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Abstract

The Shallow-Water equations are a nonlinear system of partial differential equations commonly
used to model flows in various contexts. Many solvers are being developed to numerically solve
those equations, which raises the issue of the verification of the numerical results. To simplify
the validation process, the software SWASHES was developed, compiling a significant number
of analytical solutions to the Shallow-Water equations in a unified formalism to create an easily
available and consistent set of test cases. The corresponding source codes are made available to
the community (www.idpoisson.fr/swashes). In this report, we will describe the 8 new solutions
implemented in version 1.04.00 of SWASHES. Adding both steady and transient solutions, with
solutions in Cartesian geometry as well as solutions in spherical geometry.
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Introduction
Shallow-Water equations have been proposed by Adhémar Barré de Saint-Venant in 1871 to model
flows in a channel. Nowadays, they are widely used to model flows in various contexts, such as: overland
flow, rivers, dam breaks, etc. These equations consist in a nonlinear system of partial differential
equations (PDE-s), more precisely conservation laws describing the evolution of the height and mean
velocity of the fluid. In real situations (realistic geometry, sharp spatial or temporal variations of
the parameters in the model, etc.), there is no hope to solve explicitly this system of PDE-s. It is
therefore necessary to develop specific numerical methods to compute approximate solutions of such
PDE-s. Implementation of such methods raises the question of the verification of the code. Such
validations are currently restricted because analytic solutions to the Shallow-Water equations are rare
and have been published on an individual basis over a period of more than five decades. To solve this
issue, the software SWASHES (Delestre et al. 2013) was developed, compiling a significant number of
analytical solutions to the Shallow-Water equations in a unified formalism to create an easily available
and consistent set of test cases. The corresponding source codes are made available to the community
(www.idpoisson.fr/swashes). In this paper, we will describe the 8 new solutions implemented in the
version 1.04.00 of SWASHES, a summary of those solutions is shown on table 1.

This paper should be considered an extension of Delestre et al. (2013). Thus, we will not go into
details as to the implementation and usage of SWASHES. If you wish to use SWASHES, you should
first read the aforementioned article. We will however briefly recall the global setting.

The Shallow-Water equations, also known as the Saint-Venant equations, are a set of partial
differential equations. We recall the notations we use on figure 1. And give here the general setting
of those equations as it is used in SWASHES, but many terms will be neglected in this paper:
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Figure 1: Notations for the Shallow-Water equations in 2D. Source: Delestre et al. (2013).


∂th + ∂x(hu) + ∂y(hv) = R − I

∂t(hu) + ∂x

(
hu2 + gh2

2

)
+ ∂y(huv) = gh(−∂xz(x, y) − Sfx) + µSdx

∂t(hv) + ∂x(huv) + ∂y

(
hu2 + gh2

2

)
= gh(−∂yz(x, y) − Sfy) + µSdy,

(1)

where:

• g [L/T2] is the gravitational acceleration. We set it as g = 9.81 m s−2.
• h(x, y, t) is the function of the water height [L].
• z is the topography [L]. Since we consider no erosion, it is a fixed function of space.
• (u, v) is the speed vector, where u is its component along x and v its component alongy.
• R ≥ 0 is the rain intensity [L/T], in this paper we always take R = 0.
• I is the infiltration rate [L/T], in this paper we always take I = 0.
• Sf = (Sfx, Sfy) is the friction force, in this paper we always take SF = 0.
• µSd = (µSdx, µSdy) is the viscous term where µ ≥ 0 is the viscosity of the fluid. We neglect for

all the solutions in this paper.

New solutions Time dependance Coordinate
system Topography

Type Description § Reference S.s. Transitory Cart. Sph. Flat Variable

Dam at rest
Parabolic dam 1.1.1 See section 1 X X X

Cross-shaped dam
with a center well 4 See section 1 X X X

Global spherical
model

Global S.s.
Geostrophic Flow 1.2.1 Williamson et al. (1992) X X X

Global S.s.
Geostrophic Flow
with an axial tilt

1.2.2 Williamson et al. (1992) X X X

Sluice gate
opening problem

with free flow

Opening
on dry floor 2.2.1 Cozzolino et al. (2015) X X X

Opening
on slightly wet floor 2.2.2 Cozzolino et al. (2015) X X X

Opening
on wet floor 2.2.3 Cozzolino et al. (2015) X X X

Dam break
problem with

a step

Dam break
with initial

unmoving water
2.3 Han and Warnecke (2014) X X X

Friction is always neglected; Cart.=Cartesian Sph.=Spherical S.s.=Steady state

Table 1: Summary of the new solutions implemented in version 1.04.00 of SWASHES.
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1 Steady state solutions
In this section, we focus on 4 new steady state solutions in SWASHES, complementary to the ones
already implemented (see Delestre et al. 2013, section 3). Steady state solutions being solutions that
satisfy:

∂t(h) = ∂t(hu) = ∂t(hv) = 0.

1.1 Dam in 2D at rest

We implemented two new solutions consisting of two dam-like topographies in 2 dimensions at rest.
As for all the new solutions, we here neglect friction and the viscosity term. We can then recall the
shallow water equations in this case, by simplification of (1):

∂x(hu) + ∂y(hv) = 0

∂x

(
hu2 + gh2

2

)
+ ∂y(huv) = −gh(∂xz(x, y))

∂x(huv) + ∂y

(
hu2 + gh2

2

)
= −gh(∂yz(x, y)).

