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Abstract

The quadrature method of moments (QMOM) for a one-dimensional (1-D) population balance equation
was introduced by R. McGraw (Aerosol Science and Technology, 27, 255-265, 1997) to close the moment
source terms. QMOM is defined based on the properties of the monic orthogonal polynomials @Q; of degrees
1=0,1,...,n that are uniquely defined by the set of 2n moments up to order 2n — 1. The moment of order
2n is fixed to the boundary of moment space such that the distribution function is approximated by a sum
of n Dirac delta functions. Using the recursion coefficients of the orthogonal polynomials for ¢ > n > 1,
the generalized quadrature method of moments (GQMOM) extends the quadrature representation to a sum
of N > n terms using the same moments as QMOM. In doing so, the known moments are preserved and
higher-order moments correspond to a distribution function in the interior of moment space. Here, GQMOM
closures for distributions on R, RT, and (0,1) are defined and analyzed. Generally speaking, GQMOM
provides a more accurate moment closure than QMOM without increasing the number of moments and at
nearly the same computational cost.

Keywords: population balance equation, quadrature-based moment methods, moment closures

1. Introduction

The quadrature method of moments (QMOM) (McGraw, [1997) is arguably the most successful and
widely used closure for finding the lower-order moments of the number density function (NDF) found from a
one-dimensional (1-D) population balance equation (PBE). There are numerous publications in the scientific
literature demonstrating its accuracy for treating particle growth, aggregation and breakage processes. In
many applications, only a relatively small number of integral moments are needed to attain sufficient accuracy
for representing the properties and evolution of aerosols (McGraw et al., [1998). This is because realistic
growth, aggregation and breakage kernels are relatively smooth functions of the particle size, which is a
necessary condition for the Gaussian-quadrature approximation of integrals with respect to the NDF to be
accurate (Grosch et all |2007)). For example, most aerosol dynamics problems can be treated accurately
with between three to five quadrature nodes using QMOM (Marchisio and Foxl 2013; McGraw, [1997)), which
corresponds to six to ten moments. In this work, we use the ‘standard’ moments written as integer powers
of the phase-space variable. It is also possible to use generalized moments (Grosch et al., 2007} [Lage, [2011));
however, the limitations associated with the QMOM that we wish to address remain the same (Grosch et al.|
2007)).

Despite its many successes, the QMOM has an obvious shortcoming, i.e., in order to increase the number
of quadrature nodes, one must solve for a larger number of moments. In comparison, closures based on
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reconstructing the NDF from a fixed set of moments do not suffer from this problem. For example, entropy
maximization (EM) (Jaynes, [1957; Mead and Papanicolaou, [1984)) provides a closed form for the NDF that
can be integrated to arbitrary accuracy when evaluating the moment governing equations found from the
PBE. In other words, if a closed form for the NDF (e.g., exponential, lognormal, etc.) is available, then
the connection between the number of moments and the number of quadrature nodes is severed, and the
overall accuracy of the closure is then controlled by the number of moments. Nonetheless, applying EM
with a large number of moments is computationally prohibitive compared to QMOM. Therefore, alternative
methods with the computational simplicity of QMOM, but with the accuracy of EM are needed. In any case,
the number of moments used in QMOM cannot be increased indefinitely. In practice, the moment-inversion
algorithm suffers from ill-conditioning (Gautschi, [2004; |Grosch et al.,|2007; |Wheeler, [1974), so that practical
applications cannot use more than fourteen to twenty moments.

As we describe in section [2, QMOM corresponds to a particular reconstruction of the NDF for the given
set of integral moments. As discussed in [McGraw et al.| (1998)) for isomomental NDF, the reconstruction
is not unique even when the number of known integral moments is infinite. Compared to the NDF from
EM, the QMOM NDF produces the smallest possible value for the next (unknown) even-order moment.
Theoretically, there exists an infinite number of NDF with the same (known) moments used in EM and
QMOM. Thus, the problem reduces to choosing one such NDF in a computationally efficient manner. For
example, with an efficient algorithm, we should be able to find the Gaussian quadrature that corresponds
to the chosen NDF with the same algorithm employed with QMOM. In prior work (Yuan et al. |2012)), we
introduced the extended quadrature method of moments (EQMOM) to achieve this goal. The basic idea
behind EQMOM is to reconstruct the NDF using a sum of kernel density functions (KDF') centered around
different sizes, but with the same standard deviation o. One additional (even-order) moment is needed
to determine ¢ using an iterative, 1-D, root-finding procedure. Compared to EM, the dual-quadrature
algorithm for EQMOM is very efficient, and the quadrature nodes are easily found for the known KDF
(Gautschil, 2004; |Lagel, 2011). EQMOM has been widely used in the literature, and various extensions have
been proposed, e.g., using different definitions for the KDF (Madadi-Kandjani and Passalacquay, [2015; |[Pigou
et al.l 2018]). Nonetheless, it is not always possible to find a value for o that yields the additional moment
and, even when such a ¢ exists, the iterative process needed for EQMOM is not as fast as QMOM. Moreover,
the full set of N abscissae found from the individual KDF do not correspond to N zeros of an orthogonal
polynomial of degree N. Thus, EQMOM is ill-conditioned when combined with the conditional quadrature
method of moments (CQMOM) used for treating bi-variate distributions (Yuan and Fox] |2011]).

In this work, we propose a generalized version of QMOM (GQMOM) that overcomes all of the above-
mentioned shortcomings of QMOM and EQMOM. The key technical point employed in GQMOM is the three-
term recurrence relation for the family of orthogonal polynomials corresponding to the reconstructed NDF.
In short, instead of attempting to specify the unknown moments of the NDF (which is extremely difficult,
if not impossible), we choose an NDF with an allowable set of recurrence coefficients. Interestingly, high-
order moment-bounds approximations that arise in seemingly unrelated problems are treated in a similar
manner (McGraw and Merryl, [1985). In section we discuss how the recurrence coefficients are related
uniquely to the moments, and in section [3| we define closures for the GQMOM recurrence coefficients for NDF
defined on R, RT, and (0, 1) based on well-known NDF (e.g., Gaussian, gamma, lognormal, beta). However,
these closures are not unique and the reader can easily compose choices with other desired properties.
Once the recurrence coefficients are fixed, the Gaussian quadrature can be computed immediately for an
arbitrarily large number of nodes (Gautschi, [2004; |Wheeler, 1974). In this manner, we do not need the
explicit functional form for the NDF, but rather we determine the NDF implicitly through knowledge of
its recurrence coefficients. In practice, an approximation of the NDF is available through the weights and
abscissae of the Gaussian quadrature by setting their number to be sufficiently large. In summary, given its
facile implementation in PBE solvers based on QMOM, we expect that GQMOM will become the method
of choice for solving moment systems derived from a 1-D PBE.

