
HAL Id: hal-03763091
https://hal.science/hal-03763091v1

Submitted on 30 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern matching under DTW distance
Garance Gourdel, Anne Driemel, Pierre Peterlongo, Tatiana Starikovskaya

To cite this version:
Garance Gourdel, Anne Driemel, Pierre Peterlongo, Tatiana Starikovskaya. Pattern matching under
DTW distance. SPIRE 2022 - 29th International Symposium on String Processing and Information
Retrieval, Nov 2022, Concepción, Chile. pp.315–330. �hal-03763091�

https://hal.science/hal-03763091v1
https://hal.archives-ouvertes.fr

Pattern matching under DTW distance?

Garance Gourdel1,2, Anne Driemel3, Pierre Peterlongo2, and Tatiana
Starikovskaya1

1 DIENS, École normale supérieure de Paris, PSL Research University, France
{garance.gourdel,tat.starikovskaya}@gmail.com

2 IRISA Inria Rennes, France pierre.peterlongo@inria.fr
3 Hausdorff Center for Mathematics, University of Bonn, Germany

driemel@cs.uni-bonn.de

Abstract. In this work, we consider the problem of pattern matching
under the dynamic time warping (DTW) distance motivated by potential
applications in the analysis of biological data produced by the third gen-
eration sequencing. To measure the DTW distance between two strings,
one must “warp” them, that is, double some letters in the strings to ob-
tain two equal-lengths strings, and then sum the distances between the
letters in the corresponding positions. When the distances between let-
ters are integers, we show that for a pattern P with m runs and a text T
with n runs:
1. There is an O(m + n)-time algorithm that computes all locations

where the DTW distance from P to T is at most 1;
2. There is an O(kmn)-time algorithm that computes all locations

where the DTW distance from P to T is at most k.
As a corollary of the second result, we also derive an approximation
algorithm for general metrics on the alphabet.

Keywords: Dynamic time warping distance · pattern matching · small-
distance regime · approximation algorithms

1 Introduction

Introduced more than forty years ago [28], the dynamic time warping (DTW)
distance has become an essential tool in the time series analysis and its ap-
plications due to its ability to preserve the signal despite speed variation in
compared sequences. To measure the DTW distance between two discrete tem-
poral sequences, one must “warp” them, that is, replace some data items in
the sequences with multiple copies of themselves to obtain two equal-lengths se-
quences, and then sum the distances between the data items in the corresponding
positions.

The DTW distance has been extensively studied for parametrised curves —
sequences where the data items are points in a multidimensional space — specifi-
cally, in the context of locality sensitive hashing and nearest neighbour search [7,
? This work was partially funded by the grants ANR-20-CE48-0001, ANR-19-CE45-
0008 SeqDigger and ANR-19-CE48-0016 from the French National Research Agency.

2 G. Gourdel et al.

9]. In this work, we focus on a somewhat simpler, but surprisingly much less
studied setting when the data items are elements of a finite set, the alphabet.
Following traditions, we call such sequences strings.

The classical textbook dynamic programming algorithm computes the DTW
distance between two N -length strings in O(N2) time and space. Unfortunately,
unless the Strong Exponential Time Hypothesis is false, there is no algorithm
with strongly subquadratical time even for ternary alphabets [1, 5, 18]. On the
other hand, very recently Gold and Sharir [13] showed the first weakly sub-
quadratic time algorithm (to be more precise, the time complexity of the al-
gorithm is O(N2 log log logN/ log logN)). Kuszmaul [18] gave a O(kN)-time
algorithm that computes the value of the distance between the strings if it is
bounded by k, assuming that the distance between any two distinct letters of
the alphabet is at least one, and used it to derive a subquadratic-time approx-
imation algorithm for the general case. Finally, it is known that binary strings
admit much faster algorithms: Abboud, Backurs, and Vassilevska Williams [1]
showed an O(N1.87)-time algorithm followed by a linear-time algorithm by Kusz-
maul [20].

The problem of computing the DTW distance has also been studied in the
sparse and run-length compressed settings, as well as in the low distance regime.
In the sparse setting, we assume that most letters of the string are zeros. Hwang
and Gelfand [16] gave an O((s+ t)N)-time algorithm, where s and t denote the
number of non-zero letters in each of the two strings. On sparse binary strings,
the distance can be computed in O(s+t) time [17, 25]. Froese et al. [12] suggested
an algorithm with running time O(mN+nM), whereM,N are the length of the
strings, and m,n are the sizes of their run length encodings. If n ∈ O(

√
N) and

m ∈ O(
√
M), their algorithm runs in time O(nm · (n+m)). For binary strings,

the DTW distance can be computed in O(nm) time [8].
Nishi et al. [26] considered the question of computing the DTW distance in

the dynamic setting when the stings can be edited, and Sakai and Inenaga [27]
showed a reduction from the problem of computing the DTW distance to the
problem of computing the longest increasing subsequence, which allowed them
to give polynomial-time algorithms for a series of DTW-related problems.

In this work, we focus on the pattern matching variant of the problem: Given
a pattern P and a text T , one must output the smallest DTW distance between P
and a suffix of T [1 . . r] for every position r of the text.

Our interest to this problem sparks from its potential applications in Third
Generation Sequencing (TGS) data comparisons. TGS has changed the genomic
landscape as it allows to sequence reads of few dozens of thousand of letters
where previous sequencing techniques were limited to few hundred letters [2].
However, TGS suffers from a high error rate (from ≈ 1 to 10% depending on
the used techniques) mainly due to the fact that the DNA sequences are read
and thus sequenced at an uneven speed. The uneven sequencing speed has a
major impact in the sequencing quality of DNA regions composed of two or
more equal consecutive letters. Those regions, called homopolymers, are hardly
correctly sequenced as, due to the uneven sequencing speed, their size cannot be

Pattern matching under DTW distance 3

precisely determined [15]. In particular, a common post-sequencing task consists
in aligning the obtained reads to a reference genome. This enables for instance
to predict alternative splicing and gene expression [14] or to detect structural
variations [24]. All known aligners use the edit distance, most likely, due to
the availability of software tools for the latter (see [23] and references therein).
However, we find that the nature of TGS errors is much better described by the
DTW distance, which we confirm experimentally in Section 5.

Our contribution. As a baseline, we show that the problem of pattern matching
under the DTW distance can be solved using dynamic programming in time
O(MN), where M is the length of the pattern and N of the text (Lemma ??).