We can see here that the solutions only depend on the topography z(x, y) and the initial conditions.
For the following solutions, we consider dam-like topographies, with initial water at rest retained by
the dam in part of the domain and dry floor in the rest of the domain. The analytical solution in such
a case is trivial, the water surface should stay flat and the velocity null. Such a test case has already
been implemented in SWASHES (see Delestre et al. (2013), section 3.1), with the lake at rest. The
aim of those solutions here is rather to take an initial condition with water in the whole domain and
see if the numerical solution tends toward the analytical solution. One should especially focus on the
transition between wet and dry domains, which is often a problem for numerical solvers. The main
point of this section is to give a reference topography to allow such tests and make easy comparisons
between different numerical solvers.

1.1.1 Parabolical dam

In this case, we look at a rectangular domain of length L = 25 m and width l = 10 m. The topography
here is that of a classical parabolic dam (x = (y − l

2)2
/l2 + damd), see figure 2.

Figure 2: Shape of the dam from above.
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For such a topography, we had to ensure that the ridge would be continuous, and always of the
same height so that no water could pass through. To do so we added a flat surface on the top of the
dam of width damw. If one chooses dx ≤ damw

2 , there will be at least two points of the mesh in the
flat surface for any given y thus ensuring the continuity of the ridge. We will need another parameter
we name damh, corresponding to the height of the dam.

To get such a topography, we chose a Gaussian curve with a truncated top and a slight offset at
the base of the curve to set z = 0 m if |x − damcenter| ≥ 2damw. The final shape is shown in figure 3
and given by the following formula:

z(x, y) = min
(

0.5, max
(

0,
e−ϕ(x,y)2

α
− β

))
. (2)

Here α and β are parameters ensuring the chosen shape:
α = (e−(damw/2)2

− e−2damw)/damh

β = e−(damw/2)2
/α − damh.

(3)

Figure 3: Cross-section of the dam.

To get the parabolic dam, we just have to fix ϕ(x, y):

ϕ(x, y) = x − (y − l/2)2

l2
− damd,

with damd corresponding to the distance between the upstream border and the center of the dam.
We then have to set the various parameters. For the Shallow-Water equations to be meaningful,

we must have low water height compared to the horizontal dimensions of the domain. We chose
damh = 0.5 m. Since we considered 50 minimum points for the subdivision of x was reasonable (i.e.
dx = 0.5 m), we fix damw = 1 m. And since the wet-dry transition is the point of interest, we fixed
the dry zone to be bigger: damd = 10 m.

As for the analytical solution itself, we have:
h(x, y) + z(x, y) = 0.5 m if g(x, y) ≤ 0
h(x, y) = 0 otherwise
u(x, y) = 0
v(x, y) = 0.
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1.1.2 Cross-shaped dam

For this second dam, we keep the same cross-section as before (see figure 3) for the same reasons as
in section 1.1.1. The shape from above is now a cross with a well in the center. As for the parameter
that defines the shape of the dam (see equation (2)), damh still corresponds to the height of the dam,
damw corresponds to its width and damd now corresponds to the radius of the center well.

Like the previous dam test case, the aim of this solution is to check whether the numerical solution
tends toward the analytical solution, with the accent given on the symmetry of the solution. Since
the topography is symmetrical horizontally, vertically, but also on the axes x = y and x = −y, the
numerical solution is expected to be symmetrical as well.

To compute the topography, we reuse formula (2), changing only the definition of the function
ϕ(x, y). Implementation-wise, we treated the well and the cross part separately, obtaining respectively
zring and zcross. To simplify the following formula, we denote x̃ = x − L

2 and ỹ = y − l
2 . We then get:

• For zring: ϕ(x, y) =
√

x̃2 + ỹ2 − damd

• For zcross: If
√

x̃2 + ỹ2 > damd, ϕ(x, y) = min
( |x̃ − ỹ|√

2
,
|x̃ + ỹ|√

2

)
. Otherwise zcross = 0.

We then compute the coefficients α and β (see (3)) with the following parameters:

• damw = 1 m, damh = 1 m and damd = 2.5 m for the well.
• damw = 1 m and damh = 0.5 m for the cross.

To get the total topography, we compute: z(x, y) = max(zring(x, y), zcross(x, y)). The topography
is shown on figure 5.

Figure 4: Shape of the dam from above. Figure 5: Topography of the cross-like dam.

1.2 Steady state solutions in spherical geometry

The Shallow-Water equations can be applied to any non-compressible fluids. In order to make global
meteorological prediction, it is relevant to try to simulate oceans at a global scale. Such a model would
require working at the scale of the whole planet, and thus to work in spherical coordinate systems.
For this reason, people developed a form of Shallow-Water equations adapted to spherical geometry,
and solver for these equations.

In order to broaden the scope of solutions implemented in SWASHES, we added two new solutions
in spherical geometry.

This section is mainly based on Williamson et al. (1992), where the authors give several analytical
solutions to the behavior of an incompressible and non-viscous fluid under different forces in spherical
geometry, to serve as tests for numerical solvers.

We denote i⃗, j⃗ and r⃗ the longitudinal, latitudinal and radial vectors respectively. We will also
denote λ and θ the longitudinal and latitudinal angles respectively, see figure 6.
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Figure 6: Spherical coordinate system. Figure 7: Spherical mesh.

From the general form of the Shallow-Water (1), it is possible to adapt them in spherical geometry.
Those equations for a rotating sphere creating a Coriolis force are given by:

∂t(h) + ∇ · (hV) = 0

∂t(hu) + ∇ · (huV) −
(

f + u

a
tan(θ)

)
hv + gh

a cos(θ)∂λ(h + z) = 0

∂t(hv) + ∇ · (hvV) −
(

f + u

a
tan(θ)

)
hu + gh

a
∂θ(h + z) = 0.

