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Abstract—This paper is about the integration in a unique
formalism of knowledge representation languages such as those
provided by description logic languages and rule-based reason-
ing paradigms such as those provided by logic programming
languages. We aim at creating an hybrid formalism where
description logics constructs are used for defining concepts that
are given as arguments to the predicates of the logic programs.

Index Terms—Logic programming, description logics.

I. A SHORT INTRODUCTION

A crucial issue in the development of the semantic web is
the possibility to combine rule-based systems and ontologies.
There exists already several types of such combination [21],
[22], [29], [32]. These approaches either build rules on
top of ontologies allowing rule-based systems to use the
vocabulary specified in ontologies, or build ontologies
on top of rules supplementing ontological definitions by
rules. None of them completely answer to the question
of the combination of logic programming with description
logics that we are seeking for: an hybrid formalism where
description logics constructs are used for defining concepts
that are given as arguments to the predicates of the logic
programs. In this paper, we develop such an hybrid formalism.

This paper is organized as follows. A case study motivating
the combination of logic programming with description
logics that we are seeking for is presented in Section II.
In Sections III and IV, we introduce the syntax and the
semantics of our hybrid formalism. Decision problems are
presented in Sections V, VI and VII. In Section VIII, we
introduce examples. A research program is presented in
Section IX.

II. A CASE STUDY

Examining role-based access control and organization-
based access control, we present a case study motivating the
combination of logic programming with description logics
that we are seeking for.

Access of subjects to objects in a computer system are
permitted in accordance with a security policy embodied in
an access control database. Many computer systems use the
access control matrix model to represent security policies [28].
Formally, an access control matrix is a structure consisting of

a set of subjects (users, processes, etc), a set of objects (files,
tables, etc) and binary relations (pi)i∈I between objects and
subjects giving to subjects the permission to access objects.
In this setting, asserting that subject a possesses permission
pi on object b comes down to asserting that pi holds for b
and a.

Access control with a lot of subjects is space-consuming. To
reduce the cost of security, within the context of role-based
access control (RBAC), it has been proposed that access
control administrators treat sets of subjects as instances of
a concept called role1 [35]. Formally, an RBAC-structure
consists of a set of subjects, a set of objects, a set of roles,
a binary relation r between subjects and roles defining the
roles of subjects and binary relations (pi)i∈I between objects
and roles giving to roles the permission to access objects. In
this setting, asserting that subject a has role A comes down
to asserting that r holds for a and A, whereas asserting that
role A possesses permission pi on object b comes down to
asserting that pi holds for b and A. It is possible to refine
the RBAC model by including the concept of role hierarchy
which allows permissions to be inherited through it. This
hierarchy is specified by means of assertions of the form
A′vA′′ where A′ and A′′ are roles. To put it simply, the idea
behind RBAC is the following: in a computer system, subject
a possesses a permission p on object b if and only if there
are roles A0, . . . , Am such that r holds for a and A0, for
all positive integers i≤m, Ai−1vAi has been asserted and p
holds for b and Am.

RBAC with a lot of objects is space-consuming. To reduce
the cost of security, within the context of organization-based
access control (OrBAC), it has been proposed that RBAC
administrators treat sets of objects as instances of a concept
called view [1]. Formally, an OrBAC-structure consists of a
set of subjects, a set of objects, a set of roles, a set of views, a
binary relation r between subjects and roles defining the roles
of subjects, a binary relation v between objects and views
defining the views of objects and binary relations (pi)i∈I

1The roles in RBAC should not be mistaken for the roles in description
logics. In RBAC security policies, roles correspond to sets of subjects, whereas
in description logic frames, roles correspond to binary relations.



between views and roles giving to roles the permission to
access views. In this setting, asserting that object b has
view B comes down to asserting that v holds for b and B,
whereas asserting that role A possesses permission pi on
view B comes down to asserting that pi holds for B and A.
It is possible to refine the OrBAC model by including the
concept of view hierarchy which allows permissions to be
inherited through it. This hierarchy is specified by means of
assertions of the form B′vB′′ where B′ and B′′ are views.
To put it simply, the idea behind OrBAC is the following:
in a computer system, subject a possesses a permission p
on object b if and only if there are roles A0, . . . , Am and
there are views B0, . . . , Bn such that r holds for a and A0

and v holds for b and B0, for all positive integers i≤m,
Ai−1vAi has been asserted and for all positive integers
j≤n, Bj−1vBj has been asserted and p holds for Bn and Am.

It is a great pity that neither RBAC, nor OrBAC allow
atomic assertions of the form pi(D,C) where C and D are,
respectively, Boolean combinations of roles and Boolean
combinations of views. By using assertions of that form,
one may more succinctly define more precise access control
policies. For instance, to say that subjects having the role
A but not having the role A′ possess a permission pi on
objects having the view B but not having the view B′, one
can simply assert that pi holds for B ∧ ¬B′ and A ∧ ¬A′
instead of asserting that pi holds for B′′ and A′′ where A′′ is
a new role such that for all subjects a, r(a,A′′) if and only if
r(a,A) and not r(a,A′) and B′′ is a new view such that for
all objects b, v(b, B′′) if and only if v(b, B) and not v(b, B′).

