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Abstract. In this paper we consider prescribed sets of rules working
on several objects either in parallel – in this case the rules have to take
different objects – or else sequentially in any order – in this case several
rules may take the same object to work on.
We show that prescribed teams of size two, i.e., containing exactly two
rules, are sufficient to obtain computational completeness for strings with
the simple rules being of the form aIR(b) – meaning that a symbol b can
be inserted on the right-hand side of a string ending with a – and DR(b)
meaning that a symbol b is erased on the right-hand side of a string.
This result is established for systems starting with three initial strings.
Using prescribed teams of size three, we may start with only two strings,
ending up with the output string and the second string having been
reduced to the empty string. We also establish similar results when using
the generation of the anti-object b− on the right-hand side of a string
instead of deleting the object b, i.e. bIR(b−) inserts the anti-object b−

and the annihilation rule b b− assumed to happen immediately whenever
b and b− meet deletes the b.

Keywords: computational completeness, insertion-deletion systems, pre-
scribed teams, anti-objects

1 Introduction

Cooperation in its different forms is a feature which has attracted a lot of research
in formal languages and theory of computation. Indeed, the family of context-
free languages is quite well studied, and it is folklore that some easy to describe
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languages are not context free, e.g. {anbncn | n ∈ N}, the copy language ww,
w ∈ V ∗ for some alphabet V , etc. On the other hand, it is just as well-known
that full cooperation – classically expressed by allowing multiple symbols in the
left-hand side of the rewriting rules – yields computational completeness in many
situations. We refer to [7] for a comprehensive overview of the multiple facets of
cooperation.

This situation aroused interest in the expressive power of intermediate forms,
in which some cooperation is allowed, but full cooperation is avoided. One of the
possible implementations is by forcing some rules to only be applied together,
a classic example being matrix grammars, in which the rules are grouped into
sequences, and must be applied one after another, in order. Here, we focus on a
less strict variant, in which the rules of a group must be applied together, but
the order of their application is not imposed. This control mechanism is known
as prescribed teams and was introduced in [1].

In this paper, we define prescribed teams in a general framework for rewriting
as a control mechanism over abstract rules. In order to study the computational
power of this device, we specialize the rules to string insertion and deletion
operations. More concretely, we focus on insertions and deletions which are only
allowed to occur at the right end of a string and which may depend on a finite
context. We show that by allowing computation to happen on two strings at
the same time, such insertion and deletion rules grouped in prescribed teams
containing three rules can simulate any Turing machine (Theorem 1). We remark
that even though insertion-deletion operations with matrix control have been
quite extensively investigated (e.g., [3–6]), the power of insertion and deletion
operations restricted to the right of the string and equipped with matrix control
has never been studied to the best of our knowledge.

2 Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under
the operation of concatenation, i.e., containing all possible strings over V. The
empty string is denoted by λ. Given a string w = w1 . . . wn over V , with wi ∈ V ,
1 ≤ i ≤ n, its mirror image is wR = wn . . . w1. Moreover, instead of w = w1 . . . wn

we may also write w = w(1) . . . w(n).
The cardinality of a set M is denoted by |M |. For further notions and results

in formal language theory we refer to textbooks like [2] and [7].

2.1 Systems with Prescribed Teams of Rules

The main model we consider in this paper is a system of arbitrary objects which
starts on a finite set of such objects and has prescribed teams of rules to work
on these objects until no such team can be applied any more.

Definition 1. A system with prescribed teams of rules is a construct

G = (O,OT , P,R,A) where
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– O is a set of objects;
– OT ⊆ O is a set of terminal objects;
– P is a finite set of rules, i.e., P = {pi | 1 ≤ i ≤ m}, for some m ≥ 0, and
pi ⊆ O ×O;

– R = {T1, . . . , Tn} is a finite set of sets of rules from P called prescribed
teams, i.e., Ti ⊆ P, 1 ≤ i ≤ n;

– A is a finite set of initial objects in O.

