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Abstract
This work deals with three related problems in a geostatistical context.

• Some data are available for given areas of the space, rather than for some specific locations, that’s granular data.

• Data uncertainty rely both on the input locations and on measured quantities at these locations.

• Multidimensional outputs can be observed, with sometimes missing data.

These problems are addressed simultaneously by considering mixtures of multivariate random fields, and by
adapting standard Kriging methodology to this context. While the usual Gaussian setting is lost, we show that
conditional mean, variance and covariances can be derived from this specific setting.

Context

Figure 1: Buildings labelling ac-
cording to their annual energy
consumption per square meter.

French government recently released a database inventoring
the energy efficiency of dwellings that have been diagnosed
in the last 10 years. It has therefore become possible to do
supervised learning to try and predict the energy efficiency
of any dwelling in France and possibly assess whether those
dwellings have undergone energy efficient retrofit. A major
issue in this project is that most models for energy efficiency
are engineering models that require physical visits to collect
parameters. From U.R.B.S. company point of view, the ques-
tion is therefore: How to predict buildings energy efficiency
without visiting them? From geostatistics point of view, we
can assume that granular data such as census data could help
us. The question becomes: How to modelize such granular
data in order to include it in a supervised learning model?

Contribution to achieving sustainable development objectives

• Objectif 11 : Faire en sorte que les villes et les établissements humains soient ouverts à
tous, sûrs, résilients et durables. Act so as to make cities and human buildings open
to all, safe, resilient and sustainable.

• Objectif 12 : Établir des modes de consommation et de production durables. Adopt sus-
tainable methods of consumption and production.

• Objectif 13 : Prendre d’urgence des mesures pour lutter contre les changements clima-
tiques et leurs répercussions. Take emergency measures to fight climatic changes
and their impact.

1 Modelize granular data as mixtures rather than averages

Consider output variables such as building’s insulation level, households income, square meter
price, building’s construction date... as a random vector field Y(x)defined at each dwelling x of a
district χ. How to define Y at a census tract level, denoted Y(g), g standing for "grain", seen as
a set of dwellings? Y(g) is commonly seen as the average Y over the census tract. However, aver-
aging reduces the dispersion of the variable as the scale grows. And the application of any highly
convex function h would induce a large bias, as E [h(Y(g))] ̸= h (E [Y(g)]) (see Figure 2). Underes-
timating the dispersion of an output random variable is an adverse effect when we plan to feed a
machine learning algorithm with this data. We therefore prefer the mixture approach:
Definition 1 (Outputs). Outputs are defined on each point x of a territory χ and each grain g of a set of
grains G, called a granularity.
• Y is a p-dimensional multivariate random field over χ denoted:

∀x ∈ χ, Y(x) := (Y1(x), . . . , Yp(x))
⊤ ∈ Rp

• For g ∈ G, denote Y(g) a p-dimensional real random vector that is Y’s value at a random location Xg ∈ g:

∀g ∈ G, Y(g) := Y(Xg) ∈ Rp

For a given granularity G, we assume that the set of random variables
{
Xg : g ∈ G

}
is defined and known,

and that the dependence structure between those random variables is also known. We assume furthermore
that these random variables are independent from the random field Y.
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Figure 2: Compared densities of mixture and average. Given Ya ∼ N(−1, 0.8) and Yb ∼ N(1, 0.5).
Left: Blue plain line represents a mixture density exp(Ymixture) picking Ya or Yb with probabilities 1

3 and 2
3. Red dashed

line is the average Yaverage =
1
3Ya +

2
3Yb. Distributions’common mean appears as a vertical blue line. The mixture is not

Gaussian and has a higher dispersion.
Right: Blue plain line represents density of exp(Ymixture). Red dashed line represents exp(Yaverage). Differing means appear
as vertical lines. Dispersion of the mixture’s exponential is higher than the other, and convexity induces a the difference
between means.
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Figure 3: For a neighborhood of Roubaix city, we observe from left to right: building’s period of contruction, energy type used for heating the building, building’s energy efficiency. The building lying on the red squared landplot has been build in the
50’s-60’s, is heated with electricity and has a very poor energy efficiency. These images are print outs of IMOPE software, developped by U.R.B.S. company in Saint-Étienne, France.

2 Derive a Best Linear Unbiased Predictor from a mixture model

To define learning data we now assume that the output is partially known on a granularity G, i.e.
for (i1, . . . , in) ∈ J1, pKn and g1, . . . , gn ∈ G, we know n random variables :

Y = (Y 1, . . . , Y n)
⊤

with Y j = Yij(gj) for j ∈ J1, nK

For some g ⊂ χ and some i ∈ J1, pK, we want to predict Yi(g) from a learning set Y.
We denote :

µ := E [Y] ∈ Rn

K :=
(
Cov

[
Y j, Y j′

])
j,j′∈J1,nK

∈ S+
n (R) semi-definite positive matrix

hi(g) :=
(
Cov

[
Y j, Yi(g)

])
j∈J1,nK

∈ Rn

Proposition 1. If the expectations of Yi(x) and covariances between Yi(x) and Yj(x
′) are known for all

i, j ∈ J1, pK, x, x′ ∈ χ, as in usual Kriging assumptions, then µ, K and hi(g) can be computed.

We assume that K is invertible. We optimize weights αi(g) =
(
α
j
i (g)

)
j∈J1,nK

∈ Rn to get a linear

unbiased predictor Mi(g) of Yi(g):

Mi(g) =
n∑

j=1

α
j
i (g)Y

j = αi(g)
⊤Y . (1)

minimizing the quadratic error:

αi(g) ∈ arg min
α∈Rn

E
[(

Yi(g)−α⊤Y
)2]

(2)

Given the optimal predictor Mi(g), the resulting errors are denoted:


ϵi(g) := Yi(g)−Mi(g)

ci,j(g, g
′) := E

[
ϵi(g) ϵj(g

′)
]

vi(g) := ci,i(g, g)

(3)

Given the first two moments of random variables
{
Xg : g ∈ G

}
, we get the following result:

Proposition 2 (Mixture Kriging prediction). Given a set of observations Y, for any g ⊂ χ, and in particu-
lar for a single point g = {x}, for any i ∈ J1, pK, the weights αi(g) yielding the best linear unbiased predictor
(BLUP) of Yi(g) and the associated cross errors are as follows:

(i) Simple Mixture Kriging. If µ = (0, . . . , 0)⊤ and µi(g) = 0 then

{
αi(g) = K−1hi(g)

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤K−1hj(g

′)

(ii) Ordinary mixture Kriging. If µ ̸= (0, . . . , 0)⊤ then unbiasedness writes µi(g) = αi(g)
⊤µ and

αi(g) = K−1
(
hi(g) + λi(g)µ

)
where λi(g) =

µi(g)−µ⊤K−1hi(g)

µ⊤K−1µ

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤K−1hj(g

′) + λi(g)λj(g)µ
⊤K−1µ
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