(4)

Here z(λ, θ) [L] is the topography above a certain reference level (the sea-level), we consider it
flat for the following solutions. We denote a [L] the radius of the reference level and V the speed
vector

(u
v

)
, where u and v [L/T] are its components along i⃗ and j⃗. Analogously, as for the Cartesian

Shallow-Water equations, we consider that the velocity does not depend on its radial coordinates
and the radial velocity component to be 0. The term f [L.M.T−2] corresponds to the Coriolis force.
Finally, as for the previous cases, h(λ, θ) [L] is the fluid height.

Since we are in spherical geometry, ∇· is the spherical horizontal gradient operator given for any
vector (A, B)T by:

∇ ·
(

A

B

)
≡ 1

a cos(θ)
(
∂λ(A) + ∂θ(B cos(θ)

)
.

And for any scalar C, we have:

V · ∇C ≡ u

a cos(θ)∂λ(C) + v

a
∂θ(C).

For the following test cases, we consider the sphere to be the Earth, that we will approximate to be a
perfect sphere. We fix parameters close to the ones of Earth:

• a = 6.37122 × 106 m Earth average radius (average between the equator and the poles).
• Ω = 7.292 × 10−5 rad s−1 Earth’s angular speed.
• g = 9.81 m s−2 the sea-level acceleration of gravity on Earth.

Since we now work in spherical geometry, we cannot use the Cartesian mesh already implemented in
SWASHES. We chose to use the most widely used mesh for spherical geometry, see figure 7, described
below. As for the other solutions, when using SWASHES, the user chooses Nx and Ny. But in the
case of the spherical mesh, they will correspond to the number of subdivisions for λ and θ. Since we
consider the simplest mesh, those subdivisions are uniform, so we get dλ = 2π/Nx and dθ = π/(Ny−1).
SWASHES then computes h, u and v at each point of the mesh, those points being defined for the
following angles: λ = n × dλ and θ = m × dθ, where 0 ≤ n ≤ Nx and 0 ≤ n ≤ Ny − 1 are integers.
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To correctly represent the result, we require that λ goes from 0 to 2π. Since the points λ = 2π do
not add new information, we chose to not take them into account in the number of points selected.
Thus, SWASHES will actually do (Nx +1)×Ny computations. But considering what was just said and
the fact that all points of form (λ, 0) and (λ, 2π) correspond to the lower and upper pole respectively,
the mesh will actually contain only Nx × (Ny − 2) + 2 distinct points.

1.2.1 Global geostrophic steady state with no axial tilt

In the first case we do not take the axial tilt into account, we consider the rotation axis is equal to
the poles’ axis. We also consider that the planet is in a global geostrophic steady state. A geostrophic
current or flow is a current in which the pressure gradient force is balanced by the Coriolis effect.
Usually, the fluid naturally tends to move from a region of high pressure (or high sea level) to a region
of low pressure (or low sea level). The force pushing the water towards the low pressure region is
called the pressure gradient force. But in a geostrophic flow, instead of fluid moving from a region
of high pressure (or high sea level) to a region of low pressure (or low sea level), it moves along the
lines of equal pressure (isobars). This occurs because the Earth is rotating. The rotation of the Earth
results in the Coriolis force being applied on the fluid. The Coriolis force acts at right angles to the
flow, and when it balances the pressure gradient force, the resulting flow is known as geostrophic. In
practice, the oceanic flow outside the tropics is almost always in quasi-geostrophic equilibrium.

In this case, the Coriolis force is given by:

f = 2Ω sin(θ).

We set initial conditions close to the real average value for Earth:

• h0 = 3000 m height of the fluid above sea level.
• u0 = 2πa/(12 days) ≈ 38.61 m s−1 initial speed of the fluid.

Considering the solution is a steady state, we can find the following analytical solution to (4):
u = u0 cos(θ)

v = 0

h = h0 −
(
aΩu0 + u2

0
2
)

× (sin(θ))2

g
.

Here we find speed parallel to the latitude lines, the velocity component along j⃗ is 0. The fluid height
is higher around the equator, see figure 8.

1.2.2 Global geostrophic steady state with an axial tilt

This second case is nearly identical to the first one, the only difference being a slight angle offset
between the rotation axis of the sphere and the coordinate system poles that we note η. We approxi-
mate η = 0.406 rad constant, this value is close to Earth’s average axial tilt. We can apply a change
of coordinate system to the solution we previously found to find the analytical solution to this new
problem. The Coriolis force is now given by:

f = 2Ω(− cos(λ) cos(θ) sin(η) + sin(θ) cos(η)).

We keep the same initial conditions as the previous section 1.2.1 (h0 = 3000 m and u0 = 38.61 m s−1)
and we obtain: 

u = u0(cos(θ) cos(η) + cos(λ) sin(θ) sin(η))

v = −u0 sin(λ) sin(η)

h = h0 −
(
aΩu0 + u2

0
2
)

× (− cos(λ) cos(θ) sin(η) + sin(θ) cos(η))2

g
.
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Figure 8: Height of the fluid at the geostrophic steady state.

Figure 9: Height of the fluid at the geostrophic steady state with an axis tilt.

The solution is exactly the same as before, simply with an offset between the axis of rotation of
the sphere and the coordinate system poles. This case is interesting because the mesh we chose (see
figure 7) strongly focuses on the poles, while the solution does not, giving the results shown on figure 9.

