
HAL Id: hal-03762700
https://hal.science/hal-03762700

Submitted on 28 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remarks about the unification types of some locally
tabular normal modal logics

Philippe Balbiani, Cigdem Gencer, Maryam Rostamigiv, Tinko Tinchev

To cite this version:
Philippe Balbiani, Cigdem Gencer, Maryam Rostamigiv, Tinko Tinchev. Remarks about the unifica-
tion types of some locally tabular normal modal logics. Logic Journal of the IGPL, 2022, �10.1093/jig-
pal/jzab033�. �hal-03762700�

https://hal.science/hal-03762700
https://hal.archives-ouvertes.fr


Remarks about the unification types

of some locally tabular normal modal logics

Philippe Balbiania,∗ Çiğdem Gencera,b,†
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Abstract

It is already known that unifiable formulas in normal modal logic K+
�2⊥ are either finitary, or unitary and unifiable formulas in normal modal
logic Alt1 + �2⊥ are unitary. In this paper, we prove that for all d≥3,
unifiable formulas in normal modal logic K + �d⊥ are either finitary, or
unitary and unifiable formulas in normal modal logic Alt1 + �d⊥ are
unitary.

Keywords: Normal modal logics K+�d⊥ and Alt1 +�d⊥. Unification types.

1 Introduction

The unification problem in a propositional logic is to determine, given a for-
mula ϕ, whether there exists a substitution σ such that σ(ϕ) is in that logic.
In that case, σ is a unifier of ϕ. A set of unifiers of a unifiable formula ϕ is
complete if for all unifiers σ of ϕ, there exists a unifier τ of ϕ in that set such
that τ is more general than σ1. Now, an important question is the following:
determine whether a given unifiable formula has minimal complete sets of uni-
fiers [3]. When such sets exist, it is well-known that they all have the same

∗Email address: philippe.balbiani@irit.fr.
†Email addresses: cigdem.gencer@irit.fr and cigdemgencer@aydin.edu.tr.
‡Email address: maryam.rostamigiv@irit.fr.
§Email address: tinko@fmi.uni-sofia.bg.
1A substitution σ is more general than a substitution τ in a propositional logic if there

exists a substitution υ such that for all variables x, υ(σ(x))↔ τ(x) is in that logic.
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cardinality. In that case, a unifiable formula is either infinitary, or finitary, or
unitary, depending whether its complete sets of unifiers are either infinite, or
with finite cardinality ≥2, or with cardinality 1, respectively. Otherwise, the
formula is said to be nullary. To be nullary is considered to be the worst situ-
ation for a unifiable formula whereas to be unitary is considered to be better
than to be finitary which is itself considered to be better than to be infinitary.
The unification type of a propositional logic is the worst unification type of its
unifiable formulas.

The importance of the unification problem lies in its connection with the admis-
sibility problem. In a consistent propositional logic L, unification is reducible to
non-admissibility, seeing that the unifiability in L of a formula ϕ is equivalent
to the non-admissibility in L of the inference rule ϕ

⊥ . As observed in [18, 19, 21]
within the context of intermediate logics and transitive normal modal logics,
when L has a decidable membership problem and L is either finitary, or uni-
tary, algorithms for computing minimal complete sets of unifiers in L can be
used as a key component of algorithms for solving the admissibility problem in
L, seeing that the admissibility in L of an inference rule

ϕ1,...,ϕp
ψ is equivalent

to the inclusion in L of the set {σ(ψ) : σ∈Σ}, where Σ is an arbitrary minimal
complete set of unifiers of ϕ1 ∧ . . . ∧ ϕp in L.

About the unification type of normal modal logics, it is known that extensions
of normal modal logic K5 such as K45, KD45 and S5 are unitary [7, 11, 14, 15,
20, 22], non-transitive normal modal logics like K and Alt1 are nullary [10, 23],
transitive normal modal logics such as K4 and S4 are finitary [18, 19, 21] and
normal modal logics characterized by transitive frames with a form of no branch-
ing to the right like K4D1 and S4.3 are unitary [16, 17, 24]2. In this review,
the nullary modal logics are the non-transitive ones: K and Alt1. Therefore,
it is natural to ask the question of the unification type of other non-transitive
normal modal logics and to see whether they also have a tendency to be nullary.
Hence, one may interest for all d≥2, in the normal modal logics K +�d⊥ (the
least normal modal logic containing �d⊥) and Alt1 + �d⊥ (the least normal
modal logic containing Alt1 and �d⊥). The normal modal logics K +�2⊥ and
Alt1 +�2⊥ are transitive and one may expect that unifiable formulas in these
normal modal logics are either finitary, or unitary. Indeed, unifiable formulas
in normal modal logic K + �2⊥ are either finitary, or unitary and unifiable
formulas in normal modal logic Alt1 +�2⊥ are unitary [8, 9]. However, when
d≥3, the normal modal logics K +�d⊥ and Alt1 +�d⊥ are non-transitive and
one may expect that they have the worst unification type (nullary). We prove
in this paper that, surprisingly, for all d≥3, unifiable formulas in normal modal

2In this paper, we follow the same conventions as in [12, 13, 25] for talking about normal
modal logics: S5 is the least normal modal logic containing the formulas usually denoted T, 4
and 5, KD is the least normal modal logic containing the formula usually denoted D, etc. In
particular, Alt1 is the least normal modal logic containing ♦x → �x and K4D1 is the least
normal modal logic containing K4 and �(�x → y) ∨ �(�y → x). As usual, K is the least
normal modal logic.
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logic K + �d⊥ are either finitary, or unitary and unifiable formulas in normal
modal logic Alt1 +�d⊥ are unitary.

2 Preliminaries

For all sets S, ‖S‖ will denote the cardinality of S. For all nonempty sets S, for
all equivalence relations ∼ on S and for all T⊆S, T/∼ will denote the quotient
set of T modulo ∼. For all nonempty sets S, for all equivalence relations ∼ on
S and for all α∈S, [α] will denote the equivalence class modulo ∼ with α as its
representative. Notice that for all nonempty sets S, for all equivalence relations
∼ on S and for all α, β∈S, α∼β if and only if α∈[β] if and only if [α] ∩ [β] 6=∅.
Proposition 1 will be useful in Sections 6 and 7 for the proofs of Lemmas 6
and 16.

Proposition 1 Let S, T be non-empty finite sets. Let ∼ be an equivalence re-
lation on S. If ‖S/∼‖≤‖T‖≤‖S‖ then there exists a surjective function f from
S to T such that for all α, β∈S, if f(α)=f(β) then α∼β3.

Proof: Suppose ‖S/∼‖≤‖T‖≤‖S‖. Let h be a function from S/∼ to S such
that for all α∈S, h([α])∈[α]. Notice that h is injective. Let S0 be the range of
h. Since h is injective, ‖S/∼‖=‖S0‖. Since ‖S/∼‖≤‖T‖, ‖S0‖≤‖T‖. Let T0

be a subset of T such that ‖T0‖=‖S0‖. Let f0 be a one-to-one correspondence
between S0 and T0. Let T1=T\T0. Notice that T0 and T1 make a partition of
T . Since ‖T‖≤‖S‖ and ‖T0‖=‖S0‖, ‖T1‖≤‖S\S0‖. Let S1 be a subset of S\S0

such that ‖S1‖=‖T1‖. Let f1 be a one-to-one correspondence between S1 and
T1. Let S2=(S\S0)\S1. Notice that S0, S1 and S2 make a partition of S. Let
f2 be the function from S2 to T defined by

• f2(α)=f0(h([α])).

Let f be the function from S to T such that for all α∈S,

• if α∈S0 then f(α)=f0(α),

• if α∈S1 then f(α)=f1(α),

• if α∈S2 then f(α)=f2(α).

It is a routine exercise to demonstrate that f is surjective and for all α, β∈S, if
f(α)=f(β) then α∼β. a

A binary relation R on a nonempty set W is irreflexive if for all s∈W , not sRs.

3It is fairly easy to prove that if there exists a surjective function f from S to T such
that for all α, β∈S, if f(α)=f(β) then α∼β then ‖S/∼‖≤‖T‖≤‖S‖. Indeed, let f be a
surjective function from S to T such that for all α, β∈S, if f(α)=f(β) then α∼β. Since f is
surjective, ‖T‖≤‖S‖. Let h be a function from S/∼ to S such that for all α∈S, h([α])∈[α].
Obviously, for all α, β∈S, if h([α])∼h([β]) then [α]=[β]. Let g be a function from S/∼ to T
such that for all α∈S, g([α])=f(h([α])). Since for all α, β∈S, if f(α)=f(β) then α∼β and for
all α, β∈S, if h([α])∼h([β]) then [α]=[β], g is injective. Hence, ‖S/∼‖≤‖T‖. Since ‖T‖≤‖S‖,
‖S/∼‖≤‖T‖≤‖S‖.
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A binary relation R on a nonempty set W is deterministic if for all s, t, u∈W ,
if sRt and sRu then t=u. A tree is a structure of the form (W,R) where W is
a nonempty finite set and R is a binary relation on W such that W⊆N and

• there exists r∈W (called the root of (W,R)) such that for all s∈W , rR?s,

• R+ is irreflexive,

• R−1 is deterministic,

where R? denotes the reflexive transitive closure of R, R+ denotes the transitive
closure of R and R−1 denotes the converse of R. In a tree (W,R), for all s∈W , let
R(s)={t : t∈W and sRt} and for all S⊆W , let lS={s : s∈W and R(s)⊆S}. In
a tree (W,R), for all e∈N, an R-branch of length e is a finite sequence (s1, . . . , se)
such that for all k∈{1, . . . , e}, sk∈W and if k<e then skRsk+1. For all e∈N, a
tree (W,R) is e-bounded if W contains no R-branch of length >e. A tree (W,R)
is deterministic if R is deterministic.

3 Normal modal logics

3.1 Formulas

Let VAR be a countably infinite set of variables (with typical members denoted
x, y, etc). The set FOR of all formulas (with typical members denoted ϕ, ψ,
etc) is inductively defined as follows:

• ϕ ::= x | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | �ϕ,

where x ranges over VAR. We adopt the standard rules for omission of the
parentheses. For all formulas ϕ, the modal degree of ϕ (denoted deg(ϕ)) is
defined as usual [12, Definition 2.28]. For all formulas ϕ, let var(ϕ) be the set
of all variables occurring in ϕ. For all finite subsets x̄ of VAR, a formula ϕ is
an x̄-formula if var(ϕ)⊆x̄. For all finite subsets x̄ of VAR, let FORx̄ be the
set of all x̄-formulas.

3.2 Substitutions

A substitution is a triple (x̄, ȳ, σ) where x̄ and ȳ are finite subsets of VAR and σ
is a homomorphism from (FORx̄,⊥,¬,∨,�) to (FORȳ,⊥,¬,∨,�)4. Let SUB
be the set of all substitutions.

3.3 Abbreviations

The Boolean connectives >, ∧,→ and↔ are defined by the usual abbreviations.
The modal connective ♦ is defined by

4That is, σ is a function from FORx̄ to FORȳ such that for all ϕ,ψ∈FORx̄, σ(⊥)=⊥,
σ(¬ϕ)=¬σ(ϕ), σ(ϕ ∨ ψ)=σ(ϕ) ∨ σ(ψ) and σ(�ϕ)=�σ(ϕ).
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• ♦ϕ ::= ¬�¬ϕ.

For all k∈N, the modal connective �k is inductively defined as follows:

• if k=0 then �kϕ ::= ϕ,

• otherwise, �kϕ ::= ��k−1ϕ.

