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Abstract
The standard IFRS 17 introduces a risk adjustment (RA) to reflect the compensa-
tion the insurance entity requires for bearing the uncertainty associated with non-
financial risks. The risk adjustment is one of the main components in IFRS 17
disclosures and is a factor that impacts strongly IFRS 17 P&L and balance sheet as
well as their evolution over a time horizon. IFRS 17 does not prescribe any specific
techniques for calculation methodologies; insurance entities are free to adopt their
own assessment while meeting several qualitative rules to ensure their consistency.
This paper focuses on the recommendations of paragraph §B88 stating that the risk
adjustment is required to reflect the diversification benefit of bearing the risk. We
suggest a method for aggregating elementary RA (per risk and/or per Line of Busi-
ness) based on the Solvency 2 elliptic aggregation. We introduce the concept of
ultimate correlation as opposed to Solvency 2 one-year correlation and provide a
theoretical bridge between both depending on a time diversification parameter. We
explore correlation structures involving this time diversification and discuss analyt-
ical properties in terms of possible correlations values and the resulting impact on
the aggregated RA features.
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Introduction
After introducing the first temporary standard IFRS 4 (International Financial Reporting Standard) in 2002, the Inter-
national Accounting Standards Board (IASB) completed in 2020 its insurance accounting guidance project by issuing
the amended standard IFRS 17 - Insurance Contracts (c.f. [1]). IFRS 17 is to be applied for all periods beginning on
or after 1 January 2023 at the latest, to issued insurance and reinsurance contracts, held reinsurance contracts, and
issued investment contracts with discretionary participation features. It aims to establish a consistent financial reporting
framework that provides transparency about the financial performance of the insurance company to which it applies.
Besides, IFRS 17 introduces the concept of a risk adjustment for non-financial risk (RA). The risk adjustment measures
the compensation that the entity would require to be indifferent between, fulfilling a liability that has a range of possible
outcomes arising from non-financial risk, and a liability that will generate fixed cash flows with the same expected
present value as the insurance contracts (see §B87 in [1]). The risk adjustment forms an important part of the balance
sheet under all IFRS 17 models. Moreover, it impacts the initial contractual service margin (CSM) assessment. Thus,
RA is an impacting driver in how profit from insurance contracts is reported and allocated over time.
While the risk adjustment calculation method is not prescribed and is the choice of the insurance company, it still must
satisfy several conditions detailed in paragraphs §B91 and §B92. Many RA computing techniques have already been
discussed in the literature. The main reference here is the International Actuarial Association monograph (see [2])
which provides detailed implementation guidance for practitioners in the insurance field. It also describes the more
common RA techniques, in particular, percentile and Cost-of-Capital methods. Through a mathematical interpretation
of the regulatory texts, Palmborg et al. [3] define an algorithm for profit or loss in accordance with IFRS 17 standard.
The RA is computed by a multi-period cost-of-capital approach introduced in [4]. Another method has been provided
by Chevallier et al. [5]. Here, the authors introduce a simple and general framework for estimating the probability of
sufficiency of the technical provisions under an IFRS 17 environment for life insurance products using volatility and
skewness of the risk factors. However, no possible reconciliation with the Solvency 2 framework has been developed in
these references.
Such a bridging has been studied for a non-life insurance scope in [6] which the authors bring together IFRS 17 lifetime
view and Solvency 2 one-year of reserve risk. Indeed, the analytic formula-based approaches of Mack [7] for the lifetime
view of reserve risk, and Merz-Wüthrich [8] for the one-year view of Solvency 2, have been compared to simulation-
based methods. Furthermore, the lifetime and one-year views were brought together by considering a sequence of
one-year views until the liabilities are extinguished.
In this paper, we focus on IFRS 17 allowance for risk diversification while linking it to Solvency 2 aggregation framework.
A risk diversification principle is stated in the paragraph §B88 as follows:

Because the risk adjustment for non-financial risk reflects the compensation the entity would require for
bearing the non-financial risk arising from the uncertain amount and timing of the cash flows, the risk
adjustment for non-financial risk also reflects:

(a) the degree of diversification benefit the entity includes when determining the compensation it requires
for bearing that risk; and

(b) both favourable and unfavourable outcomes, in a way that reflects the entity’s degree of risk aversion.

Diversification can occur because of the interaction between non financial risks embedded in RA calculation or between
insurance portfolios (e.g. between contracts, groups of contracts, portfolios, entities, etc . . . ). A global RA is usually
smaller than the sum of stand-alone RA (per elementary risk and/or insurance portfolio) due to the inter-dependencies
between insurance risks or portfolios. IFRS 17 being a principle-based accounting standard, insurance companies will
need to determine how to account for this risk diversification and at which level of aggregation it should be included.
To quantify risk diversification, we are interested in this paper in a bottom-up approach. We define this approach as a
method where the risk adjustment is assessed at the elementary risks level and then aggregated to the entity level. The
bottom-up approach is very convenient in practice and is likely to arise when risk adjustment computations and the
present value of future cash flows calculations are executed simultaneously. This is for instance the case if marginal risk
adjustments are assessed through a stress test approach. Once calculated, marginal risk adjustments are then aggregated
using interdependence properties between the associated risks. The main idea is to obtain meaningful measures for
the overall risk the firm is exposed to while taking into account the stochastic inter-dependencies between the different
risk types. Among the variety of approaches to model inter-dependencies discussed in the risk aggregation literature,
copulas are one of the most flexible tools to quantify risk diversification within an insurance firm. Copulas are widely
discussed and have been used in quantitative finance ([9]), actuarial science ([10]), and risk management ([11]). They
are powerful tools for the modeling of complex relationships between a large number of variables in an operational
treatment. They allow the dependence between variables to be captured using various structures: Archimedean and
elliptic copulas ([12],[13]), vine copulas ([14], [15],[16]), and hierarchical copula models ([17]). However, due to
the closing deadlines of IFRS 17 and Solvency 2, these methods are not often adopted by practitioners because of the
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1 THEORETICAL FRAMEWORK

complexity of their implementation and the challenge of gathering the necessary data for their calibration. This is also
closely related to how operational agents carry out their computations by separating them into marginal calculations
without first characterizing the joint law of the underlying factors. Hence, we focus in this paper on elliptic aggregation
discussed by Rosenberg and Schuermann [18] and Filipović [19]. This method of risk aggregation uses a correlation
matrix and is based on the notion of an economic capital that corresponds to the difference between a quantile and the
expected value. The elliptic aggregation has been extensively investigated especially under the Solvency 2 framework
(see [20]).
We attempt to provide a theoretical bridge between risk aggregation within the Solvency 2 framework and its IFRS 17
counterpart. The purpose is to identify the effects of the shift from Solvency 2 one-year view to IFRS 17 ultimate view
on the dependence of elementary risks and their aggregation. We introduce the notion of ultimate correlation, which is
characterized by time diversification and which differs from a one-year correlation. We construct correlation structures
that incorporate an inter-LoB correlation parameter (between Lines of Business or between elementary risks) and a time
correlation parameter. Similar structures have already been exploited in the literature, most notably in the property
and casualty (P&C) insurance context to include a temporal diversification within a frequency-severity approach (see
[21],[22]).
We use Toeplitz matrices (see [23]) to derive correlation structures for the cash flows for two elementary risks. Toeplitz
matrices have been also employed in a wide variety of applications, especially in the fields of numerical analysis, signal
processing, system theory,. . . (see for instance [24]). We use spectrum properties of Toeplitz matrices (see [25],[26]) to
discuss acceptable values of correlation parameters and explore the resulting aggregated risk adjustment behavior.
The first section introduces the theoretical framework for the RA aggregation methodology. It is organized as follows.
Subsection 1.1 presents the elliptic aggregation approach and its assumptions. Subsection 1.2 introduces the notations
for the stochastic liabilities value and the underlying risk factor. Subsection 1.3 presents the time correlation structures
and discusses some analytical results about the ultimate correlation. Subsection 1.4 formalizes the Solvency 2 one-year
view and the assumptions required to link it with the ultimate view.
In the second section, we present numerical results for risk aggregation under IFRS 17. Subsection 2.1 discusses the
acceptable values of the correlation parameters and examines the behavior of the ultimate correlation towards the one-
year correlation. Subsection 2.2 presents an example of the aggregation of the Lapse and Expense risks and compares
the elliptic aggregation to a simulative approach.