A rule p ∈ P is called applicable to an object x ∈ O if and only if there
exists at least one object y ∈ O such that (x, y) ∈ p; in this case we also write
x =⇒p y.
|Ti| is called the size of the prescribed team Ti. If all prescribed teams have

at most size s, then G is called a system (with prescribed teams) of size s. If all
prescribed teams have the same size s, then G is called a homogenous system
(with prescribed teams) of size s. The number of initial objects in A is called the
degree of the system.

Computations in a system with prescribed teams of rules We may
consider different variants of applications of the prescribed teams of rules as
already indicated above when working on several objects, starting with the initial
objects in A; in any case, at the beginning of a computation step we first have
to choose a suitable team Tk:

parallel each rule in Tk is applied to a different object in the current set of
objects; Tk can only be applied if every rule in Tk can be applied; we observe
that in the parallel case the number of rules in any prescribed team must
not exceed the number of initial objects;

sequential the rules in Tk are applied sequentially in any order – in this
case several rules may take the same object to work on in several sequential
derivation steps, yet again each rule is to be applied exactly once.

Tk can only be applied if every rule in Tk can be applied in the given derivation
mode.

We mention that we do not consider the case where several rules from Tk
may be applied to the same object at the same moment in parallel.

In case the mode of application is not clear from the context, we may specify
it in the definition of the system, i.e., we then write

G = (O,OT , P, T1, . . . , Tn, A, d)

where d ∈ {parallel, sequential}.
A derivation step in G using Tk in the mode d then can be written as

{O1, . . . , Om} =⇒Tk,d {O′1, . . . , O′m}

where {O1, . . . , Om} is the current set of objects and {O′1, . . . , O′m} is the set of
objects obtained after the application of Tk in mode d.
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The derivation relation =⇒G,d of the system G in mode d then is the union
of all derivation relations =⇒Tk,d, 1 ≤ k ≤ n. Given two objects u, v ∈ O,
we write u =⇒d v (u =⇒Tk,d v) to indicate that v can be obtained from u in
one derivation/computation step from u (using the prescribed team Tk) in the
derivation mode d. The reflexive and transitive closure of =⇒G,d is denoted by
=⇒G,d∗. If the derivation mode d is obvious from the context, d is omitted in
all these notations.

For arbitrary systems working in the sequential mode, we can prove the
following complexity result:

Lemma 1. Given a homogenous system

G = (O,OT , P, T1, . . . , Tn, A, sequential)

of size 1, its computations are the union of the computations of the m systems

Gk = (O,OT , P, T1, . . . , Tn, Ak, sequential),

1 ≤ k ≤ m, where A = {Ak | 1 ≤ k ≤ m}.

Proof. In the sequential mode, a prescribed team can only work on one of the m
subjects. Hence, the computations on the initial objects are independent of each
other. Therefore also the terminal objects must be obtained from one of these
initial objects Ak by the corresponding system Gk. ut

2.2 Matrix Grammars Working on Several Objects

A model quite closely related to systems with prescribed teams of rules is the
model of matrix grammars usually only considered to work on one object:

Definition 2. A matrix grammar working on several objects is a construct

G = (O,OT , P,M,A) where

– O is a set of objects;
– OT ⊆ O is a set of terminal objects;
– P is a finite set of rules, i.e., P = {pi | 1 ≤ i ≤ n}, for some n ≥ 0, and
pi ⊆ O ×O;

– M is a finite set of sequences of the form (p1, . . . , pn), n ≥ 1, of rules in P ;
an element of M is called a matrix;

– A is a finite set of initial objects in O.

A derivation step in the matrix grammar consists of choosing a matrix and
applying the sequence of rules in the matrix in this order, yet allowing several
rules to be applied to the same object.

Lemma 2. Any system with prescribed teams of rules G = (O,OT , P,R,A)
working in the sequential mode can be simulated by a matrix grammar G =
(O,OT , P,M,A).
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Proof. From a prescribed team T in R we immediately get the corresponding
set of matrixes for M by taking every possible sequence of the rules in T , i.e.,

M = {[p1. . . . , pn] | {p1. . . . , pn} ∈ R, |{p1. . . . , pn}| = n}.