We then proceed to show more efficient algorithms for the low-distance regime
on run-length compressible data, which is arguably the most interesting setting
for the TGS data processing. Formally, in the k-DTW problem we are given an
integer k > 0, a pattern P and a text T , and must find all positions r of the
text such that the smallest DTW distance between the pattern P and a suffix
of T [1 . . r] does not exceed k. One might hope that the DTW distance is close
enough to the edit distance and thus is amenable to the techniques developed
for the latter, such as [21, 22]. In Appendix A, we show that this is indeed the
case for k = 1:

Lemma 1. Given run-length encodings of a pattern P and of a text T over an
alphabet Σ and a distance d : Σ × Σ → Z+, the 1-DTW problem can be solved
in O(m + n) time, where m is the number of runs in P and n is the number
of runs in T . The output is given in a compressed form, with a possibility to
retrieve each position in constant time.

Unfortunately, extending the approach of [21, 22] to higher values of k seems
to be impossible as it is heavily based on the fact that in the edit distance dy-
namic programming matrix the distances are non-decreasing on every diagonal,
which is not the case for the DTW distance (see Fig. 1).

In Section 3 we develop a different approach. Interestingly, we show that
the value of any cell of the bottom row and the right column of a block of the
dynamic programming table (i.e. a subtable formed by a run in the pattern
and a run in the text) can be computed in constant time given a constant-time
oracle access to the left column and the top row. Combining this with a compact
representation of the k-bounded values, we obtain the following result:

Theorem 1. Given run-length encodings of a pattern P and of a text T over an
alphabet Σ and a distance d : Σ×Σ → Z+, the k-DTW problem can be solved in
O(kmn) time, where m is the number of runs in P and n is the number of runs
in T . The output is given in a compressed form, with a possibility to retrieve
each position in constant time.

We note that while our algorithm can be significantly faster than the baseline
one, its worst-case time complexity is cubic. We leave it as an open question
whether there exists an O(k · (m+ n))-time algorithm. Finally, in Section 4 we

4 G. Gourdel et al.

use Theorem 1 to derive an approximation algorithm for the general variant of
pattern matching under the DTW distance.

G G T T T T C T T A T T T T G G T G A T A
0 0

A ∞ 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0
A ∞ 2 2 2 2 2 2 2 2 2 0 1 2 2 2 2 2 2 2 0 1 0
T ∞ 3 3 2 2 2 2 3 2 2 1 0 0 0 0 1 2 2 3 1 0 1
T ∞ 4 4 2 2 2 2 3 2 2 2 0 0 0 0 1 2 2 3 2 0 1
A ∞ 5 5 3 3 3 3 3 3 3 2 1 1 1 1 1 2 3 3 2 1 0
T ∞ 6 6 3 3 3 3 4 3 3 3 1 1 1 1 2 2 2 3 3 1 1

Fig. 1: Consider P = AATTAT and T = GGTTTTCTTATTTTGGTGATA.
A cell (i, j) contains the smallest DTW distance between P [1 . . i] and T [1 . . j],
where the distance between two letters equals one if they are distinct and zero
otherwise. A non-monotone diagonal of the table is shown in red.

2 Preliminaries

We assume a polynomial-size alphabet Σ with σ letters. A string X is a sequence
of letters. If the sequence has length zero, it is called the empty string. Otherwise,
we assume that the letters in X are numbered from 1 to n =: |X| and denote
the i-th letter by X[i]. We define X[i . . j] to be equal to X[i] . . . X[j] which we
call a substring of X if i ≤ j and to the empty string otherwise. If j = n, we call
a substring X[i . . j] a suffix of X.

Definition 1 (Run, Run-length encoding). A run of a string X is a max-
imal substring X[i . . j] such that X[i] = X[i + 1] = . . . = X[j]. The run-length
encoding of a string X, RLE(X) is a sequence obtained from X by replacing
each run with a tuple consisting of the letter forming the run and the length of
the run. For example, RLE(aabbbc) = (a, 2)(b, 3)(c, 1).

Let d : Σ × Σ → R+ be a distance function such that for any letters a, b ∈
Σ, a 6= b, we have d(a, a) = 0 and d(a, b) > 0. The dynamic time warping
distance DTWd(X,Y) between strings X,Y ∈ Σ∗ is defined as follows. If both
strings are empty, DTWd(X,Y) = 0. If one of the strings is empty, and the
other is not, then DTWd(X,Y) =∞. Otherwise, let X = X[1]X[2] . . . X[r] and
Y = Y [1]Y [2] . . . Y [q]. Consider an r × q grid graph such that each vertex (i, j)
has (at most) three outgoing edges: one going to (i + 1, j) (if it exists), one to
(i + 1, j + 1) (if it exists), and one to (i, j + 1) (if it exists). A path π in the
graph starting at (1, 1) and ending at (r, q) is called a warping path, and its cost
is defined to be

∑
(i,j)∈π d(X[i], Y [j]). Finally, DTWd(X,Y) is defined to be the

minimum cost of a warping path for X,Y . Below we omit d if it is clear from
the context.

Pattern matching under DTW distance 5

Let M = |P |, N = |T |, and D be an (M +1)× (N +1) table where the rows
are indexed from 0 to M , and the columns from 0 to N such that:

1. For all j ∈ [0, N], D[0, j] = 0;
2. For all i ∈ [1,M], D[i, 0] = +∞;
3. For all i ∈ [1,M] and j ∈ [1, N], D[i, j] equals the smallest DTW distance

between P [1 . . i] and a suffix of T [1 . . j].

(See Fig. 1.) To solve the pattern matching problem under the DTW distance,
it suffices to compute the last row of the table D.

Lemma 2. The table D can be computed in O(MN) time via a dynamic pro-
gramming algorithm, using the following recursion for all 1 ≤ i ≤M, 1 ≤ j ≤ N :

D[i, j] = min{D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]}+ d(P [i], T [j])

In the subsequent sections, we develop more efficient solutions for the low-
distance regime on run-length compressible data. We will be processing the table
D by blocks, defined as follows: A subtable D[ip . . jp, it . . jt] is called a block if
P [ip . . jp] is a run in P or ip = jp = 0, and T [it . . jt] is a run in T or it = jt = 0.
For ip, it > 0, a block D[ip . . jp, it . . jt] is called homogeneous if P [ip] = T [it].
(For example, a block D[3 . . 4][3 . . 6] in Fig. 1 is homogeneous.) A block such
that all cells in it contain a value q, for some fixed integer q, is called a q-block.
(For example, a block D[5 . . 5][11 . . 14] in Fig. 1 is a 1-block.) The border of a
block is the set of the cells contained in its top and bottom rows, as well as first
and last columns. Consider a cell (a, b) in B. We say that a block B′ is the top
neighbour of B if it contains (a− 1, b), the left neighbour if it contains (a, b− 1),
and the diagonal neighbour if it contains (a− 1, b− 1).