1 Theoretical framework
1.1 Risk aggregation: Elliptic approach
In this paper, we shall consider that the risk adjustment is calculated via a standard formula-like approach. The term
"standard formula" describes any method that aims to calculate an economic capital at the level of elementary risks
(lapse rate, mortality rate,. . . ) or marginal Lines of Business (LoB) and then aggregate these stand-alone elements with
correlation matrices (see [18],[19] for more details about this method and its limits).
A standard formula-like method may either cover a single level of aggregation or implement successive aggregations,
as is the case for the QIS (see [27]). Indeed, in the Solvency 2 context, this method consists of a first aggregation
step between risk modules (Market, Life, Non-Life...), called intra-modular aggregation, then a second phase where
these modules are aggregated to obtain an overall economic capital (inter-modular aggregation). The technique of risk
aggregation using a correlation matrix is based on the notion of an economic capital that corresponds to the difference
between the quantile and the expected value of a reference distribution (liabilities value, amount of losses, equity
level,...). For a deeper discussion of the standard formula elliptic aggregation and its use in the Solvency 2 framework,
see [20] and the references given there.
As for IFRS 17 risk adjustment, we shall assume that its computation is based on a Value at Risk (VaR) approach on
the stochastic distribution of the Best Estimate (i.e. stochastic value of the entity’s liabilities). Thus, denotingÝBE the
stochastic liabilities value of the company, the global risk adjustment is then given by:

RA= VaRα
�

ÝBE
�

−E
�

ÝBE
�

. (1)

The notation α stands for the confidence level at which the risk adjustment is disclosed as required by IFRS 17. Let us
recall that the risk adjustment is not necessarily equivalent to a Value at Risk. IFRS 17 does not specify the method to
be adopted to compute the RA. It does however specify that the disclosure of the methodology requires to include the
equivalent confidence level (see §119, B92 in [1]).
We shall now assume that the entity is exposed to P non-financial risks. For each of these elementary risks (or different
LoBs) indexed by i, we consider a related risk adjustment to be calculated and given by: RAi = VaRα

�

ÝBE i

�

−E
�

ÝBE i

�

.

Moreover, we shall that the variablesÝBE and (ÝBE i)i∈1,...,P have finite first and second moments. In practice, the random
variable BEi corresponds to the measure of the liabilities value (expected under financial risks) with a hazard which
depends only on the risk i and which is calculated under central assumptions of other non-financial risks.
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1 THEORETICAL FRAMEWORK

The idea of aggregation approach is then to derive the global risk adjustment from previous elementary risk adjustments
based on the correlation structure between those. Denoting ΣI FRS = (cor(ÝBE i ,ÝBE j))(i, j)∈{1,...,P}2 the correlation matrix
between the elementary risks and R= (RAi)i∈1,...,P the vector of elementary risk adjustments, the global risk adjustment
is then given by:

RA=
p

RtΣI FRSR. (2)

To get the above formula, it is necessary to put some restrictions on the dependence between the global and the ele-
mentary liabilities values and the distribution of the latter. The following assumption will be needed throughout the
paper.

Assumption 1.1 (Linearity). The global liabilities variableÝBE is a affine function of elementary liabilities valuesÝBE i:

ÝBE = a0 +
∑

i

aiÝBE i .

Assumption 1.2 (Elliptic distribution). The vector of liabilities values
�

ÝBE i

�

i∈1,...,P
follows an elliptic distribution (i.e.

Gaussian or Student distribution).

1.2 Liabilities value under IFRS 17 - an ultimate view
We focus in this subsection on the specification of elementary liabilities introduced above. Since the underlying theory
behind the elliptic aggregation method holds regardless of the level of aggregation considered, the term LoB is used,
throughout this paper, to describe either a portfolio, a risk module, or an elementary risk.
Let eϵt,i be the risk factor at time period t, which we associate with LoB i. The notion of risk factor refers to elements
that enable to summarise the intensity of the risk during time projection. The vector of the cumulative risk factors at
time period t is denoted briefly by (eϵk,i)k∈{1,...,t} = eϵt ,i .
Hence, we introduce now the notion of stochastic best estimate under IFRS 17, for a LoB i (i.e. stochastic value of
liability for LoB i) that is written:

ÝBE
I FRS
i =

N
∑

t=1

Fi

�

t, eϵt ,i

�

, (3)

where

• Fi(t, eϵt ,i) the cash-flow at time t for the i th LoB. The cash-flow is viewed as a function of the time period t and
the cumulative deviation of the risk from period 1 to period t (i.e. all the risk factors from 1 to t).

• N the projection time horizon

Note that the cash-flow function t 7→ Fi(t, eϵt ,i) depends on the characteristics of the LoB i, and also on the time t to
incorporate the effects of deterministic trends such as discounting effects, or temporal changes in premium or claims
amounts that do not depend on the random factor eϵt ,i . We have also chosen to accumulate the random factors over
time. Indeed, we notice that the cash flow at period t depends on all the risk factors between 1 and t. Without loss of
generality, this approach makes the ultimate vision more intuitive, as opposed to the one-year vision introduced later
in subsection 1.4.
Finally, we introduce the following notation for the deterministic best estimate under IFRS 17:

BE I FRS
i =

N
∑

t=1

E
�

Fi

�

t, eϵt ,i

�

�

. (4)

1.3 Time correlation structure
We will now examine the correlation structure between the entity’s cash flows. Calibrating such correlations presents
significant challenges in terms of data requirements. In the following, we present three parametric correlation structures
that we intend as a bridge between IFRS 17 and Solvency 2 frameworks. The point is to illustrate the reasoning that
allows us to switch from a one-year view aggregation to an ultimate vision, then to establish formulas that can be used
and implemented easily by practitioners. Given two different LoBs i, j ∈ {1, . . . , P}, we adopt approaches based on two
parameters: an inter-LoB correlation parameter (associated with the Solvency 2 correlation) denoted ρi, j , and a time
correlation parameter within each LoB i denoted τi . For the whole set of correlation structures considered, we assume
that the inter-LoB correlation is entirely carried by the cash flows of the two LoBs occurring at the same period. We
thus assume, for simplicity, that each cash flow of the first LoB is uncorrelated with all cash flows from the second LoB
that do not occur in the same period.
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1.3.1 Σ−structure: Time correlation through consecutive cash-flows
We first consider a correlation structure within each LoB, for which the time correlation is fully carried by the consecutive
cash flows. More specifically, cash flows that are that are distant than more that one period are assumed to have a zero
correlation. This behavior is much like that of an MA(1) moving-average process in time series applications. Hence,
let us introduce the temporary notation ρFi(t),F j(t ′) for the correlation between the cash-flows Fi

�

t, eϵt ,i

�

and F j

�

t ′, eϵt ′, j

�

,
and assume that for i, j ∈ {1, . . . , P}:

ρFi(t),F j(t ′) = ρi, j .1{t=t ′}, ∀t, t ′ ∈ {1, . . . , N},

and

ρFi(t),Fi(t ′) =







1 if t = t ′

τi if t = t ′ + 1 or t ′ − 1

0 else

∀t, t ′ ∈ {1, . . . , N}.

Denoting IN the identity matrix of size N , we shall restate this assumption in matrix notation by introducing the following
N .P × N .P matrix:

ΣN ,P =











T Σ1,N ρ1,2 IN . . . ρ1,P IN

. . .
. . .

...
. . . ρP−1,P IN

T ΣP,N











, (5)

where T Σi,N is the following N × N matrix:

T Σi,N =

















1 τi 0 . . . 0

τi
. . .

. . .
. . . 0

0
.. .

. . .
. . . 0

...
. . .

. . .
. . . τi

0 . . . 0 τi 1

















. (6)

The matrix ΣN ,P can be seen as the correlation matrix of the random vector of all cash-flows:

�

F1

�

1, eϵ1,1

�

, . . . , F1

�

N , eϵN,1

�

, . . . , FP

�

1, eϵ1,P

�

, . . . , FP

�

N , eϵN,P

�

�

.

The blocks on the diagonal, which depend on the time correlations, represent the correlation structure within each LoB.
The remaining blocks stand for correlations between cash flows from distinct LoBs.
It’s now of interest to derive a formula for the global correlation between stochastic liabilities values between the i th
and the j th LoB (denoted ρΣ

ÝBE
I FRS
i ,ÝBE

I FRS
j

). Using the previous Σ−correlation structure, and let σi,t stand for the standard

deviation of cash-flow Fi

�

t, eϵt ,i

�

. An easy computation shows that:

ρΣ
ÝBE

I FRS
i ,ÝBE

I FRS
j

=
ρi, j

∑N
t=1σi,tσ j,t

Ç

∑N
t=1σ

2
i,t + 2τi

∑N−1
t=1 σi,tσi,t+1.
Ç

∑N
t=1σ

2
j,t + 2τ j

∑N−1
t=1 σ j,tσ j,t+1

. (7)

1.3.2 Λ−structure
We now consider that within a single LoB i, all cash flows are correlated with the same value τi . Since the underlying
factors explaining the correlations between cash flows from different periods (policyholders behaviors, socioeconomic
environment. . . ) tend to differ, especially over long time horizons, this scenario is not fully realistic. However, it is
useful from an analytical perspective, as we shall discuss further below. It introduces a strong correlation between the
different cash flows which leads to a high value for the elementary risk adjustment. We will see that this is a bounding
scenario for the more generic structure introduced in the next subsection. Thus, we assume that for i, j ∈ {1, . . . , P}

ρFi(t),F j(t ′) = ρi, j .1{t=t ′}, ∀t, t ′ ∈ {1, . . . , N},

and
ρFi(t),Fi(t ′) = τi .1{t ̸=t ′} + 1{t=t ′}∀t, t ′ ∈ {1, . . . , N}.

