
HAL Id: hal-03762990
https://hal.science/hal-03762990v1

Submitted on 29 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal Algorithms for Parity Games and Nested
Fixpoints

Marcin Jurdziński, Rémi Morvan, K. S. Thejaswini

To cite this version:
Marcin Jurdziński, Rémi Morvan, K. S. Thejaswini. Universal Algorithms for Parity Games and
Nested Fixpoints. Lecture Notes in Computer Science, In press. �hal-03762990�

https://hal.science/hal-03762990v1
https://hal.archives-ouvertes.fr

Universal Algorithms for Parity Games and

Nested F ixpoints*

Marcin Jurdziński1, Rémi Morvan2,3, and K. S. Thejaswini1

1Department of Computer Science , University of Warwick

2École normale supérieure Paris -Saclay

3LaBRI, Univ. Bordeaux , CNRS & Bordeaux INP

August 2022

Abstract

An attractor decomposition meta-algorithm for solving parity games is given that
generalises the classic McNaughton-Zielonka algorithm and its recent quasi-polynomial
variants due to Parys (2019), and to Lehtinen, Schewe, and Wojtczak (2019). The central
concepts studied and exploited are attractor decompositions of dominia in parity games
and the ordered trees that describe the inductive structure of attractor decompositions.

The universal algorithm yields McNaughton-Zielonka, Parys, and Lehtinen-Schewe-
Wojtczak algorithms as special cases when suitable universal trees are given to it as
inputs. The main technical results provide a unified proof of correctness and structural
insights into those algorithms.

Suitably adapting the universal algorithm for parity games to fixpoint games gives
a quasi-polynomial time algorithm to compute nested fixpoints over finite complete
lattices.

The universal algorithms for parity games and nested fixpoints can be implemented
symbolically. It is shown how this can be done with O(lgd) symbolic space complexity,
improving the O(d lgn) symbolic space complexity achieved by Chatterjee, Dvořák,
Henzinger, and Svozil (2018) for parity games, where n is the number of vertices and d

is the number of distinct priorities in a parity game.

Keywords: parity games, universal trees, attractor decompositions, quasi-polynomial,
fixpoint equations, symbolic algorithms.

Acknowledgements. The first and the third author had been supported by the EPSRC
grant EP/P020992/1 (Solving Parity Games in Theory and Practice). The idea of the
design of the universal algorithm has been discovered independently and later by
Nathanaël Fijalkow; we thank him for sharing his conjectures with us and exchanging
ideas about adaptive tree-pruning rules. We also thank our anonymous reviewers and
Alexander Kozachinskiy for helpful comments on earlier drafts of the paper.

This document contains internal hyperlinks, and is best read on an electronic device.

*First version: January 2020. Full version of a paper accepted in Lecture Notes in Computer Science,
volume 13660. Emails: marcin.jurdzinski[at]warwick.ac.uk, remi.morvan[at]ens-paris-saclay.fr and
thejaswini.raghavan.1[at]warwick.ac.uk.

https://orcid.org/0000-0003-3640-8481
https://orcid.org/0000-0002-1418-3405

1 . Context

1 .1 . Parity games and their significance

Parity games play a fundamental role in automata theory, logic, and their applications to
verification [EJ91], program analysis [BKMMP19, HS21], and synthesis [GTW02, LMS20].
In particular, parity games are very intimately linked to the problems of emptiness and
complementation of non-deterministic automata on trees [EJ91, Zie98], model checking
and satisfiability checking of fixpoint logics [EJ91, EJS93, BW18], fair simulation rela-
tions [EWS05] or evaluation of nested fixpoint expressions [HSC16, BKMMP19, HS21].
It is a long-standing open problem whether parity games can be solved in polynomial
time [EJS93].

The impact of parity games goes well beyond their home turf of automata theory, logic,
and formal methods. For example, an answer [Fri09] of a question posed originally for
parity games [VJ00] has strongly inspired major breakthroughs on the computational
complexity of fundamental algorithms in stochastic planning [Fea10] and linear optimiz-
ation [Fri11b, FHZ11], and parity games provide the foundation for the theory of nested
fixpoint expressions used in program analysis [BKMMP19, HS21] and coalgebraic model
checking [HSC16].

1 .2 . Related work

The major breakthrough in the study of algorithms for solving parity games occurred
in 2017 when Calude, Jain, Khoussainov, Li, and Stephan [CJK+

17] have discovered
the first quasi-polynomial algorithm. Three other—and seemingly distinctly different—
techniques for solving parity games in quasi-polynomial time have been proposed in quick
succession soon after: by Jurdziński and Lazić [JL17], Lehtinen [Leh18], and Lehtinen,
Parys, Schewe, and Wojtczak [LPSW22]. We would like to remark that [LPSW22] is journal
paper—describing two quasi-polynomial time algorithms—combining a conference paper
of Parys [Par19] and a preprint by Lehtinen, Schewe, and Wojtczak [LSW19]. To distinguish
between the two algorithms, we refer to these versions as the algorithms by Parys and by
Lehtinen-Schewe-Wojtczak, respectively.

Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys [CDF+
19] have also un-

covered an underlying combinatorial structure of universal trees as provably underlying
the techniques of Calude et al., of Jurdziński and Lazić, and of Lehtinen. Czerwiński et al.
have also established a quasi-polynomial lower bound for the size of smallest universal
trees, providing evidence that the techniques developed in those three papers may be
insufficient for leading to futher improvements in the complexity of solving parity games.
The work of Lehtinen, Parys, Schewe, and Wojtczak [LPSW22], who noted that the tree
of recursive calls of their algorithms is universal, has not been obviously subject to the
quasi-polynomial barrier of Czerwiński et al. [CDF+

19], making it a focus of current
activity. Their algorithms are obtained by modifying the classic McNaughton-Zielonka
algorithm [McN93, Zie98], which has exponential running time in the worst case [Fri11a],
but consistently outperforms most other algorithms in practice [vD18].

Using these universal trees as a crucial structure, there have also been further work to
solve nested fixpoint expressions [HS21, ANP21] in quasi-polynomial time.

2

1 .3 . Our contributions

In this work we provide a meta-algorithm—the universal attractor decomposition al-
gorithm—that generalizes McNaughton-Zielonka, Parys’s, and Lehtinen-Schewe-Wojtczak
algorithms. There are multiple benefits of considering the universal algorithm.

Firstly, in contrast to Parys’s and Lehtinen-Schewe-Wojtczak algorithms, the universal
algorithm has a very simple and transparent structure that minimally departs from the
classic McNaughton-Zielonka algorithm. Secondly, we observe that Lehtinen-Schewe-
Wojtczak algorithm, as well as non-adaptive versions (see Sections 3.2 and 4.4) of McNaugh-
ton-Zielonka and Parys’s algorithms, all arise from the universal algorithm by using specific
classes of universal trees, strongly linking the theory of universal trees to the only class of
quasi-polynomial algorithms that had no established formal relationship to universal trees
so far. Moreover, since our algorithm can be modified to use any trees, they can also run
on several classes of universal trees like the Strahler universal trees introduced in the work
of Daviaud, Jurdziński and Thejaswini [DJT20].

Thirdly, we further develop the theory of dominia and their attractor decompositions in
parity games, initiated by Daviaud, Jurdziński, and Lazić [DJL18] and by Daviaud, Jurdziń-
ski, and Lehtinen [DJL19], and we prove two new structural theorems (the embeddable
decomposition theorem and the dominion separation theorem) about ordered trees of
attractor decompositions.

Fourthly, we use the structural theorems to provide a unified proof of correctness
of various McNaughton-Zielonka-style algorithms, identifying very precise structural
conditions on the trees of recursive calls of the universal algorithm that result in it correctly
identifying the largest dominia.

Fifthly, we identify a structure of nested fixpoint games, the parity games that arise
naturally while solving fixpoint expressions which help us solve them in quasi-polynomial
time using a modification of our universal algorithm.

Finally, we observe that thanks to its simplicity, the universal algorithm is particularly
well-suited for solving parity games as well as nested fixpoint equations efficiently in
a symbolic model of computation, when large sizes of input graphs prevent storing
them explicitly in memory. Indeed, we argue that already a routine implementation of
the universal algorithm for parity games improves the state-of-the-art symbolic space
complexity of solving parity games in quasi-polynomial time from O(d lgn) to O(d), but
we also show that a more sophisticated symbolic data structure allows to further reduce
the symbolic space of the universal algorithm to O(lgd).

2 . Dominia and decompositions

2 .1 . Strategies , traps , and dominia

A parity game G consists of a finite directed graph (V ,E) together with a partition (VEven,VOdd)

of the set of vertices V , and a function π : V →
{
0, 1, . . . ,d

}
that labels every vertex v ∈ V

with a non-negative integer π(v) called its priority. We say that a cycle is even if the highest
vertex priority on the cycle is even; otherwise the cycle is odd. We say that a parity game is
(n,d)-small if it has at most n vertices and all vertex priorities are at most d.

For a set S of vertices, we write G ∩ S for the substructure of G whose graph is the

3

subgraph of (V ,E) induced by the sets of vertices S. Sometimes, we also write G \ S to
denote G ∩ (V \ S). We assume throughout that every vertex has at least one outgoing
edge, and we reserve the term subgame to substructures G∩ S, such that every vertex in the
subgraph of (V ,E) induced by S has at least one outgoing edge. For a subgame G ′ = G∩ S,
we sometimes write VG ′ for the set of vertices S that the subgame G ′ is induced by. When
convenient and if the risk of confusion is contained, we may simply write G ′ instead of VG ′ .

A (positional) Even strategy is a set σ ⊆ E of edges such that:

• for every v ∈ VEven, there is an edge (v,u) ∈ σ,
• for every v ∈ VOdd, if (v,u) ∈ E then (v,u) ∈ σ.

We sometimes call all the edges in such an Even strategy σ the strategy edges, and the
definition of an Even strategy requires that every vertex in VEven has an outgoing strategy
edge, and every outgoing edge of a vertex in VOdd is a strategy edge.

For a non-empty set of vertices T , we say that an Even strategy σ traps Odd in T if no
strategy edge leaves T , that is, w ∈ T and (w,u) ∈ σ imply u ∈ T . We say that a set of
vertices T is a trap for Odd if there is an Even strategy that traps Odd in T .

Observe that if T is a trap in a game G then G ∩ T is a subgame of G. For brevity, we
sometimes say that a subgame G ′ is a trap if G ′ = G∩ T and the set T is a trap in G. Moreover,
the following simple “trap transitivity” property holds: if T is a trap for Odd in game G and
T ′ is a trap for Odd in subgame G∩ T then T ′ is a trap for Odd in G.

For a set of vertices D ⊆ V , we say that an Even strategy σ is an Even dominion strategy on
D if: σ traps Odd in D and every cycle in the subgraph (D,σ) is even. Finally, we say that a
set D of vertices is an Even dominion if there is an Even dominion strategy on it.

Odd strategies, trapping Even, and Odd dominia are defined in an analogous way by
swapping the roles of the two players. It is an instructive exercise to prove the following
two facts about Even and Odd dominia.