Hence, matrix grammars are at least as powerful as systems with prescribed
teams of rules working in the sequential mode. ut

2.3 Turing Machines

The computational model we we will simulate for showing computational com-
pleteness for the systems with prescribed teams of rules defined above are Turing
machines with one tape with left boundary marker Z0:

Definition 3. A Turing machine is a

M = (Q,V, T1, T2, δ, q0, q1, Z0, B)

where

– Q is a finite set of states,
– V is the tape alphabet,
– T1 ⊂ V \ ({Z0, B}) is the input alphabet,
– T2 ⊂ V \ ({Z0, B}) is the output alphabet,
– δ ⊂ (Q× V )→ (Q× V × {L,R}) is the transition function,
– q0 is the initial state,
– q1 is the final state,
– Z0 ∈ V is the left boundary marker,
– B ∈ V is the blank symbol.

A configuration of the Turing machine M can be written as Z0uqvB
ω, where

u ∈ (V \ ({Z0}))∗, v ∈ (V \ ({Z0}))+ ∪ {λ}, and Bω indicates the remaining
empty part of the tape, offering an unbounded number of tape cells initially
carrying the blank symbol B; moreover, the current state q ∈ Q is written to
the right of the tape cell on which the read-write head of the Turing machine
currently stands.

A transition between configurations is carried out according to the transition
function δ in the following way for (q,X; p, Y,D) ∈ δ:

– the state changes from q to p,
– the symbol X currently read is replaced by the symbol Y ,

and for
D = R the read-write head goes one step to the right; i.e.,

Z0uXqUvB
ω =⇒ Z0uY UpvB

ω;
D = L the read-write head goes one step to the left, i.e.,

Z0uXqvB
ω =⇒ Z0upY vB

ω;
observe that the read-write head can never go to the left of Z0.
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For the derivation relation =⇒ as defined above, its reflexive and transitive
closure is defined by =⇒∗.

Turing machines are well-known automata which can compute any partial
recursive relation f : T1

∗ → T2
∗:

A successful computation of the Turing machine M starts with the input
string winput on its tape with the configuration

Z0winputq0B
ω

and ends up with the output string woutput on its tape with the configuration

Z0woutputq1B
ω,

i.e.,
Z0winputq0B

ω =⇒∗ Z0woutputq1B
ω.

A successful computation halts in the final state q1; without loss of generality,
we may assume that from the final state q1 no transition is possible.

The generation of a language L ⊆ T2∗ can be seen as computing a partial re-
cursive relation gL : {λ} → T2

∗, acceptance of a language L ⊆ T1∗ as computing
a partial recursive function hL : T2

∗ → {λ}.

In order to show that another (string) computing device is computationally
complete, an option is to simulate Turing machines, which is exactly what we
will do in the next section.

3 Prescribed Teams of Rules on Strings

In this section we consider the objects to be strings. Moreover, we will restrict
ourselves to special variants of insertion an deletion rules to be applied to strings.

3.1 Definitions for Prescribed Teams of Insertion and Deletion
Rules on Strings

We are going to use the following notations:

Definition 4.
right insertions and deletions with contexts:

uIR(v) to a string ending with u, v is appended;
uDR(v) from a string ending with uv, the end v is deleted.

left insertions and deletions with contexts:

uIL(v) to a string beginning with u, v is added as prefix;
uDL(v) from a string beginning with vu, the prefix v is deleted.

right and left substitutions
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SR(u, v) in a string ending with u, u is replaced by v;
SL(u, v) in a string beginning with u, u is replaced by v.

Both insertions and deletions can easily be replaced by substitutions:

Lemma 3. Right and left insertions and deletions can be replaced by right and
left substitutions, respectively.

Proof. Right and left insertions and deletions are replaced by right and left
substitutions, respectively, in the following way:

– uIR(v) by SR(u, uv);
– uIL(v) by SL(u, vu);
– uDR(v) by SR(uv, u);
– uDL(v) by SL(vu, u).