We shall then introduce the following matrix:
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ΛN ,P =











T Λ1,N ρ1,2 IN . . . ρ1,P IN

. . .
. . .

...
. . . ρP−1,P IN

T ΛP,N











, (8)

where T Λi,N is the following N × N matrix:

T Λi,N =











1 τi . . . τi

τi
. . .

. . .
...

...
. . .

. . . τi
τi . . . τi 1











. (9)

In the same manner, as previously, we deduce the following formula for the global correlation between stochastic
liabilities values:

ρΛ
ÝBE

I FRS
i ,ÝBE

I FRS
j

=
ρi, j

∑N
t=1σi,tσ j,t

Ç

∑N
t=1σ

2
i,t + 2τi

∑

1≤t<t ′≤N σi,tσi,t ′ .
Ç

∑N
t=1σ

2
j,t + 2τ j

∑

1≤t<t ′≤N σ j,tσ j,t ′

. (10)

1.3.3 Γ−structure
We consider in the following a more general structure. The main idea was motivated by the notion of "weak dependence"
discussed in [28]. This notion makes explicit the asymptotic independence between past and future; this means that
the past is progressively forgotten. Another way of stating it is to specify a covariance between a past event and a
future one which decreases with the distance between both. For example, a lapse deviation observed in a period may
be considered to have relatively slight dependence with a deviation from a more distant period because the underlying
causes may dissipate over time.
We introduce here a time correlation that will be reduced from a period to another, according to sequence of discrete-
time coefficients depending on the lag between both time periods. This sequence will be supposed to be a geometric
progression. Thus, an equivalent formulation is to assume that for i, j ∈ {1, . . . , P}:

ρFi(t),F j(t ′) = ρi, j .1{t=t ′}, ∀t, t ′ ∈ {1, . . . , N},

and
ρFi(t),Fi(t ′) = τi(1− γi)

(|t−t ′|−1).1{t ̸=t′} , ∀t, t ′ ∈ {1, . . . , N}.

We shall introduce the following matrix:

ΓN ,P =











T Γ1,N ρ1,2 IN . . . ρ1,P IN

. . .
. . .

...
. . . ρP−1,P IN

T ΓP,N











, (11)

where T Γi,N is the following N × N matrix:

T Γi,N =

















1 τi (1−γi )τi . . . (1−γi )
N−2 τi

τi
. . .

. . .
. . .

...

(1−γi )τi
. . .

. . .
. . . (1−γi )τi

...
. . .

. . .
. . . τi

(1−γi )
N−2 τi . . . (1−γi )τi τi 1

















. (12)

Note that this construction generalizes those of subsections 1.3.1 and 1.3.2 given respectively γi = 1 and γi = 0. Fur-
thermore, we emphasize that the geometric progression of the time correlation is similar to an autoregressive–moving-
average model ARMA(1,1). In the particular case when γi = 1−τi , the Γ−structure is equivalent to an AR(1) process.
We conclude then the following formula for the global correlation between stochastic liabilities values of both LoBs
under the Γ−correlation structure:
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ρΓ
ÝBE

I FRS
i ,ÝBE

I FRS
j

=
ρi, j

∑N
t=1σi,tσ j,t

Ç

∑N
t=1σ

2
i,t + 2τi

∑

1≤t<t ′≤N (1− γi)(t
′−t−1)σi,tσi,t ′ .
Ç

∑N
t=1σ

2
j,t + 2τ j

∑

1≤t<t ′≤N (1− γi)(t
′−t−1)σ j,tσ j,t ′

.

(13)
The global correlation is thus defined as a ratio between the inter-LoB correlation ρi, j between the i th an the j th LoB,
and an adjustment factor fM (τi ,τ j , N) ,related to the correlation structure matrix M(= Σ, Λ or Γ ), that depends on
time correlations τi ,τ j and the projection horizon N . For instance, for the Γ−structure, the adjustment factor is given
by

fΓ (τi ,τ j , N) =

Ç

∑N
t=1σ

2
i,t + 2τi

∑

1≤t<t ′≤N (1− γi)(t
′−t−1)σi,tσi,t ′ .
Ç

∑N
t=1σ

2
j,t + 2τ j

∑

1≤t<t ′≤N (1− γi)(t
′−t−1)σ j,tσ j,t ′

∑N
t=1σi,tσ j,t

,

(14)
and the global correlation under IFRS 17 is given by: ρΓ

ÝBE
I FRS
i ,ÝBE

I FRS
j

=
ρi, j

fΓ (τi ,τ j ,N)
.

This factor is proportional to the product of the standard deviations of the marginal stochastic liabilities values. Observe
that a time correlation structure that would indicate a high variance would imply a lower (in absolute value) global
correlation between LoBs. The global correlation is thus a decreasing function in the standard deviations of the marginal
distributions of LoB. Nevertheless, the global risk adjustment would not behave the same way since a higher variance
implies in practice higher marginal risk adjustment amounts.

Proposition 1.1. For a correlation structure matrix M(= Σ, Λ or Γ ), we have:

• The functions τi 7→ ρM
ÝBE

I FRS
i ,ÝBE

I FRS
j

and τ j 7→ ρM
ÝBE

I FRS
i ,ÝBE

I FRS
j

are decreasing.

• For positive values for τi and τ j ,

�

�

�

�

ρM
ÝBE

I FRS
i ,ÝBE

I FRS
j

�

�

�

�

≤
�

�ρi, j

�

�.

Proof. Since the adjustment factor fM (τi ,τ j , N) is obviously an increasing function of both τi and τ j , the decreasing
nature of the global correlation according to the time correlation is straightforward. Thus, a large time correlation within
each branch will tend to overwhelm the effect of the inter-LoB correlation. Furthermore, using a Cauchy-Schwartz
inequality, it is easy to show that ∀τi ,τ j ≥ 0,

N
∑

t=1

σi,tσ j,t ≤

√

√

√

√

N
∑

t=1

σ2
i,t + 2τi

∑

1≤t<t ′≤N

(1− γi)(t
′−t−1)σi,tσi,t ′ .

√

√

√

√

N
∑

t=1

σ2
j,t + 2τ j

∑

1≤t<t ′≤N

(1− γ j)(t
′−t−1)σ j,tσ j,t ′ .

The inequality

�

�

�

�

ρM
ÝBE

I FRS
i ,ÝBE

I FRS
j

�

�

�

�

≤
�

�ρi, j

�

� is then easy to check.

In practice, the time correlation within a LoB often takes positive values. Hence, the overall correlation under IFRS 17
will then be lower (in absolute value) than the inter-LoB correlation due to time diversification. We shall show in the
following that this property is typical of the ultimate vision of IFRS 17 as opposed to the one-year vision of Solvency 2.
We recall that for identical inter-Lob correlation and time correlation parameters, the correlation structures previously
discussed lead, from one approach to the other, to significantly differing global correlation values. An interesting feature
is the asymptotic behavior of the global correlations for high values of projection horizon N . When considering constant
correlations parameters for all the LoBs, denoted simply by ρ, τ, and γ, and constant cash flows variance through time,
we notice that when N tends to infinity, the global correlation under theΣ−structure tends to ρ

1+2τ . TheΣ−structure will
in general tend to reduce the inter-Lob correlation by a factor proportional to the time correlation. On the contrary, for
the Λ−structure, the global correlation tends to 0. For a large projection horizon, the strong time correlation between
cash flows induced by this structure will tend to override the inter-LoB correlation, and even make it disappear at
the aggregation level. Moreover, the global correlation under the Γ−structure will tend towards ρ

1+2 τγ
. This is again

an intermediate case, where the correlation obtained varies, according to the geometric common ratio parameter γ,
between the two bounds defined by the first two structures.
The three correlation structures also differ in terms of acceptable values for the correlation parameters τ and ρ that
allow the correlation structure to remain positive semidefinite (see Appendix A). It is easy to verify that in the case of
the Σ−structure, at a fixed ρ, the interval of possible values for τ, whose length will depend on ρ and N , will always be
centered. This structure thus admits positive and negative time correlation values of the same intensity. TheΛ−structure
on the other hand places more weight on the positive time correlation values as we will see in the numerical application
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in section 2. The interval related to Γ−structure will also vary between the two previous intervals depending on the
value of the γ parameter.
Finally, we emphasize that the notion of inter-Lob correlation, which we have defined so far, corresponds to a correlation
between the cash flows of the two LoBs. In general, it does not necessarily refer to the one-year correlation (between
risk factors or best estimates) as used in a Solvency 2 context for SCR aggregation. Therefore, we demonstrate in
the following that under certain assumptions, both these correlations are identical and hence establish a useful path
between the IFRS 17 correlation and its Solvency 2 counterpart.

