it would have set b = b seig . Had it cared only about easing the friction in the private sector, it would have set b = b bliss ≡ arg max b V (b) . For any λ ∈ (0, ∞), the optimal debt issuance strikes a balance between these two goals, i.e., b seig < b ⋄ < b bliss .

Theorem 1 .

 1 There exist unique thresholds (b skiba , b * , s * ), with b seig < b * < b bliss < b skiba and 0 < s * < s, such that the following properties hold: (i) For b 0 < b skiba , optimal debt and taxes converge monotonically to, respectively, b * and s * .

Figure 1 :

 1 Figure 1: Phase Diagram and the Optimal Path.

  Consider next B0. This lets us interpret b bliss as a satiation point beyond which the private and social values of liquidity become zero. If we instead let π and V ′ turn negative for b > b bliss , a scenario of "harmful excess," the only change in Figure 1 is that Region H ceases to exist: convergence to a steady state below b bliss is now guaranteed for every initial position and for any g . Clearly, this only reinforces our focus on the case of b * < b bliss .

Figure 2 :

 2 Figure 2: Permanent Increase in Government Spending

Figure 3 :

 3 Figure 3: Optimal Response to a War

Figure 4 :

 4 Figure 4: IRFs to a Financial vs Traditional Recession

  Continuous-time analogue. Consider the following continuous-time policy problem, which is motivated by the above micro-foundations and generalizes the problem studied in the main text:max ˆ+∞ 0 e -ρt W (τ, b)dt (17) s.t . ḃ = [ρ -π(τ, b)]b + g -S(τ, b) ∀t(18) Suppose that the functions W, S, π are continuously differentiable in both τ and b. Suppose further that there exists a function b bliss such that ρ > π(τ, b) > 0 and W b (b, τ) > 0 if b < b bliss (τ), whereas π(τ, b) = W b (b, τ) = 0 if b ≥ b bliss (τ); this allows for the possibility that the "satiation point" beyond which the friction ceases to bind may depend on the tax rate. Similarly, let b seign (τ) ≡ arg max {π(τ, b)b + S(τ, b)} ;

Figure

  Figure 5: Entrepreneurial Model

Figure 6 :

 6 Figure 6: Crowding in or out

  b bliss and the social value of debt V (b)

Furthermore

  , for all b ∈ (0, b bliss ), we have π(b) > V ′ (b). For b ≥ b bliss , on the other hand, π(b) = 0 and V (b) = V bliss . (ii) A tighter financial friction, or lower private collateral (lower ξ), increases b bliss and uniformly raises both V ′ (b) and π(b) for all b < b bliss . (ii) Greater type dispersion (ϵ) increases b bliss and uniformly raises both V ′ (b) and π(b) for all b < b bliss . Proof. The properties of π and V with respect to b, and hence (i), follow directly from their closed-form characterization. Part (ii) follows from the fact that b bliss = 1 + ϵξ along with the fact that, for any b bliss and any b < b bliss , π and V ′ are decreasing in b (hence increasing in b bliss ) and otherwise invariant to ξ. Part (iii) obtains directly by differentiating π(b) and V ′ (b) with respect to ϵ for any b < b bliss .

  Let us define Ω(b, λ * ) = V (b) + λ * π(b)b, where λ * = U ′ (s * ) and s * = g + r b *π(b * )b * . Note first that Ω b (b, λ * ) = (σ(b) -1) π(b) γ(b) -λ * Let us then recall that, in our benchmark a steady-state level, b * below b bliss exists if and only if ψ bliss > γ bliss , and it is then unique. Furthermore, the single-peakedness of π(b)b guarantees that σ(b) < 1 and γ(b) < 0 for all b < b seign , whereas σ(b) > 1 and γ(b) > 0 for all b > b seign . Finally, the monotonicity of γ guarantees that γ(b) > γ(b * ) for b ∈ (b seign , b * ), whereas γ(b) < γ(b * ) = λ * . Together with the fact that γ(b * ) = ψ(b * ) = λ * > 0, this implies that Ω b (b, λ * ) > 0 for all b ∈ [b, b * ) and Ω b (b, λ * ) < 0 for all b ∈ [b, b * ), which proves that b * = arg max b Ω(b, λ * ).

Figure 7 :

 7 Figure 7: Response to a war shock, with state-contingent debt

  Replicating this strategy in our framework means maximizing U (s)+V (b) subject to R(b)b = g +s. Let b denote the debt level that solves this problem and let λ be the associated Lagrange multiplier. Clearly, b = arg max b V (b) -λR(b)b , (42) which illustrates how Aiyagari and McGrattan (1998) treat the entire interest payments on public debt, R(b)b, as a cost. But as first highlighted in Section 4.4, the component ρb of these interest-rate payments is not a cost. That is, the truly optimal steady state satisfies b ⋆ = arg max b V (b) + λ ⋆ π(b)b , (43) which underscores that the correct planning problem treats debt issuance as a profit-generating business to the tune of π(b)b.