Proposition 1 (Closure under union). If D and D ′ are Even (resp. Odd) dominia then D∪D ′ is
also an Even (resp. Odd) dominion.

Proposition 2 (Dominion disjointness). If D is an Even dominion and D ′ is an Odd dominion
then D∩D ′ = ∅.

From closure under union it follows that in every parity game, there is the largest
Even dominion WEven (which is the union of all Even dominia) and the largest Odd
dominion WOdd (which is the union of all Odd dominia), and from dominion disjointness
it follows that the two sets are disjoint. The positional determinacy theorem states that,
remarkably, the largest Even dominion and the largest Odd dominion form a partition of
the set of vertices.

Theorem 3 (Positional determinacy [EJ91]). Every vertex in a given parity game is either in the
largest Even dominion or in the largest Odd dominion.

2 .2 . Reachability strategies and attractors

In a parity game G, for a target set of vertices B (“bullseye”) and a set of vertices A such
that B ⊆ A, we say that an Even strategy σ is an Even reachability strategy to B from A if
every infinite path in the subgraph (V ,σ) that starts from a vertex in A contains at least one
vertex in B.

4

For every target set B, there is the largest (with respect to set inclusion) set from which
there is an Even reachability strategy to B in G; we call this set the Even attractor to B in G

and denote it by AttrGEven(B). Odd reachability strategies and Odd attractors are defined
analogously.

We highlight the simple facts that if A is an attractor for a player in G then its complement
V \A is a trap for her; and that attractors are monotone operators: if B ′ ⊆ B then the
attractor to B ′ is included in the attractor to B.

2 .3 . Attractor decompositions

If G is a parity game in which all priorities do not exceed a non-negative even number d

then we say that
H =

〈
A, (S1,H1,A1), . . . , (Sk,Hk,Ak)

〉
is an Even d-attractor decomposition of G if:

• A is the Even attractor to the (possibly empty) set of vertices of priority d in G;

and setting G1 = G \A, for all i = 1, 2, . . . ,k, we have:

• Si is a non-empty trap for Odd in Gi in which every vertex priority is at most d− 2;
• Hi is a (d− 2)-attractor decomposition of subgame G∩ Si;
• Ai is the Even attractor to Si in Gi;
• Gi+1 = Gi \Ai;

and the game Gk+1 is empty. If d = 0 then we require that k = 0.

The following proposition states that if a subgame induced by a trap for Odd has an
Even attractor decomposition then the trap is an Even dominion. Indeed, a routine proof
argues that the union of all the reachability strategies, implicit in the attractors listed in the
decomposition, is an Even dominion strategy.

Proposition 4. If d is even, T is a trap for Odd in G, and there is an Even d-attractor decomposition
of G∩ T , then T is an Even dominion in G.

By symmetry, the dual proposition holds for player Even, assuming that d is odd.

Attractor decompositions are witnesses for the largest dominia and that the classic
recursive McNaughton-Zielonka algorithm can be amended to produce such witnesses. We
provide the details of this claim in Appendix A. Since McNaughton-Zielonka algorithm
produces Even and Odd attractor decompositions, respectively, of subgames that are
induced by sets of vertices that are complements of each other, a by-product of its analysis
is a constructive proof of the positional determinacy theorem (Theorem 3).

Theorem 5. McNaughton-Zielonka algorithm can be enhanced to produce both the largest Even
and Odd dominia, and an attractor decomposition of each. Every vertex is in one of the two dominia.

3 . Universal trees and algorithms

The running time of the McNaughton-Zielonka algorithm is, up to a small polynomial
factor, determined by the number of recursive calls it makes overall. While numerous
experiments indicate that the algorithm performs very well on some classes of random
games and on games arising from applications in model checking, temporal logic synthesis,
and equivalence checking [vD18], it is also well known that there are families of parity

5

games on which McNaughton-Zielonka algorithm performs exponentially many recursive
calls [Fri11a].

Parys [Par19] has devised an ingenious modification of McNaughton-Zielonka algorithm
that reduced the number of recursive calls of the algorithm to quasi-polynomial number
nO(lgn) in the worst case. Lehtinen, Schewe, and Wojtczak [LSW19] have slightly modified
Parys’s algorithm in order to improve the running time from nO(lgn) down to dO(lgn) for
(n,d)-small parity games. They have also made an informal observation that the tree of
recursive calls of their recursive procedure is universal.

In this paper, we argue that McNaughton-Zielonka algorithm, Parys’s algorithm, and
Lehtinen-Schewe-Wojtczak algorithm are special cases of what we call a universal attractor
decomposition algorithm. The universal algorithm is parameterized by two ordered trees
and we prove a striking structural result that if those trees are capacious enough to embed
(in a formal sense explained later) ordered trees that describe the “shape” of some attractor
decompositions of the largest Even and Odd dominia in a parity game, then the universal
algorithm correctly computes the two dominia. It follows that if the algorithm is run on
two universal trees then it is correct, and indeed we reproduce McNaughton-Zielonka,
Parys’s, and Lehtinen-Schewe-Wojtczak algorithms by running the universal algorithm on
specific classes of universal trees. In particular, Lehtinen-Schewe-Wojtczak algorithm is
obtained by using the succinct universal trees of Jurdziński and Lazić [JL17], whose size
nearly matches the quasi-polynomial lower bound on the size of universal trees [CDF+

19].

3 .1 . Universal ordered trees

Ordered trees. Ordered trees are defined inductively; an ordered tree is the trivial tree
〈〉

or a sequence
〈
T1,T2, . . . ,Tk

〉
, where Ti is an ordered tree for every i = 1, 2, . . . ,k. For an

ordered tree T, we denote its number of leaves by leaves(T) and its height by height(T), with
the convention that the height of the trivial tree is zero. Moreover, we denote by

〈
T
〉
n the

ordered tree
〈
T1, . . . ,Ti

〉
where Ti is a copy of T for each i = 1, 2, . . . ,n.

Trees of attractor decompositions. The definition of an attractor decomposition is induct-
ive and we define an ordered tree that reflects the hierarchical structure of an attractor
decomposition. If d is even and

H =
〈
A, (S1,H1,A1), . . . , (Sk,Hk,Ak)

〉
is an Even d-attractor decomposition then we define the tree of attractor decomposition H,
denoted by TH, to be the trivial ordered tree

〈〉
if k = 0, and otherwise, to be the ordered

tree
〈
TH1

,TH2
, . . . ,THk

〉
, where for every i = 1, 2, . . . ,k, tree THi

is the tree of attractor
decomposition Hi. Trees of Odd attractor decompositions are defined analogously.

Observe that the sets S1,S2, . . . ,Sk in an attractor decomposition as above are non-empty
and pairwise disjoint, which implies that trees of attractor decompositions are small relative
to the number of vertices and the number of distinct priorities in a parity game. More
precisely, we say that an ordered tree is (n,h)-small if its height is at most h and it has at
most n leaves. The following proposition can be proved by routine structural induction.

Proposition 6. If H is an attractor decomposition of an (n,d)-small parity game then its tree TH

is (n, ⌈d/2⌉)-small.

6

Embedding ordered trees. Intuitively, an ordered tree embeds another if the latter can
be obtained from the former by pruning some subtrees. More formally, every ordered
tree embeds the trivial tree

〈〉
, and

〈
T1,T2, . . . ,Tk

〉
embeds

〈
T ′
1,T ′

2, . . . ,T ′
ℓ

〉
if there are indices

i1, i2, . . . , iℓ, such that 1 ⩽ i1 < i2 < · · · < iℓ ⩽ k and for every j = 1, 2, . . . , ℓ, we have that
Tij embeds T ′

j .

Universal ordered trees. We say that an ordered tree is (n,h)-universal [CDF+
19] if it

embeds every (n,h)-small ordered tree. The complete n-ary tree of height h can be defined
by induction on h: if h = 0 then Cn,0 is the trivial tree

〈〉
, and if h > 0 then Cn,h is

the ordered tree
〈
Cn,h−1

〉
n. The tree Cn,h is obviously (n,h)-universal but its size is

exponential in h.

We define two further classes Pn,h and Sn,h of (n,h)-universal trees, introduced re-
spectively by Parys [Par19] and by Jurdziński and Lazić [JL17], whose size is only quasi-
polynomial, and hence they are significantly smaller than the complete n-ary trees of
height h. Both classes are defined by induction on n+ h.

If h = 0 then both Pn,h and Sn,h are defined to be the trivial tree
〈〉

. If h > 0 then Pn,h is
defined to be the ordered tree〈

P⌊n/2⌋,h−1

〉⌊n/2⌋ ·
〈
Pn,h−1

〉
·
〈
P⌊n/2⌋,h−1

〉⌊n/2⌋ ,

and Sn,h is defined to be the ordered tree

S⌊n/2⌋,h ·
〈
Sn,h−1

〉
· S⌊n/2⌋,h .

The following proposition can easily be proven by induction on (n,h).

Proposition 7. Ordered trees Cn,h, Pn,h and Sn,h are (n,h)-universal.

A proof of universality of Sn,h is implicit in the work of Jurdziński and Lazić [JL17],
whose succinct multi-counters are merely an alternative presentation of trees Sn,h. Parys [Par19]
has shown that the number of leaves in trees Pn,h is nlgn+O(1) and Jurdziński and
Lazić [JL17] have proved that the number of leaves in trees Sn,h is nlgh+O(1). Czer-
wiński et al. [CDF+

19] have established a quasi-polynomial lower bound on the number of
leaves in (n,h)-universal trees, which the size of Sn,h exceeds only by a small polynomial
factor.

3 .2 . Universal algorithm

Every call of McNaughton-Zielonka algorithm (Algorithm 2) repeats the main loop until
the set returned by a recursive call is empty. If the number of iterations for each value of d
is large then the overall number of recursive calls may be exponential in d in the worst
case, and that is indeed what happens for some families of hard parity games [Fri11a].

In our universal attractor decomposition algorithm (Algorithm 1), every iteration of the
main loop performs exactly the same actions as in McNaughton-Zielonka algorithm (see
Algorithm 2 and Figure 2), but the algorithm uses a different mechanism to determine how
many iterations of the main loop are performed in each recursive call. In the mutually
recursive procedures UnivOdd and UnivEven, this is determined by the numbers of children
of the root in the input trees TEven (the third argument) and TOdd (the fourth argument),
respectively. Note that the sole recursive call of UnivOdd in the i-th iteration of the main
loop in a call of UnivEven is given subtree TOdd

i as its fourth argument and, analogously,

7

procedure UnivEven(G,d,TEven,TOdd):
let TOdd =

〈
TOdd
1 ,TOdd

2 , . . . ,TOdd
k

〉
G1 ← G

for i← 1 to k do
Di ← π−1(d)∩ Gi

G ′
i ← Gi \ AttrGi

Even(Di)

Ui ← UnivOdd
(
G ′
i,d− 1,TEven,TOdd

i

)
Gi+1 ← Gi \ AttrGi

Odd(Ui)

return VGk+1

procedure UnivOdd(G,d,TEven,TOdd):
let TEven =

〈
TEven
1 ,TEven

2 , . . . ,TEven
ℓ

〉
G1 ← G

for i← 1 to ℓ do
Di ← π−1(d)∩ Gi

G ′
i ← Gi \ AttrGi

Odd(Di)

Ui ← UnivEven
(
G ′
i,d− 1,TEven

i ,TOdd)
Gi+1 ← Gi \ AttrGi

Even(Ui)

return VGℓ+1

Algorithm 1 : The universal attractor decomposition algorithm.

the sole recursive call of UnivEven in the j-th iteration of the main loop in a call of UnivOdd
is given subtree TEven

j as its third argument.