Finally, it is also a great pity that neither RBAC,
nor OrBAC allow conditional assertions of the form
pi(D,C)←pj(D′, C ′). By using conditional assertions of that
form, one may more succinctly define more precise access
control policies. For instance, to say that subjects having
the role C possess a permission pi on objects having the
view D if subjects having the role C ′ possess a permission
pj on objects having the view D′, one can simply say
that pi(D,C)←pj(D′, C ′). This is particularly interesting
when pj does not denote a permission, but an obligation
corresponding to the permission denoted by pi2. In that case,
a conditional assertion like pi(D,C)←pj(D,C) expresses
the deontic rule saying that subjects having the role C possess
the permission pi on objects having the view D if subjects
having the role C possess the corresponding obligation pj on
objects having the view D.

Knowledge representation languages such as those provided
by description logic languages [4] (allowing expressions of
the form CvD where C and D are complex concepts) and
rule-based reasoning paradigms such as those provided by
logic programming languages [24], [31] (allowing expressions

2We are assuming the deontic principle saying that permissions are implied
by their corresponding obligations [34].

of the form α←β1, . . . , βn where α, β1, . . ., βn are atoms)
are well-known and widely used in Computer Science
and Artificial Intelligence. Their integration in a unique
formalism would be a natural solution for many application
problems requiring the following features: allowing rule-
based systems to use the vocabulary specified in ontologies
and supplementing ontological definitions by rules. Hybrid
knowledge bases are the main approaches proposed so
far. They integrate some aspects of description logic and
some aspects of logic programming [21], [22], [29], [32].
Nevertheless, they hardly address all aspects of our aim: the
development of an hybrid formalism where description logics
constructs are used for defining concepts that are given as
arguments to the predicates of the logic programs.

III. SYNTAX

We introduce the syntax of our hybrid formalism.

A. Complex concepts

Let VAR be a countable set of variable concepts (with
typical members denoted X , Y , etc). Let CON be a countable
set of constant concepts (with typical members denoted A,
B, etc) and ROL be a countable set of constant roles (with
typical members denoted R, S, etc). The set of complex
concepts (with typical members denoted C, D, etc) is defined
by the rule3

• C::=X | A | > | (CuD) | ∃R.C,

where X ranges over VAR, A ranges over CON and R
ranges over ROL. We adopt standard rules for omission of the
parentheses. A complex concept C is VAR-free if C contains
no occurrence of a variable concept. A complex concept C is
ROL-free if C contains no occurrence of a constant role. For
all k∈N, the concept construct (∃R.)k is inductively defined
as follows for each R∈ROL:

• if k=0 then (∃R.)kC::=C,
• otherwise, (∃R.)kC::=∃R.(∃R.)k−1C.

B. Substitutions

A substitution is a function from VAR to the set of all
complex concepts almost everywhere equal to the identity
function [8]. To apply a substitution σ to a complex concept C
amounts to replace each occurrence in C of a variable concept
X∈VAR by the corresponding complex concept σ(X).

C. Inclusions and equations

Concept inclusions are expressions of the form CvD (read
“C is contained in D”) for each complex concepts C,D.
Concept equations are expressions of the form C=D (read
“C is equal to D”) for each complex concepts C,D.

3The set of complex concepts we define here is the one of description logic
EL [7]. Most of our definitions can be easily adapted to cases where other
description logics are considered instead of description logic EL [5], [7], [14].



D. Clauses

Let PRE be a countable set of predicate symbols (with
typical members denoted p, q, etc). For all p∈PRE, let
ar(p) be the arity of p. An atom is an expression of the
form p(C1, . . . , Car(p)) (read “p holds for C1, . . ., Car(p)”)
where p is a predicate symbol and C1, . . ., Car(p) are
complex concepts. Clauses are expressions of the form
α1, . . . , αm←β1, . . . , βn (read “if β1, . . ., βn then either α1,
. . ., or αm”) where α1, . . ., αm, β1, . . ., βn are atoms. Definite
clauses are clauses of the form α←β1, . . . , βn, unit clauses are
clauses of the form α← and definite goals are clauses of the
form ←β1, . . . , βn.

E. Assertions

Let IND be a countable set of individual constants (with
typical members denoted a, b, etc). A concept assertion is an
expression of the form C:a (read “a belongs to C”) where C is
a VAR-free complex concept and a is an individual constant.
A role assertion is an expression of the form R:(a, b) (read “a
is R-related to b”) where R∈ROL and a and b are individual
constants.

F. Deductive ontologies

A T-box is a finite set of concept inclusions and concept
equations. A program is a finite set of clauses. An A-box
is a finite set of concept assertions and role assertions. A
deductive ontology is a triple (T ,Π,A) consisting of a T-box
T , a program Π and an A-box A.

IV. SEMANTICS

We introduce the semantics of our hybrid formalism4.

A. Frames and var-interpretations

The semantics is defined in terms of frames, i.e. structures
(W,K,Rel) where W is a nonempty set, K: CON −→
P(W ) and Rel: ROL −→ P(W×W ). In a frame
(W,K,Rel), for all R∈ROL,
• the R-image of a subset S of W is the set of all t∈W

such that there exists s∈S such that Rel(R)(s, t),
• the R-pre-image of a subset T of W is the set of all
s∈W such that there exists t∈T such that Rel(R)(s, t),

• the domain of R is the set of all s∈W such that there
exists t∈W such that Rel(R)(s, t),

• the range of R is the set of all t∈W such that there exists
s∈W such that Rel(R)(s, t).