The remainder of this work is arranged as follows. In section [2| we provide a brief overview of QMOM
in the context of a 1-D, time-dependent PBE with emphasis on its relationship to orthogonal polynomials
and realizable moments. In section [3| we define GQMOM for NDF defined on R, R*, and (0, 1), and show
some simple examples of the resulting quadrature. By a change of variables, any NDF defined on a semi-
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infinite or finite interval can be mapped to R™ or (0, 1), respectively. Therefore, these three definitions of
GQMOM cover almost all situations arising in applications. In general, GQMOM is equivalent to QMOM
for applications where QMOM works well. Thus, in section [} we evaluate the performance of GQMOM
for some difficult test cases for which QMOM does not yield satisfactory results. Generally speaking, in
the context of a 1-D PBE, GQMOM provides the same advantages as EQMOM and EM, but at a lower
computational cost. Examples comparing the different methods for some difficult cases are also provided in
section [l

2. QMOM for the resolution of a 1-D PBE

Here we provide a brief overview of QMOM for a spatially homogeneous, 1-D PBE. Application to
spatially inhomogeneous cases is described in detail in [Marchisio and Fox]| (2013).

2.1. Principle of the method

The key principle of QMOM is to close moment equations derived from a PBE by using a Gauss quadra-
ture for the source terms (McGraw, [1997). Let f(¢,£) be the NDF for the phase-space variable £ € B C R
at time ¢ € R™ with initial condition f(¢,&) = fo(£). For clarity, in this work the set B will be either R, RT,
or the interval (0,1). To illustrate QMOM, hereinafter we assume that f(t,€) is governed by a PBE with
nonlinear source terms (see examples in section {4|):

Of = S(t,€). (1)

In general, S(t,¢) will be a functional of f(t,£) and its moments (Marchisio and Fox, 2013). The kth integral
moment of the NDF is

My(t) = /B €5 f(t,€) de 2)

for k € N. Let My,,—1 := (Mo, My, ..., Ma,_1) be the moment vector of length 2n with n € N.
The ordinary differential equation (ODE) system for the moment vector found from the PBE then has
the form

T [eseoa =5 3)

where S}, cannot generally be expressed exactly in terms of the moments of f contained in Ma,_;. QMOM
provides a closure for Sy given My, 1 (McGraw, [1997) of the form

Sk(t) = Zwi&c(tvﬁz’) (4)

with non-negative weights w;(t) and abscissae &;(t). QMOM has the property that if S(¢,£) = f(¢,£), then
Si(t, &) = &F and Sy (t) = Mg(t) for k = 0,1,...,2n—1; meaning that the weights and abscissae corresponds
to a Gauss quadrature. Computing these parameters from the moments is a well-known problem solved
thanks to the theory of orthogonal polynomials (Gautschi, [2004)).

2.2. Monic orthogonal polynomials

Let us recall classical results that can be found in the literature (Dette and Studdenl |1997; |Gautschil
2004; |Schmudgen 2017)). For a moment vector My, one can define the linear functional (-) on the space
R[X]n of the real polynomial function of degree smaller than N by

(X*y = My, forke{0,1,...,N}. (5)



Then, this linear functional defines a scalar product (P, Q) — (PQ) on R[X],, with n = \_N/QJEL as soon as
My is strictly realizable, i.e., is associated with a positive NDF f € L?(B) through eq. (2)). In such cases,
we have

VPERIX]y  (Phmy = / P(&)F(€)de, (6)

and we can define a sequence of monic orthogonal polynomials @); for i = 0,...,n with @; of degree . This
sequence satisfied a three-term recurrence relation:

Qit1 = (X —a)Q; —b;Qi—1 fori=0,1,...,n—1 (7)
with Qo = 1 and Q_; = 0, and where
(XQ3) (@Q3)
P = , b= : 8
“ ) @) ®

Note that a,,_1 depends on moments up to Ms,_1 and b, _1 up to Ma,_s.

Given the moment vector Ma,,_1, the Chebyshev algorithm (Gautschil [2004; Wheeler], [1974) finds recur-
rence coefficients a; and b; for i = 0,1,...,n—1. However, it is important to note that adding an even-order
moment to get Moy, allows computation of b,, while adding an odd-order moment to get My, 1 allows
computation of a,, etc.. This relation is one-to-one, thus the inverse is also true (i.e., the moments can
be found from the recurrence coefficients using the reverse Chebyshev algorithm (Fox and Laurent), 2022))).
These fundamental properties of orthogonal polynomials are used to define GQMOM in section [3] Although
not needed in the following, it is interesting to observe that isomomental distributions (i.e., identical integral
moments (McGraw et al., [1998)) will generate the same family of monic orthogonal polynomials.

2.8. Strict realizability characterization

The strict realizability of My is equivalent to the positiveness of certain Hankel determinants (Dette
and Studden, [1997; |Gautschil, [2004; |Schmiidgen! 2017)). Thus, let us define these determinants for d = 0, 1
and any non-negative k such that 2k +d < N:

Md M1+d . Mk+d
Miya Moyqg ... Miyiqa
ﬂ2k+d = . . . ) (9)
Mypvqg Mpii4a .. Moggq
and
My_q—Mogq My g—Mz_q ... My, — M1
_ My qg—Ms_q Mz _qg—My_q ... Mypi1 — Mo
Hopyra = : : . : . (10)
My — Mgy1 Miig — Myyo ... Mogyg—1 — Magiqg

The characterization of the strict realizability of M, depending on the choice of B, is as follows:
e f B=R: Hy, >0fork=0,..., 5]
e IfB=R": H,>0fork=0,...,N.

e IfB=(0,1): H, >0and H; >0 for k=0,...,N.

Lr] is the largest integer less than or equal to the real number r

4



On the boundary of moment space (i.e., for weakly realizable moments), one (or more) of the Hankel
determinants is null. Note that setting a Hankel determinant equal to zero sets the upper/lower bound on
its highest-order integral moment.