We remark that contexts need not be considered with substitutions as they can
be deleted and re-inserted immediately. ut

Example 1. Consider the system

G = (T ′∗{c′c}T ∗, T ′∗{c′c}T ∗, P, T1, . . . , Tn, {c′c})

working in the sequential derivation mode, where T is an arbitrary alphabet,
T ′ = {a′ | a ∈ T}, c /∈ T , cc′ is the only initial string, the set P consists of two
disjoint sets of rules R and R′,

R = {aIR(b) | a ∈ T ∪ {c}, b ∈ T} ,
R′ = {a′IL(b′) | a ∈ T ∪ {c}, b ∈ T} ,

i.e., for each rule p = aIR(b) in R we have the corresponding rule p′ = a′IL(b′).
The set of prescribed teams then is formed by all possible couples p, p′, i.e.,⋃

1≤i≤n

Ti =
⋃
p∈R
{ p, p′}.

As both sets of rules work with disjoint alphabets, we get the derivations

{c′c} =⇒{cIR(b1),c′IL(b′1)} {b
′
1c
′cb1} . . .

=⇒{bm−1IR(bm),b′m−1IL(b′m−1)} {b
′
m . . . b′1c

′cb1 . . . bm}

Hence, for the language generated by G we obtain (the context-free, but
non-regular) language

{(w′)Rc′cw | w ∈ T ∗}.
We observe that we have started with only one string and only used left and

right insertion of one symbol in the context of another symbol.

We now are going to show that right insertion rules inserting just one symbol
at the end of a string in the left context of just another single symbol together
with right deletion rules eliminating the last symbol of a string, even without
using any context, are already sufficient to obtain computational completeness.
A similar result holds for the corresponding variants of left insertion and deletion
rules.
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3.2 Results for Prescribed Teams of Insertion and Deletion Rules
on Strings

We first establish a result for systems of degree 2 and size 3.

Theorem 1. The computations of a Turing machine M can be simulated by a
homogenous string system with prescribed teams of size 3 and degree 2 using only
rules of the form aIR(b) and DR(b).

Proof. Let
M = (Q,V, T1, T2, δ, q0, q1, Z0, B)

be a Turing machine. In order to represent the configurations of M as finite
strings, we use a right end marker Z1 to mark the end of a finite representa-
tion Z0uqvB

mZ1 of the configuration Z0uqvB
ω, where m may be any natural

number ≥ 0; m depends on how far on the tape the read-write head has already
proceeded during a computation.

We now construct a system G with prescribed teams using only rules of
the form aIR(b) and DR(b) which can simulate the computations of the given
Turing machine M . The basic idea is folklore – a configuration Z0uqvB

mZ1 is
represented by two strings Z0uq and (vBmZ1)R = Z1B

mvR, which like stacks
are only affected at the end of the strings. A special technical detail is that when
we reach a situation where the second string is Z1, no transition to the right
is possible immediately, we first have to insert an additional blank B to then
continue with the second string Z1B. Moreover, in order to allow the rules to
distinguish between the two strings, the second string is written in the primed
alphabet V ′ = {X ′ | X ∈ V }.

The system with prescribed teams using only rules of the form aIR(b) and
DR(b) is constructed with only two strings being processed, which represent
these two parts of the configuration; the size of the teams can be restricted to be
exactly three. Moreover, the system is constructed in such a way that the teams
have to be applied in a sequential way, but the sequence of the application of
the rules does not matter, yet the sequence in which the rules are given in the
sets indicates in which sequence the rules are to be applied to obtain the desired
result.

The main idea is that in every derivation step using a prescribed team of
size 3 we only simulate one right insertion or deletion on one of the two strings
in the second step, whereas the first step eliminates the symbol representing the
current state and the third step inserts the symbol representing the next state.
The state symbols always are placed at the end of the first string. Moreover, the
three rules always must be applied exactly in this order, and each of the rules is
applied exactly once.

G = ((V ∪Q) ∪ (V ∪Q)′ ∪Q′′)∗, {Z0}T2∗, P,R,A, sequential),
A = {Z0winputq0, Z1

′}.