1.4 Liabilities value under Solvency 2 - a one-year view
We are now interested in the formulation of liability values under the Solvency 2 framework. The idea is to make a
connection between the correlation used in the Solvency Capital Requirement (SCR) aggregation and those used for the
risk adjustment computation. It is useful to remember that the Solvency 2 economic capital corresponds to the amount
in own funds available to a company facing financial bankruptcy with a one-year horizon and a confidence level of
99.5%. This definition of the capital raises an important notion of a one-year view.
Solvency 2 relies on one-year view that differs from its counterpart IFRS 17, which is in the ultimate view. The one-year
vision is formalized by considering a conditional expectation on the best estimate, based on the information at the end
of the first year of the cash-flows projection. This information is carried by the risk factors at t = 1 for all LoBs. Thus,
the stochastic value of the liabilities under the Solvency 2 framework for the i th LoB is given by:

ÝBE
S2
i = E
�

N
∑

t=1

Fi

�

t, eϵt ,i

�

|
�

eϵ1,1, . . . , eϵ1,P

�

�

= Fi

�

1, eϵ1,1

�

+E
�

N
∑

t=2

Fi

�

t, eϵt ,i

�

|
�

eϵ1,1, . . . , eϵ1,P

�

�

.

(15)

Note that, for convenience, we assume here that the scope of liabilities considered for the calculation of the best estimate
under IFRS 17 is identical to that of Solvency 2. Hence, in a deterministic view, the central best estimates under IFRS
17 and Solvency 2 are equivalent. Note that we consider the same contracts boundary for both frameworks throughout
the paper.
Further assumptions on the distribution of cash flows and their dependence on risk factors are required to establish a
relationship between the Solvency 2 correlation and the inter-LoB correlation introduced in the previous section. The
Solvency 2 correlation, denoted ρΓ

ÝBE
S2
i ,ÝBE

S2
j

, is the inter-LoB correlation between the stochastic liability values in Solvency

2 view, between the i th and the j th LoB. The notation Γ stand for the Γ−structure discussed in section 1.3.3. Since it
is the most generic case, we will write Γ to describe any of the correlations structure previously discussed when no
confusion can arise. In the following, we present two conditions under which a relationship between ρΓ

ÝBE
S2
i ,ÝBE

S2
j

and ρi, j

can be easily specified.

1.4.1 Case 1: Cash flows as a linear function of Gaussian risk factors
Although quite restrictive, linearity assumptions are often used in practice, in particular, to ensure that the normality
of the marginal best estimates when its associated risk factor is Gaussian. These assumptions are required for the
calculation of economic capital (SCR under Solvency 2 or RA under IFRS 17) by a bottom up aggregation methodology
(see [20] for more details). In our case, a linearity assumption on cash flows will be used to explicit the formula of the
conditional expectation.

Assumption 1.3. We suppose that:

• ∀i ∈ {1, . . . , P},
�

eϵ1,1, . . . , eϵ1,P , eϵ2,i , . . . , eϵN ,i

�

is a Gaussian vector.

• There exists constants (a(k)t,i )k≥0 such as:

∀t, Fi

�

t, eϵt ,i

�

= a(0)t,i +
t
∑

k=1

a(k)t,i .eϵk,i .

Under assumption 1.3, it follows immediately that the whole sum of cash-flows is a linear function of the risk factors.
In addition, since the vector of risk factors is Gaussian and risk factors eϵt,i ,∀t, t ′ ≥ 2 are independent with eϵt ′, j for j ̸= i
and t ̸= t ′, the Solvency 2 stochastic best estimate is a linear function of the first period risk factor eϵ1,i as is easy to

check (i.eÝBE
S2
i = A0,i + A1,ieϵ1,i where A0,i and A1,i are constants). We use the linearity of the BE, as well as that of the

cash-flows to demonstrate that:

ρΓ
ÝBE

S2
i ,ÝBE

S2
j

= cor(eϵ1,i , eϵ1, j) = cor
�

Fi

�

1, eϵ1,i

�

, F j

�

1, eϵ1, j

�

�

= ρi, j .
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Recall that the correlation between cash flows is identical to that between risk factors, which is also the same as the
correlation between best estimates. This property allow to consider a unique notion of inter-risk correlation, which
permits to aggregate marginal best estimates while being calibrated on the risk factors. For example, a correlation
between lapse and expense risks could be calibrated directly on surrender and expense rates instead of the related best
estimates.

1.4.2 Case 2: Elliptic Distributions
The linearity assumption mentioned above can be restrictive in several situations and is not always in line with the
models used in practice. The risk factors are very often linear to annual rates (surrender rates, mortality rates...), and the
cash flows are then products of risk factors functions (probability of occurrence, survival...). We propose an alternative
hypothesis that allows us to obtain the same result while dropping cash-flows linearity. Instead, an assumption on the
distribution of cash flows and first-period risk factors is required.

Assumption 1.4. We suppose that:

• ∀i,
�

eϵ1,1, . . . , eϵ1,P , Fi

�

2, eϵ2,i

�

, . . . , Fi

�

N , eϵN,i

�

�

is a Gaussian vector.

• The first period cash-flow is a linear function of the first first period risk factor (i.e. ∀i ∈ {1, . . . , P}, Fi

�

1, eϵ1,i

�

=
a(0)i + a(1)i .eϵ1,i where a(0)i and a(1)i are constants).

Note that the linearity assumption for the first cash flow is not constraining. Indeed, if we consider, without loss of
generality, that risk factor eϵ1,i is homogeneous to an annual rate for the risk considered (for example a surrender rate
for a policyholder depending on the maturity of the contract), the cash-flow associated with the first year often takes
the following generic form: Fi

�

1, eϵ1,i

�

= F1.eϵ1,i + F2.(1− eϵ1,i) (where F1 and F2 are constants), and hence corresponds
to a linear function of the risk factor.
Let us denote Fi

�

eϵN,i

�

=
∑N

t=2 Fi

�

t, eϵt ,i

�

, such as ÝBE
S2
i = Fi

�

1, eϵ1,i

�

+ E
�

Fi

�

eϵN,i

�

|
�

eϵ1,1, . . . , eϵ1,P

�

�

. Thus, it follows

immediately from assumption 1.4 that the vector
�

eϵ1,1, . . . , eϵ1,P ,Fi

�

eϵN,i

�

�

is a Gaussian vector. Let us now partition this

vector into sub-vectors F = Fi

�

eϵN,i

�

and E =
�

eϵ1,1, . . . , eϵ1,P

�

. We correspondingly partition the mean vector and the
covariance matrix into:

�

µE
µF

�

and
�

ΣE ,E ΣE ,F
ΣF ,E ΣF ,F

�

.

Hence, a well-known result about the conditional distribution of multivariate Gaussian gives the following:

E
�

F | E
�

= µF +ΣE ,FΣ
−1
F ,F (E −µE ). (16)

A trivial analysis shows that the Solvency 2 stochastic liabilities valueÝBE
S2
i is a linear function of first period risk factors

eϵ1,1, . . . , eϵ1,P (i.eÝBE
S2
i = A0,i +
∑P

k=1 Ak,ieϵ1,k).

Note that unlike the linear case described above, the risk factor eϵt, j of LoB j ̸= i appears inÝBE
S2
i formula. Since the cash

flows beyond t = 2 depend on the risk factor eϵ1,i , it is not clear whether they are independent of eϵt, j , j ̸= i or not. This
model thus presents the inconvenience that the value of the liabilities for the LoB i is also depending on the LoB j ̸= i,
and is consequently not fully in line with practice. More assumptions are needed to remove the term that depends on
eϵt, j .
Another alternative is to condition the cash-flows of LoB i only by the risk factor of this same LoB. We write BES2

i =
E
�∑N

t=1 Fi

�

teϵt ,i

�

| eϵ1,i

�

as an approximation to formula 15. We can prove in much the same way that, when dropping
eϵ1, j conditioning for j ̸= i, the stochastic liabilities value BES2

i is hence a linear function of the first period risk factor
eϵ1,i . Hence, since the first period cash-flow is also linear on eϵ1,i , we conclude that ρΓ

ÝBE
S2
i ,ÝBE

S2
j

= ρi, j .