2 Transitory solutions
In this section, we focus on 1 dimension transitory solutions. We implemented solutions to two varia-
tions of the dam break problem (also called Riemann problem). See Delestre et al. (2013) section 4.1
to see the solutions to the different Riemann problems already implemented in SWASHES (on dry or
wet floor, with or without friction).

To solve such problems, we once again work with the Shallow-Water equations in the Cartesian
coordinate system (1). We consider the solution to be transitory, without friction, with non-viscous
water and the topography is flat (except for the solution with a step, where it is flat everywhere apart
except at the step where there is a discontinuous jump). We recall the Shallow-Water equations in
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such a case: 
∂th + ∂x(hu) = 0

∂t(hu) + ∂x

(
hu2 + gh2

2

)
= 0.

2.1 Elements of resolution: The classical Riemann problem

Before describing the new transitory solutions implemented in SWASHES it is relevant to start by
studying the simpler case of the classical Riemann problem. In this section we will give elements
of resolution useful for all the new solutions as well as the solution of a Riemann problem as an
illustration of the method of resolution.

In the classical Riemann problem, for the dam break resolution, we initially consider a domain in
one dimension, divided in its center by a dam, represented by a discontinuity between the left state
and the right state. The goal is to find the behavior of the water in time once we remove the dam at
t = 0 s.

As we said earlier, we take a domain divided in two at the center point (the abscissa of the dam),
we denote it x0. In the rest of this paper, the indices L and R refer to the left side and right side of
the dam respectively. We also note U(x, t) = (h(x, t) u(x, t))T , the vector describing the state of the
solution at a set position and time. Initially we have:

U(x, 0) =


UL, x < x0

UR, x > x0

UL = (hL uL)T , UR = (hR uR)T .

To be consistent with the rest of SWASHES solutions, we set L = 10 m, and we fix hL > hR, so that
the water flows from the left to the right. We make this choice without loss of generality, if one wants
the solution to a problem of form hL < hR, they can just apply a symmetry around x = x0.

The solution is transitory, but comparing the numerical solution to the analytical solution at every
time is quite heavy. We instead set a reference time T , at which we give the solution. The choice
made in SWASHES is: T = 6 s.

2.1.1 The different kind of waves

One can show (Alcrudo and Benkhaldoun 2001), that two different stable states U1 and U2 in such a
problem are always linked by one of two kind of wave: either a shock wave, which we note S(U1, U2),
or a rarefaction wave, which we note R(U1, U2).

Each kind of wave possesses a locus of admissible state in the plane (h, u) :

S(U1, U2) u2 = u1 ± (h2 − h1)
√

g

2

( 1
h1

+ 1
h2

)

R(U1, U2) u2 = u1 ± 2
(√

gh1 −
√

gh2
)

.

In both cases, we use the + sign if h2 < h1, and the − sign if h2 > h1. Both curves are useful to find
the intermediate state between UL and UR.

For a rarefaction wave between the state U1 and the state U2, one can also find the expression of
h(x, t) and deduce the expression of u(x, t) using R(U1, U2). Here we have x0 the starting point of
the wave: in all the cases we look at, it corresponds to the position of the dam:

h(x, t) =


1
9g

(
u1 + 2

√
gh1 − x−x0

t

)2
1
9g

(
u2 − 2

√
gh2 − x−x0

t

)2 u(x, t) =


2
3
(u1

2 +
√

gh1 + x−x0
t

)
if h1 > h2

2
3
(
−u2

2 +
√

gh2 + x−x0
t

)
if h1 < h2.

(5)

To find x1(t) and x2(t) the points of beginning and end of the wave, we solve: h(x1(t), t) = h1 and
h(x2(t), t) = h2, which gives for example in the first case: x1(t) = x0 + t(u1 −

√
gh1).
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For a shock wave between the state U1 and the state U2, there is no expression for the height
since the wave is forms a discontinuity from U1 to U2. So one just needs to know the speed σ of the
wave, which is given by the following formula:

σ = u1 ± h2

√
g

2

( 1
h1

+ 1
h2

)
. (6)

Here too, we use the sign + if h2 < h1, and the − sign if h2 > h1. Once we know its speed, the
position of the wave discontinuity is given by: x0 + tσ.

As it is explained in LeVeque (2002), once those wave equations are known, the difficulty of solving
Riemann problems lies in finding the number of intermediate states and finding what kind of waves
links them together. Afterwards, we can find the intermediate states at the intersection between the
locus of the waves connecting them to the other state. The solution is then entirely known, since we
know U = (h u)T for each stable state, and we can find it for the waves using (5) and (6).

2.1.2 Example of the Riemann problem for the complete dam break

With those equations known, we can now tackle the resolution of a Riemann problem. Since we want
to simulate a dam break, we choose zero speed initial conditions, such that uL = uR = 0. In this case,
we obtain three different states (see Alcrudo and Benkhaldoun (2001, section 5)): UL and UR that
we know, as well as U1 an intermediate state. The left state is linked to the intermediate state via a
rarefaction wave, and the right state is linked to the intermediate state via a shock. In the rest of this
paper, we reuse the notations proposed by (Alcrudo and Benkhaldoun 2001), we write the different
states with an arrow indicating what kind of wave links them to the next state:

UL
R−→ U1

S−→ UR.

The state U1 is found at the intersection of R(UL, U) and S(U, UR) in the (h, u) plane, where U is
the state we want to find. We have hR < h < hL, so one must pay attention to use the correct signs
in the wave functions. To find the intersection, several methods are possible: for the sake of simplicity
we used a simple dichotomy in SWASHES. The solution is then given as follows:

h(x, t) =


hL

1
9g

(
2
√

ghL − x−x0
t

)2
h1

hR

u(x, t) =


0 if x ≤ x1(t)
2
3
(√

ghL + x−x0
t

)
if x1(t) ≤ x ≤ x2(t)

u1 if x2(t) ≤ x ≤ x3(t)
0 if x3(t) < x.