Obviously, in a frame (W,K,Rel), for all R∈ROL, the
domain of R is the R-pre-image of W and the range of R is the
R-image of W . A var-interpretation on a frame (W,K,Rel) is
a function V : VAR −→ P(W ). For all frames (W,K,Rel),
the value of the complex concept C with respect to a var-
interpretation V on (W,K,Rel) is the subset ‖C‖V of W
defined by
• ‖X‖V =V (X),

4In this paper, for all sets E, P(E) denotes the set of all subsets of E, E?

denotes the set of all tuples of elements of E and for all k∈N, Ek denotes
the set of all k-tuples of elements of E.

• ‖A‖V =K(A),
• ‖>‖V =W ,
• ‖CuD‖V =‖C‖V ∩ ‖D‖V ,
• ‖∃R.C‖V ={s ∈ W : there exists t∈W such that
Rel(R)(s, t) and t∈‖C‖V }.

Obviously, ‖C‖V does not depend on V when C is VAR-
free. In that case, ‖C‖V will be denoted ‖C‖.

B. Pre-interpretations

A pre-interpretation on a frame (W,K,Rel) is a func-
tion I: PRE −→ P(P(W )?) such that for all p∈PRE,
I(p)⊆P(W )ar(p). For all frames (W,K,Rel) and for all
pre-interpretations I on (W,K,Rel), the value of an atom
p(C1, . . . , Car(p)) with respect to a var-interpretation V on
(W,K,Rel) is the element |p(C1, . . . , Car(p))|

I
V in {0, 1} such

that
• if I(p) contains (‖C1‖V , . . . , ‖Car(p)‖V ) then
|p(C1, . . . , Car(p))|

I
V =1,

• otherwise, |p(C1, . . . , Car(p))|
I
V =0.

C. Ind-interpretations

An ind-interpretation on a frame (W,K,Rel) is a function
g: IND −→ W . For all frames (W,K,Rel) and for all
ind-interpretations g on (W,K,Rel), the value of a concept
assertion C:a is the element |C:a|g in {0, 1} such that
• if ‖C‖ contains g(a) then |C:a|g=1,
• otherwise, |C:a|g=0,

and the value of a role assertion R:(a, b) is the element
|R:(a, b)|g in {0, 1} such that
• if Rel(R) contains (g(a), g(b)) then |R:(a, b)|g=1,
• otherwise, |R:(a, b)|g=0.

D. Models

For all T-boxes T , a T -model (or a model of T ) is a
frame (W,K,Rel) such that for all var-interpretations V on
(W,K,Rel),
• for all concept inclusions CvD in T , ‖C‖V⊆‖D‖V ,
• for all concept equations C=D in T , ‖C‖V =‖D‖V .

For all deductive ontologies (T ,Π,A), a (T ,Π,A)-model
(or a model of (T ,Π,A)) is a structure (W,K,Rel, I, g)
consisting of a T -model (W,K,Rel), a pre-interpretation I
on (W,K,Rel) and an ind-interpretation g on (W,K,Rel)
such that for all var-interpretations V on (W,K,Rel),
• for all clauses α1, . . . , αm←β1, . . . , βn in Π, if |β1|IV =1,
. . ., |βn|IV =1 then either |α1|IV =1, . . ., or |αm|IV =1,

• for all concept assertions C:a in A, |C:a|g=1,
• for all role assertions R:(a, b) in A, |R:(a, b)|g=1.

Notice that in a model (W,K,Rel, I, g) of a deductive ontol-
ogy (T ,Π,A), for all var-interpretations V on (W,K,Rel),
• for all definite clauses α←β1, . . . , βn in Π, if |β1|IV =1,
. . ., |βn|IV =1 then |α|IV =1,

• for all unit clauses α← in Π, |α|IV =1,
• for all definite goals ←β1, . . . , βn in Π, either |β1|IV =0,
. . ., or |βn|IV =0.



V. CORRESPONDENCE THEORY

We briefly present the correspondence theory of our hybrid
formalism.

Although of limited expressive power, concept constructs can
be used for characterizing classes of frames. As observed
by [5], [36], description logic languages are modal languages
in disguise. Therefore, the following relationships that can be
easily established for all frames (W,K,Rel) will not come
as a surprise:

(1) (W,K,Rel) is a model of Xv∃R.> if and only if
Rel(R) is serial5,

(2) (W,K,Rel) is a model of ∃R.>vX if and only if
Rel(R) is empty,

(3) (W,K,Rel) is a model of Xv∃R.X if and only if
Rel(R) is reflexive6,

(4) (W,K,Rel) is a model of ∃R.XvX if and only if
Rel(R) is included in the identity relation on W ,

(5) (W,K,Rel) is a model of ∃R.Xv∃R.∃R.X if and
only if Rel(R) is dense7,

(6) (W,K,Rel) is a model of ∃R.∃R.Xv∃R.X if and
only if Rel(R) is transitive8,

(7) (W,K,Rel) is a model of ∃R.∃R.>vX if and only
if the R-pre-image of the R-pre-image of W is
empty,

(8) (W,K,Rel) is a model of ∃R.X=∃S.X if and only
if Rel(R) is equal to Rel(S),

(9) (W,K,Rel) is a model of AuBvX if and only if
K(A) and K(B) do not intersect,

(10) (W,K,Rel) is a model of AvB if and only if K(A)
is included in K(B),

(11) (W,K,Rel) is a model of ∃R.XvA if and only if
the domain of R is included in K(A),

(12) (W,K,Rel) is a model of ∃R.Xv∃R.(X u A) if
and only if the range of R is included in K(A).