The following lemma is shown by induction in Appendix B:

Lemma 3. Consider a block B = D[ip . . jp, it . . jt] and cell (a, b) in it. If ip ≤
a < jp, then D[a, b] ≤ D[a+ 1, b] and if it ≤ b < jt, then D[a, b] ≤ D[a, b+ 1].

By Lemma ??, inside a homogeneous block each value is equal to the min-
imum of its neighbours. Therefore, the values in a row or in a column cannot
increase and we have the following corollary:

Corollary 1. Each homogeneous block is a q-block for some value q.

3 Main result: O(kmn)-time algorithm

In this section, we show Theorem 1 that for a pattern P withm runs and a text T
with n runs gives an O(kmn)-time algorithm. We start with the following lemma
which is a keystone to our result:

Lemma 4. For a block D[ip . . jp, it . . jt] let h = jp − ip, w = jt − it, and d =
d(P [ip], T [it]). We have for every ip < x ≤ jp:

D[x, jt] =

{
D[ip, jt − (x− ip)] + (x− ip) · d if x− ip ≤ w;
D[x− w, it] + w · d otherwise.

(1)

6 G. Gourdel et al.

For every it < y ≤ jt:

D[jp, y] =

{
D[jp − (y − it), it] + (y − it) · d if y − it ≤ h;
D[ip, y − h] + h · d otherwise.

(2)

Proof. For a homogeneous block, we have d = 0, and by Corollary 1 all the
values in such a block are equal, hence the claim of the lemma is trivially true.

Assume now d > 0. Consider x, ip < x ≤ jp, and let us show Eq. 1, Eq. 2
can be shown analogously. Let π be a warping path realizing D[x, jt]. Let (a, b)
be the first node of π belonging to the block. We have a ∈ [ip, jp] and b ∈ [it, jt]
and either a = ip or b = it. The number of edges of π in the block from (a, b) to
(x, jt) must be minimal, else there would be a shorter path, thus it is equal to
max{x− a, jt − b} and D[x, jt] = D[a, b] + max{x− a, jt − b} · d.

ip

ip + w

(ip, jt − (x− ip))

(x, jt)

(a)(b)

(c)

Case 1: x− ip ≤ w

ip

ip + w

(x− w, it)

(x, jt)

(a)

(b)

(c)

Case 2: x− ip > w

Fig. 2: Cases of Lemma 4. Possible locations of the cell (a, b) are shown in blue.

Case 1: x− ip ≤ w. Consider a cell (ip, jt−(x−ip)). There is a path from (ip, jt−
(x− ip)) to (x, jt) that takes x− ip diagonal steps inside the block, and therefore
D[x, jt] ≤ D[ip, jt− (x− ip)]+(x− ip) ·d. We now show that D[x, jt] ≥ D[ip, jt−
(x− ip)] + (x− ip) · d, which implies the claim of the lemma.

(a) If a = ip and b ≥ jt − (x− ip), then max{x − ip, jt − b} = x − ip. We have
D[x, jt] = D[ip, b]+(x− ip) ·d ≥ D[ip, jt−(x− ip)]+(x− ip) ·d (Lemma ??).

(b) If a = ip and b < jt − (x− ip), then max{x− ip, jt − b} = jt − b. As there is
a path from (a, b) = (ip, b) to (ip, jt − (x− ip)) of length (jt − (x− ip)− b),
we have D[ip, jt − (x− ip)] ≤ D[ip, b] + (jt − (x− ip)− b) · d. Consequently,

D[x, jt] = D[ip, b] + (jt − b) · d
≥ D[ip, jt − (x− ip)]− (jt − (x− ip)− b) · d+ (jt − b) · d (Lem. ??)
= D[ip, jt − (x− ip)] + (x− ip) · d

(c) If b = it, then ip ≤ a and max{x−a, jt− b} ≤ max{x− ip, w} = w. As there
is a path from (ip, it) to (ip, jt − (x − ip)) of length (jt − (x − ip) − it), we

Pattern matching under DTW distance 7

have D[ip, jt − (x− ip)] ≤ D[ip, it] + (jt − (x− ip)− it) · d. Therefore,

D[x, jt] = D[a, it] + w · d ≥ D[ip, it] + w · d (Lemma ??)
≥ D[ip, jt − (x− ip)]− (jt − (x− ip)− it) · d+ w · d
= D[ip, jt − (x− ip)] + (x− ip) · d

Case 2: x− ip > w. Consider a cell (x− w, it). There is a path from (x− w, it)
to (x, jt) that takes w diagonal steps inside the block, and therefore D[x, jt] ≤
D[x − w, it] + w · d. We now show that D[x, jt] ≥ D[x − w, it] + w · d, which
implies the claim of the lemma.

(a) If b = it and a ≥ x− w, then max{x− a, jt − b} = max{x− a,w} = w and
we have D[x, jt] = D[a, it] + w · d ≥ D[x− w, it] + w · d (Lemma ??).

(b) If b = it and a < x− w, then max{x − a, jt − b} = max{x − a,w} = x − a.
As there is a path from (a, it) to (x − w, it) of length (x − w − a), we have
D[x− w, it] ≤ D[a, it] + (x− w − a) · d by definition. Therefore,

D[x, jt] = D[a, it] + (x− a) · d
≥ D[x− w, it]− (x− w − a) · d+ (x− a) · d
= D[x− w, it] + w · d

(c) If a = ip, b ≥ it and thus max{x − a, jt − b} ≤ max{x − ip, w} = x − ip.
Additionally, as there is a path from (ip, it) to (x−w, it) of length (x−w−ip)
we have D[x− w, it] ≤ D[ip, it] + (x− w − ip) · d. Consequently,

D[x, jt] = D[ip, b] + (x− ip) · d ≥ D[ip, it] + (x− ip) · d (Lemma ??)
≥ D[x− w, it]− (x− w − ip) · d+ (x− ip) · d
= D[x− w, it] + w · d

ut

We say that a cell in a border of a block is interesting if its value is at most k.
To solve the k-DTW problem it suffices to compute the values of all interesting
cells in the last row of D. Consider a block B = D[ip . . jp, it . . jt] and recall that
the values in it are non-decreasing top to down and left to right (Lemma ??).
We can consider the following compact representation of its interesting cells. For
an integer `, define q`top ∈ [it, jt] to be the last position such that D[ip, q

`
top] ≤ `,

and q`bot ∈ [it, jt] the last position such that D[jp, q
`
bot] ≤ `. If a value is not

defined, we set it equal to it − 1. Analogously, define q`left ∈ [ip, jp] to be the
last position such that D[q`left, it] ≤ `, and q`right ∈ [ip, jp] the last position
such that D[q`right, jt] ≤ `. If a value is not defined, we set it equal to ip − 1.
Positions q0top, . . . , qktop uniquely describe the interesting border cells in the top
row of B, q0bot, . . . , q

k
bot in the bottom row, q0left, . . . , q

k
left in the leftmost column,

q0right, . . . , q
k
right in the rightmost column.