An equivalent characterization can be done using the coefficients of the three-term recurrence relation
of the orthogonal polynomials:

e IfB=R: bi>0fori:1,...,L%J.

e If B=R™: existence of ; > 0 for i = 1,..., N such that

{ ap = (1, ai =G+ Goipr i=1,..., [ (11)
bi=Cai1Cai i=1,...,| %]

o If B=(0,1): existence of (; > 0 for i = 1,..., N satisfying eq. and existence of p; € (0,1) such
that

1 =p1, G=pi(l=pi-1) i=2,...,N. (12)

Moreover, in the last case, the p; are referred to as the canonical moments (Dette and Studdenl |1997)).

Hereinafter, we assume that the known moment vector My, is strictly realizable. In any case, this
assumption can be verified by applying the Chebyshev algorithm, which computes the recurrence coefficients
a; and b; from the known moments.

2.4. Moment space and realizability

The moment vector My, lies in a convex subset of a linear vector space of dimension 2n + 1 (Dette and
Studdenl, {1997} |Schmiidgen! |2017)). We refer to this convex subset as moment space. The strict realizability
conditions discussed above define the boundary of moment space. If May, lies in the interior of moment
space, then it is strictly realizable (all Hankel matrices are positive). A point on the boundary of moment
space has at least one of the Hankel matrices equal to zero. Hereinafter, we will use this terminology when
describing the properties of various moment closures.

2.5. QMOM closure

The weights w,; and abscissae §; of the Gauss quadrature are found using the recurrence coefficients.
(More details on this step are provided in section ) Then, the QMOM closure corresponds to replacing
f(€) d¢ by the finite positive measure Y i, w;d¢, (§). Thus Mo, = Y7, w;™, which is computed by the
quadrature, corresponds to b, = 0. This is also the lower bound of all possible Ms,, such that My, is
realizable. In contrast, for the truncated Hamburger moment problem (Hamburger} 1944) (i.e. for B = R)
from a strictly realizable moment vector Msy,,, the odd-order moment Ms, 1 can take on any finite real
value for My, 1 being realizable. On the other hand, for B = R* and B = (0,1) the odd-order moments
are also bounded by the realizability constraints.

3. GQMOM for moment vector Ms,,

The basic idea behind GQMOM is to retain the properties of QMOM while using N > n > 1 quadrature
points found from Ms,, with the Chebyshev algorithm. The two principal desired properties are that the
source-term closure has the form

N
Sk(t) = Zwisk(t,fi), (13)
i=1
and the moment constraints for k = 0,1,...,2n are
N
My, = wigk; (14)
i=1



i.e., the same as with QMOM but with n replaced by NV > n > 1. Roughly speaking, this can be accomplished
by choosing realizable moments My, for k = 2n+1,2n+2,...,2N —1, and applying the Chebyshev algorithm
to Moy _1. This is equivalent to selecting recurrence coefficients a; for i =n,n+1,...,N —1; and b; > 0
fori=n-+1,...,N —1 that satisfy the realizability constraints in section 2.3 It is important to recall that
if the recurrence coefficients are realizable, then we are guaranteed that the quadrature nodes lie in B, and
their weights are positive. Expressed in terms of the monic orthogonal polynomials Q;(z), this selection is
done as follows.

3.1. Definition of GQMOM using recurrence coefficients

With GQMOM, the abscissae correspond to the roots of the monic orthogonal polynomial @y with
N > n > 1. Thus, we must define the unknown recurrence coeflicients (a;, b;) for i =n,n+1,..., N. First,
we start by defining the monic orthogonal polynomials.

3.1.1. Monic orthogonal polynomials
For i > n > 1, we extend the monic orthogonal polynomials in eq. @ using

Qit1=(z— CLEMZ"])Qi - bEMZ"]QiA (15)

where the unknown recurrence coefficients depend on Mo, and are formally defined by eq. . For example,
b[nM2"] = b, is known, while aLLM%] depends on the closure for M2n+1 (or vice versa). Hereinafter, an over-
line is used to denote a closure for a higher-order moment given Ms,,. In general, the choice for bEMz"] with

i > n closes the moment Mo;. As long as bEMg"] > 0, this closure will be realizable for B = R (Hamburger,

1944)), and similar constraints apply for B =R™ and B = (0, 1).
The unknown weight function is ™2l > 0, i.e., a distribution function on B with known moments

M, = / o du™Manl for k=0,1,...,2n; (16)
B
and higher-order moments that depend on Ma,,:
Mopir = / etk Ml for k> 1. (17)
B

The polynomials @); are orthogonal:

Moy
[ Qi) de = (@) =, (18)
B
where
Man) _ i 19
! Hyio — (19)
depends on moments up to Ms; through the Hankel determinant Hy; = H,,;. If, for some k, 7LM2”] =0,
then b,, = 0 for m > k. This occurs when the Hankel determinant Hy,, = 0 and the moments Msy,, are on
the boundary of moment space. For clarity, unless stated otherwise, we assume that ,y][ngn] > 0, and thus

that My, is in the interior of moment space for B = R. More generally, the GQMOM closure will depend
on the definition of the NDF, in particular on B.

3.1.2. Recurrence coefficients for B=R
IMzn] and bEMz"]

In general, choosing the definitions of a; for i > n > 1 corresponds to selecting a form
for ™2n] (among the infinite number of possible choices). Only when b,, = 0 is the choice of ™2l unique

because then My, resides on the boundary of moment space. When this is the case, bEMz”] = 0 for ¢ > n. For
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GQMOM with different v

Gaussian moments with n =5

Figure 1: GQMOM quadrature weights versus abscissae for standardized Gaussian moments with n = 5, N = 101, and different
values of v.

this reason, expressing bEMz"] as proportional to b,, ensures the correct limiting behavior at the boundary of
moment space. Moreover, it may be desirable to capture a specific NDF, such as the Gaussian distribution.
The recurrence coefficients for the Hermite polynomials, corresponding to a Gaussian distribution, with
mean g and variance o2 are

al = p, o =io?. (20)

3

These observations lead to the following definition.

Definition 1 (GQMOM with moments Ms,, for n > 1 from a NDF defined on R). The unknown re-
currence coefficients are selected as follows. For i =n in eq. , let

n—1
1
Ma2,] _ = § opM2a] — g 21
n ni= o ' =

Fori>n, let

1i—1 ln—l : v
Mz, n Man] _
R I P e O 22

where the parameter v € R controls the tails of the distribution function.