Within our setting, elementary conditions — like “Rel(R) is
serial”, “Rel(R) is empty”, etc — are first-order conditions
that can be expressed as sentences in a function-free first-
order language with equality based on a set of unary predicate
symbols in one-to-one correspondence with CON and a set of
binary predicate symbols in one-to-one correspondence with
ROL. As a result, the following decision problems are of
interest:

— deciding elementary definability (DED)
input: a T-box T ,
output:determine whether there exists an elementary condi-

tion F such that for all frames (W,K,Rel), F holds
in (W,K,Rel) if and only if (W,K,Rel) is a model
of T ,

5That is to say, for all s∈W , there exists t∈W such that Rel(R)(s, t).
6That is to say, for all s∈W , Rel(R)(s, s).
7That is to say, for all s, t∈W , if Rel(R)(s, t) then there exists u∈W

such that Rel(R)(s, u) and Rel(R)(u, t).
8That is to say, for all s, t∈W , if there exists u∈W such that Rel(R)(s, u)

and Rel(R)(u, t) then Rel(R)(s, t).

— deciding concept definability (DCD)
input: an elementary condition F ,
output:determine whether there exists a T-box T such that

for all frames (W,K,Rel), (W,K,Rel) is a model
of T if and only if F holds in (W,K,Rel),

— deciding elementary equivalence (DEE)
input: a T-box T and an elementary condition F ,
output:determine whether for all frames (W,K,Rel),

(W,K,Rel) is a model of T if and only if F holds
in (W,K,Rel).

DED, DCD and DEE stem from the corresponding defin-
ability problems in modal logics [15]. It is not known whether
DED, DCD and DEE are decidable9.

VI. DECIDING INCLUSIONS AND EQUATIONS

We present decision problems about concept inclusions
and concept equations.

Let T be a T-box.

A concept inclusion CvD is a logical consequence of
T (denoted T |=CvD) if for all T -models (W,K,Rel) and
for all var-interpretations V on (W,K,Rel), ‖C‖V⊆‖D‖V .
A concept equation C=D is a logical consequence of T
(denoted T |=C=D) if for all T -models (W,K,Rel) and for
all var-interpretations V on (W,K,Rel), ‖C‖V =‖D‖V . As
a result, the following decision problems are of interest:

— deciding concept inclusions (DCI)
input: a concept inclusion CvD,
output:determine whether T |=CvD,
— deciding concept equations (DCE)
input: a concept equation C=D,
output:determine whether T |=C=D.

If T is VAR-free then DCI and DCE are in P [3]10.
Otherwise, it is not known whether DCI and DCE are
decidable.

VII. DECIDING CONSEQUENCES AND ANSWERS

We present decision problems about logical consequences
and correct answers.

Let (T ,Π,A) be a deductive ontology.

A clause α1, . . . , αm←β1, . . . , βn is a logical consequence
of (T ,Π,A) (denoted (T ,Π,A)|=α1, . . . , αm←β1, . . . , βn)
if for all (T ,Π,A)-models (W,K,Rel, I, g) and for all var-
interpretations V on (W,K,Rel), if |β1|IV =1, . . ., |βn|IV =1

then either |α1|IV =1, . . ., or |αm|IV =1. Notice that a definite
clause α←β1, . . . , βn is a logical consequence of (T ,Π,A)
if and only if for all (T ,Π,A)-models (W,K,Rel, I, g) and

9Description logic languages being modal languages in disguise [5], [36],
the undecidability of DED, DCD and DEE are immediate consequences
of Chagrova’s Theorems [15] when description logic ALC is considered
instead of description logic EL.

10See [20] when other description logics are considered instead of descrip-
tion logic EL.



for all var-interpretations V on (W,K,Rel), if |β1|IV =1,
. . ., |βn|IV =1 then |α|IV =1, a unit clause α← is a logical
consequence of (T ,Π,A) if and only if if for all (T ,Π,A)-
models (W,K,Rel, I, g) and for all var-interpretations V
on (W,K,Rel), |α|IV =1 and a definite goal ←β1, . . . , βn
is a logical consequence of (T ,Π,A) if and only if for
all (T ,Π,A)-models (W,K,Rel, I, g) and for all var-
interpretations V on (W,K,Rel), either |β1|IV =0, . . ., or
|βn|IV =0. As a result, the following decision problems are of
interest:

— deciding definite clauses (DDC)
input: a definite clause α←β1, . . . , βn,
output:determine whether (T ,Π,A)|=α←β1, . . . , βn,
— deciding unit clauses (DUC)
input: a unit clause α←,
output:determine whether (T ,Π,A)|=α←,
— deciding definite goals (DDG)
input: a definite goal ←β1, . . . , βn,
output:determine whether (T ,Π,A)|=←β1, . . . , βn.