Lemma 5. The compact representations of the interesting border cells in the
top row and the leftmost column of a block B can be computed in O(k) time
given the compact representation of the interesting border cells in its neighbours.

8 G. Gourdel et al.

Proof. We explain how to compute the representation for the leftmost col-
umn of B, the representation for the top row is computed analogously. Let
d = d(P [ip], T [it]). If d = 0 (the block is homogeneous), by Corollary 1 the block
is a q-block for some value q which can be computed in O(1) time by Lemma ??
if it is interesting (and otherwise we have a certificate that the value is not
interesting). We can then derive the values q`left, ` = 0, 1, . . . , k in O(k) time.

Assume now d > 0. We start by computing D[ip, it] using Lemma ??. We
note that if D[ip, it] ≤ k, then we know the values of its neighbours realising it
and therefore can compute it, otherwise we can certify that D[ip, it] > k. Assume
D[ip, it] = v, which implies that q0left, . . . , q

min{k,v}−1
left equal ip− 1. We must now

compute qmin{k,v}
left , . . . , qkleft. Consider a cell (q, it) of the block with q > ip. The

second to the last cell in the warping path that realizes D[q, it] = ` is one of
the cells (q − 1, it), (q − 1, it − 1) or (q, it − 1), and the value of the path up to
there must be ` − d. Note that all the three cells belong either to the leftmost
column of B, or the rightmost column of its left neighbour. Consequently, for
all min{k, v} < ` ≤ k, we have q`left = min{max{q`−dleft , r

`−d
right} + 1}, jt}, and the

positions q0left, . . . , q
k
left can be computed in O(k) time. ut

Lemma 6. The compact representations of the interesting border cells in the
bottom row and the rightmost column of a block B can be computed in O(k) time
given the compact representation of the interesting border cells in its leftmost
column and the top row.

Proof. We explain how to compute the representation for the bottom row, the
representation for the rightmost column is computed analogously.

Eq. 2 and the compact representations of the leftmost column and the top
row of B partition the bottom row of B into O(k) intervals (some intervals can
be empty), and in each interval the values are described either as a constant
or as a linear function. (See Fig. 3.) Formally, let h = jp − ip. By Eq. 2, for
y ∈ [it, jp+ it−qkleft−1]∩ [it, jt] we have D[jp][y] > k. For y ∈ [jp+ it−q`left, jp+
it − q`−1left − 1] ∩ [it, jt], ` = k, k − 1, . . . , 1, we have D[jp][y] = ` + (y − it) · d.
For y ∈ [jp + it − q0left, jp + it − ip] ∩ [it, jt] we have D[jp][y] = (y − it) · d.
For y ∈ [it + h, q0top + h − 1] ∩ [it, jt] we have D[jp][y] = h · d. For y ∈ [q`top +

h, q`+1
top + h− 1] ∩ [it, jt], ` = 0, 1, . . . , k − 1, we have D[jp][y] = `+ h · d. Finally,

for y ∈ [qktop + h, jt], there is D[jp][y] > k again.
By Lemma ??, the values in the bottom row are non-decreasing. We scan the

intervals from left to right to compute the values q0bot, . . . , q
k
bot in O(k) time. In

more detail, let q`bot be the last computed value, and [i, j] be the next interval.
We set q`+1

bot = q`bot. If the values in the interval are constant and larger than
` + 1, we continue to computing q`+2

bot . If the values are increasing linearly, we
find the position of the last value smaller or equal to `+1, set q`+1

bot equal to this
position, and continue to computing q`+2

bot . Finally, if the values in the interval
are constant and equal to ` + 1, we update q`+1

bot = j and continue to the next
interval. As soon as qkbot is computed, we stop the computation. ut

Pattern matching under DTW distance 9

ip

jp

it jt

q0left

.

.

.

qkleft

jp + it − qkleft − 1 jp + it − q0left − 1

q0top qktop

q0top + h
. . .

qktop + h

Fig. 3: Compressed representation of interesting border cells.

Since there are O(mn) blocks in total, Lemmas 5 and 6 immediately imply
Theorem 1.

4 Approximation algorithm

In this section, we show an approximation algorithm for computing the smallest
DTW distance between a pattern P and a substring of a text T . We assume that
the DTW distance is defined over a metric on the alphabet Σ. Kuszmaul [18]
showed that the problem of computing the smallest DTW distance over an arbi-
trary metric can be reduced to the problem of computing the smallest distance
over a so-called well-separated tree metric:

Definition 2 (Well-separated tree metric). Consider a rooted tree τ with
positive weights on the edges whose leaves form an alphabet Σ. The tree τ specifies
a metric µτ on Σ: The distance between two leaves a, b ∈ Σ is defined as the
maximum weight of an edge in the shortest path from a to b. The metric µτ is a
well-separated tree metric if the weights of the edges are not increasing in every
root-to-leaf path. The depth of µτ is defined to be the depth of τ .

Below we show that Theorem 1 implies the following result for well-separated
tree metrics:

Lemma 7. Given run-length encodings of a pattern P with m runs and a text T
with n runs over an alphabet Σ. Assume that the DTW distance is specified by
a well-separated tree metric µτ on Σ with depth h, and suppose that the ratio
between the largest and the smallest non-zero distances between the letters of Σ
is at most exponential in L = max{|P |, |T |}. For any 0 < ε < 1, there is an
O(L1−ε · hmn logL)-time algorithm that computes O(Lε)-approximation of the
smallest DTW distance between P and a substring of T .

