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Abstract—This work focuses on a quasi-linear-in-complexity
strategy for a hybrid surface-wire integral equation solver for the
electroencephalography forward problem. The scheme exploits a
block diagonally dominant structure of the wire self block—
that models the neuronal fibers self interactions—and of the
surface self block—modeling interface potentials. This structure
leads to two Neumann iteration schemes further accelerated with
adaptive integral methods. The resulting algorithm is linear up to
logarithmic factors. Numerical results confirm the performance
of the method in biomedically relevant scenarios.

I. INTRODUCTION

Several neuro-pathologies require precise functional brain
imaging as part of their diagnostic or therapeutic protocols
(see [1] and references therein). Among non-invasive strate-
gies, high resolution electroencephalography (HR-EEG), that
images the electric activity of the brain from scalp potentials,
is widely used. In HR-EEG the volume currents are retrieved
from the measurements of the electric potentials on the scalp
by solving the EEG inverse problem. Solving this inverse prob-
lem requires multiple solutions of the EEG forward problem
(FP) in which the surface potential generated by a known
current configuration is computed. Boundary element methods
(BEMs) are very popular in the biomedical community to
model the FP and a recent hybrid formulation [1] has intro-
duced the possibility of modeling white matter anisotropies by
coupling surface BEM with an integral equation for partially
conducting wires. In this work we present a fast matrix-vector
multiplication algorithm for this hybrid formulation which, by
exploiting the block diagonal dominance structure (induced
by the presence of neuronal fibers in the model) and coupling
this matrix structure with adaptive integral methods, obtains
a scheme with O(N logN) complexity in the N degrees of
freedom. Theoretical and algorithmic considerations will be
complemented by numerical experiments showing the impact
of the formulation on medical scenarios.

II. BACKGROUND AND NOTATION

Consider a sequence of nested compartments Ωi, i =
1, . . . , C modeling the different layers of the head medium,
characterized by homogeneous and isotropic conductivities σi.
The boundary of each compartment is denoted by Γi. Fol-
lowing the strategy in [1], the inhomogeneity and anisotropy

of the head medium is modeled by populating the white
matter with wires of finite anisotropic conductivity contrast
¯̄χ(r) = (σiw I− ¯̄σ(r)) ¯̄σ−1(r) with respect to the background
conductivity σiw of the white matter’s compartment. In this
setting, the EEG FP consists in finding the electric potential
ϕ(r) on the scalp surface ΓC generated by a primary current
Jp(r). To do so, the surface ξ and wire Jeq unknowns (see [1]
for their physical definition) are expanded with discrete basis
functions, i.e. ξ ≈

∑Ns

i=1(αs)ipi and Jeq ≈
∑Nw

i=1(αw)ihi

where pi and hi are the 2D and 1D linear Lagrange inter-
polants, respectively. Following a Galerkin approach leads to
a linear system of N = Ns +Nw unknowns

Zα =

[
vs

vw

]
with Z =

[
−Gss +D∗

ss −D∗
sw

−Sws Gww + Sww

]
, (1)

and where α = [αs αw]
T, (Gss)ij =

σin+σin+1

2(σin+1−σin ) ⟨pi, pj⟩Γ,
(D∗

ss)ij = ⟨pi,D∗pj⟩Γ, (D∗
sw)ij = 1

σin
⟨pi,D∗

v
¯̄χhj⟩Γ,

(Sws)ij = ⟨hi,∇Spj⟩Ω, (Gww)ij = ⟨hi, ¯̄χ
−1hj⟩Ω,

(Sww)ij = 1
σin

⟨hi,∇Sv ¯̄χhj⟩Ω, (vs)i = − 1
σs
⟨pi,D∗

vJp⟩Γ,
and (vw)i = − 1

σp
⟨hi,∇SvJp⟩Ω, with (Sf)(r) =∫

S
G(r, r′)f(r′) dS′, (D∗f)(r) =

∫
S
n̂ ·∇G(r, r′)f(r′) dS′,

(Svf)(r) =
∫
V
G(r, r′)∇′ · f(r′) dV ′, and (D∗

vf)(r) =∫
V
n̂ · ∇G(r, r′)∇′ · f(r′) dV ′. Above n̂ denotes the unit

normal vector pointing outwards Γi and G(r, r′) = 1
4π∥r−r′∥

is the static Green function. Once (1) is solved, S and Sv can
be applied to α to get the potential ϕ(r) on ΓC .