For all k∈N, the modal connective ♦k is defined by

• ♦kϕ ::= ¬�k¬ϕ.

3.4 Syntactic presentation

A normal modal logic is a set L of formulas such that

• L contains all tautologies,

• L contains all formulas of the form �(x→ y)→ (�x→ �y),

• L is closed under modus ponens (for all formulas ϕ,ψ, if ϕ∈L and ϕ →
ψ∈L then ψ∈L),

• L is closed under generalization (for all formulas ϕ, if ϕ∈L then �ϕ∈L),

• L is closed under uniform substitution (for all formulas ϕ,ψ, if ϕ∈L and
ψ is obtained from ϕ by uniformly replacing variables in ϕ by arbitrary
formulas then ψ∈L).

For all normal modal logics L and for all ϕ∈FOR, let L+ϕ be the least normal
modal logic containing L and ϕ. For all normal modal logics L, the equivalence
relation ≡L on FOR is defined by

• ϕ≡Lψ if and only if ϕ↔ ψ∈L,

where ϕ,ψ range over FOR. We shall say that a normal modal logic L is locally
tabular if for all finite subsets x̄ of VAR, FORx̄/≡L is finite5.

4 Unification in normal modal logics

From now on in this section, let L be a normal modal logic.

5Locally tabular normal modal logics are also said to be locally finite. For details about
local finiteness in normal modal logics, see [13, Chapter 12] and [26, 27, 28].

5



4.1 Comparing substitutions

The equivalence relation 'L on SUB is defined by

• (x̄, ȳ, σ)'L(x̄, ȳ, τ) if and only if for all x∈x̄, σ(x)≡Lτ(x),

where (x̄, ȳ, σ), (x̄, ȳ, τ) range over SUB. That is, for all (x̄, ȳ, σ), (x̄, ȳ, τ)∈SUB,
(x̄, ȳ, σ)'L(x̄, ȳ, τ) if and only if for all x∈x̄, σ(x)↔ τ(x)∈L. The preorder 4L

on SUB is defined by

• (x̄, ȳ, σ)4L(x̄, z̄, τ) if and only if there exists a substitution (ȳ, z̄, υ) such
that for all x∈x̄, υ(σ(x))≡Lτ(x),

where (x̄, ȳ, σ), (x̄, z̄, τ) range over SUB. That is, for all (x̄, ȳ, σ), (x̄, z̄, τ)∈SUB,
(x̄, ȳ, σ)4L(x̄, z̄, τ) if and only if there exists a substitution (ȳ, z̄, υ) such that
for all x∈x̄, υ(σ(x))↔ τ(x)∈L.

4.2 Unifiers

An L-unifier of ϕ∈FOR is a substitution (var(ϕ), ȳ, σ) such that σ(ϕ)∈L.
A formula ϕ is L-unifiable if there exists an L-unifier of ϕ. A set Σ of L-
unifiers of an L-unifiable ϕ∈FOR is complete if for all L-unifiers (var(ϕ), ȳ, σ)
of ϕ, there exists (var(ϕ), z̄, τ)∈Σ such that (var(ϕ), z̄, τ)4L(var(ϕ), ȳ, σ). A
complete set Σ of L-unifiers of an L-unifiable ϕ∈FOR is a basis if for all
(var(ϕ), ȳ, σ), (var(ϕ), z̄, τ)∈Σ, if (var(ϕ), ȳ, σ)4L(var(ϕ), z̄, τ) then ȳ=z̄ and
σ=τ6.

Proposition 2 Let ϕ∈FOR. If ϕ is L-unifiable then for all bases Σ,∆ of
L-unifiers of ϕ, ‖Σ‖=‖∆‖.

Proof: This is a standard result. a

4.3 Type of L-unifiable formulas

For all L-unifiable ϕ∈FOR,

• ϕ is L-nullary if there exists no basis of L-unifiers of ϕ,

• ϕ is L-infinitary if there exists an infinite basis of L-unifiers of ϕ,

• ϕ is L-finitary if there exists a basis of L-unifiers of ϕ with finite cardinality
≥2,

• ϕ is L-unitary if there exists a basis of L-unifiers of ϕ with cardinality 1.

For all L-unifiable ϕ∈FOR,

6It is a routine exercise to demonstrate that for all complete sets Σ of L-unifiers of an
L-unifiable ϕ∈FOR, Σ is a basis for ϕ if and only if Σ is a minimal complete set of L-unifiers
of ϕ.
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• ϕ is L-filtering if for all L-unifiers (var(ϕ), ȳ, σ), (var(ϕ), z̄, τ) of ϕ, there
exists an L-unifier (var(ϕ), t̄, υ) of ϕ such that (var(ϕ), t̄, υ)4L(var(ϕ), ȳ,
σ) and (var(ϕ), t̄, υ)4L(var(ϕ), z̄, τ)7,

• ϕ is L-reasonable if for all L-unifiers (var(ϕ), ȳ, σ) of ϕ, if ‖var(ϕ)‖<‖y‖
then there exists an L-unifier (var(ϕ), var(ϕ), τ) of ϕ such that (var(ϕ),
var(ϕ), τ)4L(var(ϕ), ȳ, σ)8.

Proposition 3 Let ϕ∈FOR be L-unifiable. If ϕ is L-unitary then ϕ is L-
filtering.

Proof: This is a standard result. a

Proposition 4 Let ϕ∈FOR be L-unifiable. If ϕ is L-filtering then ϕ is either
L-nullary, or L-unitary.

Proof: This is a standard result. a

Proposition 5 Let ϕ∈FOR be L-unifiable. If L is locally tabular and ϕ is
L-reasonable then ϕ is either L-finitary, or L-unitary.

Proof: By the fact that if L is locally tabular then the quotient of the set of
all substitutions of the form (var(ϕ), var(ϕ), σ) modulo 'L is finite. a

4.4 Type of L

We shall say that9

• L is nullary if there exists an L-nullary L-unifiable formula,

• L is infinitary if every L-unifiable formula is either L-infinitary, or L-
finitary, or L-unitary and there exists an L-infinitary L-unifiable formula,

• L is finitary if every L-unifiable formula is either L-finitary, or L-unitary
and there exists an L-finitary L-unifiable formula,

• L is unitary if every L-unifiable formula is L-unitary.

We shall say that

• L is filtering if every L-unifiable formula is L-filtering,

7Filtering unifiable formulas are also said to be directed. For details about directedness of
unifiable formulas, see [20, 23].

8Reasonability of unifiable formulas has been introduced for the normal modal logics K +
�2⊥ and Alt1 + �2⊥ in [8, 9].

9Nullary (respectively, infinitary, finitary, unitary) normal modal logics are also said to be
of type 0 (respectively, of type ∞, of type ω, of type 1). For details about the unification types
of normal modal logics, see [15].
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• L is reasonable if every L-unifiable formula is L-reasonable.

Proposition 6 If L is unitary then L is filtering.

Proof: By Proposition 3. a

Proposition 7 If L is filtering then L is either nullary, or unitary.

Proof: By Proposition 4. a

Proposition 8 If L is locally tabular and reasonable then L is either finitary,
or unitary.

Proof: By Proposition 5. a

5 Some locally tabular normal modal logics

From now on until the end of Section 7, let d≥3 be fixed. From now on in
this section, let x̄ be a finite subset of VAR.

5.1 Trees and models

A x̄-model is a structure of the form (W,R, V ) where (W,R) is a tree and
V is a homomorphism from (FORx̄,⊥,¬,∨,�) to (2W , ∅, \,∪, l)10. In a x̄-
model M=(W,R, V ), let V (Φ) denote

⋂
{V (ϕ) : ϕ∈Φ} for each Φ⊆FORx̄.

In a x̄-model M=(W,R, V ), rM will denote the root of (W,R), WM will de-
note W , RM will denote R and VM will denote V . In a x̄-model M, for all
s∈WM, let Ms be the submodel of M generated from s. For all x̄-models M,
let for(M)={ϕ∈FORx̄ : rM∈VM(ϕ)}. Notice that for all x̄-models M and
for all s∈WM, s∈VM(for(Ms)). For all (x̄, ȳ, σ)∈SUB and for all ȳ-models
M, let M|σ be the x̄-model such that WM|σ=WM, RM|σ=RM and for all x∈x̄,
VM|σ (x)=VM(σ(x)). Proposition 9 states a standard result connecting substitu-
tions and models. In particular, see [18, Proposition 2] and [19, Proposition 1.3].

Proposition 9 Let (x̄, ȳ, σ)∈SUB and M be a ȳ-model. For all ϕ∈FORx̄,
VM|σ (ϕ)=VM(σ(ϕ)).

Proof: By induction on ϕ. a

10That is, V is a function from FORx̄ to 2W such that for all ϕ,ψ∈FORx̄, V (⊥)=∅,
V (¬ϕ)=W \ V (ϕ), V (ϕ ∨ ψ)=V (ϕ) ∪ V (ψ) and V (�ϕ)=lV (ϕ).
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5.2 Bisimulations

The x̄-models M and M′ are bisimilar (in symbols M./M′) if there exists
Z⊆WM ×WM′ such that rMZrM′ and for all s∈WM and for all s′∈WM′ , if
sZs′ then

• for all x∈x̄, s∈VM(x) if and only if s′∈VM′(x),

• for all t∈WM, if sRMt then there exists t′∈WM′ such that tZt′ and
s′RM′t

′,

• for all t′∈WM′ , if s′RM′t
′ then there exists t∈WM such that tZt′ and

sRMt.

In that case, Z is a bisimulation between M and M′. As is well-known, ./ is
an equivalence relation on the set of all x̄-models11. The set of all x̄-models
equivalent modulo ./ to a x̄-model M is denoted [M].

Proposition 10 For all x̄-models M,M′, for all s∈WM and for all s′∈WM′ ,
the following conditions are equivalent:

1. Ms./M
′
s′ ,

2. s∈VM(for(M′
s′)).

Proof: By [12, Theorems 2.20 and 2.24]. a

Proposition 11 For all (x̄, ȳ, σ)∈SUB and for all ȳ-models M,M′, if M./M′

then M|σ./M′|σ.

Proof: By Proposition 10. a

5.3 The normal modal logics K +�d⊥ and Alt1 +�d⊥
The following normal modal logics are considered in this paper:

• Kd=K +�d⊥,

• Ad=Alt1 +�d⊥,

Obviously, Ad contains Kd. For all e∈{1, . . . , d}, let BT x̄e be the set of all x̄-
models based on e-bounded trees. For all e∈{1, . . . , d}, let DBT x̄e be the set of
all x̄-models based on deterministic e-bounded trees.

Proposition 12 For all ϕ∈FORx̄,

1. ϕ∈Kd if and only if for all M∈BT x̄d, rM∈VM(ϕ),

11Models considered in this paper are based on finite relational structures. For this reason,
they constitute a set.
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2. ϕ∈Ad if and only if for all M∈DBT x̄d, rM∈VM(ϕ).

Proof: This is a standard result. a

Proposition 13 1. ��d−1⊥∈Kd,

2. ¬♦♦d−1>∈Kd,

3.
∨
{♦l�⊥ : 0≤l<d}∈Kd,

4. ¬
∧
{�l♦> : 0≤l<d}∈Kd,

5.
∧
{�l(¬u ∨ ♦>) : 0≤l<d} → �

∧
{�l(¬u ∨ ♦>) : 0≤l<d}∈Kd,

6.
∨
{♦l(u ∧�⊥) : 0≤l<d} → �

∨
{♦l(u ∧�⊥) : 0≤l<d}∈Ad,

7.
∨
{♦l(u ∧�⊥) : 0≤l<d} → �

∨
{♦l(u ∧�⊥) : 0≤l<d}6∈Kd,

8. �d−1⊥ → ♦d−1>6∈Ad.