In order to characterise the tree of recursive calls, let us define the interleaving operation
on two ordered trees inductively as follows:

〈〉
▷◁ T =

〈〉
and

〈
T1,T2, . . . ,Tk

〉
▷◁ T =〈

T ▷◁ T1,T ▷◁ T2, . . . ,T ▷◁ Tk
〉
. Then the following simple proposition provides an explicit

description of the tree of recursive calls of our universal algorithm. We state it only for the
case where d is even, but a similar proposition holds when d is odd if trees TEven and TOdd

are swapped in the statement.

Proposition 8. If d is even then the tree of recursive calls to the procedure UnivEven
(
G,d,TEven,TOdd)

is the interleaving TOdd ▷◁ TEven of trees TOdd and TEven.

The following elementary proposition helps estimate the size of an interleaving of two
ordered trees and hence the running time of a call of the universal algorithm that is given
two ordered trees as inputs.

Proposition 9. If T and T ′ are ordered trees then:

• height(T ▷◁ T ′) ⩽ height(T) + height(T ′);
• leaves(T ▷◁ T ′) ⩽ leaves(T) · leaves(T ′).

In contrast to the universal algorithm, the tree of recursive calls of McNaughton-Zielonka
algorithm is not pre-determined by a structure separate from the game graph, such as
the pair of trees TEven and TOdd. Instead, McNaughton-Zielonka algorithm determines
the number of iterations of its main loop adaptively, using the adaptive empty-set early
termination rule: terminate the main loop as soon as Ui = ∅. We argue that if we add
the empty-set early termination rule to the universal algorithm in which both trees TEven

and TOdd are the tree Cn,d/2 then its behaviour coincides with McNaughton-Zielonka
algorithm.

8

Proposition 10. The universal algorithm performs the same actions and produces the same output
as McNaughton-Zielonka algorithm if it is run on an (n,d)-small parity game and with both trees
TEven and TOdd equal to Cn,d/2, and if it uses the adaptive empty-set early termination rule.

The idea of using rules for implicitly pruning the tree of recursive calls of a McNaughton-
Zielonka-style algorithm that are significantly different from the adaptive empty-set early
termination rule is due to Parys [Par19]. In this way, he has designed the first McNaughton-
Zielonka-style algorithm that works in quasi-polynomial time nO(lgn) in the worst case, and
Lehtinen, Schewe, and Wojtczak [LSW19] have refined Parys’s algorithm, improving the
worst-case running time down to nO(lgd). Both algorithms use two numerical arguments
(one for Even and one for Odd) and “halving tricks” on those parameters, which results in
pruning the tree of recursive calls down to quasi-polynomial size in the worst case. We
note that our universal algorithm yields the algorithms of Parys and of Lehtinen et al.,
respectively, if, when run on an (n,d)-small parity game and if both trees TEven and TOdd

set to be the (n,d/2)-universal trees Pn,d/2 and Sn,d/2, respectively.

Proposition 11. The universal algorithm performs the same actions and produces the same output
as Lehtinen-Schewe-Wojtczak algorithm if it is run on an (n,d)-small parity game with both trees
TEven and TOdd equal to Sn,d/2.

The correspondence between the universal algorithm executed on (n,d/2)-universal trees
Pn,d/2 and Parys’s algorithm is a bit more subtle. While both run in quasi-polynomial time
in the worst case, the former may perform more recursive calls than the latter. The two
coincide, however, if the the former is enhanced with a simple adaptive tree-pruning rule
similar to the empty-set early termination rule. The discussion of this and other adaptive
tree-pruning rules will be better informed once we have dicussed sufficient conditions for
the correctness of our universal algorithm. Therefore, we will return to elaborating the full
meaning of the following proposition in Section 4.4.

Proposition 12. The universal algorithm performs the same actions and produces the same output
as a non-adaptive version of Parys’s algorithm if it is run on an (n,d)-small parity games with both
trees TEven and TOdd equal to Pn,d/2.

4 . Correctness via structural theorems

The classical proof of the correctness of McNaughton-Zielonka algorithm [AG11] essentially
relies on claim that when one reaches the empty-set condition, then this proves that we’ve
precisely computed the opponent’s winning region. The argument breaks down if the loop
terminates before that empty-set condition obtains. Instead, Parys [Par19] has developed a
novel dominion separation technique to prove correctness of his algorithm and Lehtinen et
al. [LSW19] use the same technique to justify theirs.

In this paper, we significantly generalize the dominion separation technique of Parys,
which allows us to intimately link the correctness of our meta-algorithm to shapes (mod-
elled as ordered trees) of attractor decompositions of largest Even and Odd dominia. We
say that the universal algorithm is correct on a parity game if UnivEven returns the largest
Even dominion and UnivOdd returns the largest Odd dominion. We also say that an ordered
tree T embeds a dominion D in a parity game G if it embeds the tree of some attractor
decomposition of G∩D. The main technical result we aim to prove in this section is the
sufficiency of the following condition for the universal algorithm to be correct.

Theorem 13 (Correctness of universal algorithm). The universal algorithm is correct on a

9

F igure 1 : Traps and attractors in Proposi-
tion 16.

F igure 2 : Attractors and subgames in one
iteration of the loop in attractor decomposition
algorithms.

parity game G if it is run on ordered trees TEven and TOdd, such that TEven embeds the largest Even
dominion in G and TOdd embeds the largest Odd dominion in G.

4 .1 . Embeddable decomposition theorem

Before we prove Theorem 13, in this section we establish another technical result—the
embeddable decomposition theorem—that enables our generalization of Parys’s dominion
separation technique. Its statement is intuitive: a subgame induced by a trap has a simpler
attractor decomposition structure than the whole game itself; its proof, however, seems to
require some careful surgery.

Theorem 14 (Embeddable decomposition). See the proof of
Theorem 14 at
page 21.

If T is a trap for Even in a parity game G and
G ′ = G∩ T is the subgame induced by T , then for every Even attractor decomposition H of G, there
is an Even attractor decomposition H ′ of G ′, such that TH embeds TH ′ .

In order to streamline the proof of the embeddable decomposition theorem, we state the
following two propositions, which synthesize or generalize some of the arguments that
were also used by Lehtinen, Parys, Schewe and Wojtczak [LPSW22]. Proofs are included in
the Appendix.

Proposition 15. Suppose that R is a trap for Even in game G. Then if T is a trap for Odd in G then
T ∩ R is a trap for Odd in subgame G∩ R, and if T is an Even dominion in G then T ∩ R is an Even
dominion in G∩ R.

The other proposition is illustrated in Figure 1. Its statement is more complex than that
of the first proposition. The statement and the proof describe the relationship between the
Even attractor of a set B of vertices in a game G and the Even attractor of the set B∩ T in
subgame G∩ T , where T is a trap for Even in G.

Proposition 16. Let B ⊆ VG and let T be a trap for Even in game G. Define A = AttrGEven(B) and
A ′ = AttrG∩T

Even(B∩ T). Then T \A ′ is a trap for Even in subgame G \A.

We prove the embeddable decomposition theorem by induction on the number of
leaves of the tree of attractor decomposition H. Note that our definition of an attractor
decomposition allows for Si to be any non-empty trap for Odd in Gi in which every vertex
priority is at most d− 2, whereas Daviaud, Jurdziński, and Lehtinen’s definition [DJL19]
ask for Si to be the maximal trap for Odd satisfying the aforementioned property. Relaxing
the definition of attractor decompositions is crucial for Proposition 16 to hold.

10

4 .2 . Dominion separation theorem

The simple dominion disjointness property (Proposition 2) states that every Even dominion
is disjoint from every Odd dominion. For two sets A and B, we say that another set X

separates A from B if A ⊆ X and X ∩ B = ∅. In this section we establish a very general
dominion separation property for subgames that occur in iterations of the universal algorithm.
This allows us to prove one of the main technical results of this paper (Theorem 13) that
describes a detailed structural sufficient condition for the correctness of the universal
algorithm.

Theorem 17 (Dominion separation). See the proof of
Theorem 17 at
page 23.

Let G be an (n,d)-small parity game and let TEven =〈
TEven
1 , . . . ,TEven

ℓ

〉
and TOdd =

〈
TOdd
1 , . . . ,TOdd

k

〉
be trees of height at most ⌈d/2⌉ and ⌊d/2⌋,

respectively.

(a) If d is even and G1, . . . ,Gk+1 are the games that are computed in the successive iterations of
the loop in the call UnivEven

(
G,d,TEven,TOdd), then for every i = 0, 1, . . . ,k, we have that

Gi+1 separates every Even dominion in G that tree TEven embeds from every Odd dominion
in G that tree

〈
TOdd
1 , . . . ,TOdd

i

〉
embeds.

(b) If d is odd and G1, . . . ,Gℓ+1 are the games that are computed in the successive iterations of
the loop in the call UnivOdd

(
G,d,TEven,TOdd), then for every i = 0, 1, . . . , ℓ, we have that

Gi+1 separates every Odd dominion in G that tree TOdd embeds from every Even dominion
in G that tree

〈
TEven
1 , . . . ,TEven

i

〉
embeds.

4 .3 . Correctness and complexity

The dominion separation theorem (Theorem 17) allows us to conclude the proof of the
main universal algorithm correctness theorem (Theorem 13). Indeed, if trees TEven and
TOdd satisfy the conditions of Theorem 13 then, by the dominion separation theorem, the
set returned by the call UnivEven

(
G,d,TEven,TOdd) separates the largest Even dominion

from the largest Odd dominion, and hence—by the positional determinacy theorem
(Theorem 3)—it is the largest Even dominion. The argument for procedure UnivOdd is
analogous.

We note that the universal algorithm correctness theorem, together with Propositions 12

and 11, imply correctness of the non-adaptive version of Parys’s algorithm [Par19] and of
Lehtinen-Schewe-Wojtczak algorithm [LSW19], because trees of attractor decompositions
are (n,d/2)-small (Proposition 6) and trees Pn,d/2 and Sn,d/2 are (n,d/2)-universal.

The following fact, an alternative restatement of the conclusion of Lehtinen et al. [LSW19],
is a simple corollary of the precise asymptotic upper bounds on the size of the universal
trees Sn,d/2 established by Jurdziński and Lazić [JL17], and of Propositions 11, 8, and 9.

Proposition 18 (Complexity). The universal algorithm that uses universal trees Sn,d/2 (aka.
Lehtinen-Schewe-Wojtczak algorithm) solves (n,d)-small parity games in polynomial time if d =

O(logn), and in time n2 lg(d/lgn)+O(1) if d = ω(logn).