• x1(t) = x0 − t
√

ghL

• x2(t) = x0 − t(3
√

gh1 − 2
√

ghL)

• x3(t) = x0 + t

(
u1 + hR

√
g
2

(
1

h1
+ 1

hR

))
.

This solution corresponds to the one already implemented in SWASHES where we chose UL =
(0.05 0)T and UR = (0 0)T . The solution is drawn on figure 10 at t = T = 6 s.

2.2 Analytical solutions to a Riemann problem with a sluice gate

In this section, we consider the Riemann problem with a sluice gate. We solved the classical Riemann
problem in section 2.1 and defined several useful equations and notations that we reuse in this section.
This section is mostly based on Cozzolino et al. (2015).

We take a closer look at the sluice-gate problem. Here, instead of the whole dam breaking, we
consider that only a part opens at the bottom of size b, allowing only some water to flow through.
We note x0 the position of the sluice gate. We initially consider a domain in one dimension, divided
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Figure 10: Curve of the water height after a dam break at t = T = 6 s.

in its center by a dam, represented by a discontinuity between the left state and the right state. The
goal is to find the behavior of the water in time once we open the sluice gate at t = 0 s:

U(x, 0) =


UL, x < x0

UR, x > x0

UL = (hL uL)T , UR = (hR uR)T .

We keep the same convention as before with a domain of length L = 10 m and water flowing from
left to right with hL > hR. To find a solution with hL < hR, one just needs to apply a symmetry at
center with the analytical solution. Since we want to model the sudden opening of the sluice gate, we
chose zero speed initial conditions, such that uL = uR = 0. We also consider that b < hL otherwise
the solution just corresponds to the classical Riemann problem. Finally, we set the reference time in
SWASHES as T = 6 s to compare with the numerical solution.

For a flow through an orifice, we observe a decrease in the flow surface after the orifice. The point
where the flow surface is the lowest is called the Vena Contracta (see figures 11 and 12). To model
this phenomenon, we introduce the contraction coefficient Cc, which is the ratio between the size of
the jet and the size of the orifice. We note Uc = (hc uc) the state found right after the sluice gate,
and we have hc = Ccb.

In order to analytically solve the problem, some hypothesis were given in Cozzolino et al. (2015)
that we keep:

• H1: the Froude similarity is valid. Meaning that the Froude number (Fr = u
gh) is similar between

the theoretical model and in practice.
• H2: the energy is conserved across the sluice-gate.
• H3: the contraction coefficient does not depend on the relative opening of the gate, and it is

constant during the transient. In the rest we set Cc = 0.611 as is suggested in Cozzolino et al.
(2015).

The flow coming out of the sluice gate can be either free or submerged. We chose here to only look
at free flow solutions, meaning that the flow coming out of the sluice is exposed to the air. In such
case, we can show that the discharge q only depends on hL and the size of the opening b. We get the
following formula for q:

q = Cc√
1 + Ccb

h

b
√

2gh. (7)

Since q = hu, we can define a locus of admissible state at the sluice gate in the (h, u) plane. We
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Figure 11: Illustration of the Vena Contracta
phenomenon. Source: Mecholic (2018).

Figure 12: Scheme of the Vena Contracta.
Source: Mecholic (2018).

denote it FF (U):
FF (U) u = Cc√

1 + Ccb
h

b

h

√
2gh.

We define another useful curve in the (h, u) plane, the curve of constant discharge CD(q, U):

CD(q, U) u = q

h
.

Finally it is shown in Cozzolino et al. (2015) that if b ≥ 4
9hL, there might be some non orifice flow,

solutions in which the water does not interact with the sluice gate. In such cases, we find the same
solutions as in 2.1.2. Since this case has already been implemented in SWASHES, we chose here to
work only on orifice solution by fixing b = 0.2hL.

2.2.1 Free flow solution on dry domain

The first case we look at is the opening of the sluice gate on a dry domain, hR = 0 m. In this case we
obtain four different states, with a solution of the form:

UL
R−→ U1

CD−→ Uc
R−→ UR.

The state U1 lies at the intersection between R(UL, U) and FF (U) since U1 is the state directly
upstream of the dam and must then satisfy equation (7). Once U1 has been found, we know that Uc

lies in CD(h1u1, U) since the discharge through the gate is constant. The state Uc is then individuated
by hc = Ccb. We obtain the following solution:

h(x, t) =



hL

1
9g

(
2
√

ghL − x−x0
t

)2
h1

hc

1
9g

(
uc + 2

√
ghc − x−x0

t

)2
0

u(x, t) =



0 if x ≤ x1(t)
2
3
(√

ghL + x−x0
t

)
if x1(t) ≤ x ≤ x2(t)

u1 if x2(t) ≤ x ≤ x0

uc if x0 ≤ x ≤ x3(t)
2
3
(u1

2 +
√

gh1 + x−x0
t

)
if x3(t) ≤ x ≤ x4(t)

0 if x4(t) < x,

where:

• x0 = 5 m
• x1(t) = x0 − t

√
ghL
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• x2(t) = x0 − t(3
√

gh1 − 2
√

ghL)
• x3(t) = x0 + t(uc −

√
ghc)

• x4(t) = x0 + t(uc + 2
√

ghc).