[MQW]

i is consistent because it uses the arithmetic average of the known lower-order

coefficients. The choice for bE 2n] is based on recovering Gaussian statistics when the known moments My,

are Gaussian and v = 1 (i.e., Hermite polynomials). In fig. [} the weights are shown for different values of v.
Setting v = 2 gives exponential tails, while v = 0 gives tails that decay very quickly in a bounded intervalﬂ
Negative v forces b; towards zero (i.e., the boundary of moment space), and eventually multiple modes are
observed. The NDF from EM for the first three moments (i.e., n = 1) corresponds to v = 1. Thus, we
will refer to the choice v = 1 as Gaussian-GQMOM. Otherwise, Definition [I] provides a family of GQMOM
closures parameterized by v for moment vectors defined on R.

The choice for a

2y = 0 corresponds to Chebychev polynomials of the second kind for the distribution 4/1 — ({/fmmc)2 on the finite interval

(—€maz,Emar) With Emaa = 24/b1, which are the special case of the shifted Jacobi polynomials with a = 8 =1/2.
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Figure 2: Gamma—-GQMOM quadrature weights versus abscissae for gamma moments with « = 10, N = 101, and different
values of n.

3.1.8. Recurrence coefficients for B = R

Due to the additional constraint of H,,,; > 0, different choices for aEMz"] and are needed for
strictly positive variables. In this case, it is convenient to introduce the sequence of positive (; with ag = (3
and

b[_Mzn]

a; = C2; + Cait1, b = C2i—1C2s- (23)

Thus, selecting C}MZ”} for ¢ > 2n is equivalent to choosing aEMzn} and bEM“]. The Chebyshev algorithm

computes a; and b; from the moments Ms,, and then eq. is inverted to find ¢; for 1 < i < 2n. For

the GQMOM closure, we can select the additional {; to produce the generalized Laguerre polynomials for

moments from a gamma NDF where f(z) oc 2%¢~5% and 8 > 0. The ¢; in this case are, for i > 1:

i+a L 1

— &=z 24
B 2 B ( )

Note that  is a scaling parameter, while o changes the shape of the NDF and is dimensionless. These

two parameters are fixed given the mean and variance of the NDF. These properties lead to the following

definition.

L
C2i—1 =

Definition 2 (Gamma—-GQMOM with moments M,,, for n > 1 from a NDF defined on RT). Let

M}

=— 1 __1
MMy — M2

[e%

Then o > —1 and the unknown recurrence coefficients are selected as follows. Fori >n > 1, let

[M,] _ 1+ @ M) _ % 9
2i—1 n+a <2n—1a 24 nCQn- ( 5)

Thus, fori>mn > 1, in eq. (L5|) the recurrence coefficients are

o) = ) i, el = (i) 0
In fig. [2 the weights and abscissae are shown for gamma—PDF moments with a = 10 and g = 1 and three
different values of n. In all cases, the abscissas are positive and do not depend on n. The NDF from EM
with the same zero- and first-order moments corresponds to & = 0 (i.e., an exponential NDF).

Another possibility is to select the additional ¢; to produce the Stieltjes—Wigert polynomials for moments
from a lognormal NDF:

L (e
1) x e (<), (27)




Lognormal-GQMOM with different n
lognormal moments with 7 = 1.01

Figure 3: Lognormal-GQMOM quadrature weights versus abscissae for lognormal moments with n = 1.01, N = 201, and
different values of n.

The ¢; in this case are, for i > 1, denoting n = exp(c?/2) > 1 (Madadi-Kandjani and Passalacqual, [2015;
Wilck, 2001):

ng—l — eun4i—37 <2V1/ _ eunQi—l(nQi _ 1) (28)

These properties lead to the following definition.
Definition 3 (Lognormal-GQMOM with moments My,, for n > 1 from a NDF defined on R™).

Let
Mo M,
y , 29
7 M2 (29)

With n > 1, the recurrence coefficients for i >n > 1 are found from eq. using

Man] _ a(i Mol _ o(iom) (17 =1
21 =1 (l_n)@nfla G =1 (¢=n) (772711> Con- (30)
In fig. (3, the weights and abscissae are shown for three different values of n with lognormal moments and
n = 1.01. Again, the abscissae are positive and do not depend on n, but many have weights below 1071°
due to the long tail of the lognormal NDF.

3.1.4. Recurrence coefficients for B = (0,1)
For the finite interval (0,1), we define GQMOM using the canonical moments p; € (0,1), which are
related to the (; by

G =pi(l —pi-1) (31)

for 1 < ¢ < 2n with pgp = 0. For this purpose, the Chebyshev algorithm with input Moy, can be easily
modified to compute the p; from the (; found from eq. . Here, the choice for p; produces the Jacobi
polynomials for moments from a beta NDF where f(z) o< 2°(1 — 2)®, but also that the quadrature nodes
are always in the interval (0,1), which is the condition for the strict realizability. The canonical moments
in this case are, for i > 1:

B+ 7 i
%itatp PETo%{1ta+p

The two parameters o and [ are fixed given the mean and variance of the NDF. These properties lead to
the following definition.

Pélzel = (32)



GQMOM with different n GQMOM with different n

Beta moments with a = —0.9, 3 =0 Beta moments with a =1, 8 =0

0.025

s 025- g = 002f

0.015

Figure 4: Beta-GQMOM quadrature weights versus abscissae for beta-NDF moments in (0, 1) with N = 51 and different values
of n.

Definition 4 (Beta—GQMOM with moments My, for n > 1 from a NDF defined on (0,1)). The
unknown recurrence coefficients are selected as follows. Let

1 —=p1—2ps+p1p2 _ P1—DP2 —Pp1p2
o= 57—

) (33)
b2 P2
and, fori >n > 1,
J
DPo; - . .
(May.] P2n—1,0— if Pan—1 < P31 OT P31 > Py, 24
P2i-1" =\ pona 0=pd_ )40 —pdn s otherwise (34)
177’5771,71 ’
J
Py . J J J
[May,] Dan p3 Zf Pan § P2y OT Doy Z P2,
Py~ = 2 I Vapd —pd (35)
p2n(l p2i)<§p2i Pon  otherwise
1_p2n )

These provide (i[MZ”} = ngr“"}(l fpgl\_/lf”]) for i > 2n, and hence, with eq. , aEMr“"} and bEMM] fori>n.
In fig. [4] the weights and abscissae are shown for moments from a beta NDF for different values of o, § > —1.
As can be observed, the abscissas remain bounded in (0,1) and the quadrature points are the same for all
n. By a linear change of variables, beta—GQMOM on (0, 1) can be shifted to define a Gauss quadrature for
any finite interval (a, b).