Lemma 2 .

 2 Consider Example 2 from Section 3. The functions π(b)b and Ω(b, λ) are strictly concave in b ∈ [0, b bliss ] and their respective maxima, b seign ≡ arg max π(b)b and b ⋄ ≡ arg max b Ω(b, λ), satisfy 0 < b seign < b ⋄ < b bliss . Proof. Consider Π(b) ≡ π(b)b and note thatΠ ′ (b) = π(b) + π ′ (b)b and Π ′′ (b) = 2π ′ (b) + π ′′ (b)bUsing the fact that, under our parametric assumption, π ′′ (b) = -2π ′ (b) b+ξ , we get thatΠ ′′ (b) = 2π ′ (b) ξ b + ξ < 0 which establishes the concavity of Π(b) ≡ π(b)b. Next, note that Π ′ (0) = βϕ 1+ϵ-ξ ξ > 0 and Π ′ (b bliss ) = π ′ (bbliss )b bliss = -βϕ 1+ϵ-ξ 1+ϵ < 0. It follows that b seign is the unique solution to Π ′ (b) = 0 and is strictly between 0 and b bliss . Consider now Ω(b, λ) ≡ V (b)+λπ(b)b. Its concavity follows directly from the concavity of V (b), which was established in the previous result, and the concavity of g (b) = π(b)b, which was just established. It follows that b ⋄ is the unique solution to Ω b (b, λ) = 0. Furthermore, because g ′ (b seign ) = 0, g ′ (b bliss ) < 0, V ′ (b seign ) > 0, and V ′ (b bliss ) = 0, we have that Ω b (b, λ) > 0 at b = b seign and Ω b (b, λ) < 0 at b = b bliss , and therefore that b ⋄ is strictly between b seign and b bliss . This verifies, in effect, that Example 2 verifies all the Auxiliary Assumptions invoked in Section 4. What is more, because we now have a simple closed-form characterization of Ω, we can go a step further to study the comparative statics of b ⋄ with respect to the underlying primitives. Those are reported in the next proposition Proposition 9. Consider Example 2, fix λ, and let b ⋄ = arg max b Ω(b, λ). The following comparative statics are true: b * increases with the size of the liquidity risk (ϵ), decreases with the value of fiscal space (λ), and is generally non-monotonic in the amount of inside collateral (ξ) .

Function

  Theorem, there exists a function ψ : [b, b) → R + such that Ψ(b, ψ(b)) = 0 for all b; equivalently, ḃ = 0 if and only if λ = ψ(b).The mapping ψ(b) identifies the value of λ, or equivalently the tax rate, that balances the budget when the level of debt is b. Note that ḃ < 0 when λ > ψ(b), that is, debt falls if taxes exceed the aforementioned level, and symmetrically ḃ > 0 if λ < ψ(b). Finally, note that the function ψ satisfies the following properties. Lemma 3. ψ is continuous and strictly increasing, with ψ(b) = 0 and lim b→ b ψ(b) = +∞. Proof. ψ(b) is strictly increasing in b because higher debt requires higher taxes to balance the budget; ψ(b) starts at zero when b = b because taxes are zero when the government has a large enough asset position to fully finance its spending using interest income received on its assets; and ψ(b) diverges to +∞ as b approaches b because the shadow cost of taxation explodes as debt approaches the maximal sustainable level and, equivalently, the tax rate approaches the peak of the Laffer curve. Consider next the Euler condition. As explained in the main text, this can be written as λ = Ω b (b, λ), where Ω(b, λ) ≡ V (b) + λπ(b)b. Equivalently, λ = v(b) -λπ(b) (σ(b) -1) . (45) where v(b) ≡ V ′ (b) is the social marginal value of liquidity, π(b) is the corresponding private value, or the liquidity premium, and

  Let ∆ ≡ {b ∈ [b, b bliss ) : σ(b) ̸ = 1} and define the function γ : ∆ → R as follows:

  ∆ and λ = γ(b) or b ∉ ∆ and λ ∈ R It follows that the graph of γ identifies the λ = 0 locus over the region to the left of the satiation point (that is, for b < b bliss ). To the right of this point, we instead have λ = 0 regardless of (λ, b).