By plugging the lemma into the framework of [18], we obtain:

Theorem 2. Given run-length encodings of a pattern P with m runs and of
a text T with n runs over an alphabet Σ. Assume that the DTW distance is

10 G. Gourdel et al.

specified by a metric µ on Σ, and suppose that the ratio between the largest and
the smallest non-zero distances between the letters of Σ is at most exponential
in L = max{|P |, |T |}. For any 0 < ε < 1, there is a O(L1−ε ·mn log3 L)-time
algorithm that computes O(Lε)-approximation of the smallest DTW distance
between P and a substring of T correctly with high probability4.

The proof follows the lines of the full version [19] of [18], we provide it in
Appendix C for completeness. We now show Lemma 7. Compared to [18], the
main technical challenge is that our k-DTW algorithm (Theorem 1) assumes an
integer-valued distance function on the alphabet. We overcome this by developing
an intermediary 2-approximation algorithm for real-valued distances (see the two
claims below).

Proof of Lemma 7. For brevity, let δ be the smallest DTWµτ distance between
P and a substring of T .

Claim. Let 0 < ε < 1. Assume that for all a, b ∈ Σ, a 6= b, there is µτ (a, b) ≥
γ and that the value of µτ (a, b) can be evaluated in O(t) time. There is an
O(L1−εtmn)-time algorithm which either computes a 2-approximation of δ or
concludes that it is larger than γ · L1−ε.

Proof. Define a new distance function µ′τ (a, b) = dµτ (a, b)/γe. For all a, b ∈ Σ,
a 6= b, we have µτ (a, b) ≤ γ ·µ′τ (a, b) ≤ µτ (a, b)+γ ≤ 2µτ (a, b). Consequently, for
all strings X,Y we have DTWµτ (X,Y) ≤ γ ·DTWµ′τ

(X,Y) ≤ 2DTWµτ (X,Y).
Let δ′ = minS− substring of T min{2k + 1,DTWµ′τ (P, S)} for k = L1−ε. By Theo-
rem 1, it can be computed in O(L1−εtmn) time. If δ′ = 2L1−ε + 1, we conclude
that δ ≥ γ · L1−ε, and otherwise, output γδ′. ut

W.l.o.g., the minimum non-zero distance between two distinct letters of Σ
is 1 and the largest distance is some value M , which is at most exponential in L.
We run the algorithm above for γ = 1, which either computes a 2-approximation
of δ which we can output immediately, or concludes that δ ≥ L1−ε. Below we
assume that δ ≥ L1−ε.

Definition 3 (r-simplification). For a string X ∈ Σ∗ and r ≥ 1, the r-
simplification sr(X) is constructed by replacing each letter a of X with its highest
ancestor a′ in τ that can be reached from a using only edges of weight ≤ r/4.

Fact 3 (Corollary of [18, Lemma 4.6], see also [4]) For all X,Y ∈ Σ≤L,
the following properties hold:

1. DTWµτ (sr(X), sr(Y)) ≤ DTWµτ (X,Y).
2. If DTWµτ (X,Y) > Lr, then DTWµτ (sr(X), sr(Y)) > Lr/2.
4 The preprocessing time O(|Σ|2 logL) that is required to embed µ into a well-
separated metric is not accounted for in the runtime of the algorithm.

Pattern matching under DTW distance 11

Fix r ≥ 1 and 0 < ε < 1. In the (Lε, r)-DTW gap pattern matching problem,
we must output 0 if the smallest DTW distance between P and a substring of T
is at most L1−εr/4 and 1 if it is at least Lr, otherwise we can output either 0
or 1.

Claim. The (Lε, r)-DTW gap pattern matching problem can be solved inO(L1−ε·
hmn) time.

Proof. Let δr be the smallest DTWµτ distance between sr(P) and a substring
of sr(T). If L1−ε > L/2, then L = O(1) and we can compute δ exactly in
O(1) time by Lemma ??. Otherwise, we run the 2-approximation algorithm for
γ = r/4, which takes O(L1−ε ·hmn) time (we can evaluate the distance between
two letters in O(h) time). If the algorithm concludes that δr > L1−εr/4, then
δ > L1−εr/4 by Fact 3, and we can output 1. Otherwise, the algorithm outputs
a 2-approximation δ′r of δr, i.e. δr ≤ δ′r ≤ 2δr. If δ′r ≤ L1−εr ≤ Lr/2, then we
have δr ≤ Lr/2. Therefore, δ ≤ Lr by Fact 3 and we can output 0. Otherwise,
δ ≥ δr ≥ δ′r/2 > L1−εr/2 > L1−εr/4, and we can output 1. ut

Consider the (Lε/2, 2i)-DTW gap pattern matching problem for 0 ≤ i ≤
dlogMLe. If the (Lε/2, 20)-DTW gap pattern matching problem returns 0, then
we know that δ ≤ L, and can return L1−ε as a Lε-approximation for δ. There-
fore, it suffices to consider the case where the (Lε/2, 20)-DTW gap pattern
matching problem returns 1. We can assume, without computing it, that the
(Lε/2, 2dlogMLe)-DTW gap pattern matching returns 0 as δ ≤ ML. Conse-
quently, there must exist i∗ such that (Lε/2, 2i

∗−1)-DTW gap pattern match-
ing returns 1 and (Lε/2, 2i

∗−1)-DTW returns 0. We can find i∗ by a binary
search which takes O(L1−εhmn log logML) = O(L1−εhmn logL) time. We have
δ ≥ 2i

∗−1L1−ε/4 and δ ≤ 2i
∗
L, and therefore can return 2i

∗−1L1−ε/4 as aO(Lε)-
approximation of δ. ut

5 Experiments

This section provides evidence of the advantage of the DTW distance over the
edit distance when processing the third generation sequencing (TGS) data. Our
experiment compares how the two distances are affected by biological mutation
as opposed to sequencing errors, including homopolymer length errors.

We first simulate two genomes, G and G′, which can be considered as strings
on the alphabet Σ = {A,C,G, T}. The genome G is a substring of the E.coli
genome (strain SQ110, NCBI Reference Sequence: NZ_CP011322.1) of length
10000 (positions 100000 to 110000, excluded). The genome G′ is obtained from G
by simulating biological mutations, where the probabilities are chosen according
to [6]. The algorithm initializes G′ as the empty string, and pos = 1. While
pos ≤ |G| it executes the following:

1. With probability 0.01, simulate a substitution: chose uniformly at random
a ∈ Σ, a 6= G[pos]. Set G′ = G′a and pos = pos+ 1.