3.2. Generalized QMOM for Mo, 1

When working with a legacy code based on QMOM, it may be convenient to use Moy, 1 instead of
M, for n > 1. Because My, 1 contains moments only up to order 2n — 1 (and not 2n), b, is unknown.
However, for example, we can still use the procedure in eq. to define b,, given b,,_;. Thus, a sequence of
orthogonal polynomials can also be defined for this case. These polynomials can then be used to close even-
order moments starting at order 2n. For example, for n = 2 with M3 = (1,0, 1, S3) and Gaussian-GQMOM,
we find by = 2 and hence the standardized fourth-order moment is 3 + S3. As before, the closed moments
will be in the interior of moment space as long as b,_1; > 0. In summary, GQMOM can be used with
either My,,_1 or Ms,,. However, for consistency with EQMOM (Yuan et al.l 2012), unless stated otherwise,
hereinafter we will use Mo,,.

10



3.3. Computation of weights and abscissas with GQMOM

As done with QMOM (McGrawl, [1997; [Wheeler], [1974), the N weights and N abscissae are found from
the eigenvectors and eigenvalues, respectively, of the following Jacobi matrix:

ap Vb1
\/Eal \/E

Iy = . (36)
by—2 an—2 bn—1
Vbn-1  an—1

Using the definitions in eq. and eq. , it is straightforward to modify the Chebyshev algorithm in |Fox
and Laurent| (2022) to construct Jy given the moments Ms,,, and then to find the weights and abscissae.

By construction, the GQMOM quadrature satisfies eq. . The source terms in the moment equations
eq. (3) are closed using eq. . Unlike with QMOM, with GQMOM the value of N can be very large
as long as n is not too large (n < 10). Notwithstanding, increasing N with fixed n does not increase our
knowledge of the unknown NDF governed by the PBE. Thus, as with the secondary quadrature in EQMOM
(Yuan et al., |2012)), increasing N is only needed to reduce the quadrature error on Sy. In other words, for
fixed n, the value of N can be increased until S}, satisfies a convergence criterion for all k. Source code for
GQMOM is available at https://opengbmm.org/|

4. Numerical examples and validation

In this section we provide numerical examples for problems that are difficult to treat using QMOM. First,
to illustrate the differences between QMOM and GQMOM, we show examples of NDF composed of three
modes. Recall that with n = 1, GQMOM corresponds to a known NDF (e.g., Gaussian) while for QMOM,
it corresponds to a Dirac delta function. By increasing n, it is possible to approximate a multi-modal NDF.
It is important to understand that QMOM with My, _; represents the NDF by the sum of n Dirac delta
functions, and, given the additional moment Mas,,, GQMOM provides a continuous NDF. Heuristically, for
fixed Mo,_1 GQMOM spreads out the n Dirac delta functions found with QMOM as My, increases from
its minimum value. Thus, with sufficiently large Ms,,, the GQMOM NDF will become mono-modal, losing
all resemblance with the QMOM NDF.

Generally speaking, if the time evolution of the moments of a NDF are adequately captured with QMOM,
then GQMOM will provide equivalent accuracy. Thus, in the numerical examples starting in section [4.2] we
focus on systems for which QMOM is known to have difficulties. While such systems are relatively rare in
real applications, we shall see that GQMOM offers a viable alternative to QMOM for such cases.

4.1. Trimodal Gaussian

Recalling that the objective of GQMOM is to provide a more accurate N-node quadrature for fixed n, we
compute the moments to arbitrary order from a trimodal Gaussian NDF composed of three Gaussian NDF
with different means and standard deviations. Using QMOM, such a distribution requires at least n = 3 to
capture the locations of the three modes, and n > 6 to capture their variances. Here, we take the weights of
the three Gaussian NDF to be equal, their means to be (—3,0,4) with standard deviations, respectively, of
(1/10,1/20,1/30). The quadratures found with Gaussian-GQMOM (N = 101) and QMOM are shown in
fig.[p]for n = 3,6,9. The GQMOM result with n = 3 consists of two delta functions at approximately £ = —3
and 4, and a Gaussian distribution centered at £ = 0 with significant variance. As n increases, the weights
take values that more closely correspond to the true NDF. Consistent with EQMOM, we observe that the
value of n mainly determines the quality of the reconstruction, while N provides “extra” refinement. The
latter is needed to converge the source-term closure in eq. for a given n.

In most cases, N = 3n provides adequate refinement, but larger N may be needed for highly nonlinear,
localized, source terms. This point is illustrated in fig. @using a trimodal NDF on (0, 1) with beta-GQMOM.
In this figure, the weights are scaled to sum to N and n = 6 is held constant. With N = 6, the mean and
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Figure 5: Trimodal Gaussian NDF on R with n = 3,6,9. Left: Gaussian-GQMOM with N = 101. Right: QMOM. The
quadrature points are connected by lines to ease interpretation.
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Figure 6: Trimodal NDF on (0, 1) with n = 6 and different N. Weights are scaled to sum to N.

variance of each mode is roughly captured. Increasing to N = 3n = 18 provides several more quadrature
points for each peak, while N = 60 covers the full domain with roughly equal-spaced points. In all cases,
because GQMOM reproduces the same moments as QMOM, using N > n does not produce a poorer quality
quadrature for fixed n. In practice, a NDF with up to five modes can be approximated with GQMOM to
reasonable accuracy.

4.2. Application to aggregation and breakup problems

We consider in this section an application of GQMOM to a PBE involving aggregation and breakup.
Cases 5 and 8 studied in prior work (Madadi-Kandjani and Passalacqual 2015} [Vanni, 2000) are examined
here, since they allow for a direct comparison of the results obtained with GQMOM to those provided by
EQMOM in Madadi-Kandjani and Passalacqual (2015)), and to the exact solution found in|[Vanni| (2000). For
all other cases in Madadi-Kandjani and Passalacqual (2015), QMOM yields an accurate solution without the
additional quadrature nodes provided by GQMOM. For consistency, we maintain the same case numbers
used in Madadi-Kandjani and Passalacqual (2015)).