The proof strongly depends on the assumption that cash flows along with first-year risk factors are Gaussian vector.
This allows for characterizing the conditional distribution and gives a closed formula for the conditional expectation in
equation 16. However, the same result may be obtained considering a t-Student multivariate vector (see [29],[30]) or
more generally any elliptic distribution (see [31]).
Finally, whether under the linearity or elliptic distribution assumption, we show that the global correlation between
two given LoBs i and j under IFRS 17 can be obtained by dividing the Solvency 2 correlation for those same LoBs by
an adjustment factor as follows:

ρM
ÝBE

I FRS
i ,ÝBE

I FRS
j

=
ρ
ÝBE

S2
i ,ÝBE

S2
j

fM (τi ,τ j , N)
. (17)

The adjustment factor fM (τi ,τ j , N) can be obtained by closed formula (see Formula 14). It reflects the time diversi-
fication effect obtained by the switch from the one-year view to the ultimate view. Thus, using the same aggregation
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processes between IFRS 17 and Solvency 2 is possible through an adjustment of the correlation parameter under afore-
mentioned assumptions. This method offers a practical benefit since such an adjustment is simple to implement in the
time-consuming closing process for IFRS 17. In addition, it allows the entity to justify to the various stakeholders the
nature of the correlation assumptions used, as these are derived from the Solvency 2 regulatory framework. Finally, it
leads in our case, given assumptions we have made, to a lower consolidated RA, which is explained by a more favorable
level of IFRS 17 correlation due to time diversification.

2 Numerical application
2.1 Acceptable values for ρ and τ
We first examine the inter-LoB and time correlation parameters for the above-mentioned correlation matrices. In addi-
tion to the divergence in the global correlation formula, the correlation structures considered in this paper also differ in
terms of acceptable values for their respective parameters (i.e. values such that the structure matrix is positive semidefi-
nite). Figure 1 represents the set of possible values for the couple (ρ,τ) for each of the correlation structures considered
previously. The intervals (in bold) in the figure have been numerically computed by looking through a grid of values for
the pair (ρ,τ) and checking for the positivity of matrices eigenvalues. The thin lines represent the theoretical intervals
described in section 1.3. Note that the necessary but not sufficient condition explained in the general case (Γ−structure,
see 1.3.3) provides a reasonable approximation of the interval obtained by the numerical approach.

Figure 1. Sets of acceptable values for the correlation parameters. In Γ−structure case, we set γ= 20%.

We notice that for all these structures, a large value (in absolute value) of the inter-LoB correlation ρ, induces a smaller
field of possible values for the time correlation τ, the values of τ being moreover smaller. The same reasoning applies
when changing the roles of ρ and τ. Moreover, we notice that in the case of the Σ−correlation structure (γ = 1), at a
fixed ρ, the interval of possible values of τ is centered in 0. Thus, the Σ−structure admits positive and negative time
correlation values of the same intensity. In the case of theΛ−matrix (γ= 0), the interval of possible values of τ at a fixed
ρ tends more towards positive values (only negative values very close to 0 fall within the range of possible values). The
general case Γ (γ ∈]0, 1[), will move between the two previous cases depending on the value of the parameter γ. We
observe that the generic Γ−model is fairly appropriate for the practical considerations since it focuses more on positive
values of the time correlation.
Figure 2 illustrates the trend of the global correlation as a function of τ for different values of γ with a fixed ρ. The far
left curve represents the global correlation in the case of the Σ−matrix (γ = 1), while the curve on the right is related
to the Λ−matrix (γ= 0). Those are both extreme cases, the Γ−general case curves being necessarily between them, as
shown in the figure. We notice that for all cases, the global correlation is decreasing along with the time correlation.
Moreover, the decrease slope is steeper when we approach the Λ− case (when γ decreases). Thus, the "denser" the time
correlation between the liabilities and cash flows, the faster we tend towards a global decorrelation between the two
LoBs. To state it another way, a correlation structure with an important time correlation between the cash flows within
the same LoB tends in the ultimate vision to completely eclipse the inter-LoB correlation observed in the one-year vision.
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Figure 2. Global correlation as a function of time correlation τ (ρ = 25%).

Such a situation leads to uncorrelated LoBs. Hence, two LoBs that are correlated in the Solvency 2 one-year view may,
in some cases, be non correlated within IFRS 17 ultimate framework especially when the time correlation within each
LoB is significant.

2.2 Application to the aggregation of Lapse and Expense risks
In the following, we provide an example of aggregation between two risks within an insurance portfolio. We assume
that this portfolio is exposed to Lapse and Expense risks. The risk factors associated with these risks are respectively the
surrender rates and the expense rates. For simplicity, we assume that all liabilities will be modeled by a single group of
contracts with a single policyholder (Model Point often called a MP in practice). The value of the liabilities is made up
of a surrender value and an amount related to expenses computed on the reserve base, and is given by the formula 18:

L
�

�

ãRt,lapse,åRt,ex pense

�

t

�

=
N
∑

t=1

ãRt,lapse

t−1
∏

k=1

(1−ãRk,lapse) Ft +
N
∑

t=1

åRt,ex pense.
t
∏

k=1

(1− Rk,lapse) Ft , (18)

where

•ãRt,lapse is the stochastic surrender rates at time period t, (Rt,lapse = E
�

ãRt,lapse

�

),

•åRt,ex pense is the stochastic expense rates at time period t, (Rt,ex pense = E
�

åRt,ex pense

�

),

• Ft reserve current value at time period t,

• N Projection horizon.

We note that the amount of expenses
∑N

t=1
åRt,ex pense.
∏t

k=1(1−Rk,lapse) Ft , although contingent on the lapse probability,
is calculated using deterministic surrender rates. This ensures the assumption of linearity between the two components
(Lapse and Expenses) to aggregate (see Assumption 1.1).

2.2.1 Computing time correlation τ
We start our analysis by addressing the time correlation within the risk Lapse. We use an anonymized surrender rate
history for this purpose (see Figure 3). For simplicity, we assume that expense rates will follow a similar time correlation
structure as surrender rates. Note that in practice, extracting correlation structures specifically for each of the risks may
lead to different correlation characterizations. In this case, a generalization of the theory presented in this paper is
necessary to reflect the difference in the time correlation structure of each LoB.
We suppose that the time series of surrender rates can be separated into a trend component and a noise component. The
residual risk represents the Gaussian noise component over the temporal trend. The trend is calibrated using polynomial
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Figure 3. Data: Lapse rates time series

regression. The degree of the polynomial regression is set as the maximum degree such as all the regression coefficients
are significant. Hence, the trend has here been calibrated via an 8th degree polynomial.
We perform the KPSS unit root test (see [32]) to ensure the stationarity of the noise component. We then fit a moving-
average MA(1), an autoregressive AR(1) and an autoregressive–moving-average ARMA(1,1) models. The coefficient
obtained are then used to derive the correlation parameters for the temporal dependence structure. We thus argue that
a simplified Γ−structure with two parameters is still an adequate approach to match the realistic data. Table 1 shows
the time correlation parameters related to each time series model.

MA(1) AR(1) ARMA(1,1)
ma1 intercept ar1 intercept ar1 ma1 intercept

Coefficients 0.52 0E+00 0.33 0E+00 -0.4 0.91 0E+00
s.e. 0.26 2E-04 0.13 2E-04 0.17 0.1 2E-04
Time correlation τ 40.98% 33.24% 29.39%
Common ratio parameter γ - 66.76% 140.17%

Table 1. Time series analysis results for Lapse rates and equivalent temporal correlation structures parameters

According to the AIC criterion, the ARMA(1,1) appears as the preferred model. Moreover, a further search over possible
models shows also that it is the best-approximating model among ARIMA(p,d,q) models following the same criterion.
We also note that in terms of temporal dependence, the ARMA(1,1) and AR(1) structures present close first-order time
correlation values (i.e. correlation between the cash flows of successive periods denoted τ), as well as relatively similar
geometric progressions (in absolute value). Nevertheless, the ARMA(1,1) structure shows an alternating sign for the
auto-correlation values, which appears to be inconsistent neither with practical considerations nor with the ACF plot
in Figure 4. The MA(1) structure yields a higher time correlation value than the other two approaches. This seems
consistent with the fact that all of the inter-dependencies occurring in the Lapse rate time series are captured only by
the first-order auto-correlation, hence one would intuitively expect a larger time correlation between two successive
cash flows. However, as discussed in the previous subsection, the Σ−structure related to the MA(1) model does not
allow for too large values for τ, especially when the inter-LoB correlation is large.
Finally, the overall Γ−correlation matrix, related to the ARMA(1,1), is not positive or semidefinite, when we consider
that these two LoBs follow the same time dependence structure. The same issue arises in the case of the MA(1) model.
In the following, we prefer the AR(1) model and set, from now on, the time correlation parameter to τ = 33.24% and
the common ration parameter to γ= 66.76%.