12 G. Gourdel et al.

2. Else, with probability 0.0005 simulate an insertion or a deletion of a sub-
string of length x, where x is chosen uniformly at random from an interval
[1, max_len_ID], where max_len_ID is fixed to 10 in the experiments:
(a) With probability 0.5, set pos = pos+ x+ 1 (deletion);
(b) With probability 0.5, choose a string X ∈ Σx uniformly at random, set

G′ = G′X and pos = pos+ 1 (insertion).
3. Else, set G′ = G′G[pos] and pos = pos+ 1.

To simulate reads, we extract substrings of G′ and add sequencing errors:

1. For each read, extract a substring R of length 500 at a random position of G′.
As G′ originates from G, we know the theoretical distance from R to G,
which we call the “biological diversity”. The biological diversity is computed
as the sum of the number of letter substitutions, letter insertions, and letter
deletions that were applied to the original substring from G to obtain R.

2. Add sequencing errors by executing the following for each position i of R:
(a) With probability 0.001, substitute R[i] with a letter a ∈ Σ, a 6= R[i].

The letter a is chosen uniformly at random.
(b) If R[i] = R[i − 1], insert with a probability phom a third occurrence of

the same letter to simulate a homopolymer error.

Fig. 4 shows the difference between the biological diversity and the smallest
edit and DTW distances between a generated read and a substring of G depend-
ing on phom. It can be seen that the DTW distance gives a good estimation of
the biological diversity, whereas, as expected, the edit distance is heavily affected
by homopolymer errors. To ensure reproducibility of our results, our complete
experimental setup is available at https://github.com/fnareoh/DTW.

Fig. 4: Edit and DTW distances offset by the biological diversity as a function
of phom. Each point is averaged over 600 reads (×30 coverage).

Pattern matching under DTW distance 13

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: FOCS’15. pp. 59–78. IEEE Computer Society
(2015). https://doi.org/10.1109/FOCS.2015.14

2. Amarasinghe, S.L., Su, S., Dong, X., Zappia, L., Ritchie, M.E., Gouil, Q.: Op-
portunities and challenges in long-read sequencing data analysis. Genome biology
21(1), 1–16 (2020)

3. Bansal, N., Buchbinder, N., Madry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. In: FOCS’11. pp. 267–276 (2011).
https://doi.org/10.1109/FOCS.2011.63

4. Braverman, V., Charikar, M., Kuszmaul, W., Woodruff, D.P., Yang,
L.F.: The one-way communication complexity of dynamic time warp-
ing distance. In: SoCG’19. LIPIcs, vol. 129, pp. 16:1–16:15 (2019).
https://doi.org/10.4230/LIPIcs.SoCG.2019.16

5. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for
string problems and dynamic time warping. In: FOCS’15. pp. 79–97 (2015).
https://doi.org/10.1109/FOCS.2015.15

6. Chen, J.Q., Wu, Y., Yang, H., Bergelson, J., Kreitman, M., Tian, D.: Variation
in the Ratio of Nucleotide Substitution and Indel Rates across Genomes in Mam-
mals and Bacteria. Molecular Biology and Evolution 26(7), 1523–1531 (03 2009).
https://doi.org/10.1093/molbev/msp063

7. Driemel, A., Silvestri, F.: Locality-Sensitive Hashing of
Curves. In: SoCG’17. LIPIcs, vol. 77, pp. 37:1–37:16 (2017).
https://doi.org/10.4230/LIPIcs.SoCG.2017.37

8. Dupont, M., Marteau, P.: Coarse-DTW for sparse time series alignment. In:
AALTD’15. LNCS, vol. 9785, pp. 157–172 (2015). https://doi.org/10.1007/978-
3-319-44412-3_11

9. Emiris, I.Z., Psarros, I.: Products of Euclidean Metrics and Applications to Prox-
imity Questions among Curves. In: SoCG’18. LIPIcs, vol. 99, pp. 37:1–37:13 (2018).
https://doi.org/10.4230/LIPIcs.SoCG.2018.37

10. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximat-
ing arbitrary metrics by tree metrics. In: STOC’03. pp. 448–455 (2003).
https://doi.org/10.1145/780542.780608

11. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: CPM’06. pp. 36–48 (2006)

12. Froese, V., Jain, B.J., Rymar, M., Weller, M.: Fast exact dynamic time warping
on run-length encoded time series. CoRR abs/1903.03003 (2019)

13. Gold, O., Sharir, M.: Dynamic time warping and geometric edit distance: Break-
ing the quadratic barrier. ACM Trans. Algorithms 14(4), 50:1–50:17 (2018).
https://doi.org/10.1145/3230734

14. Gonzalez-Garay, M.L.: Introduction to isoform sequencing using pacific bio-
sciences technology (iso-seq). In: Transcriptomics and gene regulation, pp. 141–160.
Springer (2016)

15. Huang, Y.T., Liu, P.Y., Shih, P.W.: Homopolish: a method for the removal of sys-
tematic errors in nanopore sequencing by homologous polishing. Genome Biology
22(1), 95 (2021). https://doi.org/10.1186/s13059-021-02282-6

16. Hwang, Y., Gelfand, S.B.: Sparse dynamic time warping. In: MLDM’17. LNCS,
vol. 10358, pp. 163–175 (2017)

14 G. Gourdel et al.

17. Hwang, Y., Gelfand, S.B.: Binary sparse dynamic time warping. In: MLDM’19. pp.
748–759. ibai Publishing (2019)

18. Kuszmaul, W.: Dynamic time warping in strongly subquadratic time: Algorithms
for the low-distance regime and approximate evaluation. In: ICALP’19. LIPIcs,
vol. 132, pp. 80:1–80:15 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.80

19. Kuszmaul, W.: Dynamic time warping in strongly subquadratic time: Algorithms
for the low-distance regime and approximate evaluation. CoRR abs/1904.09690
(2019). https://doi.org/10.48550/ARXIV.1904.09690

20. Kuszmaul, W.: Binary dynamic time warping in linear time. CoRR
abs/2101.01108 (2021)

21. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27(2), 557–582 (1998). https://doi.org/10.1137/S0097539794264810

22. Landau, G.M., Vishkin, U.: Fast string matching with k differences. Journal of
Computer and System Sciences 37(1), 63–78 (1988). https://doi.org/10.1016/0022-
0000(88)90045-1

23. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094–3100 (05 2018). https://doi.org/10.1093/bioinformatics/bty191

24. Mahmoud, M., Gobet, N., Cruz-Dávalos, D.I., Mounier, N., Dessimoz, C., Sed-
lazeck, F.J.: Structural variant calling: the long and the short of it. Genome biology
20(1), 1–14 (2019)