)

  It follows that the points at which σ(b) = 1 correspond to the critical points of the function π(b)b, which, as explained before, represents the rent, or the profit, that the government can make by falling short of satiating the economy's demand for liquidity. With abuse of language, we henceforth refer to this rent as "seigniorage". Next, note that π(b)b is continuous over the closed interval [0, b bliss ], it is zero at the boundaries of the interval, and is strictly positive in the interior of the interval. It follows that seigniorage attains a global maximum in the interior of that interval. In general, π(b)b may admit an arbitrary number of local maxima and minima in addition to its global maximum. By the same token, σ may cross 1 multiple times. Note, however, that the derivative of π(b)b crosses zero from above at any point that attains the global maximum, which in turn means that σ(b) is necessarily increasing in an area around such a point.

  local monotonicity of σ to its entire domain. In the sequel, we will refer to the peak in π(b)b as b seign . This peak satisfies π(b seign ) + π ′ (b seign )b seign = π(b seign )(1 -σ(b seign )) = 0. An implication of B2 is then that σ(b) < 1 for b < b seign and σ(b) > 1 for b > b seign . Dispensing from B3 will allow use to obtain a more general characterization of the cases implied by B0-B2.

Proposition 10 .

 10 Let Assumptions B0-B2 hold. There exists a unique b * ∈ (b, b bliss ] such that, for any initial point b 0 < b bliss , the optimal level of public debt converges monotonically to b * . Furthermore, b * < b bliss if g > ĝ and b * = b bliss if g < ĝ , for some ĝ . This result identifies b * as the steady state to which the economy converges from any initial point b 0 < b bliss . It also relates b * to the satiation point b bliss . In particular, it shows that b * is strictly lower than b bliss if and only if g is high enough. Theorem 1 in the main text then follows directly from noting that Property B3 in the main text is the same as g > ĝ here. The rest of the section is dedicated to proving Proposition 10 in multiple steps, developing additional insights on the way. We start by noting that Property B0-B2 imply the following structure for the function γ, which is instrumental for the subsequent analysis. Lemma 4. Let Assumptions B0-B2 hold. The domain of γ is ∆ = [b, b seign ) ∪ (b seign , b bliss ), where b seign ≡ arg max π(b)b. For b ∈ [b, b seign ), γ is negatively valued and decreasing. For b ∈ (b seign , b bliss ), γ is positively valued and decreasing. Finally, γ(b) → -∞ as b → b seign from below and γ(b) → +∞ as b → b seign from above. Proof. Recall that b seign = arg max b π(b)b, so that b seign solves π(b)(1 -σ(b)) = 0. Note that, as aforementioned, for b seign to be a maximum, the following has to hold: π(b)(1 -σ(b)) ≷ 0 for b ≶ b seign . From the definition of γ and the assumption V ′ (b) ∝ π(b), we have γ(b) ∝ 1 π(b)(σ(b) -1) ≶ 0 for b ≶ b seign The latter result together with the definition of b seign implies that lim b↑b seign γ(b) = -∞ and lim b↓b seign γ(b) = ∞. Finally, as b increases above b seign , π(b)(1 -σ(b)) < 0 and γ(b) < ∞. Together with the monotonicity of σ(b), this implies that γ(b) is decreasing over the domain [b, b bliss ).

Lemma 5 .

 5 Let Assumptions B0-B2 hold. If γ bliss > ψ bliss , then γ and ψ never intersect. If instead γ bliss < ψ bliss , then γ and ψ intersect exactly once, and this intersection occurs at b = b * , for some b * ∈ (b seign , b bliss ). Proof. From Lemma 4, we know that ψ(b) and γ(b) can only intersect in (b seign , b bliss ). Given (i) the monotonicity of σ(b) and hence γ(b), (ii) the fact that ψ(b) is increasing and (iii) lim b↓b seign γ(b) = ∞, γ(b) and ψ(b) can intersect at most once. If γ bliss > ψ bliss , (i) and (iii) imply that γ(b) lies above ψ(b)

  Let us first consider Figure 8. The phase diagram is split in three regions: the region L, for b < b seign ; the region M, for b ∈ (b seign , b bliss ); and the region H, for b > b bliss . The dynamics of b are qualitatively

Figure 8 :

 8 Figure 8: Benchmark, with ψ bliss < γ bliss .

  10 applies with b * = b bliss . For any b 0 ≥ b bliss , the only candidate for optimality is the steady-state point associated with smoothing taxes and "staying put" at the initial level of debt: (b, λ) = (b 0 , λ 0 ) for all t , with λ 0 = ψ(b 0 ). Proposition 11. Let Assumptions B0-B2 hold and suppose ψ bliss < γ bliss . If b 0 < b bliss , debt converges monotonically to b bliss and taxes exhibit a positive drift along the transition. If instead b 0 ≥ b bliss , debt stays constant at b 0 for ever, and tax smoothing applies. Proof. Let us first consider b 0 ≥ b bliss . In this case, V ′ (b) = π(b) = 0 and the ODE system reduces to ḃ = ρb -S(λ) λ = 0 implying that λ and hence the tax rate is perfectly smoothed, so that b stays put at b 0 . This is the celebrated Barro tax smoothing result. Let us now consider b 0 < b bliss . Let us first assume that γ(b bliss ) > ψ(b bliss ) and define λ bliss = ψ(b bliss ).