A substitution σ is a correct answer for the definite goal
←β1, . . . , βn with respect to (T ,Π,A) if for all (T ,Π,A)-
models (W,K,Rel, I, g) and for all var-interpretations V on
(W,K,Rel), |σ(β1)|IV =1, . . ., |σ(βn)|IV =1. As a result, the
following decision problem is of interest:

— deciding correct answers (DCA)
input: a definite goal ←β1, . . . , βn,
output:determine whether there exists a correct answer for

←β1, . . . , βn with respect to (T ,Π,A).
DDC, DUC, DDG and DCA stem from the corresponding
derivability problems in logic programming [24], [31]. It is
not known whether DDC, DUC, DDG and DCA are
decidable11.

VIII. EXAMPLES

We introduce 4 examples illustrating some technical aspects
of deductive ontologies: bounded recursion, unbounded recur-
sion, non-unifiability and unifiability. We introduce as well an
example about OrBAC.

A. An example about unbounded recursion

Let (T1,Π1,A1) be the deductive ontology where
• T1 is the empty T-box,
• Π1 is the program containing the following clauses:

– p(>)←,
– p(∃R.X)←p(X),

• A1 is the empty A-box.
Models of T1 are arbitrary frames. Models of (T1,Π1,A1) are
structures (W,K,Rel, I, g) consisting of an arbitrary frame
(W,K,Rel), a pre-interpretation I on (W,K,Rel) such that
for all subsets U of W ,

11When description logic ALC is considered instead of description logic
EL, the undecidability of DDC, DUC, DDG and DCA can be easily
proved by means of reductions from the undecidability of the reachability
problem in Minsky machines.

• W is in I(p),
• if U is in I(p) then the R-pre-image of U is in I(p),

and an arbitrary ind-interpretation g on (W,K,Rel). It follows
that for all complex concepts C, (T1,Π1,A1)|=p(C)← if and
only if there exists k∈N such that T1|=C=(∃R.)k>.

B. An example about bounded recursion

Let (T2,Π2,A2) be the deductive ontology where
• T2 is the T-box containing the following concept inclu-

sion:
– ∃R.∃R.>vX ,

• Π2 is the program containing the following clauses:
– p(>)←,
– p(∃R.X)←p(X),

• A2 is the empty A-box.
Models of T2 are frames (W,K,Rel) such that12

• the R-pre-image of the R-pre-image of W is empty.
Models of (T2,Π2,A2) are structures (W,K,Rel, I, g) con-
sisting of a frame (W,K,Rel) such that the R-pre-image of
the R-pre-image of W is empty, a pre-interpretation I on
(W,K,Rel) such that for all subsets U on W ,
• W is in I(p),
• if U is in I(p) then the R-pre-image of U is in I(p),

and an arbitrary ind-interpretation g on (W,K,Rel). It fol-
lows that for all complex concepts C, (T2,Π2,A2)|=p(C)←
if and only if either T2|=C=>, or T2|=C=∃R.>, or
T2|=C=∃R.∃R.>.

C. An example about non-unifiability

Let (T3,Π3,A3) be the deductive ontology where
• T3 is the empty T-box,
• Π3 is the program containing the following clauses:

– p(X)←q(X), r(X),
– q(∃Q.X)←,
– r(∃R.X)←,

• A3 is the empty A-box.
Models of T3 are arbitrary frames. Models of (T3,Π3,A3) are
structures (W,K,Rel, I, g) consisting of an arbitrary frame
(W,K,Rel), a pre-interpretation I on (W,K,Rel) such that
for all subsets U of W ,
• if U is in I(q) and U is in I(r) then U is in I(p),
• the Q-pre-image of U is in I(q),
• the R-pre-image of U is in I(r),

and an arbitrary ind-interpretation g on (W,K,Rel). It fol-
lows that for all complex concepts C, (T3,Π3,A3)|=q(C)←
if and only if there exists a complex concept D such
that T3|=C=∃Q.D and for all complex concepts C,
(T3,Π3,A3)|=r(C)← if and only if there exists a complex
concept D such that T3|=C=∃R.D. Moreover, for no complex
concept C, (T3,Π3,A3)|=p(C)←.

12See the 7th item in Section V.



D. An example about unifiability

Let (T4,Π4,A4) be the deductive ontology where
• T4 is the T-box containing the following concept equa-

tion:
– ∃Q.X=∃R.X ,

• Π4 is the program containing the following clauses:
– p(X)←q(X), r(X),
– q(∃Q.X)←,
– r(∃R.X)←,

• A4 is the empty A-box.
Models of T4 are frames (W,K,Rel) such that13

• Rel(Q)=Rel(R).
Models of (T4,Π4,A4) are structures (W,K,Rel, I, g) con-
sisting of a frame (W,K,Rel) such that Rel(Q)=Rel(R), a
pre-interpretation I on (W,K,Rel) such that for all subsets
U of W ,
• if U is in I(q) and U is in I(r) then U is in I(p),
• the Q-pre-image of U is in I(q),
• the R-pre-image of U is in I(r),

and an arbitrary ind-interpretation g on (W,K,Rel). It fol-
lows that for all complex concepts C, (T4,Π4,A4)|=q(C)←
if and only if there exists a complex concept D such
that T4|=C=∃Q.D and for all complex concepts C,
(T4,Π4,A4)|=r(C)← if and only if there exists a com-
plex concept D such that T4|=C=∃R.D. Moreover, for all
complex concepts C, (T4,Π4,A4)|=p(C)← if and only if
there exists a complex concept D such that T4|=C=∃Q.D
and T4|=C=∃R.D. Of course, since for all T4-models
(W,K,Rel), Rel(Q)=Rel(R), for all complex concepts D,
T4|=∃Q.D=∃R.D.