Proof: It is a routine exercise to demonstrate that for all M∈BT ∅d, rM∈
VM(��d−1⊥), rM∈VM(¬♦♦d−1>), rM∈VM(

∨
{♦l�⊥ : 0≤l<d}) and rM∈

VM(¬
∧
{�l♦> : 0≤l<d}), for all M∈BT {u}d , rM∈VM(

∧
{�l(¬u∨♦>) : 0≤l<

d} → �
∧
{�l(¬u∨♦>) : 0≤l<d}) and for all M∈DBT {u}d , rM∈VM(

∨
{♦l(u∧

�⊥) : 0≤l<d} → �
∨
{♦l(u ∧ �⊥) : 0≤l<d}). Hence, by Proposition 12,

��d−1⊥∈Kd, ¬♦♦d−1>∈Kd,
∨
{♦l�⊥ : 0≤l<d}∈Kd, ¬

∧
{�l♦> : 0≤l<d}∈

Kd,
∧
{�l(¬u ∨ ♦>) : 0≤l<d} → �

∧
{�l(¬u ∨ ♦>) : 0≤l<d}∈Kd and∨

{♦l(u ∧�⊥) : 0≤l<d} → �
∨
{♦l(u ∧�⊥) : 0≤l<d}∈Ad. In other respect,

it is a routine exercise to demonstrate that rM 6∈VM(
∨
{♦l(u∧�⊥) : 0≤l<d} →

�
∨
{♦l(u ∧ �⊥) : 0≤l<d}) where M∈BT {u}d is such that WM={0, 1, 2, 3},

RM={(0, 1), (0, 2), (2, 3)} and VM(u)={1}. Thus, by Proposition 12,
∨
{♦l(u ∧

�⊥) : 0≤l<d} → �
∨
{♦l(u ∧ �⊥) : 0≤l<d}6∈Kd. Finally, it is a routine ex-

ercise to demonstrate that rM 6∈VM(�d−1⊥ → ♦d−1>) where M∈DBT ∅d is such
that WM={0} and RM=∅. Thus, by Proposition 12, �d−1⊥ → ♦d−1>6∈Ad. a

Proposition 14 For all formulas ϕ, if ♦ϕ → �ϕ∈Kd then either �d−1⊥ →
ϕ∈Kd, or ϕ→ ♦d−1>∈Kd.

Proof: Let ϕ be a formula. Suppose ♦ϕ → �ϕ∈Kd and neither �d−1⊥ →
ϕ∈Kd, nor ϕ → ♦d−1>∈Kd. Let ȳ be a finite subset of VAR such that
var(ϕ)⊆ȳ. Since neither �d−1⊥ → ϕ∈Kd, nor ϕ → ♦d−1>∈Kd, by Proposi-
tion 12, let M′,M′′∈BT ȳd be such that rM′ 6∈VM′(�d−1⊥ → ϕ) and rM′′ 6∈VM′′(ϕ
→ ♦d−1>). Hence, rM′∈VM′(�d−1⊥), rM′ 6∈VM′(ϕ), rM′′∈VM′′(ϕ) and rM′′ 6∈
VM′′(♦d−1>). Thus, let M∈BT ȳd be such that the following conditions hold:

• for all s∈WM, if rMRMs, either Ms is isomorphic to M′, or Ms is iso-
morphic to M′′,

10



• there exists s∈WM, such that rMRMs and Ms is isomorphic to M′,

• there exists s∈WM, such that rMRMs and Ms is isomorphic to M′′.

Since rM′ 6∈VM′(ϕ) and rM′′∈VM′′(ϕ), rM 6∈VM(♦ϕ → �ϕ). Consequently, by
Proposition 12, ♦ϕ→ �ϕ6∈Kd: a contradiction. a

Proposition 15 1. Kd is locally tabular,

2. Ad is locally tabular.

Proof: It is a routine exercise to demonstrate that for all finite subsets ȳ of
VAR and for all ϕ∈FORȳ, there exists ψ∈FORȳ such that deg(ψ)<d, for all
M∈BT ȳd, rM∈VM(ϕ ↔ ψ) and for all M∈DBT ȳd, rM∈VM(ϕ ↔ ψ). Hence,
by [12, Proposition 2.29] and Proposition 12, Kd is locally tabular and Ad is
locally tabular. a

Proposition 16 1. Kd is not filtering,

2. Ad is filtering.

Proof: (1) Let ϕ=♦x → �x. We demonstrate ϕ is Kd-unifiable and not Kd-
filtering. Let ({x}, {x}, σ) and ({x}, {x}, τ) be the substitutions defined by:

• σ(x)=�d−1⊥ ∨ x,

• τ(x)=♦d−1> ∧ x.

Since by Proposition 13, ��d−1⊥∈Kd and ¬♦♦d−1>∈Kd, σ(ϕ)∈Kd and τ(ϕ)∈
Kd. Hence, ({x}, {x}, σ) and ({x}, {x}, τ) are Kd-unifiers of ϕ. Thus, ϕ is Kd-
unifiable. In order to prove that ϕ is not Kd-filtering, it suffices to prove that
{({x}, {x}, σ), ({x}, {x}, τ)} is a basis of Kd-unifiers of ϕ. This objective is
addressed in Lemmas 1 and 2.

Lemma 1 {({x}, {x}, σ), ({x}, {x}, τ)} is a Kd-complete set of Kd-unifiers of
ϕ.

Proof: Let ({x}, ȳ, υ) be a Kd-unifier of ϕ. Consequently, υ(ϕ)∈Kd. Hence, by
Proposition 14, either�d−1⊥ → υ(x)∈Kd, or υ(x)→ ♦d−1>∈Kd. In the former
case, it follows immediately that υ(σ(x))≡Kd

υ(x). Thus, ({x}, {x}, σ)4Kd
({x},

ȳ, υ). In the latter case, it follows immediately that υ(τ(x))≡Kd
υ(x). Conse-

quently, ({x}, {x}, τ)4Kd
({x}, ȳ, υ). Since ({x}, ȳ, υ) is an arbitrary Kd-unifier

of ϕ, {({x}, {x}, σ), ({x}, {x}, τ)} is a Kd-complete set of Kd-unifiers of ϕ. a

Lemma 2 {({x}, {x}, σ), ({x}, {x}, τ)} is a basis of Kd-unifiers of ϕ.

11



Proof: For the sake of the contradiction, suppose {({x}, {x}, σ), ({x}, {x}, τ)}
is not a basis of Kd-unifiers of ϕ. Hence, either ({x}, {x}, σ)4Kd

({x}, {x}, τ),
or ({x}, {x}, τ)4Kd

({x}, {x}, σ). In the former case, there exists a substitution
({x}, x̄, υ) such that υ(σ(x))≡Kd

τ(x). Thus, �d−1⊥ ∨ υ(x)≡Kd
♦d−1> ∧ x. In

the latter case, there exists a substitution ({x}, x̄, υ) such that υ(τ(x))≡Kd
σ(x).

Consequently, ♦d−1> ∧ υ(x)≡Kd
�d−1⊥ ∨ x. In both cases, �d−1⊥ → ♦d−1>∈

Kd: a contradiction with Proposition 13. a

Consequently, Kd is not filtering.

(2) Let ϕ∈FOR be Ad-unifiable. We demonstrate ϕ is Ad-filtering. Let
(var(ϕ), ȳ, σ), (var(ϕ), z̄, τ) be Ad-unifiers of ϕ. Let t̄=ȳ ∪ z̄ ∪ {u} where u
is a new variable12. Let (var(ϕ), t̄, µ) be the substitution defined by

• µ(x)=(
∨
{♦l(u∧�⊥) : 0≤l<d}∧σ(x))∨(

∧
{�l(¬u∨♦>) : 0≤l<d}∧τ(x)),

where x ranges over var(ϕ). Let (t̄, ȳ, λ>) and (t̄, z̄, λ⊥) be the substitutions
defined by

• if v∈ȳ then λ>(v)=v else λ>(v)=>,

• if v∈z̄ then λ⊥(v)=v else λ⊥(v)=⊥,

where v ranges over t̄. Since by Proposition 13,
∨
{♦l�⊥ : 0≤l<d}∈Kd and

¬
∧
{�l♦> : 0≤l<d}∈Kd, for all x∈var(ϕ), λ>(µ(x))≡Ad

σ(x) and λ⊥(µ(x))
≡Ad

τ(x). Hence, (var(ϕ), t̄, µ)4Ad
(var(ϕ), ȳ, σ) and (var(ϕ), t̄, µ)4Ad

(var(ϕ),
z̄, τ). Moreover, by induction on ψ∈FORvar(ϕ), the reader may easily ver-

ify that
∨
{♦l(u ∧ �⊥) : 0≤l<d} → (µ(ψ) ↔ σ(ψ))∈Ad and

∧
{�l(¬u ∨

♦>) : 0≤l<d} → (µ(ψ) ↔ τ(ψ))∈Ad
13. Thus,

∨
{♦l(u ∧ �⊥) : 0≤l<d} →

µ(ϕ)∈Ad and
∧
{�l(¬u∨♦>) : 0≤l<d} → µ(ϕ)∈Ad. Consequently, µ(ϕ)∈Ad.

Hence, (var(ϕ), t̄, µ) is an Ad-unifier of ϕ. Since (var(ϕ), t̄, µ)4Ad
(var(ϕ), ȳ, σ)

and (var(ϕ), t̄, µ)4Ad
(var(ϕ), z̄, τ), ϕ is Ad-filtering. Since the Ad-unifiable

ϕ∈FOR was arbitrary, Ad is filtering.

This finishes the proof of Proposition 16. a

5.4 Valuable functions

Let (x̄, ȳ, σ)∈SUB. For all e∈{1, . . . , d}, a function f : BT ȳe/./ −→ BT
x̄
e/./

is valuable if for all M∈BT ȳe and for all M′∈BT x̄e , if f([M])=[M′] then the
following conditions hold:

12That is, neither u∈var(ϕ), nor u∈ȳ, nor u∈z̄.
13This proof by induction uses the fact — see Proposition 13 — that

∧
{�l(¬u ∨ ♦>) :

0≤l<d} → �
∧
{�l(¬u∨♦>) : 0≤l<d}∈Kd and

∨
{♦l(u∧�⊥) : 0≤l<d} → �

∨
{♦l(u∧�⊥) :

0≤l<d}∈Ad. By the way, the fact — see Proposition 13 — that
∨
{♦l(u ∧�⊥) : 0≤l<d} →

�
∨
{♦l(u ∧ �⊥) : 0≤l<d}6∈Kd explains — if it is still needed — why our argument cannot

be repeated for Kd.
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• for all s∈RM(rM), there exists s′∈RM′(rM′) such that f([Ms])=[M′
s′ ],

• for all s′∈RM′(rM′), there exists s∈RM(rM) such that f([Ms])=[M′
s′ ].

Of course, in the above items, RM(rM) and RM′(rM′) are finite. For all
e∈{1, . . . , d}, let fσe : BT ȳe/./ −→ BT

x̄
e/./ be the function such that for all

M∈BT ȳe , fσe ([M])=[M|σ]14.

Proposition 17 For all e∈{1, . . . , d}, for all M∈BT ȳe and for all s∈WM,
fσe ([M])s=f

σ
e ([Ms]).