Figure 9 :

 9 Figure 9: Benchmark, with ψ bliss > γ bliss .

  it is the optimal one. The preceding argument supposes the existence of such a path. Whether such a path exists or not depends on the initial level of debt, b 0 . In the figure, it is evident that this is the case if and only if b 0 is lower than the threshold b skiba . But how is this threshold defined in the first place, and what guarantees its own existence? Consider b 0 = b bliss . If we initiate the ODE system with a starting value λ(0) slightly above ψ bliss = ψ(b bliss ), which means that we run a sufficiently small enough surplus, then the resulting path for b never reaches b * . By contrast, if we start with λ(0) far above ψ(b bliss ), debt falls below b * in finite time.

λ

  bliss > ψ(b bliss ), and lim b→ b ψ(b) = ∞; this verifies that b skiba exists and is necessarily strictly between b bliss and b. It is then immediate that a continuous path that satisfies the ODEs and that converges to b * exists if and only if b 0 < b skiba , as illustrated in the figure. We thus have the following complement to Proposition 11. Proposition 12. Let Assumptions B0-B2 hold and suppose ψ bliss > γ bliss . There exist unique points b * ∈ (b seign , b bliss ) and b skiba ∈ (b bliss , b) such as the optimal debt level converges monotonically to b * if b 0 < b skiba , whereas it stays constant at b 0 for ever if b 0 ≥ b skiba . Optimal taxes exhibit a positive drift as long as b ∈ (b seign , b * ), a negative drift as long as b ∈ (b * , b bliss ), and are smoothed as long as b > b bliss . Proof. The discussion preceding the proposition in the main text establishes the existence of b skiba by using a continuity argument. Here we analyze the stability of the steady state (b * , λ * ).The linear approximation of the system of the ODEs around a stationary point (b * , λ * ) is given byẊ (t ) =   ρ + ϖV ′ (b * )(σ(b * ) -1) -S ′ (λ * ) V ′′ (b * ) -λ * ϖV ′′ (b * )(σ(b * ) -1) -λ * ϖV ′ (b * )σ ′ (b * ) -ϖV ′ (b * )(σ(b * ) -1)   X (t ) = JX (t )where ϖ ≡ π(b)/V ′ (b) and X (t ) ≡ (b(t )b * , λ(t ) -λ * ) ′ . Using the definitions of the functions ψ(b), γ(b)

  Finally, from Lemma 2, we know that γ ′ (b) < 0 for b ∈ (b seign , b bliss ]. Therefore, given that ψ ′ (b) > 0, det(J) < 0 and hence the two eigenvalues are distributed around 0. Therefore, (b * , λ * ) a saddle path stable.

  γ(b * ) > 0 (since σ(b) > 1) and S ′ (λ * ) > 0 in the upward sloping part of the Laffer curve, both components of the vector are positive. The co-movement result follows: For any ε > 0, starting from b 0 = b * -ε (resp. b 0 = b * + ε) , the economy will converge to (b * , λ * ) increasing (resp. decreasing) both debt and taxes along the transition path.

  condition recall that ψ(b) measures the value of λ implied by balancing the budget; that γ(b) identifies the value of λ that balances the planner's conflicting objectives: when λ > γ(b), then and only then the value the planner attaches to interest-rate manipulation (or seigniorage) outweighs the value of collateral creation (or liquidity provision); and finally that ψ bliss ≡ ψ(b bliss ) and γ bliss ≡ lim b↑b bliss γ(b). It follows that ψ bliss > γ bliss if and only if Ω b (b, λ) < 0 for (b, λ) close enough to (b bliss , ψ(b bliss )), which leads to the following simple interpretation. Fact 1. ψ bliss > γ bliss if and only if, in the neighborhood of b bliss , the benefit of relaxing the government budget by depressing the interest rate on public debt exceeds the cost of the financial distortion.

γ

  and ψ happen to intersect three times, giving rise to three steady-state points for the ODE system within region M.Figures 10, 11 and 12 below illustrate three phase diagrams that are consistent with this case. The three diagrams feature similar configurations of the γ and ψ functions and similar local dynamics around each of the three steady states, but different global dynamics and different types of optimal policies. We go over each of these three possibilities one by one. Consider Figure 10. In order to simplify the exposition, we truncate region L, where b < b seign , γ is negatively valued, and there can be no steady state; we thus focus on region M, where b ∈ (b seign , b bliss ) and where γ and ψ intersect three times. Denote the level of debt at the three intersection points by b * L , b * M , and b * H (for, respectively, "low", "medium", and "high"). Because γ goes to infinity in the neighborhood of b seign , we know that γ must intersect ψ from above at b * L and b * H , and from below at b * M . This is useful to note, because, as shown in the next proposition, the relation between the slope of γ and that of ψ dictates the local stability properties of the ODE system around any steady state. Proposition 13. Consider any (b * , λ * ) such that λ * = γ(b * ) = ψ(b * ), that is any steady-state point of the ODE system in the region to the left of the satiation point. There exists a finite scalar χ > 0 such that the local dynamics around that steady-state point are