E. An example about OrBAC

Let an OrBAC security policy be made up of
• the finite sets I, J, M and N,
• the binary relations PERM, COMP, OPTI and PROH

between I and J,
• the binary relation HasRole between I and M,
• the binary relation HasView between J and N,
• the binary relation HasAuthorityOn on M,
• the binary relation ContainsAsSubpart on N.

The finite sets I, J, M and N are, respectively, the set of all
roles, the set of all views, the set of all subjects and the set of
all objects14. The binary relations PERM, COMP, OPTI and
PROH between I and J correspond to the following assertions:
• “the security policy permits the i-th role to access the j-th

view” for each i∈I and for each j∈J such that PERM(i, j),
• “the security policy makes it compulsory for the i-th role

to access the j-th view” for each i∈I and for each j∈J
such that COMP(i, j),

13See the 8th item in Section V.
14See Section II for a definition of the words “roles” and “views” within

the context of OrBAC.

• “the security policy makes it optional for the i-th role to
access the j-th view” for each i∈I and for each j∈J such
that OPTI(i, j),

• “the security policy prohibits the i-th role from accessing
the j-th view” for each i∈I and for each j∈J such that
PROH(i, j).

It may happen that subjects have roles and objects have views.
In this respect, the binary relation HasRole between I and M
and the binary relation HasView between J and N correspond
to the following assertions:
• “the m-th subject has the i-th role” for each i∈I and for

each m∈M such that HasRole(i,m),
• “the n-th object has the j-th view” for each j∈J and for

each n∈N such that HasView(j, n),
It may happen that subjects have authority on other subjects
and objects contain other objects as subpart. In this respect,
the binary relation HasAuthorityOn on M and the binary
relation ContainsAsSubpart on N correspond to the following
assertions:
• “the m-th subject has authority on the m′-th subject” for

each m,m′∈M such that HasAuthorityOn(m,m′),
• “the n-th object contains the n′-th object as subpart” for

each n, n′∈N such that ContainsAsSubpart(n, n′).
To express the above assertions, we will use
• the constant concepts Subject, Object, Ai for each i∈I

and Bj for each j∈J,
• the constant roles hasAuthorityOn and

containsAsSubpart,
• the predicate symbols perm, comp, opti and proh of arity

2,
• the individual constants am for each m∈M and bn for

each n∈N.
Let (T5,Π5,A5) be the deductive ontology where
• T5 is the T-box containing the following concept inclu-

sions:
(T1) SubjectuObjectvX ,
(T2) AivSubject for each i∈I,
(T3) BjvObject for each j∈J,
(T4) ∃hasAuthorityOn.XvSubjectu∃hasAuthorityOn.(XuSubject),
(T5) ∃containsAsSubpart.XvObjectu∃containsAsSubpart.(XuObject),

• Π5 is the program containing the following clauses:
(DP1) perm(Ai,Bj)← for each i∈I and for each j∈J

such that PERM(i, j),
(DP2) comp(Ai,Bj)← for each i∈I and for each j∈J

such that COMP(i, j),
(DP3) opti(Ai,Bj)← for each i∈I and for each j∈J

such that OPTI(i, j),
(DP4) proh(Ai,Bj)← for each i∈I and for each j∈J

such that PROH(i, j),
(DP5) perm(X,Y )←comp(X,Y ),
(DP6) opti(X,Y )←proh(X,Y ),

• A5 is the A-box containing the following assertions:
(AB1) Subject:am for each m∈M,
(AB2) Object:bn for each n∈N,



(AB3) Ai:am for each i∈I and for each m∈M such that
HasRole(i,m),

(AB4) Bj:bn for each j∈J and for each n∈N such that
HasView(j, n),

(AB5) hasAuthorityOn:(am, am′) for each m,m′∈M
such that HasAuthorityOn(m,m′),

(AB6) containsAsSubpart:(bn, bn′) for each n, n′∈M
such that ContainsAsSubpart(n, n′).

(T1) says that the set denoted by Subject and the set denoted
by Object are disjoint. (T2) says that the set denoted by Ai is
included in the set denoted by Subject for each i∈I. (T3) says
that the set denoted by Bj is included in the set denoted by
Object for each j∈J. (T4) says that the domain and the range
of the binary relation denoted by hasAuthorityOn is included
in the set denoted by Subject. (T5) says that the domain and
the range of the binary relation denoted by containsAsSubpart
is included in the set denoted by Object. Indeed, models of
T5 are frames (W,K,Rel) such that15

• K(Subject) and K(Object) do not intersect,
• K(Ai) is included in K(Subject) for each i∈I,
• K(Bj) is included in K(Object) for each j∈J,
• the domain and range of hasAuthorityOn are included in
K(Subject),

• the domain and range of containsAsSubpart are included
in K(Object).