Proof: By [12, Proposition 2.6]. a

Proposition 18 For all e∈{1, . . . , d}, the function fσe is valuable.

Proof: By Proposition 17. a

Let (x̄, ȳ, σ)∈SUB. For all e∈{1, . . . , d}, a function f : DBT ȳe/./ −→ DBT
x̄
e/./

is valuable if for all M∈DBT ȳe and for all M′∈DBT x̄e , if f([M])=[M′] then the
following conditions hold:

• for all s∈RM(rM), there exists s′∈RM′(rM′) such that f([Ms])=[M′
s′ ],

• for all s′∈RM′(rM′), there exists s∈RM(rM) such that f([Ms])=[M′
s′ ].

Of course, in the above items, RM(rM) and RM′(rM′) are with cardinality ≤1.
For all e∈{1, . . . , d}, let fσe : DBT ȳe/./ −→ DBT

x̄
e/./ be the function such that

for all M∈DBT ȳe , fσe ([M])=[M|σ]15.

Proposition 19 For all e∈{1, . . . , d}, for all M∈DBT ȳe and for all s∈WM,
fσe ([M])s=f

σ
e ([Ms]).

Proof: By [12, Proposition 2.6]. a

Proposition 20 For all e∈{1, . . . , d}, the function fσe is valuable.

Proof: By Proposition 19. a

6 About the unification type of Ad

In this section, we prove that Ad is unitary16. For all e∈{1, . . . , d}, the surjective
valuable function fe : DBT ȳe/./ −→ DBT

x̄
e/./ associated in Proposition 21

to each (x̄, ȳ, σ)∈SUB such that ‖x̄‖<‖ȳ‖ be crucially used in the proof of
Proposition 22.

14Notice that for all e∈{1, . . . , d}, by Proposition 11, the function fσe is well-defined.
15Notice that for all e∈{1, . . . , d}, by Proposition 11, the function fσe is well-defined.
16By Propositions 7 and 16, we know that Ad is either nullary, or unitary.
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Proposition 21 Let (x̄, ȳ, σ)∈SUB. Let e∈{1, . . . , d}. If ‖x̄‖<‖ȳ‖ then there
exists a surjective valuable function fe : DBT ȳe/./ −→ DBT

x̄
e/./ such that for

all M,N∈DBT ȳe , if fe([M])=fe([N]) then fσe ([M])=fσe ([N]).

Proof: Suppose ‖x̄‖<‖ȳ‖. By induction on e, we define a surjective valu-
able function fe : DBT ȳe/./ −→ DBT

x̄
e/./ such that for all M,N∈DBT ȳe , if

fe([M])=fe([N]) then fσe ([M])=fσe ([N]). We consider the following 2 cases.

Case e=1: Let U={fσ1 ([M]) : M∈DBT ȳ1}. Notice that U⊆DBT x̄1/./. Let h be
a function from U to DBT ȳ1/./ such that for all M∈DBT ȳ1, fσ1 (h(fσ1 ([M])))=
fσ1 ([M]). Notice that h is injective. Hence, ‖U‖=‖{h(fσ1 ([M])) : M∈DBT ȳ1}‖.
Since ‖x̄‖<‖ȳ‖, ‖DBT x̄1/./\U‖≤‖DBT

ȳ
1/./\{h(fσ1 ([M])) : M∈DBT ȳ1}‖. Let S

be a subset of DBT ȳ1/./\{h(fσ1 ([M])) : M∈DBT ȳ1} such that ‖S‖=‖DBT x̄1/./\
U‖. Let f∗1 be a one-to-one correspondence between S and DBT x̄1/./ \U . Now,
we define the function f1. Let f1 be the function from DBT ȳ1/./ to DBT x̄1/./
such that

• if [M]∈S then f1([M])=f∗1 ([M]) else f1([M])=fσ1 ([M]),

where M ranges over DBT ȳ1. Notice that f1 is valuable. In Lemmas 3 and 4,
we show that f1 possesses the required properties.

Lemma 3 f1 is surjective.

Proof: Let N∈DBT x̄1 . We consider the following 2 cases.

Case [N]∈U : Hence, let M∈DBT ȳ1 be such that fσ1 ([M])=[N]. Thus,
h(fσ1 ([M]))=h([N]). Consequently, h([N])6∈S. Hence, f1(h([N]))=fσ1 (h([N])).
Since h(fσ1 ([M]))=h([N]), f1(h([N]))=fσ1 (h(fσ1 ([M]))). Thus, f1(h([N]))=
fσ1 ([M]). Since fσ1 ([M])=[N], f1(h([N]))=[N].

Case [N]∈DBT x̄1/./ \ U : Since f∗1 is one-to-one, let [M]∈S be such that
f∗1 ([M])=[N]. Consequently, f1([M])=f∗1 ([M]). Since f∗1 ([M])=[N], f1([M])=
[N]. a

Lemma 4 For all M,N∈DBT ȳ1, if f1([M])=f1([N]) then fσ1 ([M])=fσ1 ([N]).

Proof: Let M,N∈DBT ȳ1. Suppose f1([M])=f1([N]). We consider the follo-
wing 3 cases.

Case [M]∈S and [N]∈S: Since f1([M])=f1([N]), f∗1 ([M])=f∗1 ([N]). Since
f∗1 is one-to-one, [M]=[N]. Hence, fσ1 ([M])=fσ1 ([N]).

Case [M]∈S and [N]∈DBT ȳ1/./\S: Since f1([M])=f1([N]), f∗1 ([M])=fσ1 ([N]).
Thus (DBT x̄1/./ \ U) ∩ ∈U 6=∅: a contradiction.

Case [M]∈DBT ȳ1/./ \ S and [N]∈DBT ȳ1/ ./ \S: Since f1([M])=f1([N]),
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fσ1 ([M])=fσ1 ([N]). a

Case e≥2: By induction hypothesis, let fe−1 be a surjective valuable function
from DBT ȳe−1/./ to DBT x̄e−1/./ such that for all M,N∈DBT ȳe−1, if fe−1([M])=
fe−1([N]) then fσe−1([M])=fσe−1([N]). For all M′∈DBT x̄e−1 \ DBT

x̄
e−2, let

• S([M′]) be the set of all [M] such that M∈DBT ȳe and there exists s∈
RM(rM) such that fe−1([Ms])=[M′].

Notice that for all M′∈DBT x̄e−1 \ DBT
x̄
e−2, S([M′])⊆DBT ȳe/ ./ \DBT

ȳ
e−1/ ./.

For all M′∈DBT x̄e−1 \DBT
x̄
e−2, let ∼M′ be the equivalence relation on S([M′])

defined by

• [M]∼[M′][N] if and only if fσe ([M])=fσe ([N]).

where [M], [N] range over S([M′]). In Lemmas 5 and 6, we compare
‖S([M′])/ ∼[M′]‖ and ‖S([M′])‖ with 2‖x̄‖ for each M′∈DBT x̄e−1 \ DBT

x̄
e−2.

Lemma 5 For all M′∈DBT x̄e−1 \ DBT
x̄
e−2, ‖S([M′])/ ∼[M′]‖≤2‖x̄‖.

Proof: Let M′∈DBT x̄e−1 \ DBT
x̄
e−2. For the sake of the contradiction, sup-

pose ‖S([M′])/ ∼[M′]‖>2‖x̄‖. Let p∈N and [M1], . . . , [Mp]∈S([M′]) be such

that p>2‖x̄‖ and for all q, r∈{1, . . . , p}, if q 6=r then [Mq]6∼[M′][Mr]. Hence,
M1, . . . ,Mp∈DBT ȳe and there exists s1∈RM1(rM1), . . . , sp∈RMp(rMp) such
that fe−1([M1s1 ])=[M′], . . ., fe−1([Mpsp

])=[M′]. Thus, let M′′∈DBT x̄e−1 \
DBT x̄e−2 be such that fσe−1([M1s1 ])=[M′′], . . ., fσe−1([Mpsp

])=[M′′]. Conse-

quently, by Proposition 20, let M′′
1, . . . ,M

′′
p∈DBT

x̄
e and s′′1∈RM′′1

(rM′′1 ), . . . , s′′p∈
RM′′p (rM′′p ) be such that fσe ([M1])=[M′′

1], . . ., fσe ([Mp])=[M′′
p] and [M′′

1s′′1
]=

[M′′], . . ., [M′′
ps′′p

]=[M′′]. Since for all q, r∈{1, . . . , p}, if q 6=r then [Mq] 6∼[M′]

[Mr], for all q, r∈{1, . . . , p}, if q 6=r then fσe ([Mq])6=fσe ([Mr]). Since fσe ([M1])=
[M′′

1], . . ., fσe ([Mp])=[M′′
p], for all q, r∈{1, . . . , p}, if q 6=r then [M′′

q]6=[M′′
r ].

Since [M′′
1s′′1

]=[M′′], . . ., [M′′
ps′′p

]=[M′′], p≤2‖x̄‖: a contradiction. a

Lemma 6 For all M′∈DBT x̄e−1 \ DBT
x̄
e−2, 2‖x̄‖≤‖S([M′])‖.

Proof: Let M′∈DBT x̄e−1 \ DBT
x̄
e−2. Since fe−1 is surjective, ‖S([M′])‖≥2‖ȳ‖.

Since ‖x̄‖<‖ȳ‖, 2‖x̄‖≤‖S([M′])‖. a

For all M′∈DBT x̄e−1 \ DBT
x̄
e−2, let

• T ([M′]) be the set of all [N′] such that N′∈DBT x̄e and there exists s′∈
RN′(rN′) such that [N′s′ ]=[M′].

Notice that for all M′∈DBT x̄e−1 \ DBT
x̄
e−2, T ([M′])⊆DBT x̄e/ ./ \DBT

x̄
e−1/ ./.

Moreover, notice that for all M′∈DBT x̄e−1 \ DBT
x̄
e−2, ‖T ([M′])‖=2‖x̄‖. Conse-

quently, by Lemmas 5 and 6, for all M′∈DBT x̄e−1\DBT
x̄
e−2, ‖S([M′])/ ∼[M′]‖≤

‖T ([M′])‖≤‖S([M′])‖. Hence, by Proposition 1, for all M′∈DBT x̄e−1 \DBT
x̄
e−2,

let g
[M′]
e be a surjective function from S([M′]) to T ([M′]) such that for all
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[M], [N]∈S([M′]), if g
[M′]
e ([M])=g

[M′]
e ([N]) then [M]∼[M′][N]17. Now, we de-

fine the function fe. Let fe : DBT ȳe/./ −→ DBT
x̄
e/./ be the function such

that

• if M∈DBT ȳe−1 then fe([M])=fe−1([M]) else fe([M])=g
fe−1([Ms])
e ([M]),

where M ranges over DBT ȳe and s∈RM(rM). Notice that fe is valuable. In
Lemmas 7 and 8, we show that fe possesses the required properties.

Lemma 7 fe is surjective.

Proof: Let N∈DBT x̄e . We consider the following 2 cases.

Case [N]∈DBT x̄e−1/./: Since fe−1 is surjective, let [M]∈DBT ȳe−1/./ be such
that fe−1([M])=[N]. Hence, fe([M])=fe−1([M]). Since fe−1([M])=[N],
fe([M])=[N].

Case [N]∈DBT x̄e/./ \ DBT
x̄
e−1/./: Let s∈RN(rN). Thus, [Ns]∈DBT x̄e−1/./ \

DBT x̄e−2/./. Moreover, [N]∈T ([Ns]). Since g
[Ns]
e is surjective, let [M′]∈S([Ns])

be such that g
[Ns]
e ([M′])=[N]. Let s′∈RM′(rM′) be such that fe−1([M′

s′ ])=[Ns].