25. Mueen, A., Chavoshi, N., Abu-El-Rub, N., Hamooni, H., Minnich, A.: Awarp: fast
warping distance for sparse time series. In: ICDM’16. pp. 350–359. IEEE (2016)

26. Nishi, A., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Towards efficient
interactive computation of dynamic time warping distance. In: SPIRE’20. LNCS,
vol. 12303, pp. 27–41 (2020). https://doi.org/10.1007/978-3-030-59212-7_3

27. Sakai, Y., Inenaga, S.: A reduction of the dynamic time warping distance to the
longest increasing subsequence length. In: ISAAC’20. LIPIcs, vol. 181, pp. 6:1–6:16
(2020). https://doi.org/10.4230/LIPIcs.ISAAC.2020.6

28. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing
26(1), 43–49 (1978)

Appendix A

In this section, we show Lemma ?? that for a pattern P with m runs and and
text T with n runs gives an O(m+ n)-time algorithm.

Definition 4 (RLE-diagonals). We say that a sequence of blocks forms an
RLE-diagonal if the blocks are formed by runs i, i + 1, . . . , j of P and i + δ, i +
1 + δ, . . . , j + δ of T , for some integers i, j, δ.

Definition 5 (Streak). A q-streak is a maximal subsequence of an RLE-diagonal
containing sequential homogeneous q-blocks.

Observation 4 If D[i, j] = 0, then it belongs to a 0-streak. Furthermore, each
0-streak necessarily starts in the first row of D.

Proof. By definition, there must be a path from the first row of D to D[i, j]
containing 0-values only. For every 0-value D[i′, j′] we must have P [i′] = T [j′],

Pattern matching under DTW distance 15

and therefore every such value must belong to a homogeneous 0-block. Further-
more, two homogeneous blocks can only be neighbours diagonally, else it would
contradict the maximality of the runs. The claim follows. ut

Observation 5 If D[i, j] = 1, then D[i, j] belongs to a 1-streak or neighbours a
block in a 0-streak.

Proof. If P [i] = T [j], we are in a homogeneous block and D[i, j] belongs to a
1-streak, and we are done. Otherwise, we have P [i] 6= T [j] and there is a path
(i1, j1), (i2, j2), . . . , (iq, jq) such that i1 = 1, (iq, jq) = (i, j), and D[iq, jq] =∑q
q′=1 d(P [iq′], T [jq′]). As d(P [iq], T [iq]) ≥ 1, it follows that d(P [iq], T [iq]) = 1

for all 1 ≤ q′ ≤ q − 1, d(P [iq′], T [jq′]) = 0, and therefore D[iq′ , jq′] must belong
to a 0-streak by Observation 4. ut

Lemma 1. Given run-length encodings of a pattern P and of a text T over an
alphabet Σ and a distance d : Σ × Σ → Z+, the 1-DTW problem can be solved
in O(m + n) time, where m is the number of runs in P and n is the number
of runs in T . The output is given in a compressed form, with a possibility to
retrieve each position in constant time.

Proof. For a string S, define RLE(S) to be a string such that RLE(S)[i] contains
the letter forming the i-th run of S. For example, RLE(aabbbc) = abc. We
preprocess P ′ = RLE(P) and T ′ = RLE(T) in O(m + n) time and space to
maintain longest common suffix queries in constant time [11]. The input of a
longest common suffix query are two positions i, j of P ′ and T ′ respectively, and
the output is the largest ` such that P ′[i− ` . . i] = T ′[j − ` . . j].

Let Bi, 1 ≤ i ≤ n, be the block of D formed by the m-th run in P and the
i-th run in T . Using one longest common suffix query for each block Bi, we find
the maximal streak containing it. If this streak reaches the first row of D, it is
a 0-streak and all the values in the bottom row of Bi are zeros.

We must now decide which entries in the M -th row of D must be filled with
one. Consider an entry D[M, `] 6= 0 that belongs to a block Bi.

If Bi is contained in a streak of length at least one, then for D[M, `] to be
equal to one, it must be a 1-streak. Consider the first block in the maximal streak
containing Bi, and let c be the cell in its top left corner. Because c can not be
equal to zero, it suffices to check whether the value in c equals one. Consider a
path realizing the value of c. It goes either through the left neighbour ` of c, the
top neighbour t of c, or the diagonal neighbour d of c. Furthermore, the value
in c equals the minimum of the values in `, d, t. Therefore, the value in c equals
one iff one of the values in `, d, t equals one. Note that neither of `, d, t belongs
to a streak. By Observation 5, for the value in a cell `, d, or t to be equal to one,
the cell must neighbour a block in a zero-streak. For each block neighbouring
the cells `, d, t, we use one longest common suffix query to decide whether they
are contained in a 0-streak. If they are, then we can compute the value in that
cell and if it equals one, the value in c and all the cells in the bottom row of Bi
equal one as well.

16 G. Gourdel et al.

Suppose now that Bi does not belong to a streak. For D[M, `] to be equal to
one, it must neighbour a block in a 0-streak. Therefore, there can be only one
such cell in Bi, the one in the left bottom corner, and we can decide whether
the value in it equals to one in constant time similar to above. ut

Appendix B

Lemma 2. The table D can be computed in O(MN) time via a dynamic pro-
gramming algorithm, using the following recursion for all 1 ≤ i ≤M, 1 ≤ j ≤ N :

D[i, j] = min{D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]}+ d(P [i], T [j])

Proof. If i = 0, then for all j, D[i, j] equals the minimum distance between the
empty prefix of P and a suffix of T [1 . . j], which is zero by the definition. If i > 1
and j = 0, then D[i, j] equals the minimum distance between a non-empty prefix
of P and the empty string, which is ∞ by the definition.