2.2.2 Computing risk adjustments
Once the time correlation parameter is defined, we compute the risk adjustments by simulations. Thus, we assume that
the vector of rates

�

�

ãRt,lapse

�

t∈{1,...,N}
,
�

åRt,ex pense

�

t∈{1,...,N}

�

associated with both risks follows a multivariate Gaussian distri-

bution, centered around the deterministic rates, with a Γ (ρ,τ,γ) correlation structure. The time correlation parameter
τ and the common ratio parameter γ are those calibrated via the AR(1) process in the previous step. The inter-LoB
correlation parameter ρ is set to ρ = 50% and corresponds to the correlation in the one-year view between the Lapse
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Figure 4. ACF for the noise component of the Lapse rates time series

and Expense risks under Solvency 2 Standard Formula. The standard deviation of the surrender and expense rates was
determined by back-calibration on the shocks of the Solvency 2 Standard Formula via the following equation: σi =

Ri∗∆i
q99.5%

(where i stand for either the Lapse or Expense risk, σi the standard deviation of surrender or expense rates, and∆i the
shock related to the risk i). The idea is to determine, for each risk i, the value of the standard deviation σi , so that the
Solvency 2 shock ∆i applied to the central rates Ri corresponds to the 99.5%−quantile on the distribution of this rate.
In the Lapse risk case, the Solvency 2 shock is set to∆Lapse = 50%. For the Expense risk, we have derived a single shock
equivalent to the combination of the 10% increase of the amount of expenses and the 1% point increase of the expense
inflation rate, over the projection horizon N . The equivalent shock obtained is ∆Ex pense = 42.47%. Table 2 summarizes
the numerical assumptions made in this example.

Time Horizon N = 50 Number of simulations 105

Inter-LoB correlation ρ = 50% Time correlation τ≃ 33.24%
Common ratio parameter γ≃ 66.76% Global correlation ρΓ = 25.43%
Confidence level α= 75% Discounted cash flow Ft = 105.e−r.t

Central expense rate Rt,ex pense = 5% Interest rate r ≃ 1.13%

Table 2. Numerical assumptions

We simulate various paths for surrender rates and expense ratios, then calculate the liabilities value for each path using
formula 18. We thus generate an empirical distribution of the liabilities value and derive two marginal risk adjustments
(Lapse and Expense) and the global risk adjustment. Risk adjustments are computed using a Value-at-Risk approach
at α = 75% confidence level. Both marginal risk adjustments are then aggregated using the elliptic approach with the
global correlation ρΓ given by the formula 13 developed in this paper. For the sake of comparison, we also provide the
aggregation using the Solvency 2 one-year correlation ρ. All the results are listed in Table 3.

BE RA Lapse RA Expense RA Global (simulated) RA Aggregated RA Aggregated (S2)
163 602.91 2 172.54 2 885.08 4 036.86 4 028.88 4 394.49

- - - - 0.20% 8.86%

Table 3. Best Estimate, marginal RAs, and global RA under linearity assumption

We note that the aggregation via the global correlation provides a very close approximation of the consolidated risk
adjustment with an error of around 0.20%. On the other hand, aggregating the risk adjustment using the one-year
correlation will tend to overestimate the overall RA, in this case by approximately 8.86%. This is because including the
ultimate view induces an additional diversification due to the time correlation brought by the Γ−structure. Thus, the
inter-LoB correlation in one-year view ρ = 50% is reduced to ρΓ = 25.43% due to the time diversification. We thus
note that the theoretical bridge between the one-year view and the ultimate view, although built under constraining
assumptions, may prove in practice to be a reasonable alternative to the simulatory approach. Thus, by simply adjusting
the correlations to one year, we can reuse the SCR aggregation setups under Solvency 2 to aggregate marginal risk
Adjustments for the IFRS 17 framework.
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2.2.3 Comparing correlation structures
We are now concerned by the effect of the correlation structure on the global correlation and the aggregated RA. The
main idea is then to perform a sensitivity on the already calibrated Γ−correlation structure by assessing impacts of the Σ
and Λ−structures. We calibrate for this purpose for each of these two matrices an equivalent time correlation to obtain
marginal RAs similar to those simulated with the primary Γ−structure.
Let us introduce the temporary notation τΓ for τ the time correlation calibrated under the Γ−structure in the previous
subsection. We then seek to identify time correlation values τΣ for a Σ−structure and τΛ for a Λ−structure, so that
the marginal RAs induced by these two structures remain comparable to the marginal RA of the reference structure.
Denoting R(M ,τM ) the vector of marginal risk adjustments simulated under an M−structure given a time correlation
τM , we compute Σ and Λ−structures by minimizing the euclidian distance between marginal RAs simulated using a Σ
or Λ−structure, and the previous RAs. For a correlation matrix M = Σ or Λ, the time correlation parameters is given
by:

τM = argmin
τ
{||R(M ,τ)− R(Γ ,τΓ )||}. (19)

Table 4 summarises the equivalent time correlation parameters and the marginal and global RAs. We notice that
the Λ−structure leads to a small time correlation value compared to the reference Γ−structure. Since the first in-
duces constant inter-dependencies between all the cash flows within each LoB, this result seems quite natural. We
also note that the global IRFS 17 correlation, as well as the aggregated RA, are very close between Γ−structure and
Λ−structure. The shift in the temporal interdependence structure from a Γ−matrix to a Λ−matrix thus appears to
have no impact on marginal RAs aggregation. We emphasize that the value of the time correlation parameter ob-
tained here for the Λ−structure is quite close to the equilibrium time correlation between the theoretical correlations
of these two structures, which we denote τΛeq =

2(Nγ−1+(1−γ)N−2)
N .(N−1)γ2 τ = 1.97% (i.e. the analytical solution of the equation

ρΓ
ÝBE

I FRS
1 ,ÝBE

I FRS
2

= ρΛ
ÝBE

I FRS
1 ,ÝBE

I FRS
2

, using the formulas and notations of section 1.3). The reason is that minimizing the distance

between the marginal RAs is almost equivalent to minimizing the distance between the standard deviations related to
them. Since the inter-Lob correlation ρ is fixed (i.e. numerator of the global IFRS 17 correlation), this is equivalent
to equalizing the denominator, since it is directly linked to the marginals standard deviations. In the case where the
Gaussian assumptions 1.4 are perfectly respected, this result is straightforward.

Structure τM Global correlation BE RA Lapse RA Expense RA Global
Γ−structure 33.24% 25.43% 163 602.91 2 172.54 2 885.08 4 036.86
Σ−structure 25.04% 33.54% 163 576.92 2 179.69 2 526.68 3 596.05
Λ−structure 2.18% 24.2% 163 585.36 2 147.28 2 879.27 4 005.01

Table 4. Equivalent time correlation parameters and the marginal and global RAs

On the contrary, the Σ−structure leads to aggregated RA and global IFRS 17 correlation values that are quite different
from those of the reference Γ−structure. We further note that the marginal RAs simulated with the first remain slightly
off the reference marginal RAs. Furthermore, the value of the time correlation for the Σ−structure is smaller than that
of the Γ−structure. Since the temporal inter-dependencies are exclusively carried by the first-order auto-correlation in
the case of the Σ−structure, we expect to give more weight to the correlations between successive cash flows. This
result then seems very less intuitive. In reality, we remark that the value τΣ = 25.04% obtained here is quite identical
to the value noted τΣmax =

1−ρ
2.cos( πN+1 )

= 25.04% which corresponds to the maximum value from the semidefiniteness
interval of the Σ−matrix. Thus, the minimum of the optimization problem 19 in the case of the Σ−matrix is reached at
the edge of the interval of possible values and does not necessarily reflect an almost null distance between the marginal
RA of the reference Γ−structure and its equivalent Σ−structure. In fact, we observe that the equation ρΓ

ÝBE
I FRS
1 ,ÝBE

I FRS
2

=

ρΣ
ÝBE

I FRS
1 ,ÝBE

I FRS
2

does not have a solution among the set of admissible values. We show that the Σ-structure, in contrast

to the two alternative structures, has limitations in terms of modeling time correlation, especially when the cashflows
have significant temporal inter-dependencies.