4 .4 . Acceleration by tree pruning

As we have discussed in Section 3.2, Parys [Par19] has achieved a breakthrough of develop-
ing the first quasi-polynomial McNaughton-Zielonka-style algorithm for parity games by
pruning the tree of recursive calls down to quasi-polynomial size. Proposition 12 clarifies
that Parys’s scheme can be reproduced by letting the universal algorithm run on universal

11

trees Pn,d/2, but as it also mentions, just doing so results in a “non-adaptive” version of
Parys’s algorithm. What is the “adaptive” version actually proposed by Parys?

Recall that the root of tree Pn,h has n+ 1 children, the first n/2 and the last n/2 children
are the roots of copies of tree Pn/2,h−1, and the middle child is the root of a copy of
tree Pn,h−1. The adaptive version of Parys’s algorithm also uses another tree-prunning
rule, which is adaptive and a slight generalization of the empty-set rule: whenever the
algorithm is processing the block of the first n/2 children of the root or the last n/2 children
of the root, if one of the recursive calls in this block returns an empty set then the rest of
the block is omitted.

We expect that our structural results (such as Theorems 13 and 17) will provide insights
to inspire development and proving correctness of further and more sophisticated adaptive
tree-pruning rules, but we leave it to future work. This may be critical for making quasi-
polynomial versions of McNaughton-Zielonka competitive in practice with its basic version
that is exponential in the worst case, but remains very hard to beat in practice [vD18,
LPSW22].

5 . Computing nested fixpoints

Computing fixpoints is fundamental in the study of computer science. Solving nested
fixpoint equations (NFEs) over finite lattices are known to be computationally equivalent to
solving parity games [BKMMP19], however, most of the reductions involve an exponential
increase in the size of the resulting parity game. The satisfiability problem of the coalgebraic
µ-calculus has also been reduced to the same [HS19]. A corollary of Calude et. al’s
breakthrough result was that specific kinds of fixpoint equations could be solved in
quasi-polynomial time. Following this progress, there were several algorithms targeted at
solving more general fixpoint equations by using universal graphs[HS21] and universal
trees [ANP21]. Hausman and Schröder gave a quasi-polynomial algorithm to solve NFEs
using progress measures on universal graphs whereas Arnold, Niwinski and Parys solved
NFEs using the key result on decompositions of dominia similar to an earlier version
of this paper. Here, we provide a slightly different way of solving nested fixpoints by
converting the equation to an exponentially sized fixpoint game, as in [HS21] but using our
universal attractor decomposition algorithm, parameterised by two trees, as in [ANP21].
The algorithm proposed by Arnold, Niwinski and Parys is similar to ours, in the sense
that both algorithms use a pair of trees to guide the computation of a subset of a complete
lattice and of a set of vertices in a parity game in our case, respectively. Since we can
describe the set of winning vertices for some player in a parity game with a formula whose
length is linear in the number of distinct priorities: d, the algorithm of [ANP21] can be
seen as a generalisation of Algorithm 1. On the other hand, we explain in this section how
to, given a nested fixpoint equation, run the latter algorithm on a parity game—called a
fixpoint game—, which has an exponential size compared to the size of the NFE, without
having an exponential blowup. We thus obtain an algorithm to compute nested fixpoint
equations in quasi-polynomial time. In this sense, we argue that the algorithm of Arnold,
Niwinski and Parys is equivalent to ours. However, it should be noted that [ANP21]
provides an asymmetrical version of their algorithm—using a technique of Seidl [Sei96]—
which is quadratically faster, in the worse case, than Algorithm 1. In section 6, a detailed
description of how to implement symbolically both variants of the universal algorithm, for
parity games and nested fixpoint, which require logarithmically less symbolic space than
Chatterjee, Dvořák, Henzinger and Svozil quasi-polynomial symbolic algorithm [CDHS18]

12

is provided.

We argue that we can directly apply our universal attractor decomposition algorithm
on these exponential sized fixpoint games with the help of a carefully designed data
structure, which ensures that we can in fact compute fixpoints using our algorithm in time
proportional to |TOdd| · |TEven|.

5 .1 . Nested F ixpoint Equations

In this subsection, we will define nested fixpoint equations over the powerset lattice.
Consider a finite set of elements U and its powerset lattice P(U). Let f be a monotone
function (component wise) from P(U)d to P(U)d. The function f can be expressed as a
tuple (f1, . . . , fd) of functions from P(U)d to P(U), where fi is the projection of f to the i-th
component.

Since there is a natural bijection from d tuples of subsets of U to subsets of (U× [d]), we
instead denote f as a function from P(U× [d]) to P(U× [d]).

A nested fixpoint equation is a system of d fixpoint equations of the form:

Xi =ηi
fi(X1, . . . ,Xd) (∗)

for i ranging from 1, . . . d and where ηi = ν if i is even, and ηi = µ otherwise. We refer
to a system such as (∗) as a nested fixpoint equation and refer to it with the short hand:
X =η f(X). One could consider a more general form of fixpoint equations where ηi ∈ {µ,ν},
but for simplicity of presentation, we restrict ourselves to the above.

The solution of a system of d fixpoint equations as the one defined by (∗), is a subset
of U× [d], defined recursively as follows. We say that the solution of the empty set of
equations is the empty tuple. For a system of one or more fixpoint equations, we define
a function fd−1 from subsets of U to subsets of

(
U× [d− 1]

)
. This function fd−1 takes as

input Yd, a subset of U, and uses this input to fix Xd = Yd in the system of equations and
the solution obtained to the system of d− 1 equations by fixing Xd to be Yd is the output
of fd−1. We finally say the solution of the system of equations is

(
fd−1(Yd), Yd

)
, where

Yd = ηd
(
λXd.fd(fd−1(Xd),Xd)

)
.

5 .2 . F ixpoint Games

Let us now define an equivalent parity game Gf, called a fixpoint game. Solving the parity
game Gf correlates to finding the solution of the system of nested fixpoint equation defined
by X =η f(X) [BKMMP19, HS21].

Here, Gf = (Vf,Ef) with the priority function πf, where Vf consists of the disjoint union(
U× [d]

)
∪ {vA | A ⊆ U× [d]}. The vertices corresponding to elements of the set

(
U× [d]

)
belong to Even and the ones corresponding to subsets of the same set belong to Odd. The
priority function πf assigns Even’s vertices (u, i) to i, and vertices Odd’s vertices to priority
0. The edges from a vertex (u, i) belonging to Even in Gf lead to the set of Odd vertices
{vA | (u, i) ∈ f(A)} and edges from a vertex vA, belonging to Odd lead to the set of Even
vertices {(u, i) | (u, i) ∈ A}.

Finding if (u, i) is in the solution of a nested fixpoint equation X =η f(X) is known to be
equivalent to solving the corresponding fixpoint game Gf of the equation from the even
vertex (u, i), as shown in Theorem 4.8 of [BKMMP19].

13

5 .3 . Solving F ixpoint Games

We provide a way to solve a fixpoint game with the help of the universal attractor decom-
position algorithm in Section 3.2.

We define a specific kind of subgames that we call flowery subgames and show that
they are pertinent to solving fixpoint games using the universal attractor decomposition
algorithm. Given two subsets ∅ ⊊ Y ⊆ X ⊆ U× [d], we define the flowery subgame on
(X, Y), denoted by F(X, Y), to be the subgame of Gf whose set of vertices consists of all Odd
vertices vA which is a subset of X intersecting non-trivially with Y, resembling the petal
of a flower along with all vertices of Even belonging to Y, resembling the core of a flower.
More formally, we define

F(X, Y) = Y ⊎ {vA | A ⊆ X and A∩ Y ̸= ∅}.

In the game Gf, on removing vertices that have no outgoing edges along with the
respective attractors to these sets of vertices, i.e., Odd attractors to Even vertices with no
outgoing edges and vice versa, we get a flowery subgame. Moreover, the following lemma
reassures us that all significant operations performed by Algorithm 1 on flowery subgames,
results in flowery subgames.

Lemma 19 (Floweriness). See the proof of
Lemma 19 at page 28.

If UnivEven (resp., UnivOdd) is run on a flowery subgame, for all
iterations in the for-loop, subgame Gi is also flowery. In particular, Gk+1, which is the subgame
returned, is flowery.

The attractor to a set of vertices during a run of the algorithm can be computed by at most
d|U| many computation of f on subsets of U× [d]. We can therefore solve nested fixpoint
games in quasi-polynomial time using the universal attractor decomposition algorithm, by
only keeping track of the sets X and Y representing each subgame, as stated below.

Theorem 20. The modified universal algorithm that computes nested fixpoint equations on trees
TOdd and TEven makes |TOdd| · |TEven| many recursive calls. Each recursive call makes at most 2d|U|

many function evaluations of f.

5 .4 . Concurrent Parity games

Concurrent parity games have been well studied before. We consider the two player version
as studied by Chatterjee, Alfredo and Henzinger in [CAH11]. These games are played
among two players—Even and Odd, but instead of partitioning the vertices among the two
players, they take simultaneous actions at each vertex and the token moves to a neighbour
depending on the actions of both players. One might also consider a stochastic version
where the simultaneous actions are decided by a pre-decided probability distribution. Both
the players are allowed to use a randomised strategy, i.e., a strategy where the next action
is proposed with the help of a probability distribution. A state is called limit-winning for
Even (resp. Odd) if Even (resp. Odd) has a strategy to win from that state with probability
arbitrarily close to 1. The decision question we have at hand, is to determine if a state is a
limit-winning state for a given input player. Concurrent parity games vary from original
parity games in that, a player might need both infinite memory and randomisation to win
these games. We refer the readers to the work of Chatterjee, Alfaro, and Henzinger [CAH11]
for a rigorous definition of the above games along with examples for the claims above. In
their paper, they show that solving concurrent parity games is in NP∩ co-NP as a corollary
of the following theorem.

14

Theorem 21 ([CAH11, Theorem 5, Lemma 29 and Lemma 30]). Limit-winning in a concurrent
parity game can be expressed as an NFE over the powerset lattice of the set of edges with alternation
depth at most 2d for a function, whose evaluation involves solving another NFE also with depth at
most 2d.

An easy corollary from Theorem 20 along with Theorem 21, we have the following.

Corollary 22. Limit-winning in concurrent parity games can be solved in quasi-polynomial time.

6 . Symbolic algorithms

Parity games that arise in applications, for example from the automata-theoretic model
checking approaches to verification and automated synthesis, often suffer from the state-
space explosion problem: the sizes of models are exponential (or worse) in the sizes of natural
descriptions of the modelled objects, and hence the models obtained may be too large
to store them explicitly in memory. One method of overcoming this problem that has
been successful in the practice of algorithmic formal methods is to represent the models
symbolically rather than explicitly, and to develop algorithms for solving the models that
work directly on such succinct symbolic representations [BCM+

92].