The 1-D NDF describing the particle size £ is f(¢,€), and its temporal evolution is regulated by the
following PBE:

af(atta g) — Ba(t,f) — Da(t’ g) + Bb(tvg) o Db(t,g) (37)

Following |[Marchisio and Fox| (2013); Marchisio et al.| (2003)); Randolph and Larson| (1988)), the source terms
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for aggregation and breakage are expressed as

(e = & / o iilﬁfl)f(t,@?’—5’3>1/3)f(t7£'>d§’7 (39)
D"(t,€) = tf/ Ble. €N (1. de (39)
B0 = | " a€blEle £, €) e (10)
D°(t,€) = a(§) f(t,€). (41)

The application of eq. to both sides of eq. leads to the evolution equation for the moment M of
the NDF:

dj\{zi(t) = Bi(t) — Di(t) + By(t) — Di(t). )

For consistency with prior work, in this example we use the moment vector M. The source terms for the
moments are defined as follows:

Bi(t) / F(€) / BE.E)(E + €33 f(t,€) de ae,
- / €5 F(t.6) / B(E.€)f(t.€) e de,

/ ¢t / Vb(E[€') £ (1, €') de’ de,
b(t) = /O €5 a(€) F(1,€) dE.

The integrals in eq. are approximated as shown in eq. , when using GQMOM, by replacing n with IV
to use all the additional nodes. The EQMOM integration strategy for eq. is summarized in [Appendix]
and further details can be found inMadadi-Kandjani and Passalacqual (2015); [Yuan et al.| (2012). Table|l
summarizes the closure models used in the two test cases considered here, while the daughter distribution
functions b (£|¢') are listed in table

The time evolution of the volume-average diameter dy3 = My/Mj is reported in fig. [7} where results are
shown for gamma-GQMOM, as well as for the lognormal-EQMOM (Madadi-Kandjani and Passalacqual
2015), and the exact solution (Vanni, [2000). We consider the same cases to investigate the convergence of
gamma—GQMOM with the number of nodes, while maintaining the number of QMOM quadrature nodes
constant and equal to n = 3 (6 moments), and increasing the number N of gamma-GQMOM nodes. We
consider N = 4,5,10,50, 100 for Case 5 and N = 4,5, 10, 50, 100, 150 for Case 8.

From the time evolution of d43 reported in fig. [§] no variation can be visually observed in the solutions
obtained with gamma—-GQMOM using different N. A more interesting behavior is observed in Case 8, for
which the time evolution of d4s3 is shown in fig. [0} In this case, QMOM with n = 3 is insufficient to capture
the asymptotic behavior. Adding another gamma—GQMOM node for the same moments leads to correctly
predict the trend but not the asymptotic value. However, the gamma—-GQMOM prediction appears to
converge for N > 50. Specifically, for the cases run with N = 100 and 150 the percentage difference between
the asymptotic values of dy3 is 0.0462%.
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Table 1: Cases examined for the aggregation and breakup process using Ms. Mg is reported in Case 8 for EQMOM.

Case B&¢) a(§) b(lg) My (t =0)

5 1 0 =1 1, tablel2l M =1,k=0,...,5
002 £>1
(M =1
M, =1.13
e 0 - M, = 1.294
8  (§+¢)71E—¢" 00165 &> 1 2, table[2| { Ms =15
M, = 1.760
M = 2.087
Mg = 2.513

Table 2: Daughter distribution functions and their moment transforms.

No. Mechanism b(&l€) b*(§)

_ &
£= 57 9(3—k)/3¢k

1 Symmetric fragmentation :
0 otherwise

2
6& !
. €3 E € (07 g ) 6e*
2 Uniform 513
0 otherwise
5 5
—Lognormal EQMOM (Madadi and Passalacqua, 2015)
45 45
: . —Rigorous solution (Vanni, 2000)
P S ——— GQMOM
e 35
—
35 _— 3 i
o ~
25
8 / .
= 25 / ~ 2
/ 15
2
—Lognormal EQMOM (Madadi and Passalacqua, 2015) 1
15 —Rigorous solution (Vanni, 2000) 0s
GQMOM
1 0
0 50 100 150 200 o 2 4 6 8 10
£(s) t(s)
(a) Case 5 (b) Case 8

Figure 7: Time evolution of d43 obtained with gamma—-GQMOM, lognormal-EQMOM |[Madadi-Kandjani and Passalacqual

, and the exact solution .
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Figure 8: Case 5: Time evolution of d43 with increasing N.
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Figure 9: Case 8: Time evolution of d43 with n = 3 and increasing N.
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4.8. Example with a localized source term

In this section, we consider an application of GQMOM to a PBE involving nucleation, growth and
filtration, as can occur in suspension crystallization processes (Grosch et all [2007) or aerosol filtration.
Here, the nucleation is assumed to create particles of fixed size &j, at a constant rate ¢, the growth rate
G is assumed to be constant, and the filtration term describes the removal of particles of size larger than
&1. This PBE is used, for example, to model the effect of an ideal fine trap (Grosch et al.| 2007). We then
consider the following PBE for the NDF f(¢,¢):

of(t,§)
ot

= 90650 (g) - aﬁ(Gf(t7 5)) - Oéf(f,, E)I[Elrkoo) (5) (44)

where the identity function I [a,400) (z) is zero for x < a and 1 elsewhere. Let us remark that f (t, 551:%0) is
the solution of a similar PBE with scaled parameters, in such a way that we can choose g =0 and & =1
without loss of generality. Finally, the values of the parameters used here are ¢ =1, G =2 and « = 10, in
this non-dimensional context. The main difficulty of this PBE lies in the filtration term, which is localized
in phase space so that it only affects particles with size £ > &;. Indeed, quadrature-based methods usually
give very good results for the growth term (McGrawl, [1997)), even with a non-constant rate G(§), and the
nucleation term is already closed in the moment equations.

The analytical solution of eq. , with the zero initial condition f(0,£) =0, is

0 if £ <&
6= 511 if € < € < min(6, & +1G) | (45)
exp (—&(€—&)) if& <E<&+1G

so that the moments of the NDF are

: k _ ¢k+1 max(0,£0—&1+tG)
mk(t): <p<m1n(§0 + tG7£1) +1 50 +/ (51 + S)k exp (—%8) d8> ) (46)
0

G E+1

Using GQMOM with Ms,, the equations for the moments are written, for k =0,1,...,2n, as

dM;(t)
dt

+oo
= Q&8 + EGMy_1(t) — / ¢k apManl, (47)

For their resolution, an operator splitting is introduced. During one time step At, the growth term is
first solved, followed by the resolution of the others terms. Each operator is solved analytically, using
the underlying representation of the moments as a sum of Dirac delta functions. Then, for the growth
operator, each abscissa of the quadrature is increased by GAt. For the nucleation and filtration operators,
the weights corresponding to abscissa greater than & are multiplied by exp(—aAt) and @& At is added to
the corresponding moment of order k, for K = 0...,2n. Moreover, a small enough time step (5x107%) is
chosen to ensure time convergence.