  Therefore, the position of γ ′ (b * )/ψ ′ (b * ) with respect to 1 determines the sign of the determinant, and hence the position of the two eigenvalues around 0. Note that a steady state only exists in regions where σ(b * ) > 1 and hence γ(b * ) > 0. When γ ′ (b * ) < ψ ′ (b * ), det(J) < 0 and hence the two eigenvalues are distributed around 0. Therefore, a saddle path exists (recall that Tr(J) = ρ > 0), hence proving the first statement. In the opposite situation the two eigenvalues have positive real part, hence establishing the explosiveness part of the proposition.

  imposes that the lowest and the highest steady states (b * L and b * H ) are saddle-path stable, while letting the middle one (b * M ) feature explosive cycles. Notwithstanding these restrictions on the local dynamics, there remain three distinct possibilities with regard to the global dynamics. Figure 10 considers one of these possibilities. In Figure 10, we have imposed the following property on the global dynamics: both the stable arm that leads to b * L from above and the one that leads to b * H from below cycle back to b * M . It follows that there exist values b and b, as indicated in the figure, such that the following is true within region M. Whenever b 0 < b, Λ(b 0 ) is a singleton and the unique candidate for optimality is the saddle path that leads to b * L . Whenever b > b, Λ(b 0 ) is again a singleton, but now the unique candidate is the saddle path that leads to b * H . Finally, whenever b 0 ∈ [ b, b], there are multiple paths that are candidates for optimality.

Figure 10 :

 10 Figure 10: Beyond the Benchmark: Rich Dynamics and Multiple Steady States

Figure 10

 10 Figure 10 for an illustration: the bold segments of the two stable arms indicate the optimal selection among the two candidate paths. 26 So far, we focused on region M. In region H (b 0 ≥ b bliss ), the analysis is similar to Figure 9. That is, there is a threshold b skiba ∈ (b bliss , b) such that, as long as b 0 ∈ (b bliss , b skiba ), there are two candidate paths, the one leading to b * H and the Barro-like one, and the former dominates the latter, whereas the latter is the only candidate for b 0 ≥ b skiba . Finally, in region L (b 0 < b seign ), there is a unique candidate path, one leading to b * L . The kind of optimal policy illustrated in Figure 10 has the following properties: (i) whenever b 0 < b, debt converges monotonically to b * L ; (ii) whenever b 0 ∈ ( b, b skiba ), debt converges monotonically to b * H ; and (iii) whenever b 0 ≥ b skiba , debt stays constant at b 0 for ever. Comparing this result to our earlier

  Figure 11. Unlike Figure 10, the stable arm corresponding to the highest steady state no longer cycles back to b * M ; instead, it extends past b * L . This has the following important implication. If we consider b 0 = b * L , then there are two candidate optimal plans, namely the plan of staying put at b * L and the plan that leads to b * H . The former plan is dominated because it features H λ = ḃ = 0, whereas the latter features H λ = ḃ > 0. By continuity, the saddle path that leads to b * L is dominated also for any b 0 in an open neighborhood of b * L . But then the path leading to b * L can never be

Figure 11 :Figure 12 :

 1112 Figure 11: Optimal to Converge to b * H for all b 0 < b skiba

  times. Yet an additional layer of complexity emerges if the assumption that π(b)b is single-valued is relaxed. The tripartite structure of the phase diagram is then lost. Instead, the phase diagram now looks like the outcome of patching together multiple pairs of L and M regions from our earlier examples. However, as explained next, this complication does not change the big picture. Suppose that π(b)b has N local extrema, denoted by {b 1 , b 2 , b 3 , . . . , b N }, with b < b 1 < b 2 < . . . < b N < b bliss , where N is an arbitrary finite number. First, note that σ(b) crosses 1 whenever b crosses any of these points. Next, note that the last point, namely b N , is necessarily a local maximum, because after that point π(b)b falls to zero as b approaches b bliss . It follows that σ(b) is higher than 1 when b ∈ (b N , b bliss ), lower than 1 when b ∈ (b N -1 , b N ), higher than 1 when b ∈ (b N -2 , b N -1 ), and so on. By the same token, γ is positively valued b ∈ (b N , b bliss ), negatively valued than 1 when b ∈ (b N -1 , b N ), positively valued when b ∈ (b N -2 , b N -1 ), and so on.