We adopt the set-based symbolic model of computation that was already considered for
parity games by Chatterjee, Dvořák, Henzinger, and Svozil [CDHS18]. In this model,
any standard computational operations on any standard data structures are allowed, but
there are also the following symbolic resources available: symbolic set variables can be used
to store sets of vertices in the graph of a parity game; basic set-theoretic operations on
symbolic set variables are available as primitive symbolic operations; the controllable predecessors
operations are available as primitive symbolic operations: the Even (resp. Odd) controllable
predecessor, when applied to a symbolic set variable X, returns the set of vertices from
which Even (resp. Odd) can force to move into the set X, by taking just one outgoing edge.
Since symbolic set variables can represent possibly very large and complex objects, they
should be treated as a costly resource.

Chatterjee et al. [CDHS18] have given a symbolic set-based algorithm that on (n,d)-
small parity games uses O(d logn) of symbolic set variables and runs in quasi-polynomial
time. While the dependence on n is only logarithmic, a natural question is whether this
dependence is inherent. Given that n can be prohibitively large in applications, reducing
dependence on n is desirable. In this section we argue that it is not only possible to
eliminate the dependence on n entirely, but it is also possible to exponentially improve the
dependence on d, resulting in a quasi-polynomial symbolic algorithm for solving parity
games that uses only O(lgd) symbolic set variables.

In the set-based symbolic model of computation, it is routine to compute the attractors
efficiently: it is sufficient to iterate the controllable predecessor operations. Using the
results of Jurdziński and Lazić [JL17], one can also represent a path of nodes from the
root to a leaf in the tree Sn,d/2 in O(lgn · lgd) bits, and for every node on such a path, to
compute its number of children in O(lgn · lgd) standard primitive operations. This allows
to run the whole universal algorithm (Algorithm 1) on an (n,d)-small parity game and two
copies of trees Sn,d/2, using only O(lgn · lgd) bits to represent the relevant nodes in the
trees TEven and TOdd throughout the execution.

The depth of the tree of recursive calls of the universal algorithm on an (n,d)-small
parity game is at most d. Moreover, in every recursive call, only a small constant number

15

of set variables is needed because only the latest sets VGi , Di, VG ′
i , and Ui are needed

at any time. It follows that the overall number of symbolic set variables needed to run
the universal algorithm is O(d). Also note that every recursive call can be implemented
symbolically using a constant number of primitive symbolic operations and two symbolic
attractor computations.

This improves the symbolic space from Chatterjee, Dvořák, Henzinger, and Svozil’s
O(d lgn) to O(d), while keeping the running time quasi-polynomial. This symbolic al-
gorithm is very simple and straightforward to implement, which makes it particularly
promising and attractive for empirical evaluation and deployment in applications.

Theorem 23. See the proof of
Theorem 23 at
page 29.

There exists a symbolic algorithm that solves (n,d)-small parity games using
O(lgd) symbolic set variables, O(logd · logn) bits of conventional space, and whose running time
is polynomial if d = O(logn), and quasi-polynomial, namely n2 lg(d/lgn)+O(1), if d = ω(logn).

Using the same arguments, we obtain a symbolic algorithm to solve nested fixpoint
equations in quasi-polynomial time and O(lgd) symbolic space.

7 . References

[AG11] Krzysztof R. Apt and Erich Grädel, editors. Lectures in Game Theory for
Computer Scientists. Cambridge University Press, 2011. URL: http://www.
cambridge.org/gb/knowledge/isbn/item5760379.

[ANP21] André Arnold, Damian Niwiński, and Paweł Parys. A quasi-polynomial
black-box algorithm for fixed point evaluation. In CSL, volume 183 of LIPIcs,
pages 9:1–9:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CSL.2021.9.

[BCM+
92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and

L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond. Inf. Comput.,
98(2):142–170, 1992. doi:10.1016/0890-5401(92)90017-A.

[BKMMP19] Paolo Baldan, Barbara König, Christina Mika-Michalski, and Tommaso
Padoan. Fixpoint games on continuous lattices. Proc. ACM Program. Lang.,
3(POPL), January 2019. doi:10.1145/3290339.

[BW18] Julian C. Bradfield and Igor Walukiewicz. The mu-calculus and model
checking. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 871–919. Springer,
2018. doi:10.1007/978-3-319-10575-8_26.

[CAH11] Krishnendu Chatterjee, Luca De Alfaro, and Thomas A. Henzinger. Qualit-
ative concurrent parity games. ACM Trans. Comput. Logic, 12(4), July 2011.
doi:10.1145/1970398.1970404.

[CDF+
19] Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński,

Ranko Lazić, and Paweł Parys. Universal trees grow inside separating auto-
mata: Quasi-polynomial lower bounds for parity games. In SODA, pages
2333–2349, 2019. doi:10.1137/1.9781611975482.142.

[CDHS18] Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Alexander
Svozil. Quasipolynomial set-based symbolic algorithms for parity games.
In LPAR-22, volume 57 of EPiC Series in Computing, pages 233–253, 2018.
doi:10.29007/5z5k.

16

http://www.cambridge.org/gb/knowledge/isbn/item5760379
http://www.cambridge.org/gb/knowledge/isbn/item5760379
https://doi.org/10.4230/LIPIcs.CSL.2021.9
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1145/3290339
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1145/1970398.1970404
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.29007/5z5k

[CJK+
17] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank

Stephan. Deciding parity games in quasipolynomial time. In STOC, pages
252–263, 2017. doi:10.1145/3055399.3055409.

[DJL18] Laure Daviaud, Marcin Jurdziński, and Ranko Lazić. A pseudo-quasi-
polynomial algorithm for mean-payoff parity games. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Ox-
ford, UK, July 09-12, 2018, pages 325–334. ACM, 2018. doi:10.1145/3209108.
3209162.

[DJL19] Laure Daviaud, Marcin Jurdziński, and Karoliina Lehtinen. Alternating weak
automata from universal trees. In CONCUR 2019, August 27-30, 2019, LIPIcs,
pages 18:1–18:14, 2019. doi:10.4230/LIPIcs.CONCUR.2019.18.

[DJT20] Laure Daviaud, Marcin Jurdziński, and K. S. Thejaswini. The strahler number
of a parity game. In ICALP 2020, July 8-11, 2020, volume 168 of LIPIcs, pages
123:1–123:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.123.

[EJ91] E. Allen Emerson and Charanjit Jutla. Tree automata, mu-calculus and de-
terminacy. In FOCS, pages 368–377, 1991. doi:10.1109/SFCS.1991.185392.

[EJS93] E. Allen Emerson, Charanjit S. Jutla, and Aravinda Prasad Sistla. On model-
checking for fragments of µ-calculus. In Costas Courcoubetis, editor, Computer
Aided Verification, 5th International Conference, CAV ’93, Elounda, Greece, June
28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in Computer Science,
pages 385–396. Springer, 1993. doi:10.1007/3-540-56922-7_32.

[EWS05] Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simulation
relations, parity games, and state space reduction for Büchi automata. SIAM
J. Comput., 34(5):1159–1175, 2005. doi:10.1137/S0097539703420675.

[Fea10] John Fearnley. Exponential lower bounds for policy iteration. In ICALP,
volume 6199 of Lecture Notes in Computer Science, pages 551–562. Springer,
2010. doi:10.1007/978-3-642-14162-1_46.

[FHZ11] Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. Subexponential
lower bounds for randomized pivoting rules for the simplex algorithm. In
STOC, pages 283–292. ACM, 2011. doi:10.1145/1993636.1993675.

[Fri09] Oliver Friedmann. An exponential lower bound for the parity game strategy
improvement algorithm as we know it. In Proceedings of the 24th Annual
IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009,
Los Angeles, CA, USA, pages 145–156. IEEE Computer Society, 2009. doi:
10.1109/LICS.2009.27.

[Fri11a] Oliver Friedmann. Recursive algorithm for parity games requires exponential
time. RAIRO Theor. Informatics Appl., 45(4):449–457, 2011. doi:10.1051/ita/
2011124.

[Fri11b] Oliver Friedmann. A subexponential lower bound for Zadeh’s pivoting rule
for solving linear programs and games. In IPCO, volume 6655 of Lecture
Notes in Computer Science, pages 192–206. Springer, 2011. doi:10.1007/
978-3-642-20807-2_16.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,
and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,

17

https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3209108.3209162
https://doi.org/10.1145/3209108.3209162
https://doi.org/10.4230/LIPIcs.CONCUR.2019.18
https://doi.org/10.4230/LIPIcs.ICALP.2020.123
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/3-540-56922-7_32
https://doi.org/10.1137/S0097539703420675
https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1145/1993636.1993675
https://doi.org/10.1109/LICS.2009.27
https://doi.org/10.1109/LICS.2009.27
https://doi.org/10.1051/ita/2011124
https://doi.org/10.1051/ita/2011124
https://doi.org/10.1007/978-3-642-20807-2_16
https://doi.org/10.1007/978-3-642-20807-2_16

February 2001], volume 2500 of Lecture Notes in Computer Science. Springer,
2002. doi:10.1007/3-540-36387-4.

[HS19] Daniel Hausmann and Lutz Schröder. Optimal satisfiability checking
for arithmetic µ-calculi. In Foundations of Software Science and Compu-
tation Structures, pages 277–294. Springer International Publishing, 2019.
doi:10.1007/978-3-030-17127-8_16.

[HS21] Daniel Hausmann and Lutz Schröder. Quasipolynomial computation of
nested fixpoints. In TACAS, volume 12651 of Lecture Notes in Computer Science,
pages 38–56. Springer, 2021. doi:10.1007/978-3-030-72016-2_3.

[HSC16] Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic pro-
gress measures and coalgebraic model checking. In POPL, pages 718–732.
ACM, 2016. doi:10.1145/2837614.2837673.

[JL17] Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving
parity games. In LICS, pages 1–9, 2017. doi:10.1109/LICS.2017.8005092.

[JPZ08] Marcin Jurdziński, Mike Paterson, and Uri Zwick. A deterministic subex-
ponential algorithm for solving parity games. SIAM Journal on Computing,
38(4):1519–1532, 2008. doi:10.1137/070686652.

[Leh18] Karoliina Lehtinen. A modal µ perspective on solving parity games in
quasi-polynomial time. In LICS, pages 639–648, 2018. doi:10.1145/3209108.
3209115.

[LMS20] Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. Practical syn-
thesis of reactive systems from LTL specifications via parity games. Acta
Informatica, 57(1-2):3–36, 2020. doi:10.1007/s00236-019-00349-3.

[LPSW22] Karoliina Lehtinen, Paweł Parys, Sven Schewe, and Dominik Wojtczak. A
Recursive Approach to Solving Parity Games in Quasipolynomial Time.
Logical Methods in Computer Science, Volume 18, Issue 1, January 2022. URL:
https://lmcs.episciences.org/8953, doi:10.46298/lmcs-18(1:8)2022.

[LSW19] Karoliina Lehtinen, Sven Schewe, and Dominik Wojtczak. Improving the
complexity of Parys’ recursive algorithm. arXiv:1904.11810, April 2019. doi:
10.48550/arXiv.1904.11810.

[McN93] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure
and Applied Logic, 65(2):149–184, 1993. doi:10.1016/0168-0072(93)90036-D.

[Par19] Paweł Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In
44th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2019, 2019. doi:10.4230/LIPIcs.MFCS.2019.10.