Since g
[Ns]
e ([M′])=[N], g

fe−1([M′
s′ ])

e ([M′])=[N]. Consequently, fe([M
′])=[N]. a

Lemma 8 For all M,N∈DBT ȳe , if fe([M])=fe([N]) then fσe ([M])=fσe ([N]).

Proof: Let M,N∈DBT ȳe . Suppose fe([M])=fe([N]). We consider the follo-
wing 3 cases.

Case [M]∈DBT ȳe−1/./ and [N]∈DBT ȳe−1/./: Since fe([M])=fe([N]),
fe−1([M])=fe−1([N]). Hence, fσe−1([M])=fσe−1([N]) Thus, fσe ([M])=fσe ([N])

Case [M]∈DBT ȳe−1/./ and [N]∈DBT ȳe/./ \ DBT
ȳ
e−1/./: Since fe([M])=

fe([N]), fe−1([M])=g
fe−1([Ns])
e ([N]) where s∈RN(rN). Consequently,

DBT x̄e−1/./ ∩ (DBT x̄e/./ \ DBT
x̄
e−1/./)6=∅: a contradiction.

Case [M]∈DBT ȳe/./ \ DBT
ȳ
e−1/./ and [N]∈DBT ȳe/./ \ DBT

ȳ
e−1/./: Since

fe([M])=fe([N]), g
fe−1([Ms])
e ([M])=g

fe−1([Nt])
e ([N]) where s∈RM(rM) and t∈

RN(rN). Consequently, fe−1([Ms])=fe−1([Nt]). Let [O]∈DBT x̄e−1/./ be such

that fe−1([Ms])=[O] and fe−1([Nt])=[O]. Since g
fe−1([Ms])
e ([M])=

g
fe−1([Nt])
e ([N]), [M]∼[O][N]. Hence, fσe ([M])=fσe ([N]). a

This finishes the proof of Proposition 21. a

Proposition 22 Let ϕ∈FORx̄. If (x̄, ȳ, σ)∈SUB is an Ad-unifier of ϕ then
there exists an Ad-unifier (x̄, x̄, τ)∈SUB of ϕ such that (x̄, x̄, τ)4Ad

(x̄, ȳ, σ).

17Notice that this is the only place in this section where we use Proposition 1.
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Proof: Suppose (x̄, ȳ, σ)∈SUB is an Ad-unifier of ϕ. Hence, for all M∈DBT ȳd,
rM∈VM(σ(ϕ)).

Case ‖x̄‖≥‖ȳ‖: Let (x̄, x̄, τ)∈SUB be such that for all x∈x̄, τ(x)=λ(σ(x))
for some injective (ȳ, x̄, λ)∈SUB such that λ(ȳ)⊆x̄. Notice that since for all
M∈DBT ȳd, rM∈VM(σ(ϕ)), for all M∈DBT x̄d , rM∈VM(τ(ϕ)). Thus, (x̄, x̄, τ) is
an Ad-unifier of ϕ. Let (x̄, ȳ, λ′)∈SUB be such that for all x∈x̄, if there exists
y∈ȳ such that λ(y)=x then λ′(x)=y. Notice that for all x∈x̄, λ′(τ(x))≡Ad

σ(x).
Consequently, (x̄, x̄, τ)4Ad

(x̄, ȳ, σ).

Case ‖x̄‖<‖ȳ‖: By Proposition 21, let fd : DBT ȳd/./ −→ DBT x̄d/./ be a
surjective valuable function such that for all M,N∈DBT ȳd, if fd([M])=fd([N])
then fσd ([M])=fσd ([N]). Let (x̄, x̄, τ), (x̄, ȳ, ν)∈SUB be such that for all x∈x̄,

• τ(x)=
∨
{for(M′) : M∈DBT ȳd and M′∈DBT x̄d are such that rM∈

VM(σ(x)) and fd([M])=[M′]},

• ν(x)=
∨
{for(M) : M∈DBT ȳd and M′∈DBT x̄d are such that rM′∈VM′(x)

and fd([M])=[M′]}.

Lemmas 9, 10, 11 and 12 state results connecting the substitutions (x̄, x̄, τ) and
(x̄, ȳ, ν) with the models in DBT x̄d and DBT ȳd.

Lemma 9 Let ϕ∈FORx̄. For all M′∈DBT x̄d, the following conditions are
equivalent:

1. there exists M∈DBT ȳd such that fd([M])=[M′] and rM∈VM(σ(ϕ)),

2. for all M∈DBT ȳd, if fd([M])=[M′] then rM∈VM(σ(ϕ)),

3. rM′∈VM′(τ(ϕ)).

Proof: By induction on ϕ.

Case ϕ=x: Let M∈DBT x̄d .

(1⇒ 2) Suppose M′∈DBT ȳd is such that fd([M
′])=[M] and rM′∈VM′(σ(x)).

Let M′′∈DBT ȳd be such that fd([M
′′])=[M]. Since fd([M

′])=[M], fd([M
′])=

fd([M
′′]). Hence, fσd ([M′])=fσd ([M′′]). Thus, [M′|σ]=[M′′|σ]. Since rM′∈

VM′(σ(x)), rM′∈VM′|σ (x). Since [M′|σ]=[M′′|σ], rM′′∈VM′′|σ (x). Consequent-
ly, rM′′∈VM′′(σ(x)). Since M′′∈DBT ȳd such that fd([M

′′])=[M] is arbitrary, for
all M′′∈DBT ȳd, if fd([M

′′])=[M] then rM′′∈VM′′(σ(x)).

(2⇒ 3) Suppose for all M′∈DBT ȳd, if fd([M
′])=[M] then rM′∈VM′(σ(x)). Sin-

ce fd is surjective, let M′′∈DBT ȳd be such that fd([M
′′])=[M]. Since for all

M′∈DBT ȳd, if fd([M
′])=[M] then rM′∈VM′(σ(x)), rM′′∈VM′′(σ(x)). Hence,

for(M) is a disjunct in τ(x). Since by Proposition 10, rM∈
VM(for(M)), rM∈VM(τ(x)).
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(3⇒ 1) Suppose rM∈VM(τ(x)). Let M′∈DBT ȳd and M′′∈DBT x̄d be such that
rM′∈VM′(σ(x)), fd([M

′])=[M′′] and rM∈VM(for(M′′)). Thus, fd([M
′])=[M].

Consequently, there exists M′∈DBT ȳd such that fd([M
′])=[M] and rM′∈

VM′(σ(x)).

Case ϕ=⊥: Left to the reader.

Case ϕ=¬ψ: Left to the reader.

Case ϕ=ψ ∨ χ: Left to the reader.

Case ϕ=�ψ:

(1⇒ 2) Suppose M′∈DBT ȳd is such that fd([M
′])=[M] and rM′∈VM′(�σ(ψ)).

Let M′′∈DBT ȳd be such that fd([M
′′])=[M]. Let s′′∈RM′′(rM′′). Since fd is

valuable and fd([M
′′])=[M], let s∈RM(rM) be such that fd([M

′′
s′′ ])=[Ms]. Since

fd is valuable and fd([M
′])=[M], let s′∈RM′(rM′) be such that fd([M

′
s′ ])=[Ms].

Since fd([M
′′
s′′ ])=[Ms], fd([M

′
s′ ])=fd([M

′′
s′′ ]). Hence, fσd ([M′

s′ ])=f
σ
d ([M′′

s′′ ]).

Thus, [M′
s′
|σ

]=[M′′
s′′
|σ

]. Since rM′∈VM′(�σ(ψ)) and s′∈RM′(rM′), s′∈
VM′(σ(ψ)). Consequently, s′∈VM′|σ (ψ). Since [M′

s′
|σ

]=[M′′
s′′
|σ

], s′′∈VM′′|σ (ψ).
Hence, s′′∈VM′′(σ(ψ)). Since s′′∈RM′′(rM′′) is arbitrary, rM′′∈VM′′(�σ(ψ)).
Since M′′∈DBT ȳd such that fd([M

′′])=[M] is arbitrary, for all M′′∈DBT ȳd, if
fd([M

′′])=[M] then rM′′∈VM′′(�σ(ψ)).

(2⇒ 3) Suppose for all M′∈DBT ȳd, if fd([M
′])=[M] then rM′∈VM′(�σ(ψ)).

Let s∈RM(rM). Since fd is surjective, let M′′∈DBT ȳd be such that fd([M
′′])=

[M]. Since fd is valuable and s∈RM(rM), let s′′∈RM′′(rM′′) be such that
fd([M

′′
s′′ ])=[Ms]. Since for all M′∈DBT ȳd, if fd([M

′])=[M] then rM′∈
VM′(�σ(ψ)) and fd([M

′′])=[M], rM′′∈VM′′(�σ(ψ)). Since s′′∈RM′′(rM′′), s
′′∈

VM′′(σ(ψ)). Since fd([M
′′
s′′ ])=[Ms], by induction hypothesis, s∈VM(τ(ψ)). Sin-

ce s∈RM(rM) is arbitrary, rM∈VM(�τ(ψ)).

(3⇒ 1) Suppose rM∈VM(�τ(ψ)). Since fd is surjective, let M′∈DBT ȳd be such
that fd([M

′])=[M]. Let s′∈RM′(rM′). Since fd is valuable and fd([M
′])=[M],

let s∈RM(rM) be such that fd([M
′
s′ ])=[Ms]. Since rM∈VM(�τ(ψ)), s∈

VM(τ(ψ)). Since fd([M
′
s′ ])=[Ms], by induction hypothesis, s′∈VM′(σ(ψ)). Sin-

ce s′∈RM′(rM′) is arbitrary, rM′∈VM′(�σ(ψ)). Consequently, there exists
M′∈DBT ȳd such that fd([M

′])=[M] and rM′∈VM′(�σ(ψ)). a

Lemma 10 For all M∈DBT ȳd and for all M′∈DBT x̄d, if fd([M])=[M′] then
for all x∈x̄, the following conditions are equivalent:

1. rM∈VM(ν(x)),

2. rM′∈VM′(x).
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Proof: Let M∈DBT ȳd and M′∈DBT x̄d . Suppose fd([M])=[M′]. Let x∈x̄.

(1⇒ 2) Suppose rM∈VM(ν(x)). Let M′′∈DBT ȳd and M′′′∈DBT x̄d be such that
rM′′′∈VM′′′(x), fd([M

′′])=[M ′′′] and rM∈VM(for(M′′)). Since fd([M])=[M′],
[M ′]=[M ′′′]. Since rM′′′∈VM′′′(x), rM′∈VM′(x).

(2⇒ 1) Suppose rM′∈VM′(x). Since fd([M])=[M′], for(M) is a disjunct in
ν(x). Since by Proposition 10, rM∈VM(for(M)), rM∈VM(ν(x)). a

Lemma 11 Let e∈{1, . . . , d}. For all M∈DBT ȳe and for all M′∈DBT x̄e ,
fe([M])=[M′] if and only if rM∈VM(ν(for(M′))).

Proof: By induction on e.