Assume i, j ≥ 1. Let us show that D[i, j] ≥ min{D[i − 1, j − 1], D[i −
1, j], D[i, j−1]}+d(P [i], T [j]) and D[i, j] ≤ min{D[i−1, j−1], D[i−1, j], D[i, j−
1]}+ d(P [i], T [j]), which implies equality. We start by showing the first inequal-
ity. Recall that D[i, j] is the smallest DTW distance between P [1 . . i] and a suffix
of T [1 . . j]. Let this minimum be realised by a suffix T [j′ . . j], where 1 ≤ j′ ≤ j
(by definition, T [j′ . . j] is not empty: the distance from P [1 . . i] to a non-empty
suffix is finite, while that to the empty suffix equals∞). Let π be a warping path
such that its cost equals DTW(P [1 . . i], T [j′ . . j]). Consider the last edge in π.
If it is from (i− a, j − b) to (i, j), where a, b ∈ {0, 1} and a+ b > 0, then

DTW(P [1 . . i],T [j′ . . j])

≥ d(P [i], T [j]) + DTW(P [1 . . i− a], T [j′ . . j − b])
≥ d(P [i], T [j]) +D[i− a, j − b]
≥ d(P [i], T [j]) + min{D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]}

We now show the second inequality. Let D[i − a, i − b] = min{D[i − 1, j −
1], D[i − 1, j], D[i, j − 1]}, where a, b ∈ {0, 1} and a + b > 0. Assume that
D[i− a, j − b] is realised on P [1 . . i− a] and T [j′ . . j − b] and a warping path π.
We can then consider a warping path π′ = π ∪ e, where e is an edge from
(i− a, j − b) to (i, j) for P [1 . . i] and T [j′ . . j]. We have

D[i, j] ≤ DTW(P [1 . . i], T [j′ . . j]) ≤
∑

(x,y)∈π′
d(P [x], T [y])

= d(P [i], T [j]) +
∑

(x,y)∈π

d(P [x], T [y])

= d(P [i], T [j]) + DTW(P [1 . . i− a], T [j′ . . j − b])
= d(P [i], T [j]) +D[i− a, j − b]
= min{D[i− 1, j − 1], D[i− 1, j], D[i, j − 1]}+ d(P [i], T [j])

Pattern matching under DTW distance 17

ut

Lemma 3. Consider a block B = D[ip . . jp, it . . jt] and cell (a, b) in it. If ip ≤
a < jp, then D[a, b] ≤ D[a+ 1, b] and if it ≤ b < jt, then D[a, b] ≤ D[a, b+ 1].

Proof. Let us first give an equivalent statement of the lemma: if (a, b) and (a+
1, b) are in the same block, then D[a, b] ≤ D[a+ 1, b], and if (a, b) and (a, b+ 1)
are in the same block, then D[a, b] ≤ D[a, b+ 1].

We show the lemma by induction on a + b. The base of the induction are
the cells such that a = 0 or b = 0, and for them the statement holds by the
definition of D. Consider now a cell (a, b), where a, b ≥ 1. Assume that the
induction assumption holds for all cells (x, y) such that x + y < a + b. By
Lemma ??, we have:

D[a, b] = min{D[a− 1, b− 1], D[a− 1, b], D[a, b− 1]}+ d

D[a+ 1, b] = min{D[a, b− 1], D[a, b], D[a+ 1, b− 1]}+ d

D[a, b+ 1] = min{D[a− 1, b], D[a− 1, b+ 1], D[a, b]}+ d

Assume that (a, b) and (a + 1, b) are in the same block. We have D[a, b] ≤
D[a, b− 1] + d and trivially D[a, b] ≤ D[a, b] + d. By the induction assumption,
D[a, b − 1] ≤ D[a + 1, b − 1] (the cells (a, b − 1) and (a + 1, b − 1) must belong
to the same block). Therefore,

D[a+ 1, b] = min{D[a, b− 1], D[a, b], D[a+ 1, b− 1]}+ d

= min{D[a, b− 1] + d,D[a, b] + d,D[a+ 1, b− 1] + d}
≥ min{D[a, b], D[a, b], D[a, b− 1] + d}
≥ min{D[a, b], D[a, b], D[a, b]} = D[a, b].

Assume now that (a, b) and (a, b+ 1) are in the same block. We have D[a, b] ≤
D[a−1, b]+d. Furthermore, as (a−1, b) and (a−1, b+1) are in the same block,
we have D[a− 1, b] ≤ D[a− 1, b+ 1] by the induction assumption. Therefore,

D[a, b+ 1] = min{D[a− 1, b], D[a− 1, b+ 1], D[a, b]}+ d

= min{D[a− 1, b] + d,D[a− 1, b+ 1] + d,D[a, b] + d}
≥ min{D[a− 1, b] + d,D[a− 1, b] + d,D[a, b]}
≥ min{D[a, b], D[a, b], D[a, b]} = D[a, b].

This concludes the proof of the lemma. ut

Appendix C

Theorem 2. Given run-length encodings of a pattern P with m runs and of
a text T with n runs over an alphabet Σ. Assume that the DTW distance is
specified by a metric µ on Σ, and suppose that the ratio between the largest and

18 G. Gourdel et al.

the smallest non-zero distances between the letters of Σ is at most exponential
in L = max{|P |, |T |}. For any 0 < ε < 1, there is a O(L1−ε ·mn log3 L)-time
algorithm that computes O(Lε)-approximation of the smallest DTW distance
between P and a substring of T correctly with high probability5.

Proof. Any metric µ can be embedded in O(σ2) time into a well-separated tree
metric µτ of depth O(log σ) with expected distortion O(log σ) (see [10] and [3,
Theorem 2.4]). Furthermore, the ratio between the smallest distance and the
largest distance grows at most polynomially. Formally, for any two letters a, b
we have µ(a, b) ≤ µτ (a, b) and E(µτ (a, b)) ≤ O(log σ) · d(a, b). Therefore, we
have:

DTWµ(X,Y) ≤ DTWµτ (X,Y) (3)

E(DTWµτ (X,Y)) ≤ O(log σ) ·DTWµ(X,Y) (4)

Let δ = minS− substr. of T DTWµ(P, S) and δτ = minS− substr. of T DTWµτ (P, S).
Assume that δ is realised on a substring X, and δτ on a substring Xτ . By Eq. 3,
we then obtain:

δ = DTWµ(P,X) ≤ DTWµ(P,Xτ) ≤ δτ

And Eq. 4 gives the following:

E(δτ) ≤ E(DTWµτ (P,X)) ≤ O(log σ) ·DTWµ(P,X) = O(log σ) · δ

We apply the embedding logL times independently to obtain well-separated tree
metrics µiτ , i = 1, 2, . . . , logL. From above and by Chernoff bounds,

min
i

min
S− substring of T

DTWi
µτ (P, S)

gives an O(log σ) = O(logL) approximation of δ with high probability and can
be computed in time O(L1−ε ·mn log3 L) by Lemma 7, concluding the proof of
the theorem. ut

5 The preprocessing time O(|Σ|2 logL) that is required to embed µ into a well-
separated metric is not accounted for in the runtime of the algorithm.