The simulations are done using five moments My and N = 20 abscissas with gamma—GQMOM and
gamma—GQMOM-Radau. Here, Radau quadrature refers to a Gaussian quadrature where one abscissa is
fixed (Gautschi and Li, [1991). These results are compared with the analytical solution in fig. As seen
from these plots, gamma-GQMOM-Radau seems to be well adapted to this test case: compared to gamma—
GQMOM, an abscissa is fixed at & = 0, which is the nuclei size. And then, gamma-GQMOM-Radau gives
better results than gamma-GQMOM, even if gamma-GQMOM also has good results for a larger number of
abscissas (not shown here). These methods are also compared to QMOM-Radau, whose results for My are
quite good, but the error increases with the order of the moments. Gamma—EQMOM is also tested with
ten secondary quadrature points, so that the cost is quite similar to gamma—-GQMOM. However, gamma—
EQMOM gives the worst results, even if these results can be improved by using a much larger number of
secondary quadrature points (not shown here).
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Figure 10: Test case with nucleation, growth and filtration: moments of order 0, 1, 2, 3 and 4 for the analytical solution,
QMOM-Radau with five moments (i.e., M4), gamma-GQMOM and gamma-GQMOM-Radau with five moments and N = 20

time

and gamma-EQMOM with 10 secondary quadrature points.
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Figure 11: Comparison of different closures for test case with nucleation, growth and filtration: moments of order 0, 1, 2 and 3
for the analytical solution, QMOM with four moments (i.e., M3), gamma-GQMOM and gamma-GQMOM-Radau with four
moments and entropic quadrature (EQ) with multiplicative factor o = 2 and o = 4.

Finally, to compare GQMOM with another method from the literature, entropic quadrature (EQ) de-
veloped by Bohmer and Torrilhon| (2020), simulations using four moments Ms are done. In fig. the
results are plotted with gamma-GQMOM and gamma—-GQMOM-Radau using N = 20 quadrature points,
QMOM, and EQ with multiplicative factor a = 2 and a = 4 and the smallest abscissa fixed at £ = 0. The
best results are obtained with gamma-GQMOM-Radau even if the moments are slightly overestimated,
whereas the other methods show an oscillatory behavior. In any case, it is very interesting to observe how
using Radau quadrature in the presence of nucleation significantly improves the predictions of GQMOM,
even with a relatively small number of moments. Also, comparing fig. with fig. we see that using
gamma—GQMOM-Radau with My is significantly more accurate than with Mgs. This is consistent with
observations made with other systems, i.e., moment vectors terminating with an even-order moment usually
provide more accurate results.

4.4. Symmetric binary breakup

We consider next the apparently very simple test case of symmetric binary breakup. Depending on the
initial conditions, it has been shown that this test case can lead to some difficulties for QMOM, such as
convergence to an incorrect solution (Peterson et al.,|2022)). Thus, let us consider the following PBE for the
NDF f(t,v):

O f(t,v) = —g(v) f(t,0) + 49(20) (£, 20) (48)

with the initial condition f(0,v) = f°(v). Moreover, the simple case g(v) = v suffices to illustrate the
difficulties. Using GQMOM with Ms,,_1, the equations for the moments are written, for k =0...,2n — 1,
as

dM(t
T]jt() = (=1 427" ) My (1) (49)
Let us remark that, due to the simple choice for g, only Ms,, has to be closed. This set of equations is solved

using an adaptive time-step algorithm (Nguyen et al., [2016]) based on embedded SSP explicit Runge-Kutta
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Figure 12: Fragmentation, Case 1: mean (left) and variance (right) obtained for simulations with QMOM with a number of
abscissas n equal to 2, 3, 4, 5, 7, 10, 15.
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Figure 13: Fragmentation, Case 1: reference solution using QMOM and mean (left) and variance (right) obtained for simulations
with gamma—-GQMOM with a number of moments 2n equal to 4, 6, 8, 10; and a number of quadrature points equal to n + 1.

methods, with a time-step selection designed both to control the error and to ensure the realizability of the
moment set.
For the initial distribution, two cases are considered:

e Case 1: f9(v) = exp(—v).

e Case 2: f9(v) is a lognormal distribution: with vy =1, o9 = 2:

1 In(v) — p Vo
O(v) = e <>, =In|—— ], o?=I{1+3}).
PO o\ ) e ey ) o )

As in |Peterson et al.| (]2022[), we look at the mean My/M; and variance \/Mng/MQ2 — 1 of the volume
distribution. For Case 1, we can see in fig. [12| that using QMOM, the results converge when the number of
moments increases to the value given in [Peterson et al. (2022). With gamma-GQMOM, only one additional
quadrature point is used compared to QMOM. Due to the simple form of the equations, all simulations with
a higher number of quadrature points give the same results. It can be seen in fig. [[3] that gamma-GQMOM
converges to the same mean value and variance as QMOM, when the number of moments increases, but also
faster than QMOM: about half the number of moments are needed for the same accuracy.

Case 2 was shown in [Peterson et al.| (2022) to be difficult for QMOM, i.e., the method converges to
the wrong solution. In fig. [I4] we compared the mean value and variance obtained with QMOM, gamma-—
GQMOM and lognormal-GQMOM, using a large enough number of moments (16) so that the solution is
converged. The reference solution is taken from |[Peterson et al.| (2022). Gamma-GQMOM and QMOM
converge to the same solution, whereas lognormal-GQMOM converges to another one, closer to, but still
different, from the reference solution. For Cases 1 and 2, the number N of quadrature points for GQMOM
has no influence on the solution as soon as it is greater that n, which is the number of quadrature points for
QMOM. The convergence issue with Case 2 is due to the very long tails of the initial lognormal distribution.
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Figure 14: Fragmentation, Case 2: reference solution from [Peterson et al.| (2022)) and converged mean (left) and variance (right)
obtained for simulations with QMOM, gamma-GQMOM, and lognormal-GQMOM.

In this sense, Case 2 is an extreme case that is unlikely to occur in physical systems. Nonetheless, using
lognormal-GQMOM improved the results, and it would also possible to define a GQMOM closure with even
longer tails to handle such cases. In real-world applications, GQMOM provides more flexibility than QMOM
to accommodate for the shape of the NDF.