The set of rules P can be collected from the prescribed teams of rules de-
scribed in the following for the transitions given by δ, and the intermediate states
defined below are collected in Q′′:
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(q,X; p,Y,L) With the first prescribed team the symbol X at the end of the
first string is eliminated remembering the rule to be applied and the symbol
W to the left of X in the intermediate state [W ; q,X; p, Y, L;U ], where U is
the first symbol at the end of the second string. Then the new symbol Y in
its primed version is inserted to the second string using the second prescribed
team.
Observe that the two teams must be applied exactly in this order, as the in-
termediate state [W ; q,X; p, Y, L;U ] carrying all necessary information can-
not be used otherwise:

1. {DR(q), DR(X),WIR([W ; q,X; p, Y, L;U ])}, W,U ∈ V ;
the symbol W to the left of X and the symbol U at the end of the second
string have to be guessed in a non-deterministic way.
The ruleDR(X) cannot be applied before the ruleDR(q), as the deletions
can only happen in the order the symbols appear at the end of the first
string.
WIR([W ; q,X; p, Y, L;U ]) cannot be applied before the other two rules,
as these then would not be applicable any more.

2. {DR([W ; q,X; p, Y, L;U ]), U ′IR(Y ′),WIR(p)}.
The rule DR([W ; q,X; p, Y, L;U ]) must be applied before the rule
WIR(p), because W is not a state symbol.
The rule U ′IR(Y ′) on the second string can be applied at any moment.

With these two teams, we obtain the following derivation:

{uWXq,Z1
′B′

m
v′

R
U ′} =⇒

{uW [W ; q,X; p, Y, L;U ], Z1
′B′

m
v′

R
U ′} =⇒

{uWp,Z1
′B′

m
v′

R
U ′Y ′}

(q,X; p,Y,R) With the first prescribed team the symbol X at the end of the
first string is eliminated, then the new symbol Y is inserted to the first string
instead of X; with the third prescribed team the last symbol U (in its primed
version) of the second string is deleted and remembered in the intermediate
state [q,X; p, Y, L;U ′]; finally, using the fourth prescribed team, this symbol
U ′ is inserted at the end of the first string.
Observe that the four teams must be applied exactly in this order, as the
intermediate states

[W ; q,X; p, Y, L;U ], [W ; q,X; p, Y, L;U ′], and[W; q,X; p,Y,L; U′′]

carrying all necessary information cannot be used otherwise.

1. {DR(q), DR(X),WIR([W ; q,X; p, Y, L;U ])}, W,U ∈ V ;
the symbol W to the left of X and the symbol U at the end of the second
string have to be guessed in a non-deterministic way.
The ruleDR(X) cannot be applied before the ruleDR(q), as the deletions
can only happen in the order the symbols appear at the end of the first
string.
WIR([W ; q,X; p, Y, L;U ] cannot be applied before the other two rules,
as these rules then would not be applicable any more.
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2. {DR([W ; q,X; p, Y, L;U ]),WIR(Y ), Y IR([q,X; p, Y, L;U ′])};
The rule DR([W ; q,X; p, Y, L;U ]) must be applied first, i.e., before the
other two rules, as these rules require a left context not being a state. Us-
ing the same argument it follows that the rule WIR(Y ) must be applied
before the rule Y IR([q,X; p, Y, L;U ′]).

3. {DR([W ; q,X; p, Y, L;U ′])), DR(U ′), Y IR([q,X; p, Y, L;U ′′])};
The rule DR([W ; q,X; p, Y, L;U ′]) must be applied before the rule
Y IR([q,X; p, Y, L;U ′′]), because Y is not a state symbol. The rule
DR(U ′) on the second string can be applied at any moment.

4. {DR([W ; q,X; p, Y, L;U ′′]), Y IR(U), UIR(p)}.
The rule DR([W ; q,X; p, Y, L;U ′′]) must be applied first, i.e., before the
other two rules, also working on the first string, as these rules require a
left context not being a state. Using the same argument it follows that
the rule UIR(p) must be applied after the rule Y IR(U).