III. A FAST SOLUTION STRATEGY

With respect to a standard integral formulation for isotropic
media, corresponding to the left diagonal block in (1), the
inclusion of the white matter anisotropy adds a new wire-
wire diagonal block and two coupling blocks in the system.
First, the new scheme aims at decoupling the surface and
wire solution via block diagonal inversion and Neumann
series solution of the remainder: after separating diagonal
and off-diagonal blocks: Z = Zself + Zcoupl with Zself =
[Zss, 0; 0,Zww] and Zcoupl = [0,Zsw;Zws, 0], we solve
(1) as

(
I + Z−1

selfZcoupl

)
α = Z−1

selfv via a Neumann series
approach enabled by the block diagonal dominance, in cases
of practical relevance, of the original matrix (i.e. for the
spectral radius ρZ = ρ

(
Z−1
selfZcoupl

)
< 1). Thus we have



TABLE I
PERFORMANCE COMPARISON

Setup time Storage Time per RHS
Standard Iterative Solution 24 657 s 31.2GB 89.15 s

This work 2498 s 0.4GB 26.42 s

Fig. 1. Solution time vs number of unknowns.

α
(k+1)
s = Z−1

ss (vs − Zswα
(k)
w ) and α

(k+1)
w = Z−1

ww(vw −
Zwsα

(k)
s ) whose complexity reduces to the one of the two

inversions and of the multiplication of the coupling terms. The
multiplication of the coupling terms can be done efficiently
if a fast matrix vector product algorithm is available. We
have opted for an adaptive integral method (AIM) [2]. In
other words, all kernel interactions in D∗

ss, Sww, Sws and
D∗

sw between all Gaussian quadrature points are interpolated
on the same Cartesian grid with a number of nodes propor-
tional to the number of unknowns N and handled via FFT
in O(N logN) complexity. As is standard in AIM [2], a
near field precorrection is required for all kernels: a generic
D∗ and S (for surface, wire, and off diagonal couplings)
is written as D∗ = D∗

near − D̃
∗
near + ΦpΛ

TgDΛΦf and
S = Snear − S̃near + ΦpΛ

TgSΛΦf , where D∗
near and Snear

are the uncompressed near fields, D̃
∗
near and S̃near are the FFT

precorrections, Λ is unique for every product and interpolates
the quadrature points, and Φp and Φf map quadrature points
to basis functions; all these matrices are sparse. The FFT
is applied to the Toeplitz matrices gS and gD that, because
of the translation invariance of all Green functions involved,
require O(N) memory storage. Since the double layer kernel
is n̂ · ∇G(r, r′) = n̂ · r′−r

4π∥r′−r∥3 , the product of gD with a
vector is split into three scalar components.

Since the Zss block corresponds to the classical homoge-
neous multilayer BEM formulation, once a fast matrix vector
product algorithm is available, it can be inverted iteratively
with standard techniques (see [1] and references therein).
Regarding Zww, the near field kernel interactions are extracted
with an octree and the resulting sparse matrix N is used
as a preconditioner of the linear system Zwwx = b. The
near field dominance of Zww—due to the electric current
flowing along the fibers, i.e. ρw = ρ

(
N−1(Zww −N)

)
< 1—

enables a second usage of a Neumann series from which
x(k+1) = x(k) +N−1

(
b−Zwwx

(k)
)
. A sparse solver is used

to invert N in O(N) time complexity and the multiplication
of Zww is done in O(N logN) with the AIM.
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Fig. 2. Brain fibers current density on the MRI head model.

IV. NUMERICAL RESULTS

The favorable complexity scaling of the proposed scheme
has been verified on a set of canonical geometries composed
of spherical surfaces and orthogonal brain fibers. The total
timings are reported in Fig. 1 and clearly confirm that the
scheme we propose is, up to logarithmic factors, linear in
complexity. The relevance of our fast solution strategy for
real case scenarios has been studied on a realistic head
model obtained with magnetic resonance imaging (MRI) data
that includes white matter neuronal fibers with a tangential
anisotropic conductivity of 1.3 Sm−1 and four layers (gray
matter, cerebrospinal fluid, skull, scalp) with conductivities
0.13 Sm−1, 1.79 Sm−1, 0.01 Sm−1, and 0.43 Sm−1 respec-
tively. The obtained current on the neuronal fibers is shown
in Fig. 2. For this problem the radius of the fibers is chosen
to match a total volume of 450mm3. The total number of
unknowns is 63 922. The two spectral radii are ρZ = 0.439 and
ρw = 0.799, both less than one, thus allowing the Neumann
strategy. For this experiment we have compared in Table I the
method proposed in this work with the uncompressed solution.
In both cases the tolerance iterative schemes has been set to
10−3 and the results show the advantage of the new scheme.
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