[Sei96] Helmut Seidl. Fast and simple nested fixpoints. Information Processing Letters,
59(6):303–308, 1996. doi:10.1016/0020-0190(96)00130-5.

[vD18] Tom van Dijk. Oink: An implementation and evaluation of modern par-
ity game solvers. In Tools and Algorithms for the Construction and Ana-
lysis of Systems, 24th International Conference, TACAS 2018, volume 10805

of LNCS, pages 291–308, Thessaloniki, Greece, 2018. Springer. doi:10.1007/
978-3-319-89960-2_16.

18

https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-030-17127-8_16
https://doi.org/10.1007/978-3-030-72016-2_3
https://doi.org/10.1145/2837614.2837673
https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1137/070686652
https://doi.org/10.1145/3209108.3209115
https://doi.org/10.1145/3209108.3209115
https://doi.org/10.1007/s00236-019-00349-3
https://lmcs.episciences.org/8953
https://doi.org/10.46298/lmcs-18(1:8)2022
https://doi.org/10.48550/arXiv.1904.11810
https://doi.org/10.48550/arXiv.1904.11810
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.1016/0020-0190(96)00130-5
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-319-89960-2_16

[VJ00] Jens Vöge and Marcin Jurdziński. A discrete strategy improvement algorithm
for solving parity games. In CAV 2000, volume 1855 of LNCS, pages 202–215,
Chicago, IL, USA, 2000. Springer. doi:10.1007/10722167_18.

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theoretical Computer Science, 200:135–183,
1998. doi:10.1016/S0304-3975(98)00009-7.

19

https://doi.org/10.1007/10722167_18
https://doi.org/10.1016/S0304-3975(98)00009-7

A. McNaughton -Z ielonka algorithm

procedure McN-ZEven(G,d):
if d = 0 then

return VG

i← 0; G1 ← G

repeat
i← i+ 1

Di ← π−1(d)∩ Gi

G ′
i ← Gi \ AttrGi

Even(Di)

Ui ← McN-ZOdd
(
G ′
i,d− 1

)
Gi+1 ← Gi \ AttrGi

Odd(Ui)

until Ui = ∅
return VGi

procedure McN-ZOdd(G,d):
i← 0; G1 ← G

repeat
i← i+ 1

Di ← π−1(d)∩ Gi

G ′
i ← Gi \ AttrGi

Odd(Di)

Ui ← McN-ZEven
(
G ′
i,d− 1

)
Gi+1 ← Gi \ AttrGi

Even(Ui)

until Ui = ∅
return VGi

Algorithm 2 : McNaughton-Zielonka algorithm

The classic recursive McNaughton-Zielonka algorithm (Algorithm 2) computes the
largest dominia in a parity game. In order to obtain the largest Even dominion in a parity
game G, it suffices to call McN-ZEven(G,d), where d is even and all vertex priorities in G are
at most d. In order to obtain the largest Odd dominion in a parity game G, it suffices to call
McN-ZOdd(G,d), where d is odd and all vertex priorities in G are at most d.

The procedures McN-ZEven and McN-ZOdd are mutually recursive and whenever a recursive
call is made, the second argument d decreases by 1. Figure 2 illustrates one iteration of the
main loop in a call of procedure McN-ZEven. The outer rectangle denotes subgame Gi, the
thin horizontal rectangle at the top denotes the set Di of the vertices in Gi whose priority
is d, and the set below the horizontal wavy line is subgame G ′

i, which is the set of vertices
in Gi that are not in the attractor AttrGi

Even(Di). The recursive call of McN-ZOdd returns the
set Ui, and Gi+1 is the subgame to the left of the vertical zig-zag line, and it is induced by
the set of vertices in Gi that are not in the attractor AttrGi

Odd(Ui).

A way to prove the correctness of McNaughton-Zielonka algorithm we wish to highlight
here is to enhance the algorithm slightly to produce not just a set of vertices but also
an Even attractor decomposition of the set and an Odd attractor decomposition of its
complement. We explain how to modify procedure McN-ZEven and leave it as an exercise
for the reader to analogously modify procedure McN-ZOdd. In procedure McN-ZEven(G,d),
replace the line

Ui ← McN-ZOdd(G
′
i,d− 1)

20

by the line
Ui,Hi,H ′

i ← McN-ZOdd(G
′
i,d− 1) .

Moreover, if upon termination of the repeat-until loop we have

Hi =
〈
∅, (S1, I1,A1), . . . , (Sk, Ik,Ak)

〉
then instead of returning just the set VGi , let the procedure return both VGi and the
following two objects: 〈

AttrGi
Even(Di), (S1, I1,A1), . . . , (Sk, Ik,Ak)

〉
(1)

and 〈
∅,

(
U1,H ′

1, AttrG1

Odd(U1)
)
, . . . ,

(
Ui,H ′

i, AttrGi

Odd(Ui)
)〉

(2)

In an inductive argument by induction on d and i, the inductive hypothesis is that:

• H ′
i is an Odd (d− 1)-attractor decomposition of the subgame G ′

i ∩Ui;
• Hi is an Even d-attractor decomposition of the subgame G ′

i \Ui;

and the inductive step is then to show that:

• for every i, (2) is an Odd (d+ 1)-attractor decomposition of subgame G \ Gi+1;
• upon termination of the repeat-until loop, (1) is an Even d-attractor decomposition

of subgame Gi+1.

The general arguments in such a proof are well known [McN93, Zie98, JPZ08, DJL18] and
hence we omit the details here.

B. Embeddable decomposition Theorem

Theorem 14 (Embeddable decomposition). First stated at
page 10.

If T is a trap for Even in a parity game G and
G ′ = G∩ T is the subgame induced by T , then for every Even attractor decomposition H of G, there
is an Even attractor decomposition H ′ of G ′, such that TH embeds TH ′ .

Proof of Theorem 14. Without loss of generality, assume that d is even and

H =
〈
A, (S1,H1,A1), . . . , (Sk,Hk,Ak)

〉
is an Even d-attractor decomposition of G, where A is the Even attractor to the set D of
vertices of priority d in G. In Figure 3, set T and the subgame G ′ it induces form the
pentagon obtained from the largest rectangle by removing the triangle above the diagonal
line in the top-left corner. Sets A, S1, and A1 are also illustrated, together with sets A ′, S ′

1,
A ′

1 and subgames G1, G2, G ′
1, and G ′

2, which are defined as follows.

Let G1 = G \A, and G2 = G1 \A1. We will define sets A ′, S ′
1, A ′

1, . . . , S ′
ℓ, A ′

ℓ, and Even
(d− 2)-attractor decompositions H ′

1, . . . ,H ′
ℓ of subgames G ∩ S ′

1, . . . , G ∩ S ′
ℓ, respectively,

such that
H ′ =

〈
A ′, (S ′

1,H ′
1,A ′

1), . . . , (S
′
k,H ′

ℓ,A ′
ℓ)
〉

is an Even d-attractor decomposition of subgame G ′ and TH embeds TH ′ .

Let A ′ be the Even attractor to D∩ T in G ′ and let G ′
1 = G ′ \A ′. Set S ′

1 = S1 ∩ G ′
1, let A ′

1

be the Even attractor to S ′
1 in G ′

1, and let G ′
2 = G ′

1 \A ′
1.

21

F igure 3 : Attractors, subgames, and dominia in the proof of the embeddable decomposition
theorem.

Firstly, since D ⊆ VG and T is a trap for Even in G, by Proposition 16, we have that G ′
1

is a trap for Even in subgame G1. Since S1 ⊆ VG1 and subgame G ′
1 is a trap for Even in

subgame G1, again by Proposition 16, we conclude that G ′
2 is a trap for Even in subgame G2.

Secondly, we argue that S ′
1 is an Even dominion in subgame G ′

1. This follows by recalling
that S1 is a dominion for Even in G1 and G ′

1 is a trap for Even in G1, and then applying
Proposition 15.

Thirdly, we argue that S ′
1 is a trap for Even in subgame G∩ S1. This follows by recalling

that S1 is a trap for Odd in G1 and that G ′
1 is a trap for Even in G1, and then applying

Proposition 15.

We are now in a position to apply the inductive hypothesis twice in order to complete
the definition of the attractor decomposition H ′. Firstly, recall that S ′

1 is a trap for Even in
subgame G∩ S1 and that H1 is a (d− 2)-attractor decomposition of G∩ S1, so we can apply
the inductive hypothesis to obtain a (d− 2)-attractor decomposition H ′

1 of subgame G∩ S ′
1,

such that TH1
embeds TH ′

1
. Secondly, note that

I =
〈
∅, (S2,H2,A2), . . . , (Sk,Hk,Ak)

〉
is a d-attractor decomposition of G2. We find a d-attractor decomposition I ′ of subgame G ′

2,
such that TI embeds TI ′ . Recalling that G ′

2 is a trap for Even in subgame G2, it suffices to use
the inductive hypothesis for subgame G ′

2 of game G2 and the d-attractor decomposition I

of G2.

Verifying that H ′ is a d-attractor decomposition of G ′ is routine. That TH embeds TH ′

also follows routinely from TH1
embedding TH ′

1
and TI embedding TI ′ .

C. Dominion separation theorem

Before we prove the dominion separation theorem: we recall a simple proposition from
Lehtinen, Parys, Schewe and Wojtczak [LPSW22]. Note that it is a straightfoward corollary
of the dual of Proposition 16 (in case B∩ T = ∅).

Proposition 24. If T is a trap for Odd in G and T ∩B = ∅ then we also have that T ∩AttrGOdd(B) =

∅.

Theorem 17 (Dominion separation). First stated at
page 11.

Let G be an (n,d)-small parity game and let TEven =〈
TEven
1 , . . . ,TEven

ℓ

〉
and TOdd =

〈
TOdd
1 , . . . ,TOdd

k

〉
be trees of height at most ⌈d/2⌉ and ⌊d/2⌋,

22

F igure 4 : Attractors, subgames, and dominia in the first part of the proof of the dominion
separation theorem.

respectively.

(a) If d is even and G1, . . . ,Gk+1 are the games that are computed in the successive iterations of
the loop in the call UnivEven

(
G,d,TEven,TOdd), then for every i = 0, 1, . . . ,k, we have that

Gi+1 separates every Even dominion in G that tree TEven embeds from every Odd dominion
in G that tree

〈
TOdd
1 , . . . ,TOdd

i

〉
embeds.

(b) If d is odd and G1, . . . ,Gℓ+1 are the games that are computed in the successive iterations of
the loop in the call UnivOdd

(
G,d,TEven,TOdd), then for every i = 0, 1, . . . , ℓ, we have that

Gi+1 separates every Odd dominion in G that tree TOdd embeds from every Even dominion
in G that tree

〈
TEven
1 , . . . ,TEven

i

〉
embeds.

Proof of Theorem 17. We prove the statement of part (a); the proof of part (b) is analogous.

The proof is by induction on the height of tree TOdd ▷◁ TEven (the “outer” induction). If
the height is 0 then tree TOdd is the trivial tree

〈〉
; hence k = 0, the algorithm returns the set

VG1 = VG, which contains the largest Even dominion, and which is trivially disjoint from
the largest Odd dominion (because the latter is empty).