2.2.4 Aggregating RA in a non-linear situation
We now assume that the reserve component used in the computation of the expense flow is no longer deterministic.
The liabilities value is thus rewritten as follows:

L
�

�

ãRt,lapse,åRt,ex pense

�

t

�

=
N
∑

t=1

ãRt,lapse

t−1
∏

k=1

(1−ãRk,lapse) Ft +
N
∑

t=1

åRt,ex pense.
t
∏

k=1

(1−ãRk,lapse) Ft . (20)
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2 NUMERICAL APPLICATION

We emphasize that in this case, the global stochastic value of the liabilities cannot be split into a linear mixture of a
random lapse component and a random expense component.
Keeping the same assumptions and simulated paths for surrender rates and expense rates as in subsection 2.2.2, we
derive an empirical density for the value of liabilities and similarly conclude the marginal and aggregated RAs (see Table
5). We notice that when dropping the linearity assumption, the RA aggregation is less accurate when compared to the
linear case (−2.34% error in the non-linear case versus 0.20% error in the linear case). In the non-linear situation, the
elliptic aggregation equation 2 is not met, which leads to a higher approximation error. Note, however, that adjusting
the correlation to reflect time diversification still results in a more accurate approximation than immediately using the
Solvency 2 correlation.

BE RA Lapse RA Expense RA Global (simulated) RA Aggregated RA Aggregated (S2)
178 693,62 3 740,66 2 885,08 5 399,43 5 273,12 5 753,99

- - - - -2,34% 6,57%

Table 5. Best Estimate, marginal RAs, and global RA in a non-linear situation

2.2.5 Discussing the inter-LoB blocks
We now reconsider the correlation structure examined in this paper and specifically discuss the inter-LoB correlation
blocks. It was assumed that the correlation between risks was fully carried by cash flows of the same period. Thus, two
cash flows belonging to separate LoBs and occurring at different time steps were considered to be uncorrelated. We
question this assumption and examine an inter-LoB correlation structure similar to the time correlation one. Hence, the
correlation between two cash flows from different LoBs is assumed to decrease with the lag between both cash flows
according to a geometric progression. We introduce the following 2-LoBs correlation matrix:

Π
τ,ρ,γ,φ,π
N ,P=2 =































1 τ . . . (1− γ)N−2τ

τ
. . .

. . .
...

...
. . .

. . . τ
(1− γ)N−2τ . . . τ 1

ρ (1−π)ρ . . . (1−π)N−1ρ

(1−π)ρ ρ
. . .

...
...

. . . ρ (1−π)ρ
(1−π)N−1ρ . . . (1−π)ρ ρ

ρ (1−π)ρ . . . (1−π)N−1ρ

(1−π)ρ ρ
. . .

...
...

. . . ρ (1−π)ρ
(1−π)N−1ρ . . . (1−π)ρ ρ

1 τ . . . (1− γ)N−2τ

τ
. . .

. . .
...

...
. . .

. . . τ
(1− γ)N−2τ . . . τ 1































.

(21)
Notice that in the case where π= 1, the correlation structure is equivalent to the Γ−structure discussed previously.

Figure 5. Semidefiniteness domain for Π−structure

We are first concerned with the semidefiniteness condition of theΠ-structure. The inter-LoB correlation parameter is set
to ρ = 50%. We assume an AR(1)-like structure for the time correlation (i.e. γ= 1−τ) and we perform sensitivities on
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2 NUMERICAL APPLICATION

the time correlation parameter τ and the geometric common ratio π. Figure 5 shows the positive semidefinite domain
of the matrix (21) depending on these two parameters.
We notice that the definition range of the time correlation parameter τ is getting narrow when the common ratio
π decreases. The largest interval matches the case π = 1 (i.e. Γ−structure). Therefore, the longer the inter-LoB
correlation persists in time, the less room there is for variation in the time correlation value τ. In addition, a high
correlation between the cash flows of opposite LoBs at all time steps necessarily induces a much higher time correlation
within each LoB. This contrasts with the Γ−structure exposed in this paper where the effects of the time correlations
and inter-LoB seemed to compensate for each other.
Keeping the same assumptions as of the preceding numerical application (see Table 2), we compute in a second phase
the risk adjustment as a function of the common ratio π. Figure 6 shows that the RA decreases with the common ratio
π. To put it another way, ignoring the correlation between the cash flows of opposite LoBs occurring at different periods
can lead to an underestimation (up to 12% in this example) of the amount of the overall RA. While using a sparse matrix
can simplify the formulas and ease the correlation parameters calibration, the Γ−structure can show many limitations in
case of strong cross-correlation between cash flows (i.e correlation between cash flows from distinct LoBs and different
periods).

Figure 6. Risk adjustment for Π−structure

Similar conclusions can be drawn for a larger number of LoBs P (see example 6-LoBs in Appendix B). Nevertheless, when
the number of LoBs to be aggregated increases, the range of possible values for the two parameters τ and π drastically
reduces. Thus, if the Π−structure brings about more intuitive behaviors in terms of interactions between the time
correlation and the inter-LoB correlation, it has the disadvantage of an extremely restricted positive semidefiniteness
field, making it rather difficult to be calibrated in practice. On the other hand, the Γ−structure offers more flexibility
for operational use but presents much stronger assumptions that might not match the dependence observed between
the risks in practice

Conclusion
In this paper, we provide an elliptic aggregation methodology for RA assessment under IFRS 17, while connecting it with
Solvency 2 aggregation framework. The concept of ultimate correlation that combines both an inter-LoB correlation,
here similar to a one-year Solvency 2 correlation, and a time correlation is introduced. We show that the method
currently used by many entities to aggregate marginal RAs through the Solvency 2 correlation matrix leads potentially
to an overestimation of the global RA amount. Within a LoB, a time correlation structure with strong inter-dependencies
between cash flows tends to reduce the impact of the inter-Lob correlation in the ultimate view. Likewise, with a fixed
correlation structure, an increasing time correlation value makes the ultimate correlation strongly decline. We thus
emphasize that the correlation concept may differ from the ultimate view to one-year view, especially for insurance
portfolios with a large coverage period and significant temporal dependencies.
In addition to the results on the behavior of the global correlation under IFRS 17, we establish in this paper analytical
results linking the ultimate correlation of IFRS 17 to the one-year correlation of Solvency 2. Such relationships can be
convenient for practitioners as they allow them to exploit in the IFRS 17 framework, the aggregation processes already
implemented in the Solvency 2 framework by simply adjusting the one-year correlation as a result of time diversification.
The model chosen in this paper has nevertheless some limitations. Strong assumptions on the behavior of correlations in
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time have been considered, in particular on the inter-LoB blocks. These assumptions may seem counterintuitive for some
risks. Nonetheless, such a model allows better flexibility in practice in terms of the possible range of values to perform
sensitivity tests on the parameters, and ease of calibration. If the generalization of the ultimate correlation formulas
does not raise much trouble, when dealing with more general correlation structures, the semidefiniteness properties of
the matrices and the set of acceptable values will induce very strong restrictions to be operationally exploitable. More
complex structures offer very tight latitude in terms of calibration and are tricky to implement in practice.
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A SEMIDEFINITENESS OF TIME CORRELATION STRUCTURES IN A 2-LOBS CASE

A Semidefiniteness of time correlation structures in a 2-LoBs case
We analyze in the following the semidefiniteness conditions of the the correlation structures in the 2-LoB case. To
shorten notations, constant parameters τ, ρ and γ are assumed for both LoBs.

A.1 Σ−structure: Time correlation through consecutive cash-flows
We first consider a Σ−structure within each LoB. The related cash flows correlation matrix is given by:

Σ
τ,ρ
N ,2 =































1 τ 0 0

τ
. . .

. . . 0

0
.. .

. . . τ
0 0 τ 1

ρ 0 . . . 0

0 ρ
. . .

...
...

. . . ρ 0
0 . . . 0 ρ

ρ 0 . . . 0

0 ρ
. . .

...
...

. . . ρ 0
0 . . . 0 ρ

1 τ 0 0

τ
. . .

. . . 0

0
.. .

. . . τ
0 0 τ 1































. (22)

We shall now investigate the semidefiniteness condition for the matrix Στ,ρ
N ,2. The purpose is to investigate the range of

acceptable values for correlation parameters τ and ρ to ensure the existence of the cash-flows process. Let us denote
IN the N × N identity matrix and define Aτ,N the following N × N matrix :

Aτ,N =

















1 τ 0 . . . 0

τ
. . .

. . .
. . . 0

0
.. .

. . .
. . . 0

...
. . .