FigureL

  Figure 13: Multiple Regions

Figure 14 :L

 14 Figure 14: No Satiation Despite ψ bliss < γ bliss (or g low enough)

  Figure 15. Relative to our benchmark, there are two changes: in region M, the λ = 0 locus presents an asymptote at b = b bliss ; and in region H, λ is now negative instead of 0. throughout region H . It follows that the Skiba point now coincides with b, and the economy converges to b * for every initial level of debt b 0 ∈ (0, b).

Figure

  Figure 15: Relaxing Assumption B0

Theorem 2 .

 2 # ≡ b ∈ (b, b bliss ] : γ(b) = ψ(b) and γ ′ (b) ≤ ψ ′ (b) 61 be the set of the points at which γ intersects ψ from above. As shown in Proposition 13, these points identify the saddle-path stable steady states of the ODE system. 30 Depending on primitives, B # may be empty, or may contain an arbitrary number of elements. 31 Regardless of this, we have the following result. In every economy, there exists a threshold b skiba ∈ [b, b] and a set B * ⊆ B # such that the following are true along the optimal policy: (i) If either b 0 ∈ B * or b 0 > max{b bliss , b skiba }, debt stays constant at b 0 for ever. (ii) If b 0 < b skiba and b 0 ∉ B * , then debt converges monotonically to a point inside B * . (iii) If b skiba < b bliss and b 0 ∈ (b skiba , b bliss ), debt converges monotonically to b bliss .

  Figure10. In this example, the aforementioned correspondence is given by the combination of three segments: the thick green line on the left of b, plus the solid blue line between b and b skiba , plus the segment of the graph of the ḃ = 0 locus that rests on the right of b skiba . As it is evident in this example, the correspondence λ * is single-valued and continuous for all b 0 other than b; the discontinuity at b reflects a switch in the optimal selection among different candidate paths. Moving beyond this specific example, the policy rule for the co-state can feature multiple such discontinuities. Any such discontinuity, however, has to involve a jump in a specific direction: applied to our setting, Theorem 2 from[START_REF] Brock | The Generalized Maximum Principle[END_REF] states that, at any point b such that limb↑ b Λ opt (b) ̸ = lim b↓ b Λ opt (b), it is necessarily the case that lim b↑ b Λ opt (b) > lim b↓ b Λ opt (b),32 In other words, as we move from higher to lower levels of debt, the co-state can only jump upwards, which means that the rate of taxation and the level of government surpluses must also jump upwards. It then follows that lower initial conditions are necessarily associated with convergence to lower steady states, which in turn is the key to the result.Thus suppose there exists an initial point b 0 = b0 such that it is optimal to converge to a point b * < b bliss . Clearly, b * must be inside B # . Next, consider the set of points at which the policy rule of the costate features a discontinuity and let b be the highest such point below b * ; if no such point exists, just let30 In knife-edge cases in which a steady state of the ODE system features γ ′ (b) = ψ ′ (b), we can not be sure of saddle-path stability. Clearly, such knife-edge cases are degenerate. In any event, they do not affect the validity of the result stated below, because this result allows B * to be a strict subset of B # .
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Note that V is the total social value of public debt, V ′ is the corresponding marginal value, and π is the equilibrium counterpart of V ′ . We will later explain why π and V ′ can, but do not have to, coincide

.2 To be precise, we allow V and π to be non-differentiable at b = b bliss . Such a kink obtains in the second example from

Section 3, because a borrowing constraint switches from binding to non-binding as b crosses b bliss from below.

As made clear in the proof of Proposition 3, the afternoon good maps to the standard consumption good in the textbook Ramsey paradigm, while the morning good helps introduce the friction of interest and thereby the functions π and V of our reduced form.

To be precise, this curve is upwards slopping if and only if the interest-rate bill, R(b)b = (ρ -π(b))b, is increasing in b.Although this may fail in region L, it does not affect the result, because it is optimal to leave region L and enter region M.

Note that is true as long as non-negative lump-sum transfers are allowed, because this restricts λ ≥ 0. Otherwise, a portion of the λ = 0 locus exists in the negative territory of region L.

[START_REF] Aiyagari | The Optimum Quantity of Debt[END_REF]'s strategy was probably dictated by the following complication: in their setting, unlike ours, the distribution of wealth is a non-redundant state variable for aggregate dynamics and hence for the planner's problem. Here,

If the war is sufficiently persistent, this mechanism becomes so strong that the level of debt actually falls, as in the example with a permanent change discussed above.

Formally, we modify the micro-founded examples of Section 3 by letting the equilibrium condition for labor be v ′ (n t ) =(1 -τ t )(1 + ω t ), where ω t is an exogenous shock. This leaves V and π in our reduced form unaffected, but makes U a joint function of τ t and ω t . We then capture an (inefficient) recession as a temporary negative shock to ω t .