(DP1), (DP2), (DP3) and (DP4) express the assertions
corresponding to the relations PERM, COMP, OPTI and
PROH. (DP5) is the deontic principle saying that every
compulsory access is permitted. (DP6) is the deontic prin-
ciple saying that every prohibited access is optional. (AB1)
says that am denotes a subject for each m∈M. (AB2) says
that bn denotes an object for each n∈N. (AB3) and (AB4)
are the concept assertions corresponding to the relations
HasRole and HasView. (AB5) and (AB6) are the role
assertions corresponding to the relations HasAuthorityOn and
ContainsAsSubpart. Within the context of this example, for
all m∈M and for all n∈N, we will say that

• the security policy permits the m-th subject to access the
n-th object if and only if for all models (W,K,Rel, I, g)
of (T5,Π5,A5) and for all VAR-interpretations V on
(W,K,Rel), there exists a complex concept C and there
exists a complex concept D such that g(am)∈‖C‖V ,
g(bn)∈‖D‖V and |perm(C,D)|IV =1,

• the security policy makes it compulsory for the m-th
subject to access the n-th object if and only if for all mod-
els (W,K,Rel, I, g) of (T5,Π5,A5) and for all VAR-
interpretations V on (W,K,Rel), there exists a complex
concept C and there exists a complex concept D such that
g(am)∈‖C‖V , g(bn)∈‖D‖V and |comp(C,D)|IV =1,

• the security policy makes it optional for the m-th subject
to access the n-th object if and only if for all mod-
els (W,K,Rel, I, g) of (T5,Π5,A5) and for all VAR-
interpretations V on (W,K,Rel), there exists a complex

15See the 9th, 10th, 11th and 12th items in Section V.

concept C and there exists a complex concept D such
that g(am)∈‖C‖V , g(bn)∈‖D‖V and |opti(C,D)|IV =1,

• the security policy prohibits the m-th subject from ac-
cessing the n-th object if and only if for all models
(W,K,Rel, I, g) of (T5,Π5,A5) and for all VAR-
interpretations V on (W,K,Rel), there exists a complex
concept C and there exists a complex concept D such
that g(am)∈‖C‖V , g(bn)∈‖D‖V and |proh(C,D)|IV =1.

To illustrate the expressive power of concept constructs, the
following clauses can be added to Π5:

(DP7) comp(∃hasAuthorityOn.X, Y )←perm(X,∃containsAsSubpart.Y ),
(DP8) proh(X,∃containsAsSubpart.Y )←opti(∃hasAuthorityOn.X, Y ).

(DP7) says that if the security policy permits the set denoted
by X to access the set of objects containing as subpart objects
of the set denoted by Y then the security policy makes it
compulsory for the set of subjects having authority on subjects
of the set denoted by X to access the set of objects denoted
by Y . (DP8) says that if the security policy makes it optional
for the set of subjects having authority on subjects of the set
denoted by X to access the set denoted by Y then the security
policy prohibits the set denoted by X from accessing the set
of objects containing as subpart objects of the set denoted by
Y . With our without (DP7) and (DP8), accesses of subjects
to objects should be neither both permitted and prohibited,
nor both compulsory and optiona: in most logical models of
deontic systems, if it is prohibited to a subject from accessing
some object then it is not permitted that this subject accesses
that object and if it is made optional for a subject to access
some object then it is not made compulsory that this subject
accesses that object [34]. For this reason, it is of the utmost
importance to check whether one of the following conditions
holds:
• there exists a correct answer for the definite goal
←perm(X,Y ), proh(X,Y ),

• there exists a correct answer for the definite goal
←comp(X,Y ), opti(X,Y ).

It is also of the utmost importance to check whether there
exists m∈M and there exists n∈N such that one of the
following conditions holds:
• the security policy both permits the m-th subject to

access the n-th object and prohibits the m-th subject from
accessing the n-th object,

• the security policy both makes it compulsory for the m-
th subject to access the n-th object and makes it optional
for the m-th subject to access the n-th object.

IX. A RESEARCH PROGRAM

We present a research program. As can be seen from its
presentation, this research program covers different aspects of
description logics and logic programming: recursion theory
with (RP1), computational complexity with (RP2), model
theory and fixpoint theory with (RP3), automated deduction
with (RP4), non-monotonic reasoning with (RP5) and ontol-
ogy engineering techniques with (RP6) and (RP7). Needless
to say, to carry out it, one must neither work in isolation, nor



lose sight of the possible applications of the hybrid formalism
developed in this paper. In other respect, with respect to
expressivity, one must also compare this formalism to the
main approaches proposed so far. These approaches include
the above-mentioned hybrid knowledge bases [21], [22], [29],
[32]. They also include approaches such as the existential rule
framework [12], [33].

A. Turing-completeness

Our hybrid formalism can be seen as a programming
language. It is not known whether it is Turing-complete. When
description logic ALC is considered instead of description
logic EL, the Turing-completeness of our hybrid formalism
can be easily proved by means of a reduction from the Turing-
completeness of Minsky machines. Hence, the following item
in our research program:

(RP1) separate the description logics that do give rise
to a Turing-complete hybrid formalism from the
description logics that do not.

In particular, find simple and natural conditions on concept
inclusions, concept equations and clauses such that deductive
ontologies satisfying them give rise to a Turing-complete
hybrid formalism.

B. Tractability

The success of the logic programming languages comes
from the fact that it is relatively easy to define Turing-
incomplete restrictions of clauses that can be used as a domain-
specific language taking advantage of efficient algorithms
developed for them [19], [27]. Thus, the following item in
our research program:

(RP2) for the description logics that do not give rise to
a Turing-complete hybrid formalism, separate those
that do give rise to a hybrid formalism tractable in
polynomial time from those that do not.