. . .
. . . τ

0 . . . 0 τ 1

















. (23)

It follows easily that the spectrum (i.e. set of eigenvalues) of matrix Στ,ρ
N ,2, denoted SΣτ,ρ

N ,2
, is given by: SΣτ,ρ

N ,2
= SAτ,N−ρIN

∪
SAτ,N+ρIN

.
Let us recall that the matrix Aτ,N − ρIN is a N × N tridiagonal symmetric Toeplitz matrix. It is well known that the
spectrum of such a matrix is given by (see [25]):

SAτ,N−ρIN
=
§

1−ρ + 2τcos
kπ

N + 1
, k ∈ {1, . . . , N}
ª

. (24)

The matrix Aτ,N + ρIN can be handled in much the same way, the only difference being the ρ’s sign. Using the fact
that all eigenvalues of a semidefinite positive matrix are non-negative, we check at once that the semidefiniteness of
the correlation matrix Στ,ρ

N ,2 is equivalent to the following condition:

Assumption A.1. Στ,ρ
N ,2 Semidefiniteness condition: CΣτ,ρ

N ,2
: 1− |ρ| − 2|τ|cos π

N+1 ≥ 0.

A.2 Λ−structure
We shall then introduce the following matrix:

Λ
τ,ρ
N ,2 =































1 τ . . . τ

τ
. . .

. . .
...

...
. . .

. . . τ
τ . . . τ 1

ρ 0 . . . 0

0 ρ
. . .

...
...

. . . ρ 0
0 . . . 0 ρ

ρ 0 . . . 0

0 ρ
. . .

...
...

. . . ρ 0
0 . . . 0 ρ

1 τ . . . τ

τ
. . .

. . .
...

...
. . .

. . . τ
τ . . . τ 1































. (25)

As in the previous scenario, we shall now investigate the range of acceptable values for τ and ρ, such as matrix Λτ,ρ
N ,2

is semidefinite positive. A similar analysis than in the case of Σ-matrix shows that the eigenvalues of the matrix Λτ,ρ
N ,2
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are those of both B1−ρ,τ,N and B1+ρ,τ,N , where the notation Bd,e,N stands for the N × N matrix (bi, j)i, j∈{1,...,N} with
bi, j = d.1{i= j} + e.1{i ̸= j} (i.e. the matrix with d in its diagonal and e elsewhere).
The matrix B1±ρ,τ,N can be thought of as a specific case of a circulant matrix. A circulant matrix C of size N × N takes
the form:

C =















c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2

e
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1
cn−1 cn−2 · · · c1 c0















. (26)

Various properties of circulant matrices are well known (see for instance [33]), in particular eigenvalues of such matrices
are known in closed forms. In the specific case of the matrix B1±ρ,τ,N , it is a simple matter to prove that its spectrum
is given by: SB1±ρ,τ,N

= {1±ρ −τ, 1±ρ + (N − 1)τ}. We thus get the following semidefiniteness condition for the Λ−
correlation matrix:

Assumption A.2. Λτ,ρ
N ,2 Semidefiniteness condition:

CΛτ,ρ
N ,2

:

¨

1±ρ −τ ≥ 0

1±ρ + (N − 1)τ ≥ 0

A.3 Γ−structure
We shall introduce the following matrix:

Γ
τ,ρ,γ
N ,2 =































1 τ . . . (1− γ)N−2τ

τ
. . .

. . .
...

...
. . .

. . . τ
(1− γ)N−2τ . . . τ 1

ρ 0 . . . 0

0 ρ
. . .

...
...

. . . ρ 0
0 . . . 0 ρ

ρ 0 . . . 0

0 ρ
. . .

...
...

. . . ρ 0
0 . . . 0 ρ

1 τ . . . (1− γ)N−2τ

τ
. . .

. . .
...

...
. . .

. . . τ
(1− γ)N−2τ . . . τ 1































. (27)

Let us now explore the values of ρ, τ and γ that ensure the semidefiniteness of matrix Γ τ,ρ,γ
N ,2 .We first introduce the

notation Cτ,γ
N that stands for the N × N upper left block of the matrix Γ τ,ρ,γ

N ,2 . Thus:

Cτ,γ
N =

















1 τ (1−γ)τ . . . (1−γ)N−2 τ

τ
. . .

. . .
. . .

...

(1−γ)τ
. . .

. . .
. . . (1−γ)τ

...
. . .

. . .
. . . τ

(1−γ)N−2 τ . . . (1−γ)τ τ 1

















. (28)

Following the same method as in previous subsections, the Γ τ,ρ,γ
N ,2 spectrum is given by: SΓ τ,ρ,γ

N ,2
= SCτ,γ

N −ρIN
∪SCτ,γ

N +ρIN
.

Hence, Γ τ,ρ,γ
N ,2 semidefiniteness is characterized by Cτ,γ

N ± ρIN semidefiniteness. No attempt has been made here to
develop closed formula for Cτ,γ

N ± ρIN eigenvalues. However a sufficient semidefiniteness condition can be obtained
using properties of Toeplitz matrices.
Set f =
∑∞

t=−∞ f|t|e
i tθ ,θ ∈ [0, 2π] where:

ft =

¨

1±ρ if t = 0

(1− γ)t−1τ else.

Let m f (respectively M f ) stands for the minimum (respectively maximum) value of function f , and (ητ,ρ,γ
N ,( j) ) j∈{1,...,N} the

eigenvalues for matrix Cτ,γ
N ±ρIN . A well known result for Hermitian Toeplitz matrices gives the following bounds for

its eigenvalues:
m f ≤ η

τ,ρ,γ
N ,( j) ≤ M f .

Furthermore, if ητ,ρ,γ
N ,(1) the smallest eigen value, then ητ,ρ,γ

N ,(1) →N→∞
m f .
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Under the above assumptions, we show that f (θ ) = 1±ρ+τ 2(cosθ−(1−γ))
1−2(1−γ)cosθ+(1−γ)2 , hence that if τ≥ 0 (respectively τ≤ 0)

then m f = 1±ρ + 2τ
γ−2 (respectively m f = 1±ρ + 2τ

γ ) and finally that a sufficient semidefiniteness condition is given
by assumption A.3

Assumption A.3. Γ τ,ρ,γ
N ,2 Semidefiniteness condition:

CΓ τ,ρ,γ
N ,2

:

¨

1±ρ + 2τ
γ−2 ≥ 0 if τ≥ 0

1±ρ + 2τ
γ ≥ 0 else.

B A 6-LoBs illustration
In the following, we are interested in a generalization of the subsection 2.2.5 example. We present an example of
a 6 LoBs aggregation and assume a Π−structure where the correlation within each LoB is characterized by a single
parameter. We aim to discuss the semidefiniteness condition for such a structure. Thus, it is assumed that for i, j ∈
{1, . . . , 6}:

ρFi(t),F j(t ′) = ρi, j .(1− γi)
|t−t ′|, ∀t, t ′ ∈ {1, . . . , N},

and
ρFi(t),Fi(t ′) = τi .(1− γi)

(|t−t ′|−1).1{t ̸=t′} , ∀t, t ′ ∈ {1, . . . , N}.

The inter-LoB correlations (ρi, j)i, j∈{1,...,6} are given by the correlation matrix for the life underwriting risk module as
follows:















1 −25% 25% 25% 0 0
1 0 25% 25% 25%

1 50% 0 0
1 50% 50%

1 0
1















. (29)

For the sake of simplicity, the cash flows from all LoBs are assumed to follow standard Gaussian distributions. Thus, all
the Lobs have the same weight and the correlation structure is the only factor affecting the aggregation of the marginal
RA amounts.

Figure 7. Semidefiniteness domain for Π−structure in a 6-LoBS case

As in the 2-LoBs example, varying the time correlation parameter τ and the common ratio π of the inter-LoB blocks
leads to the semidefiniteness interval for the global correlation structure in Figure 7.
The results are similar to the previous example. The semidefiniteness interval for the time correlation is wider for large
values of π. Thus, the low cross-correlation (correlation between cash flows from different periods and different LoBs)
allows higher flexibility on the time correlation, the Γ−structure allowing the widest range of values for τ.
Nevertheless, compared to the 2-LoBs case, the semidefiniteness area is strongly limited here. Thus, the more numerous
the LoBs are, the less latitude there is for the calibration of the parameters. Let us note that an example with 6 LoBs is
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much closer to the cases encountered in practice. Taking a correlation structure as complex as the Π−structure allows
in theory better modeling of the correlation structure between the different cash flows being the most general model.
On the other hand, the complexity of this model alone characterizes the correlation structure. Once the latter is set,
there are very few possible values left to define the parameters of this model.
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