This simplifies the exposition by making sure that the returns to capital do not depend on future labor supply and thereby on future labor taxes. Also, we abstract from taxation of capital.

This could be not only for reasons outside the model (such a political constraints) but also for a reason inside the model: if households are subject to similar borrowing constraints in the afternoon as in the morning, there is a limit in how much private debt they can issue, which in turn translates to a limit on how much private assets the government itself can acquire.

Understanding the mapping between the properties of V and π and the structure of the economy therefore seems a worthwhile exercise. An example is the recent paper by[START_REF] Bassetto | A Ramsey theory of financial distortions[END_REF]: in their setting, which has similar micro-foundations as Example 3 of our paper, satiation is ruled out by restrictions on capital/entrepreneurial taxation.

Relatedly, before we could use s t and τ t interchangeably because there was a one-to-one mapping between them, but now s t is a fuction of both τ t and b t , so it is easier to identify the control variable with τ t .

Both public debt and private capital are normalized by the steady-state level of output in the respective parameterization.

Recall that γ is defined to the left of the satiation point but not at it, which explains why we write γ bliss ≡ lim b↑b bliss γ(b) rather than γ bliss ≡ γ(b bliss ). Also, the existence of the limit follows from the property that, in the neighborhood of b bliss , γ is decreasing and bounded from below by 0. Finally, note that this last property is true in general, not just in the special case under consideration.

Here, we take for granted the continuity of the value of each candidate path with respect to b 0 ; for a general proof of this property, see[START_REF] Dechert | A Note on Optimal Growth with a Convex-Concave Production Function[END_REF].

In the optimal-control literature, any threshold level of the state variable at which the solution switches from one to another candidate path, such as the threshold b here, is often referred to as a "Skiba point". In our paper, we reserve the notation b skiba to refer only to the highest such threshold.

This argument mirrors Theorem 2 in[START_REF] Brock | The Generalized Maximum Principle[END_REF]. Applied to our setting, this theorem states that, whenever the policy rule of the costate features a discontinuous jump, this jump is downward. By the same token, as we move from higher to lower levels of debt, the costate can only jump upwards, which means that lower levels of debt are necessarily associated with convergence to weakly lower steady states.

In fact, the threshold ĝ in the lemma can be negative in some economies, implying that, in these economies, this result obtains for all positive levels of government spending.

C Additional Results

In this Online Appendix we discuss how our insights generalize in the presence of state-contingent debt, we elaborate on the connection to the literature on the Friedman rule, and finally we illustrate the determinants of the optimal debt issuance within Example 2.

C.1 Allowing for state-contingent debt

We now discuss how our analysis qualifies the insights of [START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF]. Relative to [START_REF] Barro | On the Determination of the Public Debt[END_REF] and AMSS [START_REF] Aiyagari | Optimal Taxation without State-Contingent Debt[END_REF], the key difference in [START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF] is the availability of state-contingent debt. This makes it feasible for the government to completely insulate its budget against any shock. But is it desirable to do so?

The answer to this question is unambiguously "yes" in [START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF]. This is because the transfers implemented by state-contingent debt are non-distortionary, so that the planner necessarily prefers them to any variation in the distortionary tax. This also explains why [START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF] find that the tax distortion is smoothed, not only across dates, but also across states; or, by the same token, why the optimal allocation is history-independent, in sharp contrast to the unit-root persistence predicted by Barro and AMSS. The answer differs in our setting. When state-contingent debt is available, our planner maintains the option to equate the shadow cost of taxation across different histories of shocks, exactly as in [START_REF] Lucas | Optimal Fiscal and Monetary Policy in an Economy without Capital[END_REF]. But unlike that environment, the planner no longer finds it optimal to do so. Instead, he finds it optimal to deviate from tax smoothing across states, in a manner that resembles the departure from smoothing taxes across dates in the deterministic model.

The rationale is simple. In order to eliminate variation in the shadow cost of taxation, the planner would have to endure a non-trivial variation in the aggregate collateral, or liquidity, of the private sector.

Starting from this reference point, a small mean-preserving reduction in the variation of the value of government liabilities leads to a second-order welfare loss in terms of increased variation in the cost of taxation but to a first-order welfare gain in terms of reduced variation in the social value of liquidity and/or seigniorage collected. It follows that the optimal policy accommodates some variation in the tax distortion in order to smooth the supply of liquidity to the private sector. But this also means that the economy behaves as if the planner did not have access to a complete set of state contingent debt instruments: the optimal tax and the optimal allocation depend on the history of fiscal shocks as if those were (partially) uninsurable.