Case e=1: Let M∈DBT ȳ1 and M′∈DBT x̄1 . Suppose f1([M])=[M′]. Hence,
by Lemma 10, for all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x). Since by
Proposition 10, rM′∈VM′(for(M′)), rM∈VM(ν(for(M′))). Reciprocally, sup-
pose rM∈VM(ν(for(M′))). Thus, for all x∈x̄, rM∈VM(ν(x)) if and only if
rM′∈VM′(x). Let M′′∈DBT x̄1 be such that f1([M])=[M′′]. Consequently, by
Lemma 10, for all x∈x̄, rM∈VM(ν(x)) if and only if rM′′∈VM′′(x). Since for all
x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x), for all x∈x̄, rM′∈VM′(x) if and
only if rM′′∈VM′′(x). Hence, [M′]=[M′′]. Since f1([M])=[M′′], f1([M])=[M′].

Case e≥2: Let M∈DBT ȳe and M′∈DBT x̄e . Suppose fe([M])=[M′]. Thus,
by Lemma 10, for all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x). Moreover,
since fe is valuable, for all s∈RM(rM), there exists s′∈RM′(rM′) such that
fe−1([Ms])=[M′

s′ ] and for all s′∈RM′(rM′), there exists s∈RM(rM) such that
fe−1([Ms])=[M′

s′ ]. Consequently, by induction hypothesis, for all s∈RM(rM),
there exists s′∈RM′(rM′) such that s∈VM(ν(for(M′

s′))) and for all s′∈
RM′(rM′), there exists s∈RM(rM) such that s∈VM(ν(for(M′

s′))). Since for
all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x), rM∈VM(ν(for(M′))). Re-
ciprocally, suppose rM∈VM(ν(for(M′))). Hence, for all x∈x̄, rM∈VM(ν(x)) if
and only if rM′∈VM′(x). Moreover, for all s∈RM(rM), there exists s′∈RM′(rM′)
such that s∈VM(ν(for(M′

s′))) and for all s′∈RM′(rM′), there exists s∈RM(rM)
such that s∈VM(ν(for(M′

s′))). Thus, by induction hypothesis, for all s∈
RM(rM), there exists s′∈RM′(rM′) such that fe−1([Ms])=[M′

s′ ] and for all
s′∈RM′(rM′), there exists s∈RM(rM) such that fe−1([Ms])=[M′

s′ ]. Let M′′∈
DBT x̄e be such that fe([M])=[M′′]. Consequently, by Lemma 10, for all x∈x̄,
rM∈VM(ν(x)) if and only if rM′′∈VM′′(x). Moreover, since fe is valuable, for
all s∈RM(rM), there exists s′′∈RM′′(rM′′) such that fe−1([Ms])=[M′′

s′′ ] and for
all s′′∈RM′′(rM′′), there exists s∈RM(rM) such that fe−1([Ms])=[M′′

s′′ ]. Since
for all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x), for all x∈x̄, rM′∈VM′(x)
if and only if rM′′∈VM′′(x). Moreover, since for all s∈RM(rM), there exists
s′∈RM′(rM′) such that fe−1([Ms])=[M′

s′ ] and for all s′∈RM′(rM′), there ex-
ists s∈RM(rM) such that fe−1([Ms])=[M′

s′ ], for all s′∈RM′(rM′), there exists
s′′∈RM′′(rM′′) such that [M′

s′ ]=[M′′
s′′ ] and for all s′′∈RM′′(rM′′), there exists
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s′∈RM′(rM′) such that [M′
s′ ]=[M′′

s′′ ]. Hence, [M′]=[M′′]. Since fe([M])=[M′′],
fe([M])=[M′]. a

Lemma 12 For all M∈DBT ȳd and for all x∈x̄, the following conditions are
equivalent:

1. rM∈VM(ν(τ(x))),

2. rM∈VM(σ(x)).

Proof: Let M∈DBT ȳd and x∈x̄.

(1⇒ 2) Suppose rM∈VM(ν(τ(x))). Let M′∈DBT ȳd and M′′∈DBT x̄d be such
that rM′∈VM′(σ(x)), fd([M

′])=[M ′′] and rM∈VM(ν(for(M′′))). Hence, by
Lemma 11, fd([M ])=[M ′′]. Since fd([M

′])=[M ′′], fd([M
′])=fd([M ]). Thus,

fσd ([M ′])=fσd ([M ]). Consequently, [M|σ]=[M′|σ]. Since rM′∈VM′(σ(x)), rM′∈
VM′|σ (x). Since [M|σ]=[M′|σ], rM∈VM|σ (x). Hence, rM∈VM(σ(x)).

(2⇒ 1) Suppose rM∈VM(σ(x)). Thus, for(fd([M])) is a disjunct in τ(x). Since
by Lemma 11, rM∈VM(ν(for(fd([M])))), rM∈VM(ν(τ(x))). a

Since for all M∈DBT ȳd, rM∈VM(σ(ϕ)), by Lemma 9, for all M′∈DBT x̄d , rM′∈
VM′(τ(ϕ)). Hence, (x̄, x̄, τ) is an Ad-unifier of ϕ. Moreover, by Lemma 12, for
all x∈x̄, ν(τ(x))↔ σ(x)∈Ad

18. Thus, (x̄, x̄, τ)4Ad
(x̄, ȳ, σ).

This finishes the proof of Proposition 22. a

Proposition 23 Ad is reasonable.

Proof: By Proposition 22. a

Proposition 24 Ad is unitary.

Proof: By Propositions 15, 7, 8, 16 and 23. a

7 About the unification type of Kd

In this section, we prove that Kd is finitary19. For all e∈{1, . . . , d}, the surjective
valuable function fe : BT ȳe/./ −→ BT

x̄
e/./ associated in Proposition 25 to

each (x̄, ȳ, σ)∈SUB such that ‖x̄‖<‖ȳ‖ will be crucially used in the proof of
Proposition 26.

18Lemmas 10 and 11 are used in the proof of Lemma 12.
19By Propositions 6 and 16, we know that Kd is not unitary.
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Proposition 25 Let (x̄, ȳ, σ)∈SUB. Let e∈{1, . . . , d}. If ‖x̄‖<‖ȳ‖ then there
exists a surjective valuable function fe : BT ȳe/./ −→ BT

x̄
e/./ such that for all

M,N∈BT ȳe , if fe([M])=fe([N]) then fσe ([M])=fσe ([N]).

Proof: Suppose ‖x̄‖<‖ȳ‖. By induction on e, we define a surjective valuable
function fe : BT ȳe/./ −→ BT

x̄
e/./ such that for all M,N∈BT ȳe , if fe([M])=

fe([N]) then fσe ([M])=fσe ([N]). We consider the following 2 cases.

Case e=1: Let U={fσ1 ([M]) : M∈BT ȳ1}. Notice that U⊆BT x̄1/./. Let h be a
function from U to BT ȳ1/./ such that for all M∈BT ȳ1, fσ1 (h(fσ1 ([M])))=fσ1 ([M]).
Notice that h is injective. Hence, ‖U‖=‖{h(fσ1 ([M])) : M∈BT ȳ1}‖. Since
‖x̄‖<‖ȳ‖, ‖BT x̄1/./ \ U‖≤‖BT

ȳ
1/./ \ {h(fσ1 ([M])) : M∈BT ȳ1}‖. Let S be a

subset of BT ȳ1/./ \ {h(fσ1 ([M])) : M∈BT ȳ1} such that ‖S‖=‖BT x̄1/./ \U‖. Let
f∗1 be a one-to-one correspondence between S and BT x̄1/./ \U . Now, we define
the function f1. Let f1 be the function from BT ȳ1/./ to BT x̄1/./ such that

• if [M]∈S then f1([M])=f∗1 ([M]) else f1([M])=fσ1 ([M]),

where M ranges over BT ȳ1. Notice that f1 is valuable. In Lemmas 13 and 14,
we show that f1 possesses the required properties.

Lemma 13 f1 is surjective.

Proof: Let N∈BT x̄1 . We consider the following 2 cases.

Case [N]∈U : Hence, let M∈BT ȳ1 be such that fσ1 ([M])=[N]. Thus, h(fσ1 ([M]))
=h([N]). Consequently, h([N])6∈S. Hence, f1(h([N]))=fσ1 (h([N])). Since
h(fσ1 ([M]))=h([N]), f1(h([N]))=fσ1 (h(fσ1 ([M]))). Thus, f1(h([N]))=fσ1 ([M]).
Since fσ1 ([M])=[N], f1(h([N]))=[N].

Case [N]∈BT x̄1/./\U : Since f∗1 is one-to-one, let [M]∈S be such that f∗1 ([M])=
[N]. Consequently, f1([M])=f∗1 ([M]). Since f∗1 ([M])=[N], f1([M])=[N]. a

Lemma 14 For all M,N∈BT ȳ1, if f1([M])=f1([N]) then fσ1 ([M])=fσ1 ([N]).

Proof: Let M,N∈BT ȳ1. Suppose f1([M])=f1([N]). We consider the following
3 cases.

Case [M]∈S and [N]∈S: Since f1([M])=f1([N]), f∗1 ([M])=f∗1 ([N]). Since
f∗1 is one-to-one, [M]=[N]. Hence, fσ1 ([M])=fσ1 ([N]).

Case [M]∈S and [N]∈BT ȳ1/./ \ S: Since f1([M])=f1([N]), f∗1 ([M])=fσ1 ([N]).
Thus, (BT x̄1/./ \ U) ∩ U 6=∅: a contradiction.

Case [M]∈BT ȳ1/./\S and [N]∈BT ȳ1/ ./ \S: Since f1([M])=f1([N]), fσ1 ([M])=
fσ1 ([N]). a
Case e≥2: By induction hypothesis, let fe−1 be a surjective valuable func-
tion from BT ȳe−1/./ to BT x̄e−1/./ such that for all M,N∈BT ȳe−1, if fe−1([M])=
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fe−1([N]) then fσe−1([M])=fσe−1([N]). For all M′⊆BT x̄e−1, if M′ ∩ (BT x̄e−1 \
BT x̄e−2)6=∅ then let

• S(M′/./)={[M] : M∈BT ȳe and {fe−1([Ms]) : s∈RM(rM)}=M′/./}.

Notice that for all M′⊆BT x̄e−1, if M′ ∩ (BT x̄e−1 \ BT
x̄
e−2) 6=∅ then S(M′/./)⊆

BT ȳe/ ./ \BT
ȳ
e−1/ ./. For allM′⊆BT x̄e−1, ifM′ ∩ (BT x̄e−1 \ BT

x̄
e−2) 6=∅ then let

∼M′/./ be the equivalence relation on S(M′/./) defined by

• [M]∼M′/./[N] if and only if fσe ([M])=fσe ([N]).

where [M], [N] range over S(M′/./). In Lemmas 15 and 16, we compare
‖S(M′/./)/ ∼M′/./‖ and ‖S(M′/./)‖ with 2‖x̄‖ for eachM′⊆BT x̄e−1 such that
M′ ∩ (BT x̄e−1 \ BT

x̄
e−2)6=∅.

Lemma 15 For all M′⊆BT x̄e−1, if M′ ∩ (BT x̄e−1 \ BT
x̄
e−2)6=∅ then

‖S(M′/./)/ ∼M′/./‖≤2‖x̄‖.