With these four teams, we obtain the following derivation:

{uWXq,Z1
′B′

m
v′

R
U ′} =⇒

{uW [W ; q,X; p, Y, L;U ], Z1
′B′

m
v′

R
U ′} =⇒

{uWY [W ; q,X; p, Y, L;U ′], Z1
′B′

m
v′

R
U ′} =⇒

{uWY [W ; q,X; p, Y, L;U ′′], Z1
′B′

m
v′

R} =⇒
{uWY Up,Z1

′B′
m
v′

R}
insertion of B If one more blank is needed in front of the right end marker

Z1
′, an intermediate step for any state q being part of a rule (q,B; p, Y,R)

to be applied must be carried out:
{DR(q), Z1

′IR(B′),WIR(q)}, W ∈ V ;
the symbol W at the end of the first string has to be guessed in a non-
deterministic way.

Derivation:

{uWq,Z1
′} =⇒ {uWq,Z1

′B′}
final cleaning First the remaining blanks are removed:
{DR(q1), DR(B′), aIR(q1)}, a ∈ T2 ∪ {Z0}.
The rule DR(q1) must be applied before the rule aIR(q1), because a is not a
state symbol. The rule DR(B′) on the second string can be applied at any
moment.
Moreover, observe that with the final state q1 of the Turing machine no
transitions are defined any more, i.e., with q1 the Turing machine has halted.

Applying this team of rules m times, we obtain the following derivation:
{Z0woutputq1, Z1

′B′
m} =⇒m {Z0woutputq1, Z1

′}

When all the blank symbols on the second string have been erased, finally,
the second string is completely eliminated, at the same time also the final
state at the end of the terminal string is erased; in order to have exactly
teams of size 3 we insert one blank again in an intermediate step using the
intermediate state q1

′:
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{DR(q1), Z1
′IR(B′), aIR(q1

′)}, a ∈ T ∪ {Z0};
The rule DR(q1) must be applied before the rule aIR(q1

′), because a is not
a state symbol. The rule Z1

′IR(B′) on the second string can be applied at
any moment.

Finally, we use the following prescribed team of rules:
{DR(q1

′), DR(B′), DR(Z1
′)};

When using this final team, the only restriction on the sequence how they
are to be applied is that DR(B′) must be applied before DR(Z1

′).

Derivation:
{Z0woutputq1, Z1

′} =⇒ {Z0woutputq1
′, Z1

′B′} =⇒m {Z0woutput, λ}

In sum, we observe that every computation of the Turing machine M

Z0winputq0B
ω =⇒ Z0woutputq1B

ω

can be simulated in G by a computation

{Z0winputq0, Z1
′} =⇒ {Z0woutput, λ}.

A result Z0woutput obtained in G represents the string woutput. Observe that Z0

cannot be avoided as only non-empty strings can be handled on the first string
of the system. ut

We now show the somehow symmetric case using three initial strings, but
only teams of size two:

Theorem 2. The computations of a Turing machine M can be simulated by
a homogenous string system with prescribed teams of size 2 and degree 3 using
only rules of the form aIR(b) and DR(b), either working in the sequential or the
parallel derivation mode.

Proof. For d ∈ {sequential, parallel}, we construct the system

G′ = ((V ∪Q) ∪ (V ∪Q)′ ∪Q′′)∗, {Z0}T2∗, P,R,A′, d),
A′ = {Z0winputq0, Z1

′, p0}.

and follow the constructions given in the proofs of Theorem 1.
The initial set of strings now contains a third string which step by step will

collect the (labels of) the rules applied in the computation steps. Except for the
last cleaning step, the prescribed teams in the proof of Theorem 1 all are of the
form {DR(p), rule,WIR(q)}, where W is an arbitrary symbol, but not a state
symbol, and rule is an insertion or deletion rule on the first or second string.
With the help of the third string, the two rules {DR(p),WIR(q)} now can be
replaced by one single insertion rule pIR(q).

In contrast to the final cleaning established in the proof of Theorem 1, the
final team now is the following:
{q1IR(q1

′), DR(Z1
′)}.