We illustrate this property in Figure 7 using a persistent war. This is exactly the same as in the bottom of Figure 3, except that now debt is allowed to be state-contingent. The black lines give the impulse responses of the market value of debt and the tax rate in our model; the orange lines give their Lucas-Stokey counterparts, i.e., those that obtain in the absence of the financial friction. In both cases, the

D Characterization of Optimal Plan

In this Online Appendix we offer a complete, self-contained, characterization of the solution to problem (1)-(2). In particular:

• We show how to adapt the methods of Skiba (1978) to our setting so as to identify the truly optimal path among the many that satisfy the Euler and transversality conditions • We fill in the details of the benchmark case considered in the main text.

• We finally explain how the results generalize away from that benchmark, that is, when we relax Auxiliary Assumptions B0-B3 Also note that some of the results from this Online Appendix are used in the proofs found in Online Appendix B.

D.1 The ODE system

As shown in the main text, the Hamiltonian of the planner's problem can be written as follows:

where Ω(b, λ) ≡ V (b) + λπ(b)b measures the social value of the liquidity services of public debt plus the profit made from providing these services, and λ measures the shadow value of tax revenue. Throughout this Online Appendix, we are ruling out both lump-sum taxes and lump-sum transfers. This allows the possibility that λ < 0, or equivalently s < 0 and τ < 0, which means the planner may be using a distortionary subsidy in order to accumulate debt fast enough. 20 We now study the ODE system for b and λ implied by the budget constraint and the planner's Euler condition.

Consider first the budget constraint. This can be expressed as follows:

where s(λ) denotes the optimal tax revenue. It is straightforward to check that s(λ) is increasing in λ as the economy lies on the increasing branch of the Laffer curve and therefore that Ψ(b, λ) is decreasing in λ: a higher λ means higher taxes today, which in turn means lower debt tomorrow. 21 By the Implicit 20 Had we allowed the planner to use lump-sum transfers, this possibility would not have emerged: the optimal policy would have achieved the same goal with a non-distortionary lump-sum transfer. This curtails the negative territory of the phase diagram (i.e., it restricts λ ≥ 0) but does not otherwise affect the optimal dynamics. 21 Note also that Ψ(b, λ) has a kink at λ = 0, because the corner solution τ = 0 binds as λ crosses zero from below. Relaxing the lower bound on τ and/or introducing lump sum transfers would help speed up the accumulation of debt in situations in which λ < 0, but would not otherwise affect the results.

Note that Tr(J)=ρ > 0 so that the two eigenvalues of J sum up to a positive number. The determinant of J is given by det

By assumption, γ(b bliss ) > ψ(b bliss ), we have

At b bliss , both V ′ (b) and π(b) are zero, therefore γ(b bliss ) obtains from L'Hôpital's rule as

implying that det(J) < 0. Furthermore, the discriminant of the polynomial associated with the eigenvalue problem is strictly positive, ∆ = ρ 2 -4 det(J) > 0. Taken together, these results imply that the two eigenvalues are real, add up to a positive number and are of opposite sign. The local dynamics around the point (b bliss , λ bliss ) therefore satisfy a saddle path property. It is also easy to show that the eigenvector associated to the stable eigenvalue is given by and that asymptotically converges to (b * , λ * ). Exactly the same arguments as in Figure 8 guarantee that this path is the unique candidate for optimality, and hence also the optimal path, as long as b 0 < b bliss .

A crucial difference from the case in Figure 8 The point b skiba is a threshold in the state space such that it is optimal to satiate the private sector's demand for collateral-and eliminate the financial distortion-in the long run if and only if the initial level of public debt exceeds this threshold. The set B * , on the other hand, identifies the set of the steadystate points of the optimal policy-aka the optimal steady states-that lie below the satiation point.

When B * is a singleton, debt converges to the unique point in B * for all b 0 < b skiba . When instead B * contains multiple points, each such point is associated with a basin of attraction around it, and the union of all these basins equals [b, b skiba ).

Clearly, B * has to be a subset of B # , but the two need not coincide: it is possible that the planner never finds optimal to converge to some, or even any of the points in B # . For instance, whereas B * = B # in Figures 9 and 10, B * is a strict subset of B # in Figures 11 and12.

Finally, it is generally possible that B * = , meaning that satiation obtains in the long run regardless of initial conditions. But as already explained, this scenario can be ruled out by assumping at least on of the following two conditions: that g is high enough, or ψ bliss > γ bliss ; or that V ′ (b) and π(b) turn negative beyond the bliss point.

We conclude with the following clarification: Proposition 2 identifies a set of possible scenarios for the optimal policy, but does not specify whether each of these scenarios does obtain for some economies.

The next result completes the picture by offering a taxonomy of all the economies under consideration and of all possibilities that do obtain for some specification of (U ,V, π, g ). 

we know from proposition 13, that the eigenvalue associated with the stable arm is given by µ = These two results together imply that, at least for small changes in the primitives of the economy, the relevant trade off, the nature of transitional dynamics, and the comparative statics of the optimal long-run quantity of debt are the same as those discussed in the main text.