Proof: Let M′⊆BT x̄e−1. Suppose M′ ∩ (BT x̄e−1 \ BT
x̄
e−2)6=∅. For the sake of

the contradiction, suppose ‖S(M′/./)/ ∼M′/./‖>2‖x̄‖. Let p∈N and [M1], . . . ,

[Mp]∈S(M′/./) be such that p>2‖x̄‖ and for all q, r∈{1, . . . , p}, if q 6=r then
[Mq]6∼M′/./[Mr]. Hence, M1, . . . ,Mp∈BT ȳe and {fe−1([M1s]) : s∈RM1(rM1)}
=M′/./, . . ., {fe−1([Mps]) : s∈RMp(rMp)}=M′/./. Thus, letM′′⊆BT x̄e−1 be
such thatM′′∩(BT x̄e−1\BT

x̄
e−2)6=∅ and {fσe−1([M1s]) : s∈RM1(rM1)}=M′′/./,

. . ., {fσe−1([Mps]) : s∈RMp(rMp)}=M′′/./. Consequently, by Proposition 18,
let M′′

1, . . . ,M
′′
p∈BT

x̄
e be such that fσe ([M1])=[M′′

1], . . ., fσe ([Mp])=[M′′
p] and

{[M′′
1s] : s∈RM′′1

(rM′′1 )}=M′′/./, . . ., {[M′′
ps

] : s∈RM′′p (rM′′p )}=M′′/./. Since
for all q, r∈{1, . . . , p}, if q 6=r then [Mq] 6∼M′/./[Mr], for all q, r∈{1, . . . , p}, if
q 6=r then fσe ([Mq])6=fσe ([Mr]). Since fσe ([M1])=[M′′

1], . . ., fσe ([Mp])=[M′′
p], for

all q, r∈{1, . . . , p}, if q 6=r then [M′′
q]6=[M′′

r ]. Since {[M′′
1s] : s∈RM′′1

(rM′′1 )}=
M′′/./, . . ., {[M′′

ps
] : s∈RM′′p (rM′′p )}=M′′/./, p≤2‖x̄‖: a contradiction. a

Lemma 16 For all M′⊆BT x̄e−1, if M′ ∩ (BT x̄e−1 \ BT
x̄
e−2) 6=∅ then 2‖x̄‖≤

‖S(M′/./)‖.

Proof: Let M′⊆BT x̄e−1. Suppose M′ ∩ (BT x̄e−1 \ BT
x̄
e−2)6=∅. Since fe−1 is

surjective, ‖S(M′/./)‖≥2‖ȳ‖. Since ‖x̄‖<‖ȳ‖, 2‖x̄‖≤‖S(M′/./)‖. a

For all M′⊆BT x̄e−1, if M′ ∩ (BT x̄e−1 \ BT
x̄
e−2)6=∅ then let

• T (M′/./)={[N′] : N′∈BT x̄e and {[N′s′ ] : s′∈RN′(rN′)}=M′/./}.

Notice that for all M′⊆BT x̄e−1, if M′ ∩ (BT x̄e−1 \ BT
x̄
e−2) 6=∅ then T (M′/./)⊆

BT x̄e/ ./ \BT
x̄
e−1/ ./. Moreover, notice that for allM′⊆BT x̄e−1, ifM′∩(BT x̄e−1\

BT x̄e−2)6=∅ then ‖T (M′/./)‖=2‖x̄‖. Consequently, by Lemmas 15 and 16, for all
M′⊆BT x̄e−1, if M′ ∩ (BT x̄e−1 \ BT

x̄
e−2)6=∅ then ‖S(M′/./)/ ∼M′/./‖≤

‖T (M′/./)‖≤‖S(M′/./)‖. Hence, by Proposition 1, for all M′⊆BT x̄e−1, if

M′∩(BT x̄e−1\BT
x̄
e−2) 6=∅ then let g

M′/./
e be a surjective function from S(M′/./)
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to T (M′/./) such that for all [M], [N]∈S(M′/./), if g
M′/./
e ([M])=g

M′/./
e ([N])

then [M]∼M′/./[N]20. Now, we define the function fe. Let fe : BT ȳe/./ −→
BT x̄e/./ be the function such that

• if M∈BT ȳe−1 then fe([M])=fe−1([M]) else fe([M])=g
M′/./
e ([M]),

where M ranges over BT ȳe andM′/./={fe−1([Ms]) : s∈RM(rM)}. Notice that
fe is valuable. In Lemmas 17 and 18, we show that fe possesses the required
properties.

Lemma 17 fe is surjective.

Proof: Let N∈BT x̄e . We consider the following 2 cases.

Case [N]∈BT x̄e−1/./: Since fe−1 is surjective, let [M]∈BT ȳe−1/./ be such that
fe−1([M])=[N]. Hence, fe([M])=fe−1([M]). Since fe−1([M])=[N], fe([M])=
[N].

Case [N]∈BT x̄e/./ \ BT
x̄
e−1/./: Let N⊆BT x̄e−1 be such that N/./={[Ns] :

s∈RN(rN)}. Thus, N ∩ (BT x̄e−1 \ BT
x̄
e−2) 6=∅. Moreover, [N]∈T (N/./). Since

g
N/./
e is surjective, let [M′]∈S(N/./) be such that g

N/./
e ([M′])=[N]. Conse-

quently, {fe−1([M′
s]) : s∈RM′(rM′)}=N/./. Since g

N/./
e ([M′])=[N], fe([M

′])
=[N]. a

Lemma 18 For all M,N∈BT ȳe , if fe([M])=fe([N]) then fσe ([M])=fσe ([N]).

Proof: Let M,N∈BT ȳe . Suppose fe([M])=fe([N]). We consider the following
3 cases.

Case [M]∈BT ȳe−1/./ and [N]∈BT ȳe−1/./: Since fe([M])=fe([N]), fe−1([M])=
fe−1([N]). Hence, fσe−1([M])=fσe−1([N]) Thus, fσe ([M])=fσe ([N])

Case [M]∈BT ȳe−1/./ and [N]∈BT ȳe/./ \ BT
ȳ
e−1/./: Since fe([M])=fe([N]),

fe−1([M])=g
N/./
e ([N]) where N/./={fe−1([Ns]) : s∈RN(rN)}. Consequently,

BT x̄e−1/./ ∩ (BT x̄e/./ \ BT
x̄
e−1/./)6=∅: a contradiction.

Case [M]∈BT ȳe/./ \ BT
ȳ
e−1/./ and [N]∈BT ȳe/./ \ BT

ȳ
e−1/./: Since fe([M])=

fe([N]), g
M/./
e ([M])=g

N/./
e ([N]) where M/./={fe−1([Ms]) : s∈RM(rM)} and

N/./={fe−1([Ns]) : s∈RN(rN)}. Consequently, M/./=N/./. Since

g
M/./
e ([M])=g

N/./
e ([N]), [M]∼M/./[N] and [M]∼N/./[N]. Hence, fσe ([M])=

fσe ([N]). a

This finishes the proof of Proposition 25. a

20Notice that this is the only place in this section where we use Proposition 1.
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Proposition 26 Let ϕ∈FORx̄. If (x̄, ȳ, σ)∈SUB is a Kd-unifier of ϕ then
there exists a Kd-unifier (x̄, x̄, τ)∈SUB of ϕ such that (x̄, x̄, τ)4Kd

(x̄, ȳ, σ).

Proof: Suppose (x̄, ȳ, σ)∈SUB is a Kd-unifier of ϕ. Hence, for all M∈BT ȳd,
rM∈VM(σ(ϕ)).

Case ‖x̄‖≥‖ȳ‖: Let (x̄, x̄, τ)∈SUB be such that for all x∈x̄, τ(x)=λ(σ(x))
for some injective (ȳ, x̄, λ)∈SUB such that λ(ȳ)⊆x̄. Notice that since for all
M∈BT ȳd, rM∈VM(σ(ϕ)), for all M∈BT x̄d , rM∈VM(τ(ϕ)). Thus, (x̄, x̄, τ) is a
Kd-unifier of ϕ. Let (x̄, ȳ, λ′)∈SUB be such that for all x∈x̄, if there exists
y∈ȳ such that λ(y)=x then λ′(x)=y. Notice that for all x∈x̄, λ′(τ(x))≡Kd

σ(x).
Consequently, (x̄, x̄, τ)4Kd

(x̄, ȳ, σ).

Case ‖x̄‖<‖ȳ‖: By Proposition 25, let fd : BT ȳd/./ −→ BT
x̄
d/./ be a sur-

jective valuable function such that for all M,N∈BT ȳd, if fd([M])=fd([N]) then
fσd ([M])=fσd ([N]). Let (x̄, x̄, τ), (x̄, ȳ, ν)∈SUB be such that for all x∈x̄,

• τ(x)=
∨
{for(M′) : M∈BT ȳd and M′∈BT x̄d are such that rM∈VM(σ(x))

and fd([M])=[M′]},

• ν(x)=
∨
{for(M) : M∈BT ȳd and M′∈BT x̄d are such that rM′∈VM′(x) and

fd([M])=[M′]}.

Lemmas 19, 20, 21 and 22 state results connecting the substitutions (x̄, x̄, τ)
and (x̄, ȳ, ν) with the models in BT x̄d and BT ȳd.

Lemma 19 Let ϕ∈FORx̄. For all M′∈BT x̄d, the following conditions are equi-
valent:

1. there exists M∈BT ȳd such that fd([M])=[M′] and rM∈VM(σ(ϕ)),

2. for all M∈BT ȳd, if fd([M])=[M′] then rM∈VM(σ(ϕ)),

3. rM′∈VM′(τ(ϕ)).

Proof: By induction on ϕ.

Case ϕ=x: Let M∈BT x̄d .

(1⇒ 2) Suppose M′∈BT ȳd is such that fd([M
′])=[M] and rM′∈VM′(σ(x)).

Let M′′∈BT ȳd be such that fd([M
′′])=[M]. Since fd([M

′])=[M], fd([M
′])=

fd([M
′′]). Hence, fσd ([M′])=fσd ([M′′]). Thus, [M′|σ]=[M′′|σ]. Since rM′∈

VM′(σ(x)), rM′∈VM′|σ (x). Since [M′|σ]=[M′′|σ], rM′′∈VM′′|σ (x). Consequent-
ly, rM′′∈VM′′(σ(x)). Since M′′∈BT ȳd such that fd([M

′′])=[M] is arbitrary, for
all M′′∈BT ȳd, if fd([M

′′])=[M] then rM′′∈VM′′(σ(x)).

(2⇒ 3) Suppose for all M′∈BT ȳd, if fd([M
′])=[M] then rM′∈VM′(σ(x)). Since

fd is surjective, let M′′∈BT ȳd be such that fd([M
′′])=[M]. Since for all M′∈BT ȳd,
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if fd([M
′])=[M] then rM′∈VM′(σ(x)), rM′′∈VM′′(σ(x)). Hence, for(M) is a dis-

junct in τ(x). Since by Proposition 10, rM∈VM(for(M)), rM∈VM(τ(x)).

(3⇒ 1) Suppose rM∈VM(τ(x)). Let M′∈BT ȳd and M′′∈BT x̄d be such that
rM′∈VM′(σ(x)), fd([M

′])=[M′′] and rM∈VM(for(M′′)). Thus, fd([M
′])=[M].

Consequently, there exists M′∈BT ȳd such that fd([M
′])=[M] and rM′∈

VM′(σ(x)).

Case ϕ=⊥: Left to the reader.

Case ϕ=¬ψ: Left to the reader.

Case ϕ=ψ ∨ χ: Left to the reader.

Case ϕ=�ψ:

(1⇒ 2) Suppose M′∈BT ȳd is such that fd([M
′])=[M] and rM′∈VM′(�σ(ψ)).

Let M′′∈BT ȳd be such that fd([M
′′])=[M]. Let s′′∈RM′′(rM′′). Since fd is valu-

able and fd([M
′′])=[M], let s∈RM(rM) be such that fd([M

′′
s′′ ])=[Ms]. Since fd

is valuable and fd([M
′])=[M], let s′∈RM′(rM′) be such that fd([M

′
s′ ])=[Ms].