In SWASHES, we set hL = 0.005 m, hR = 0 m, Cc = 0.611 and b = 0.2hL. This solution is represented
at t = T = 6 s, in figure 13.

Figure 13: Free flow solution on dry domain at t = T = 6 s.

2.2.2 Free flow solution on slightly wet domain (hR < hc)

In this solution, we take a non-zero hR. We obtain two different solutions depending on whether
hR < hc or hR > hc.1

Here we set ourselves in the slightly wet case where hR < hc. The solution upstream of the dam
is the same as for the dry domain, we still have UL and U1 linked by a rarefaction wave. We find U1
at the intersection between R(UL, U) and FF (U). Downstream, we obtain a new intermediate state
U2 between Uc and UR, with hc > h2 > hR. The solution is of the form:

UL
R−→ U1

CD−→ Uc
R−→ U2

S−→ UR.

We find Uc on CD(h1u1, U) individuated by hc = Ccb. Finally, U2 is found at the intersection
between the curves R(Uc, U) and S(U, UR). We obtain the following solution:

h(x, t) =



hL

1
9g

(
2
√

ghL − x−x0
t

)2
h1

hc

1
9g

(
uc + 2

√
ghc − x−x0

t

)2
h2

hR

u(x, t) =



0 if x ≤ x1(t)
2
3
(√

ghL + x−x0
t

)
if x1(t) ≤ x ≤ x2(t)

u1 if x2(t) ≤ x ≤ x0

uc if x0 ≤ x ≤ x3(t)
2
3
(u1

2 +
√

gh1 + x−x0
t

)
if x3(t) ≤ x ≤ x4(t)

u2 if x4(t) ≤ x ≤ x5(t)
0 if x5(t) < x,

where:

• x0 = 5 m
• x1(t) = x0 − t

√
ghL

1If hR = hc, solutions 2.2.2 and 2.2.3 are equivalent, giving Uc = U2 linked to UR by a shock.
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• x2(t) = x0 − t(3
√

gh1 − 2
√

ghL)
• x3(t) = x0 + t(uc −

√
ghc)

• x4(t) = x0 + t(uc − 3
√

gh2 + 2
√

ghc)

• x5(t) = x0 + t

(
u2 + hR

√
g
2

(
1

h2
+ 1

hR

))
.

In SWASHES, we set hL = 0.005 m, b = 0.2hL, hR = 0.002hL and Cc = 0.611. This solution is
represented at t = T = 6 s, in figure 14.

Figure 14: Free flow solution on slightly wet domain (hR < hc) at t = T = 6 s.

2.2.3 Free flow solution on wet domain (hc < hR ≤ b)

We here take a look at the second case of free flow on wet floor where hc < hR ≤ b. If hR > b we then
find a submerged flow, this solution is covered in Cozzolino et al. (2015). The solution upstream of the
dam is the same as for the dry domain, we still have UL and U1 linked by a rarefaction wave. We find
U1 at the intersection between R(UL, U) and FF (U). Downstream, we obtain a new intermediate
state U2 between Uc and UR, with hc < hR < h2. The solution is of the form:

UL
R−→ U1

CD−→ Uc
S−→ U2

S−→ UR.

We find Uc on CD(h1u1, U) individuated by hc = Ccb. Finally, U2 is found at the intersection
between the curves S(Uc, U) and S(U, UR), be wary to use the right sign, hc < hR < h2. We obtain
the following solution:

h(x, t) =



hL

1
9g

(
2
√

ghL − x−x0
t

)2
h1

hc

h2

hR

u(x, t) =



0 if x ≤ x1(t)
2
3
(√

ghL + x−x0
t

)
if x1(t) ≤ x ≤ x2(t)

u1 if x2(t) ≤ x ≤ x0

uc if x0 ≤ x ≤ x3(t)
u2 if x3(t) ≤ x ≤ x4(t)
0 if x4(t) < x,

where:

• x0 = 5 m
• x1(t) = x0 − t

√
ghL

• x2(t) = x0 − t(3
√

gh1 − 2
√

ghL)

• x3(t) = x0 + t

(
uc − h2

√
g
2

(
1

hc
+ 1

h2

))
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• x4(t) = x0 + t

(
u2 + hR

√
g
2

(
1

h2
+ 1

hR

))
.

In SWASHES, we set hL = 0.005 m, b = 0.2hL, hR = 0.2hL and Cc = 0.611. This solution is
represented at t = T = 6 s, in figure 15.

Figure 15: Free flow solution on wet domain (hc < hR ≤ b) at t = T = 6 s.

2.3 Dam break problem with a step

In this section we consider the Riemann problem applied to a dam break with a discontinuous jump in
the topography at the dam, we call it the step. We solved the classical Riemann problem in section 2.1
and defined several useful equations and notations that we reuse in this section. This section is mostly
based on Han and Warnecke (2014).

We recall the setting: We consider a domain in one dimension, divided in its center by a dam
represented by a discontinuity between the left state and the right state, in this case we also add a
discontinuity in the topography at the dam. We note x0 the position of the dam and the step, we
note UL = (hL uL)T and UR = (hR uR)T the left side and right side states. For this solution, we also
note zL and zR the height of the topography on the left and right side respectively. We can write the
problem as follows:

U(x, 0) =


UL, x < x0

UR, x > x0

z(x) =
{

zL, x < x0

zR, x > x0.

In the rest of the section we consider zL = 0 and zL ≤ zR without loss of generality, to find a solution
with zL > zR, one just needs to apply a symmetry at center with the analytical solution.