In particular, find simple and natural conditions on concept
inclusions, concept equations and clauses such that deductive
ontologies satisfying them give rise to a hybrid formalism
tractable in polynomial time.

C. Declarative and fixpoint semantics

In logic programming, the declarative semantics of pro-
grams is given by the usual semantics of first-order logic. It
is defined in terms of Herbrand interpretations [24], [31]. In
this setting, given a program, the main result is the standard
characterization of its Herbrand models as the pre-fixpoints of
some continuous mapping associated to it. Consequently, the
following item in our research program:

(RP3) develop the declarative and fixpoint semantics of our
hybrid formalism.

In particular, given a deductive ontology, characterize its
Herbrand models as the pre-fixpoints of some continuous
mapping associated to it.

D. Procedural semantics

In logic programming, the refutation procedure of interest is
called SLD-resolution where an inference step is based on the
unifiability between the selected atom in a given definite goal
and the left side of a variant of a definite clause in a given
program. Hence, the following item in our research program:

(RP4) develop the procedural semantics of our hybrid
formalism.

In particular, considering the unification problem in descrip-
tion logics with empty T-boxes [6], adapt the related unifica-
tion algorithms to the context of our hybrid formalism16. In
this respect, the tools and techniques developed in [2], [9],
[10], [25], [26], [37] might be useful.

E. Negation

By using conditional assertions of the form
α1, . . . , αm←β1, . . . , βn, not(γ1), . . . , not(γo) where
α1, . . ., αm, β1, . . ., βn, γ1, . . ., γo are atoms, one may write
more expressive deductive ontologies. For instance, in our
example about security policies, the deontic principle saying
that every non-prohibited access is permitted and the deontic
principle saying that every non-compulsory access is optional
can be expressed by the following conditional assertions:
• perm(X,Y )←not(proh(X,Y )),
• opti(X,Y )←not(comp(X,Y )).

In logic programming, the declarative semantics of a program
containing, possibly, negation in the right side of clauses is
given by the so-called answer set semantics. It is defined in
terms of stable models [23], [30]. In this setting, the question
of the existence of stable models for a given program is of
the utmost interest. Thus, the following item in our research
program:

(RP5) develop the answer set semantics of our hybrid
formalism when programs contain, possibly, negation
in the right side of their clauses.

F. Forgetting

Forgetting is an ontology engineering technique. It is
achieved by eliminating from a given ontology a subset of
its signature in such a way that all logical consequences up to
the remaining signature are preserved. This form of knowledge
compilation has important applications when an engineer who
designs an ontology formulated in some language wants to
import content from an existing ontology formulated in a
richer language. As a result, ontology forgetting has attracted
increasing attention and several algorithms have been devel-
oped to support it [16], [18]. Consequently, the following item
in our research program:

(RP6) develop the ontology engineering technique of for-
getting for our hybrid formalism.

16The computability of the unification problem with arbitrary T-boxes is not
known. In other respect, when description logic ALC is considered instead
of description logic EL, the computability of the unification problem either
with empty T-boxes, or with arbitrary T-boxes is not known too.



G. Modularization

Modularization is an ontology engineering technique. Its
importance is the result of the fact that large and monolithic
ontologies are difficult to handle, whereas smaller and modular
ontologies are easier to understand and use. With a view to
collaboratively developing ontologies and merging indepen-
dently developed ontologies into a single and reconciled one,
ontology modularization has attracted increasing attention and
several algorithms have been developed to support it [11], [17].
Hence, the following item in our research program:

(RP7) develop the ontology engineering technique of mod-
ularization for our hybrid formalism.

X. LAST WORDS

Our idea of an hybrid formalism where description logics
constructs are used for defining concepts that are given as
arguments to the predicates of the logic programs has only one
ancestor: the formalism developed in [13]. In this formalism,
Boolean constructs are used for defining expressions that are
given as arguments to the predicates of the logic programs,
allowing clauses of the form17

• adder(X,Y, Z, T, U∨V )←halfAdder(X,Y,W,U), halfAdder(W,Z, T, V ),
• halfAdder(X,Y,X⊕Y,X∧Y )←.

where X , Y , Z, T , U , V and W denote propositional
variables, ∨, ⊕ and ∧ denote the Boolean constructs
of, respectively, disjunction, exclusive disjunction and
conjunction and adder and halfAdder are predicate symbols
of, respectively, arity 5 and arity 4. Obviously, the Boolean
expressions U∨V , X⊕Y and X∧Y used in these clauses can
be seen as ROL-free complex concepts when description
logic ALC is considered instead of description logic EL.

Knowledge representation languages such as those provided
by description logic languages and rule-based reasoning
paradigms such as those provided by logic programming
languages are well-known and widely used in Computer
Science and Artificial Intelligence. Therefore, it is quite
amazing that their integration in a unique formalism similar
to the formalism proposed by [13] has not been put forward
during the last 30 years. A narrow-minded explanation would
consist of saying that this lack of interest is the result of
the lack of importance of hybrid formalisms such as the
one introduced in this paper. The case study presented in
Section II and the example about OrBAC introduced in
Section VIII indicate that this lack of interest might just be
the result of a lack of imagination. Indeed, we believe that
it is time to give space to advanced languages of terms for
ontologies as introduced in Sections III and IV, to consider
the decision problems presented in Sections V, VI and VII
and to address the research program presented in Section IX.
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