12 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Sergey Verlan

At the end, the result of a successful computation is given by the first string
and the second string has been reduced to the empty string as in the preceding
proof, but the third string remains as a kind of garbage.

We finally remark that this construction, in contrast to the one given in the
proof of Theorem 1, now not only works in the sequential derivation mode, but
as well in the parallel derivation mode, as the rules in each prescribed team work
on different strings. ut

Remark 1. As outlined in the preceding proof, the prescribed teams of rules of
size 2 only work on one the two strings representing the left and right part of
the Turing tape by either deleting or inserting one symbol. The left context of
the insertion rules is only needed to indicate to which string the new symbol has
to be added.

In that sense, instead of simulating the computations of a Turing machine
we could also have simulated the computations of a 2-stack automaton which
also used the operations of deleting (pop) one symbol oder inserting (push) one
symbol on one of its two stacks, together with changing state.

Whereas the preceding proof might have become even easier when just sim-
ulating pop and push actions on the two stacks, the intuition what these two
stacks in fact represent would have got lost, especially why we need to insert a
blank symbol when reaching the bottom of the second stack.

Remark 2. The third string remaining in the construction of the system G′ con-
structed in the proof of Theorem 2 can be interpreted as the Szilard word of
the computation in the system, hence, it is not only garbage, but carries useful
information.

We now use the idea of anti-objects to replace the deletions of a symbol b by
the insertion of the corresponding anti-symbol b−, where in addition we assume
that b and b− immediately annihilate each other immediately before the next
rules are applied. Therefore, any deletion rule DR(b) can be replaced by the
corresponding insertion rule bIR(b−). Hence, based on the preceding results, we
immediately obtain the following ones:

Corollary 1. The computations of a Turing machine M can be simulated by
a homogenous string system with prescribed teams of size 3 and degree 2 using
only rules of the form aI(b) and bI(b−).

Corollary 2. The computations of a Turing machine M can be simulated by
a homogenous string system with prescribed teams of size 2 and degree 3 using
only rules of the form aI(b) and bI(b−).

3.3 Complexity Considerations for Prescribed Teams of Rules on
Strings

In the preceding subsection we have already seen that there seems to be a trade-
off between the size and the degree of string system with prescribed teams using
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only rules of the form aIR(b) and DR(b), where one parameter has to be three
and the other one can be restricted to two. We now especially consider the
generating case.

– According to Lemma 1, having only systems of size 1, we only can get finite
unions of languages generated by systems of size 1 and degree 1.

– Moreover, as matrix grammars according to Lemma 2 are at least as powerful
as string systems with prescribed teams, an upper bound for string systems
with prescribed teams of degree 1 are usual matrix grammars working on
one string with the same rules.

– According to Lemma 3, insertions and deletions on the right can be replaced
by substitutions on the right.

The proof of the following lemma is left to the interested reader.

Lemma 4. The effect of a matrix using right substitution rules on one string
can be simulated by just one right substitution rule, i.e., for any matrix grammar
using right substitution rules on one string we can construct a standard sequential
grammar using right substitution rules.

In order to show that systems of either size 1 or degree 1 cannot generate
more than regular languages, it therefore suffices to prove the following result:

Lemma 5. Sequential grammars using only right substitution rules can only
generate regular languages.

Proof. Let us start with a sequential grammar using right substitution rules

G = (N,T, P, S) where

– N is a set of nonterminal symbols;
– T is a set of terminal symbols;
– P is a finite set of right substitution rules over V , where V = N ∪ T ;
– S ∈ V + is the axiom.

Now let n := max{|uv| | SR(u, v) ∈ P )}. Moreover, let A0 be the set of all
terminal strings of lengths k, 0 ≤ k ≤ 2n that can be derived in G, and A be the
set of all strings of lengths k with n ≤ k ≤ 2n which can be derived in G. The
language generated by G then is the union of the (terminal) strings in A0 and
the languages generated by the sequential grammars G(A′) = (N,T, P (A′), A′)
for A′ ∈ A. In P (A′) we will only allow the substitutions in P which do not
decrease the lengths of sentential forms any more:

Those strings in the language generated by G of lengths at most 2n are
already contained in A0, therefore we only need to aim at terminal strings of
lengths bigger than 2n.