If the height of TOdd ▷◁ TEven is positive, then we split the proof of the separation property
into two parts.

Even dominia embedded by TEven are included in Gi+1. We prove by induction on i

(the “inner” induction) that for i = 0, 1, 2, . . . ,k, if M is an Even dominion in G that TEven

embeds, then M ⊆ Gi+1.

For i = 0, this is moot because G1 = G.

For i > 0, let M be an Even dominion that has an Even d-attractor decomposition H such
that TEven embeds TH. The inner inductive hypothesis (for i− 1) implies that M ⊆ Gi.

The reader is encouraged to systematically refer to Figure 4 to better follow the rest of
this part of the proof.

Let M ′ = M \ AttrGi
Even(Di). Because Gi \ AttrGi

Even(Di) is a trap for Even in Gi and M is a
trap for Odd in Gi, the dual of Proposition 15 yields that M ′ is a trap for Even in Gi ∩M.

Then, because H is an Even d-attractor decomposition of G∩M, it follows by Theorem 14

that there is an Even d-attractor decomposition H ′ of Gi ∩M ′ such that TH embeds TH ′ ,
and hence also TEven embeds TH ′ .

23

F igure 5 : Attractors, subgames, and dominia in the second part of the proof of the dominion
separation theorem.

Therefore, because M ′ is an Even dominion in the game Gi \ AttrGi
Even(Di), part (b) of the

outer inductive hypothesis yields M ′ ∩Ui = ∅.

Finaly, because M \M ′ ⊆ AttrGi
Even(Di) and (M ′ \M)∩Ui = ∅, it follows that M∩Ui = ∅.

By Proposition 24, we obtain M∩AttrGi

Odd(Ui) = ∅ and hence M ⊆ Gi+1.

Odd dominia embedded by
〈
TOdd
1 , . . . ,TOdd

i

〉
are disjoint from Gi+1. We prove by induc-

tion on i (another “inner” induction) that for i = 0, 1, . . . ,k, if M is an Odd dominion in G

that
〈
TOdd
1 , . . . ,TOdd

i

〉
embeds, then Gi+1 ∩M = ∅.

For i = 0, note that
〈
TOdd
1 , . . . ,TOdd

i

〉
=

〈〉
and the only Odd dominion M in G that has

an Odd (d+ 1)-attractor decomposition whose tree is the trivial tree
〈〉

is the empty set,
and hence G1 ∩M = ∅, because G1 = G.

The reader is encouraged to systematically refer to Figure 5 to better follow the rest of
this part of the proof.

For i > 0, let
H =

〈
∅, (S1,H1,A1), . . . , (Sı̄,Hı̄,Aı̄)

〉
be an Odd (d+ 1)-attractor decomposition of G∩M such that

〈
TOdd
1 , . . . ,TOdd

i

〉
embeds TH.

Note that the embedding implies that ı̄ ⩽ i.

If
〈
TOdd
1 , . . . ,TOdd

i−1

〉
embeds TH then the inner inductive hypothesis (for i− 1) implies

that Gi ∩M = ∅ and thus Gi+1 ∩M = ∅ since Gi+1 ⊆ Gi.

Otherwise, it must be the case that

TOdd
i embeds THı̄

. (3)

Observe that the set A⩽ı̄−1 = A1 ∪A2 ∪ · · · ∪Aı̄−1 is a trap for Even in G∩M, and hence
by trap transitivity it is a trap for Even in G because M is a trap for Even in G. Moreover,
subgame G∩A⩽ı̄−1 has an Odd (d+ 1)-attractor decomposition

I =
〈
∅, (S1,H1,A1), . . . , (Sı̄−1,Hı̄−1,Aı̄−1)

〉
in G and hence—by the dual of Proposition 4—it is an Odd dominion in G, and ordered
tree

〈
TOdd
1 , . . . ,TOdd

i−1

〉
embeds TI. Hence, the inner inductive hypothesis (for i− 1) yields

Gi ∩A⩽ı̄−1 = ∅ . (4)

24

Set M ′ = Gi ∩M and note that not only M ′ ⊆ Aı̄, but also M ′ is a trap for Odd in Aı̄,
because Gi is a trap for Odd in G. Moreover—by Proposition 15—M ′ is an Odd dominion
in Gi because Gi is a trap for Odd in G and M is a dominion for Odd in G.

Observe that J =
〈
∅, (Sı̄,Hı̄,Aı̄)

〉
is an Odd (d+ 1)-attractor decomposition of G ∩Aı̄.

By the embeddable decomposition theorem (Theorem 14), it follows that there is an Odd
(d + 1)-attractor decomposition K of G ∩M ′ such that TJ embeds TK. Because of this
embedding, K must have the form K =

〈
∅, (S ′,K ′,M ′)

〉
. Since TJ embeds TK, we also have

that THı̄
embeds TK ′ , and hence—by (3)—TOdd

i embeds TK ′ .

Note that S ′ is a trap for Odd in G∩M ′ in which every vertex priority is at most d− 1,
because K is an Odd (d+ 1)-attractor decomposition of G∩M ′. It follows that S ′ is also an
Odd dominion in Gi \ AttrGi

Even(Di).

The outer inductive hypothesis then yields S ′ ⊆ Ui. It follows that

M ′ = AttrGi∩M ′

Odd (S ′) ⊆ AttrGi

Odd(S
′) ⊆ AttrGi

Odd(Ui) ,

where the first inclusion holds because M ′ is a trap for Even in Gi, and the second follows
from monotonicity of the attractor operator. When combined with with (4), this implies
Gi+1 ∩M = ∅.

D. Floweriness lemma

In this Appendix, we will prove Lemma 19 and Theorem 20. Whenever we want to denote
the fixpoint obtained by repeated application of a monotone function f on a set, we call this
f∗. Before we embark on the proofs, we would like to call attention to following property
of flowery subgames. It shows how complements of two specific kinds of flowery sets
result in another flowery subgame. We will use this property in several of our proofs.

Property 25. For A ⊆ Y ⊆ X ⊆ (U× [d]), we have:

F(X, Y) \ F(X,A) = F(X \A, Y \A).

Notice that F(X \A, Y \A) = F(Z∪W,W), where Z = X \ Y and W = X \A.

Consider the following proposition useful in the proof of the Lemma 19.

Proposition 26. Given a fixpoint game Gf, after removing the Even attractor to the set of Odd
vertices with no outgoing edges and the Odd attractor to the Even vertices with no outgoing edges,
we are left with a flowery subgame.

Proof. The game Gf contains exactly the vertices in the subgame F(U× [d],U× [d]) along
with v∅.

• Initially, we remove the only Odd vertex with no outgoing edge: v∅, along with its
Even attractor. The Even attractor to v∅ in Gf is exactly all the vertices of the flowery
set F(Z,Z) and v∅, where Z = f∗(∅) winning for Even. The remaining subgame
after removing these vertices is the flowery subgame F(U× [d],

(
U× [d]

)
\ Z) from

Property 25.
• Let us call the flowery subgame obtained from the above procedure F(X, Y). Observe

that if Y ⊆ f(X), then there is always an outgoing edge for each vertex in the subgame.
If not, we remove the Odd attractor to the set of Even vertices with no outgoing edges:
Y ∩ f(X). The complement of this Odd attractor turns out to be the flowery subgame
F(X, Y \ f(X)) from Property 25.

25

Assuming now that we always have outgoing edges in flowery subgames, we consider the
following Lemma which shows how we can compute attractors to sets in these subgames
with at most d · |U| many calls to the function f.

Let us now prove Lemma 19 by instead proving a stronger statement stated in Lemma 31.
To lead to the proof of Lemma 31, we need Lemma 27 which states intuitively that
computing attractors to specific flowery subgames lead to specific flowery subgames whose
complement is also flowery.

Lemma 27. In a flowery subgame G = F(X, Y):

(a) the Even attractor to a set of Even vertices A ⊆ Y in G = F(X, Y) where Z = X \ Y is

F(Z∪ Pre∗G,Even(A),Pre∗G,Even(A))

where PreG,Even(A) =
(
f(Z∪A)∩ Y

)
∪A;

(b) the Odd attractor to a set of Even vertices A or a subgame F(X,A) in G = F(X, Y) is

F(X,Pre∗G,Odd(A))

where PreG,Odd(A) = (f(X \A)∩ Y)∪A.

We will break down our Lemma into Propositions 28 and 29 which will result in
Corollary 30 from which Lemma 27 follows.

Proposition 28. In a flowery subgame G = F(X, Y) and A ⊆ Y, the flowery subgame F(Z ∪
PreG,Even(A),PreG,Even(A)) is exactly the set of vertices from which Even has a strategy to visit A
in at most three steps, where PreG,Even(A) =

(
f(Z∪A)∩ Y

)
∪A.

Proof. We will argue about vertices from which Even has a strategy to visit vertices in A in
at most one, two and three steps below.

(1) Consider any Odd vertex vB where B ⊆ Z∪A and the intersection of B with A is non
empty. From such a vB, in one step, Even can ensure that a play reaches A. All such
vertices vB along with the core A is exactly denoted by the vertices of the subgame
F(Z∪A,A).

(2) We will show that from any Even vertex (u, i) ∈ PreG,Even(A) = f(Z∪A)∩ Y}∪A, there
is a strategy for Even to reach a Even vertex in A in at most two steps. To show this,
we will show that:
(⇒) in one step, Even can move to some Odd vertex vB ∈ F(Z∪A,A);
(⇐) from vertices not in PreG,Even(A), all of Even’s outgoing edges lead to a vertex

not in F(Z∪A,A).
To show the forward direction, let (u, i) ∈ (f(Z ∪A) ∩ Y) ∪A, if (u, i) ∈ A then we
are done, if not, the strategy for Even from (u, i) is to choose the Odd vertex vZ∪A

and such an edge exists since (u, i) ∈ f(Z∪A), and this Odd vertex is in the flowery
subgame F(Z∪A,A).
To show the reverse direction,Consider (u, i) /∈ f(Z∪A)∪A but (u, i) ∈ Y. All edges
out of the Even vertex (u, i) leads to an Odd vertex vB in F(X, Y) such that B has
some element other than from Z or A i.e, B \ (Z ∪A) ̸= ∅. This follows from the
monotonicity of f along with our assumption that (u, i) /∈ f(Z ∪A). After one step,
the game is at an Odd vertex vB that it is not in F(Z∪A,A).

(3) The argument to conclude that F(X,PreG,Odd(A)) is exactly the set we desire is similar
to (1).

26

Proposition 29. In a flowery subgame G = F(X, Y) and A ⊆ Y, From any vertex of the flowery
subgame F(X,PreG,Odd(A)), Odd has a strategy to visit a set of Even vertices A in at most three
steps where PreG,Odd(A) = (f(X \A)∩ Y)∪A. The above subgame is the exact set of vertices from
which Odd has such a strategy.

Proof. We show the set of vertices from which Even has a strategy to visit vertices in A in
at most one, two and three steps below.