Since fd([M
′′
s′′ ])=[Ms], fd([M

′
s′ ])=fd([M

′′
s′′ ]). Hence, fσd ([M′

s′ ])=f
σ
d ([M′′

s′′ ]).

Thus, [M′
s′
|σ

]=[M′′
s′′
|σ

]. Since rM′∈VM′(�σ(ψ)) and s′∈RM′(rM′), s′∈
VM′(σ(ψ)). Consequently, s′∈VM′|σ (ψ). Since [M′

s′
|σ

]=[M′′
s′′
|σ

], s′′∈VM′′|σ (ψ).
Hence, s′′∈VM′′(σ(ψ)). Since s′′∈RM′′(rM′′) is arbitrary, rM′′∈VM′′(�σ(ψ)).
Since M′′∈BT ȳd such that fd([M

′′])=[M] is arbitrary, for all M′′∈BT ȳd, if
fd([M

′′])=[M] then rM′′∈VM′′(�σ(ψ)).

(2⇒ 3) Suppose for all M′∈BT ȳd, if fd([M
′])=[M] then rM′∈VM′(�σ(ψ)). Let

s∈RM(rM). Since fd is surjective, let M′′∈BT ȳd be such that fd([M
′′])=[M].

Since fd is valuable and s∈RM(rM), let s′′∈RM′′(rM′′) be such that fd([M
′′
s′′ ])=

[Ms]. Since for all M′∈BT ȳd, if fd([M
′])=[M] then rM′∈VM′(�σ(ψ)) and

fd([M
′′])=[M], rM′′∈VM′′(�σ(ψ)). Since s′′∈RM′′(rM′′), s

′′∈VM′′(σ(ψ)). Sin-
ce fd([M

′′
s′′ ])=[Ms], by induction hypothesis, s∈VM(τ(ψ)). Since s∈RM(rM) is

arbitrary, rM∈VM(�τ(ψ)).

(3⇒ 1) Suppose rM∈VM(�τ(ψ)). Since fd is surjective, let M′∈BT ȳd be such
that fd([M

′])=[M]. Let s′∈RM′(rM′). Since fd is valuable and fd([M
′])=[M],

let s∈RM(rM) be such that fd([M
′
s′ ])=[Ms]. Since rM∈VM(�τ(ψ)), s∈

VM(τ(ψ)). Since fd([M
′
s′ ])=[Ms], by induction hypothesis, s′∈VM′(σ(ψ)). Sin-

ce s′∈RM′(rM′) is arbitrary, rM′∈VM′(�σ(ψ)). Consequently, there exists
M′∈BT ȳd such that fd([M

′])=[M] and rM′∈VM′(�σ(ψ)). a

Lemma 20 For all M∈BT ȳd and for all M′∈BT x̄d, if fd([M])=[M′] then for all
x∈x̄, the following conditions are equivalent:
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1. rM∈VM(ν(x)),

2. rM′∈VM′(x).

Proof: Let M∈BT ȳd and M′∈BT x̄d . Suppose fd([M])=[M′]. Let x∈x̄.

(1⇒ 2) Suppose rM∈VM(ν(x)). Let M′′∈BT ȳd and M′′′∈BT x̄d be such that
rM′′′∈VM′′′(x), fd([M

′′])=[M ′′′] and rM∈VM(for(M′′)). Since fd([M])=[M′],
[M ′]=[M ′′′]. Since rM′′′∈VM′′′(x), rM′∈VM′(x).

(2⇒ 1) Suppose rM′∈VM′(x). Since fd([M])=[M′], for(M) is a disjunct in
ν(x). Since by Proposition 10, rM∈VM(for(M)), rM∈VM(ν(x)). a

Lemma 21 Let e∈{1, . . . , d}. For all M∈BT ȳe and for all M′∈BT x̄e , fe([M])=
[M′] if and only if rM∈VM(ν(for(M′))).

Proof: By induction on e.

Case e=1: Let M∈BT ȳ1 and M′∈BT x̄1 . Suppose f1([M])=[M′]. Hence, by
Lemma 20, for all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x). Since by
Proposition 10, rM′∈VM′(for(M′)), rM∈VM(ν(for(M′))). Reciprocally, sup-
pose rM∈VM(ν(for(M′))). Thus, for all x∈x̄, rM∈VM(ν(x)) if and only if
rM′∈VM′(x). Let M′′∈BT x̄1 be such that f1([M])=[M′′]. Consequently, by
Lemma 20, for all x∈x̄, rM∈VM(ν(x)) if and only if rM′′∈VM′′(x). Since for all
x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x), for all x∈x̄, rM′∈VM′(x) if and
only if rM′′∈VM′′(x). Hence, [M′]=[M′′]. Since f1([M])=[M′′], f1([M])=[M′].

Case e≥2: Let M∈BT ȳe and M′∈BT x̄e . Suppose fe([M])=[M′]. Thus, by
Lemma 20, for all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x). Moreover,
since fe is valuable, for all s∈RM(rM), there exists s′∈RM′(rM′) such that
fe−1([Ms])=[M′

s′ ] and for all s′∈RM′(rM′), there exists s∈RM(rM) such that
fe−1([Ms])=[M′

s′ ]. Consequently, by induction hypothesis, for all s∈RM(rM),
there exists s′∈RM′(rM′) such that s∈VM(ν(for(M′

s′))) and for all s′∈
RM′(rM′), there exists s∈RM(rM) such that s∈VM(ν(for(M′

s′))). Since for
all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x), rM∈VM(ν(for(M′))). Re-
ciprocally, suppose rM∈VM(ν(for(M′))). Hence, for all x∈x̄, rM∈VM(ν(x)) if
and only if rM′∈VM′(x). Moreover, for all s∈RM(rM), there exists s′∈RM′(rM′)
such that s∈VM(ν(for(M′

s′))) and for all s′∈RM′(rM′), there exists s∈RM(rM)
such that s∈VM(ν(for(M′

s′))). Thus, by induction hypothesis, for all s∈
RM(rM), there exists s′∈RM′(rM′) such that fe−1([Ms])=[M′

s′ ] and for all
s′∈RM′(rM′), there exists s∈RM(rM) such that fe−1([Ms])=[M′

s′ ]. Let M′′∈
BT x̄e be such that fe([M])=[M′′]. Consequently, by Lemma 20, for all x∈x̄,
rM∈VM(ν(x)) if and only if rM′′∈VM′′(x). Moreover, since fe is valuable, for
all s∈RM(rM), there exists s′′∈RM′′(rM′′) such that fe−1([Ms])=[M′′

s′′ ] and for
all s′′∈RM′′(rM′′), there exists s∈RM(rM) such that fe−1([Ms])=[M′′

s′′ ]. Since
for all x∈x̄, rM∈VM(ν(x)) if and only if rM′∈VM′(x), for all x∈x̄, rM′∈VM′(x)
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if and only if rM′′∈VM′′(x). Moreover, since for all s∈RM(rM), there exists
s′∈RM′(rM′) such that fe−1([Ms])=[M′

s′ ] and for all s′∈RM′(rM′), there ex-
ists s∈RM(rM) such that fe−1([Ms])=[M′

s′ ], for all s′∈RM′(rM′), there exists
s′′∈RM′′(rM′′) such that [M′

s′ ]=[M′′
s′′ ] and for all s′′∈RM′′(rM′′), there exists

s′∈RM′(rM′) such that [M′
s′ ]=[M′′

s′′ ]. Hence, [M′]=[M′′]. Since fe([M])=[M′′],
fe([M])=[M′]. a

Lemma 22 For all M∈BT ȳd and for all x∈x̄, the following conditions are equiv-
alent:

1. rM∈VM(ν(τ(x))),

2. rM∈VM(σ(x)).

Proof: Let M∈BT ȳd and x∈x̄.

(1⇒ 2) Suppose rM∈VM(ν(τ(x))). Let M′∈BT ȳd and M′′∈BT x̄d be such that
rM′∈VM′(σ(x)), fd([M

′])=[M ′′] and rM∈VM(ν(for(M′′))). Hence, by Lem-
ma 21, fd([M ])=[M ′′]. Since fd([M

′])=[M ′′], fd([M
′])=fd([M ]). Thus,

fσd ([M ′])=fσd ([M ]). Consequently, [M|σ]=[M′|σ]. Since rM′∈VM′(σ(x)), rM′∈
VM′|σ (x). Since [M|σ]=[M′|σ], rM∈VM|σ (x). Hence, rM∈VM(σ(x)).

(2⇒ 1) Suppose rM∈VM(σ(x)). Thus, for(fd([M])) is a disjunct in τ(x). Since
by Lemma 21, rM∈VM(ν(for(fd([M])))), rM∈VM(ν(τ(x))). a

Since for all M∈BT ȳd, rM∈VM(σ(ϕ)), by Lemma 19, for all M′∈BT x̄d , rM′∈
VM′(τ(ϕ)). Hence, (x̄, x̄, τ) is an Kd-unifier of ϕ. Moreover, by Lemma 22, for
all x∈x̄, ν(τ(x))↔ σ(x)∈Kd

21. Thus, (x̄, x̄, τ)4Kd
(x̄, ȳ, σ).

This finishes the proof of Proposition 26. a

Proposition 27 Kd is reasonable.

Proof: By Proposition 26. a

Proposition 28 Kd is finitary.

Proof: By Propositions 15, 6, 8, 16 and 27. a

8 Last words

Recently, the question of the unification type has been considered within the
context of a semantic restriction of description logic FL0. The formulas of

21Lemmas 20 and 21 are used in the proof of Lemma 22.
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FL0 are constructed by means of the connectives >, ∧ and �a — where a
ranges over a countably infinite set ACT [4, 6]. The unification problem in
FL0 is to determine, given a couple (ϕ,ψ) of formulas, whether there exists a
substitution σ such that σ(ϕ) and σ(ψ) are logically equivalent in the class of
all ACT-frames, i.e. Kripke frames of the form (W,R) where W is a nonempty
set and Ra is a binary relation on W for each a∈ACT. As is well-known, the
unification type of FL0 is nullary [5]. Restricting the discussion to the class of
all 2-bounded ACT-frames, Baader et al. [2] have proved that the unification
type of FL0 is unitary. This leads us to the following open questions:

• for all d≥2, interpreting the formulas constructed by means of the con-
nectives ⊥, ¬, ∨ and �a — where a ranges over ACT — in the class of
all d-bounded ACT-frames (W,R) such that

⋃
{Ra : a∈ACT} is deter-

ministic, determine the unification type of unifiable formulas,

• for all d≥2, interpreting the formulas constructed by means of the con-
nectives ⊥, ¬, ∨ and �a — where a ranges over ACT — in the class
of all d-bounded ACT-frames, determine the unification type of unifiable
formulas,

• determine the unification type of other locally tabular normal modal logics
like the ones studied in [26, 27, 28].

We conjecture that the normal modal logics mentioned in these open questions
are either finitary, or unitary.

On the side of computability and complexity, it is known that unification is
in PSPACE for Alt1 [10]. As for KD and DAlt1, the membership in NP of
their unification problem is a direct consequence of the fact that in these normal
modal logics, every variable-free formula is equivalent either to ⊥, or to >. This
leads us to the following open questions22:

• determine for all d≥2, the complexity of unification for the locally tabular
normal modal logics K +�d⊥ and Alt1 +�d⊥,

• determine the complexity of unification for other locally tabular normal
modal logics like the ones studied in [26, 27, 28].

Following the line of reasoning developed in [1], we conjecture that for all d≥2,
unification for Alt1 +�d⊥ is NP-complete.
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