We consider here the frictionless Shallow-Water equations. A word of caution must be expressed
here. It is apparent that the water close to the step is neither frictionless, nor can be assumed to fulfill
the approximations required for the Shallow-Water equations. In reality, a recirculation flow appears
in the vicinity of the step as shown on figure 16, where for example the speed component along the
z-axis is clearly not zero. One can however consider the flow far enough upstream and downstream of
the step where it is accommodated to Shallow-Water assumptions. Thus, we consider here an idealized
step flow as shown on figure 17, for which energy losses are neglected (this condition can be relaxed,
see Alcrudo and Benkhaldoun (2001)). With those hypotheses, it is possible to find the analytical
solution of the problem.

In the idealized case, a discontinuity in water heights and speed appears at the step, similar to a
stationary shock wave. We will note this wave SST (Steady Step Transition). Since we consider the
transition to be steady, we obtain the following system by adapting (1):
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Figure 16: Actual steady flow over a step.
Source: Alcrudo and Benkhaldoun (2001).

Figure 17: Idealized steady flow over a step.
Source: Alcrudo and Benkhaldoun (2001).


∂xh = 0

u∂xu + g∂xh = −g∂xz.

It is possible to obtain the relation linking the states U1 and U2 on each side of the standing wave,
we note this system SST (U1, U2):

SST (U1, U2) :


u1h1 = u2h2

u2
1

2 + g(h1 + z1) = u2
2

2 + g(h2 + z2).

Physically the first equation corresponds to the conservation of the discharge while the second one
corresponds to the conservation of the energy. For a given state U1, the system might get two
compatible states U2. One can show that a transition from a subcritical flow (Fr = u√

gh
< 1) to a

supercritical flow (Fr > 1) or vice versa can only occur at points of maximum of the bottom function
(Alcrudo and Benkhaldoun 2001). Since our topography does not contain a maximum, such transitions
between states are forbidden. We use this to find the only physically acceptable state linked to U1,
since U2 must respect sign(u2

1 − gh1) = sign(u2
2 − gh2).

Once we defined those equations, we only need to find the number of steady states and the kind
of wave linking each one to entirely know the solution. We here chose to implement the case where
intial speed are null and hL > hR + zR. In such cases, we find a solution similar to the one for the
dam break problem without a step 2.1.2, with an added discontinuity caused by the step:

UL
R−→ U1

SST−→ U2
S−→ UR.

Here we reuse the equations defined in section 2.1.1. Analogously to the opening of a sluice gate
(see 2.2.1), U1 is found at the intersection between R(UL, U) and SST (U, U2) where U is the state
we search. The added difficulty here being that U2 is unknown as well. However we know that U2
lies on the curve S(U, UR). Knowing that hL > h1 > h2 > hR and uL = uR = 0, we can obtain the
following system: 

u1 = 2
√

ghL − 2
√

gh1

u2 =
√

g
2(h2 − hR)2

( 1
h2

+ 1
hR

)
h1u1 = h2u2

u2
1

2 + g(h1 + z1) = u2
2

2 + g(h2 + z2).

(8)

The first two lines correspond to R(UL, U1) and S(U2, UR), while the other two correspond to
SST (U1, U2). By injecting the first two lines in the last two lines, with z1 = 0 and z2 = zL, we define
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the following function:

Γ(h1, h2) =


h1(2

√
ghL − 2

√
gh1) − h2

√
g
2(h2 − hR)2

( 1
h2

+ 1
hR

)
2(

√
ghL −

√
gh1)2 − g

4(h2 − hR)2
( 1

h2
+ 1

hR

)
+ g(h1 − h2 − zR).

We then search for the point Γ(h1, h2) = (0, 0)T using any iterative method, to obtain h1 and h2. We
can then obtain u1 et u2 with (8). To solve the system, one can for example use Sagemath, or any
other numerical methods. We give an example of Sagemath code in figure 18.

reset()
hr = 1
hl = 4
g = 9.81
z = 1
var(’h1,h2’)
solve([h1*(2*sqrt(g*hl)-2*sqrt(g*h1))-h2*sqrt(g/2*(h2-hr)^2*(1/h2+1/hr))==0,

(2*sqrt(g*hl)-2*sqrt(g*h1))^2/2+g*h1-g/4*(h2-hr)^2*(1/h2+1/hr)-g*(h2+z)==0],
h1,h2)

Figure 18: Example of Sagemath code to search for the values h1 and h2 such that Γ(h1, h2) = (0, 0)T .

Once we found U1 and U2, the solution is entirely known:

h(x, t) =



hL

1
9g

(
2
√

ghL − x−x0
t

)2
h1

h2

hR

u(x, t) =



0 si x ≤ x1(t)
2
3
(√

ghL + x−x0
t

)
si x1(t) ≤ x ≤ x2(t)

u1 si x2(t) ≤ x ≤ x0

u2 si x0 ≤ x ≤ x3(t)
0 si x3(t) < x,

where:

• x1(t) = x0 − t
√

ghL

• x2(t) = x0 − t(3
√

gh1 − 2
√

ghL)

• x3(t) = x0 + t

(
u2 + hR

√
g
2

(
1

h2
+ 1

hR

))
.

The solution with the parameters chosen in SWASHES is drawn on figure 19. We set hL = 4 m,
hR = 1 m, zR = 1 m and T = 1 s. A word of caution for this solution in SWASHES, one should not
change the parameters fixed in SWASHES. In order to keep to code as light as possible, we chose to
solve (8) outside of SWASHES, so unlike every other solution in SWASHES, the given solution for
this problem is only correct for hL = 4 m, hR = 1 m, zR = 1 m.