(1) From vertex vB where B of X which intersects with A non-trivially, Odd would be
able to reach a vertex in A in at most one step. This exactly is all the Odd vertices in
the flowery subgame F(X,A).

(2) We will show that in one step, Odd has a strategy to visit the subgame F(X,A) from
vertices in PreG,Odd(A)∪A. We do this by showing inclusion in two direction.
(⇒) Consider (v, j) ∈ PreG,Odd(A) = (f(X \A)∩ Y)∪A. If (v, j) /∈ A, then (v, j) ∈ Y and

f(X \A). Mainly note that (v, j) /∈ f(X \A). Since all subgames are such that there
is always an outgoing edge and given that f is monotone, any Odd vertex vB in
F(X, Y) which has an edge to it from (v, j) must be such that B∩A ̸= ∅. For any
choice successors from (v, j) of Even will lead to a vertex B which intersects with
A and hence there is a strategy for Odd to move to a vertex in (u, i) in B∩A.

(⇐) Now we need to show a strategy for Even to remain in the complement of
the game F(X,PreG,Odd(A)) for two steps from all other Even vertices. Let us
denote PreG,Odd(A) by W. Note that the complement of F(X,W) in F(X, Y) is
F(X \W, Y \W). Notice that

Y \W = Y \
(
f(X \A)∪A

)
So, any (w, j) ∈ Y \ Z is in Y and since (w, j) /∈ W, (w, j) ∈ f(X \A). This means
that from any such (w, j), Even can choose the vertex vB in F(X \W, Y \W) where
B ⊆ X \A, making sure that in the next step Odd will not be able to take the
play to an Even vertex in A.

(3) From the structure of the game, it is easy to see that any vB such that B intersects
with PreG,Odd(A)∪A would be able to visit an element in PreG,Odd(A)∪A, which we
have shown is exactly the set of vertices from which Odd could force the play in at
most two steps to visit A.

From the proof of the Propositions 28 and 29, we can extend these to show the following
Corollary from which Lemma 27 follows.

Corollary 30. In a flowery subgame G = F(X, Y) and A ⊆ Y,

• The flowery subgame F(Z∪PreG,Even(A),PreG,Even(A)) is the set of vertices from which Even
has a strategy to visit the vertices in F(Z∪A,A) in at most two steps, where PreG,Even(A) =(
f(Z∪A)∩ Y

)
∪A;

• The vertices of F(X,PreG,Odd(A)) is the set of vertices from which Odd has a strategy to visit
a vertex in F(X,A) in at most two steps.

We state that Lemma 27 follows naturally from Corollary 30 and conclude the proof of
Lemma 27.

We will now proceed to the main proof of the section:

Lemma 19 (Floweriness). First stated at
page 14.

If UnivEven (resp., UnivOdd) is run on a flowery subgame, for all
iterations in the for-loop, subgame Gi is also flowery. In particular, Gk+1, which is the subgame
returned, is flowery.

27

We will instead prove a stronger version of Lemma 19, stated below:

Lemma 31. (i) If UnivEven is run on a flowery subgame F(X, Y), then in all iterations in the
for-loop in the subgame Gi is of the form F(X \A ′

i, Y \A ′
i) for A ′

i ⊆ Y, in particular Gk+1,
which is the set of vertices returned.

(ii) If UnivOdd is run on a flowery subgame F(X, Y), then in all iterations in the for-loop, the
subgame Gi is of the form F(X, Y \A ′

i), where A ′
i ⊆ Y in particular Gk+1, which is the set of

vertices returned.

Proof of Lemmas 19 and 31. We will prove this by induction on the sum of the number of
vertices in these subgames and the number of vertices on which these calls are made. For
the base case, with an empty set irrespective of any priority, the above statement is trivially
true. We will now prove that (i) and (ii) hold for games with at least one vertex and trees
TEven and TOdd. The proof follows from Lemma 27 and induction as shown.

(i) Since G1 = G = F(X, Y), we show that if Gi is of the form F(X \A ′
i, Y \A ′

i) where Ai ⊆ Y.
For convienience, we will call X \A ′

i as Xi and Y \A ′
i as Yi. We will show that Gi+1 is of

the form F(X \A ′
i+1, Y \A ′

i+1) by showing that in fact it is F(Xi \A
′
i+1, Yi \A ′

i+1) for some
A ′

i+1 ⊆ Y. First notice that G ′
i = Gi \Attr

Gi
Even(Di), where Di is some subset of Even vertices.

From Lemma 28, we have for Z = X \ Y,

Gi \Attr
Gi
Even(Di) = F(Xi, Y ′

i) \ F(Z∪ Pre
∗
Gi,Even(Di),Pre∗Gi,Even(Di))

Since Z = X \ Y = Xi \ Yi, we have

G ′
i = G ′

i = F(Xi, Yi \ Pre∗Gi,Even(Di))

The Ui computed by performing UnivOdd on G ′
i must be of the form F(Xi,Zi) for Zi ⊆ Yi

by induction and the attractor to Ui, must be of the form F(Xi,Wi) from Proposition 28.
Hence

Gi+1 = F(Xi, Yi) \ F(Xi,Wi) = F(Xi \Wi,Xi \Wi).

(ii) We will show that if Gi is of the form F(X, Yi), then Gi+1 is of the form F(X, Yi+1) for
Yi+1 ⊆ Yi. In each iteration i, the Odd attractor to Di in Gi is of the form F(X,Ai). This
shows that G ′

i, which is obtained by removing the Odd attractor F(X,Ai) from Gi is of the
form F(Xi \Ai, Yi \Ai). Running UnivOdd on Gi gives Ui of the form F(Xi \Wi, Yi \Wi)

by induction, and an Even attractor to the set F(Xi \Wi, Yi \Wi) would be of the flowery
subgame F(Xi \W

′
i , Yi \W ′

i) for some W ′
i ⊆Wi. So, Gi+1, which is obtained from removing

this Even attractor from Gi would be obtained as follows

Gi+1 = Gi \ F(Xi \W
′
i , Yi \W ′

i) = F(X, Yi \W ′
i).

E. Symbolic algorithm

In this appendix we describe how the number of symbolic set variables in the symbolic
implementation of the universal algorithm can be further reduced from O(d) to O(logd),
leading to Theorem 23.

Theorem 23. First stated at
page 16.

There exists a symbolic algorithm that solves (n,d)-small parity games using
O(lgd) symbolic set variables, O(logd · logn) bits of conventional space, and whose running time
is polynomial if d = O(logn), and quasi-polynomial, namely n2 lg(d/lgn)+O(1), if d = ω(logn).

28

Proof of Theorem 23. We use letters G, D, G ′, and U to denote the sets VGi , Di, VG ′
i , and Ui

for some i-th iteration of any of the recursive calls of the universal algorithm. Observe that
we do not need to keep the symbolic variables that store the sets D, G ′, and U on the stack
of recursive calls because on any return from a recursive call, their values are not needed
to proceed. How can we store the sets denoted by all the symbolic set variables G on the
stack using only O(logd) symbolic set variables, while the height of the stack may be as
large as d?

Firstly, we argue that we can symbolically represent a sequence
〈
Gd−1, . . . ,Gi

〉
of set

variables that would normally occur on the stack of recursive calls of the universal algorithm,
by another sequence

〈
Hd−1, . . . ,H0

〉
, in which the sets form a partition of the set of vertices

in the parity game. Indeed, a sequence
〈
Gd, . . . ,Gi

〉
on the stack of recursive calls at any

time forms a descending chain w.r.t. inclusion, and Gd is the set of all vertices, so it suffices
to consider the sequence

〈
Gd \Gd−1, . . . ,Gi+1 \Gi,Gi,∅, . . . ,∅

〉
.

Secondly, we argue that the above family of d mutually disjoint sets can be succinctly
represented and maintained using O(logd) set variables. W.l.o.g., assume that d is a power
of 2. For every k = 1, 2, . . . , lgd, and for every i = 1, 2, . . . ,d, let bitk(i) be the k-th digit in
the binary representation of i (and zero if there are less than k digits). We now define the
following sequence of sets

〈
S1,S2, . . . ,Slgd

〉
that provides a succinct representation of the

sequence
〈
Hd−1, . . . ,H0

〉
. For every k = 1, 2, . . . , lgd, we set:

Sk =
⋃

{Hi : 0 ⩽ i ⩽ d− 1 and bitk(i) = 1} .

By sets
〈
Hd−1, . . . ,H0

〉
forming a partition of the set of all vertices, it follows that for every

i = 0, 1, . . . ,d− 1, we have:

Hi =
⋂

{Sk : 1 ⩽ k ⩽ lgd and bitk(i) = 1}∩
⋂{

Sk : 1 ⩽ k ⩽ lgd and bitk(i) = 0
}

,

where X is the complement of set X.

What remains to be shown is that the operations on the sequence of sets
〈
Gd−1, . . . ,Gi

〉
that reflect changes on the stack of recursive calls of the universal algorithm can indeed be
implemented using small numbers of symbolic set operations on the succinct representation〈
S1, . . . ,Slgd

〉
of the sequence

〈
Hd−1, . . . ,H0

〉
. We note that there are two types of changes

to the sequence
〈
Gd−1, . . . ,Gi

〉
that the universal algorithm makes:

(a) all components are as before, except for Gi that is replaced by Gi \ B, for some
set B ⊆ Gi;

(b) all components are as before, except that a new entry Gi−1 is added equal to Gi \B,
for some set B ⊆ Gi.

The corresponding changes to the sequence
〈
Hd−1, . . . ,H0

〉
are then:

(a) all components are as before, except that set Hi+1 is replaced by Hi+1 ∪B, and set Hi

is replaced by Hi \B;
(b) all components are as before, except that set Hi is replaced by B, and set Hi−1 is

replaced by Hi \B.

To implement the update of type (a), it suffices to perform the following update to the
succinct representation:

S ′
k =


Sk if bitk(i+ 1) = bitk(i),

Sk ∪B if bitk(i+ 1) = 1 and bitk(i) = 0,

Sk \B if bitk(i+ 1) = 0 and bitk(i) = 1.

29

and to to implement the update of type (b), it suffices to perform the following:

S ′
k =


Sk if bitk(i) = bitk(i− 1),

Sk \ (Hi \B) if bitk(i) = 1 and bitk(i− 1) = 0,

Sk ∪ (Hi \B) if bitk(i) = 0 and bitk(i− 1) = 1.

30

	Context
	Parity games and their significance
	Related work
	Our contributions

	Dominia and decompositions
	Strategies, traps, and dominia
	Reachability strategies and attractors
	Attractor decompositions

	Universal trees and algorithms
	Universal ordered trees
	Universal algorithm

	Correctness via structural theorems
	Embeddable decomposition theorem
	Dominion separation theorem
	Correctness and complexity
	Acceleration by tree pruning

	Computing nested fixpoints
	Nested Fixpoint Equations
	Fixpoint Games
	Solving Fixpoint Games
	Concurrent Parity games

	Symbolic algorithms
	References
	McNaughton-Zielonka algorithm
	Embeddable decomposition Theorem
	Dominion separation theorem
	Floweriness lemma
	Symbolic algorithm