5. Discussion and conclusions

In this work, we have generalized the widely used moment closure QMOM for solving moment systems
derived from a 1-D PBE to allow for an arbitrarily large number IV of Gauss quadrature nodes. Like QMOM
does for My, _1, GQMOM exactly reproduces the input moment vector Ms,, where 2n is the order of the
highest-order known moment. Unlike QMOM, GQMOM closes the higher-order moments such that the
moment vector My is (almost always) in the interior of moment space, i.e., the moments correspond to a
continuous NDF unless Ms,, is on the boundary of moment space. When the latter occurs, the GQMOM
quadrature is the same as the one found with QMOM. This is because, by construction, unless b, = 0,
GQMOM will never produce a set of recurrence coefficients on the boundary of moment space. As we
have shown through examples, the principal advantage of using GQMOM versus QMOM is the ability to
increase the number of quadrature points from n to N without solving for more moments. This allows for
a more accurate evaluation of the moment source terms at nearly the same computation cost. Nonetheless,
as shown in the examples, the overall accuracy of the moment method is controlled principally by n (i.e.,
by the number of solved moments), and, hence, a much larger N is only needed for “difficult” source terms.

In comparison to other moment closures based on a continuous NDF (e.g., EQMOM, EM, EQ), GQ-
MOM is much easier to implement because it only requires a straightforward modification of the Chebyshev
algorithm to compute the additional recurrence coefficients (i.e., a;, b; for i =n,n+1,..., N). Furthermore,
because this process results in a Gauss quadrature on the support B, we are guaranteed that the abscissae,
being the roots of a monic orthogonal polynomial, lie inside B and are distinct. This is not the case, for
example, with EQMOM where the abscissae from the secondary quadrature can overlap, which causes severe
problems; for example, when one attempts to find conditional moments (Cheng et al., |2010; [Yuan and Fox],
2011). Moreover, the weights of the Gauss quadrature from GQMOM will be positive as long as My, lies
in the interior of moment space; otherwise, some weights will be null.

In general, moment closures that reside in the interior of moment space are preferable because they
can tolerate small numerical errors without becoming non-realizable. For example, for a PBE that includes
spatial transport with a known velocity (e.g., the gas velocity for an aerosol), constructing realizable finite-
volume schemes is challenging (Wright, |2007)), even if some realizable second-order schemes were developed
(Laurent and Nguyen, 2017; Marchisio and Fox, |2013; [Passalacqua et al.,|2020; |Shiea et al., [2020; |Vikas et al.|
2011). In this respect, GQMOM may allow for use of higher-order spatial reconstruction of the moment
vector for cases where QMOM is limited to low order. The same issue is faced when solving the moment
source terms numerically (Nguyen et al.| |2016)), so that, generally speaking, we expect that GQMOM will
generate more robust, and more accurate, numerical solvers for the multi-scale, multi-physics codes used in
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real-world applications (Bryngelson et al. [2020; Heylmun et al., 2021}, [2019; [llgun et al., [2021}; |Passalacqua
et al.l |2018; |Wick et al., 2017).

Many real-world applications are described by a NDF with more than one internal variable (e.g., for
aerosols, the droplet volume, temperature, composition, etc.). It is well known that the numerical solution
of a multi-dimensional PBE, even for spatially homogeneous cases, is very challenging due to the high
dimension of the phase space. One possible simplification is to condition the internal variables on the variable
with the largest variance (Marchisio and Foxl,|2013} [Yuan and Fox| [2011). In applications involving droplets
(aerosols), solid particles or bubbles, the mass (or size) of the particle is very often the most important
internal variable. As done in the examples in section d] GQMOM can be applied with the moments Ma,,
of the size variable £. Then, the conditional mean of another variable ¢ given ¢ is denoted by (¢|£), and
is computed using the joint moments (¢p¢*) for k = 0,1,...,n — 1 by applying the conditional quadrature
method of moments (CQMOM) (Cheng et al 2010; [Yuan and Fox} 2011). Mathematically, the linear system
in CQMOM is well conditioned because the QMOM abscissae are the roots of an orthogonal polynomial;
thus, the same will be true for GQMOM. As with CQMOM, when QMOM is replaced by GQMOM, it will
be necessary to approximate (¢|€) using a set of joint moments. However, the straightforward application
of CQMOM with N > n abscissae yields an under-determined linear system when & = 0,1,...,n—1. Thus,
one can either increase of order of the joint moments as to have IV constraints, or modify CQMOM to handle
N > n abscissae. The latter can be done successfully using an interpolation function, and we will describe
the resulting algorithm for generalized CQMOM in a future publication.
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Appendix A. Calculation of integrals with EQMOM

Differently from QMOM and GQMOM, in EQMOM the NDF is approximated as a weighted sum of
non-negative KDF (Yuan et al.| 2012):

f( Zwa (&, ga (A.l)

where w, are the weights of each KDF §,(¢,£,) with standard deviation o, &, are the corresponding
abscissae, and n is the number of KDF being used. Based on this approximation, integrals involving
products of the NDF and a function of £ are approximated as (Madadi-Kandjani and Passalacqual, |2015|)

| st@maeas - | ate N Zwa e de =3 S watmag(Enn) (A.2)

0 a=1p=1

where, for fixed o, wag and &, are the N, Gaussian quadrature nodes corresponding to the KDF (Yuan
et al.l |2012)). In principle, N, can be different for each «, but here we let N, = 2n.

Consequently, the evolution equation of the moment M}, in aggregation and breakup processes discussed
in section is rewritten as

n Nq

de :1 Z Z Wa,y Way By Z Z wa2wazﬁz(£alﬁl +€a2ﬁ2) /Sﬂa1ﬁ1a252

a1 18:=1 as=1Bs=1

n  Ng n  Ng
k
- Z Z wagalﬁlwalwa1ﬂ1 Z Z wa2wa2525a1ﬁ10¢252

a1=1 ;=1 az=1 B3=1
n
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where 5’; 5= b*(€45). In the numerical implementation of EQMOM, o is found from Ma,, using an iterative
procedure (Pigou et al.,[2018;|Yuan et al.l 2012)). Thus, since N =~ nN,, the principal advantage of GQMOM
versus EQMOM is to eliminate the need for iterations to find o before evaluating the right-hand side of

eq. (A3).
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