3 Some numerical results: comparison with FullSWOF numerical
solutions

SWASHES was originally created to test FullSWOF (Delestre et al. 2017), a software for the resolution
of Shallow-Water equations, and to verify it against analytic solutions. To illustrate the use of some
of the new solutions we implemented in this paper, we use them to test FullSWOF.

In this section, we run FullSWOF on the dam in 2D cases (see section 1.1). We are not able to
test the other new solutions because FullSWOF does not support the spherical coordinate system (see
section 1.2), and the sluice gate problem requires a modified solver to account for the discontinuity at
the gate opening (see section 2.2).
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Figure 19: Solution to the dam break problem with a step, hL = 4 m, hR = 1 m and zR = 1 m at
t = T = 1 s.

3.1 Analysis of the FullSWOF_2D result for the parabolic dam

We tried the solver FullSWOF_2D (Delestre et al. 2017) on the parabolic dam (section 1.1.1) with
initial conditions:

h + z = 1 m , u = v = 0 m s−1,

with walls on all sides apart for the downstream limit (x = 25 m) where we want the water to evacuate.
We set the mesh as follows: Nx = 40 points and Ny = 20 points.

After 100 000 s we get the graph shown on figure 20.

Figure 20: State of the simulation after 100 000 s.

The result from FullSWOF is close to the expected steady state. Upstream of the dam the numer-
ical result is exact: the velocity is null, and the water is perfectly flat with h+z = 0.5 m. Downstream
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of the dam, there is still around 2 mm of water remaining and struggling to be evacuated: between
t = 77 777 s and t = 100 000 s, the water at x = 25 m lowered by only around 0.5 mm. This can be
explained by the small values of the remaining velocity of order 10−4 m s−1 at the final time in the
dry zone. It could be relevant to try running the solver for longer.

This problem is frequently encountered by solvers, showing the pertinence of this test to compare
them together.

Another side of the test is the symmetry. Since the topography and the initial conditions are all
symmetrical around the axis y = l/2, the numerical result should be symmetrical too. Here the water
height in the dry zone isn’t perfectly flat or symmetrical with relatively negligible differences of order
5 × 10−5 m, see figure 21. Differences of the same magnitude can be observed for u and v of order
5 × 10−5 m s−1 which isn’t relatively negligible anymore since it corresponds to the order of u and v.
Those differences cause the velocity vectors to act strangely. We even observe water going upstream
(see figure 22).

Figure 21: Water surface given by
FullSWOF_2D in the dry zone (x > 13 m).

Figure 22: Speed field (multiplied by a fac-
tor 104) given by FullSWOF_2D in the dry
zone.

3.2 Applying FullSWOF_2D to the cross-shaped dam

We tried the solver FullSWOF_2D (Delestre et al. 2017) on the cross-shaped dam (section 1.1.2) with
initial conditions:

h + z = 1.5 m , u = v = 0 m s−1.

For the boundary conditions, we do not set any walls and let the water escape from all sides (h = 0
is imposed). We set the mesh as follows: Nx = Ny = 50 points. The state of the numerical solution
at the final time t = 10 000 s is shown on figure 23.

The result from FullSWOF is close to the expected steady state. In the well pit, the solution is
exact with h + z = 1 m and u = v = 0 m s−1. We have h close to 0 everywhere else. Aside for the
flat ridge around the well, h either equals 0 or is of order, 2 × 10−12 m which is clearly negligible.
This result can be explained by the implementation of FullSWOF. Since it is hard to obtain a true 0
with a numerical solver, a certain ϵ = 10−12 m (which can be considered as the machine error) has
been introduced. In FullSWOF, if h < ϵ we consider h = 0 m. As for the velocities, they are of order
2 m s−1 in this zone and pointed outwards, which explains why the water did not struggle to evacuate
as much as it did for the parabolic dam (see section 3.1), probably thanks to the flat dry surface being
much shorter.

Apart for the inside of the well where h + z = 1 m, the only zone with water height above 10−11 m
is the flat ridge around the well, where h is of order 10−8 m, which can be explained by the low velocity
in those points of order 10−5 m s−1 (see figure 25).
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Figure 23: State of the simulation after 10 000 s.

Figure 24: Speed field at final time given by
FullSWOF_2D.

Figure 25: Speed field at final time (multiplied
by 104) centered on the central ring.
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The main interest of this test was to check the symmetry of the numerical solution. Since the
topography and the initial conditions are all symmetric along the horizontal axis, the vertical axis,
x = y and x = −y, the numerical solution should be symmetric as well. It is almost the case for all
axes with an error of order ϵ which is negligible, see for example for the velocity on figure 24.

3.3 Applying FullSWOF_1D to the dam break over a step

We tried the solver FullSWOF_1D on the dam break over a step problem (section 2.3). We expect
the discontinuity of the topography to be a problem. We keep the initial value, hL = 4 m, hR = 1 m
and we keep zR = 1 m. We set the mesh as follows: Nx = 200 points. The comparison between the
analytic solution and the result of FullSWOF_1D, at t = 1 s, are shown on figure 26.

Figure 26: Comparison between FullSWOF_1D and the analytic solution at t = 1 s.

4 Conclusion
We expanded SWASHES with 8 new solutions to the software at version 1.04.00. They complete the
already implemented stationary and transitory solutions. They allow testing adapted solvers, such
as a solver functioning in the spherical coordinate system, as well a solver adapted to the specific
Riemann problem. With the base code for spherical coordinate system now implemented, it will be
rather easy to implement new spherical analytical solutions in future version of the software.
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