Starting from a string w with u at the end, |u| = n, there can only be a
finite number of derivations from w, not decreasing the length, but increasing
the length by at most n symbols, which can be captured by right substitution
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rules SR(u, v) with |u| ≤ |v| ≤ |u|+ n. For all possible u, we now collect all the
possible right substitution rules fulfilling these conditions, which in sum yields
P (A′).

We remark that this part of the proof is not constructive – we are only
interested in the result itself.

For every such system G(A′) = (N,T, P (A′), A′) we now can easily construct
an extended regular grammar G′(A′) = (N ′, T, P ′(A′), A′) with extended regular
rules of the forms A→ wC and A→ w, w ∈ T ∗, A,C ∈ N ′ ∪ T .

The nonterminals in N ′ \ {S} are of the form [X] where X ∈ (N ∪ T )n. We
start with the rule

S → A′(1) . . . A′(|A′| − n)[A′(|A′| − n+ 1) . . . A′(|A′|)]

in P ′(A′). Observe that A′(1) . . . A′(|A′| − n) must be a terminal string, as oth-
erwise nonterminals there will remain forever, hence, L(G′(A′)) = ∅. If A′ only
consists of terminal symbols, we also take S → A′(1) . . . A′(|A′|) into P ′(A′).

Now let SR(u, v) be a rule in P (A′) with |u| = n and |u| ≤ |v| ≤ |u|+ n:

– If |u| = |v|, then we take the rule [u]→ [v] into P ′(A′).
– If |u| = |v| and v is a terminal string, then we also take the rule [u]→ v into
P ′(A′).

– If |u| < |v|, we take the rule [u]→ v(1) . . . v(|v| − n)[v(|v| − n+ 1) . . . v(|v|)]
into P ′(A′), but only if v(1) . . . v(|v| − n) is a terminal string.

– If |u| < |v| and v is a terminal string, then we also take the rule [u]→ v into
P ′(A′).

The extended regular grammar G′(A′) = (N ′, T, P ′(A′), S) now exactly sim-
ulates all possible terminal derivations in G(A′) = (N,T, P (A′), A′), which ob-
servation completes the proof. ut

As the family of regular languages are closed under union, putting together
all the lemmas mentioned above, we obtain the following result:

Theorem 3. String systems of either size 1 or degree 1 using only right inser-
tion and deletion rules of the forms aIR(b) and DR(b) cannot generate more
than regular languages.

In sum, the main complexity question left open is the characterization of
the languages which can be generated by string systems of size 2 and degree 2,
homogenous or not. A thorough investigation of such systems will be given in
an extended version of this paper.

4 Conclusion

In this paper we have considered the concept of applying prescribed teams of
rules to a bounded number of initially given objects, with the rules to be applied
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either in parallel to different objects or sequentially to these objects. Each rule
in a team has to be applied exactly once with a successful application of a team.

When using prescribed teams for string objects either two initial strings and
teams with three rules or else three initial strings and teams with two rules are
sufficient to obtain computational completeness. As string operations we use very
simple insertion and deletion rules, i.e., inserting one object in the left context of
another symbol or the deletion of a symbol on the right-hand side of a string. It
remains an open question for future research how computational completeness
can be obtained with even less ingredients, i.e., with only two initial strings and
teams with two rules.

Moreover, we have shown that systems with either only one initial string or
else with teams of only one rule can generate only regular languages.

We have also considered the insertion of anti-symbols which annihilate the
corresponding symbols instead of deleting a symbol.

Similar results can be obtained when using these operations of insertion and
deletion on the left-hand sides of the strings.
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1. Csuhaj-Varjú, E., Dassow, J., Kelemen, J.: Grammar Systems: A Grammatical Ap-
proach to Distribution and Cooperation. Topics in computer mathematics, Gordon
and Breach (1994)
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