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In maintenance planning, condition-based maintenance (CBM) policies leverage the observation of the current
condition of a degrading system to optimize the planning of future maintenance interventions. Researchers often
make a strong assumption that remote sensors (potentially coupled with analytic technologies) perfectly capture
the health condition of an industrial asset. For many reasons however (e.g., feasibility, cost), such assumption is
inexact and the optimization model should take into account the inaccuracy of the monitoring system. This work
focuses on a single-item system, continuously but imperfectly monitored, to illustrate how partially observable
Markov decision processes (POMDPs) enable this inaccuracy to be considered within the maintenance optimization
model. In this framework, the decision-maker minimizes the total discounted cost over an infinite time horizon
by taking one maintenance decision at each time step. For the use case we consider, we choose to model three
types of interventions: i) preventive maintenance (PM), (ii) corrective maintenance (CM), and iii) perfect inspection
(I). A resource constraint is also added to the model to limit the availability of the repair crew. To solve the
POMDP, we implement a point-based value iteration (PBVI) algorithm to compute the optimal CBM policy
via approximate dynamic programming. In order to guide investment decisions into monitoring technologies, we
develop a framework to quantify and compare the value of information provided by different monitoring systems
with known average performances. Finally, we analyze how the monitoring quality impacts the structure of the
optimal CBM policy.

Keywords: condition-based maintenance, imperfect monitoring, optimal maintenance planning, partially observable
Markov decision process (POMDP), value of information, maintenance policy.

1. Introduction

In this paper, we intend to compute the opti-
mal maintenance policy of a single-item system
in a context of imperfect condition monitoring.
Condition-based maintenance (CBM) strategies
have received much attention recently in the lit-
erature (Alaswad (2017)). Such strategies rely on
the continuous monitoring of the underlying op-
erating system via the sensoring and analytics
of one or several measured physical parameters.
This information collection is precious because it
enables the decision-maker to adjust the mainte-
nance interventions to the actual degradation state

of the item. If the system degrades faster than
anticipated, then preventive maintenance should
be scheduled sooner, and conversely if the system
degrades slower than anticipated.

Nevertheless, this CBM framework requires
most of the time to assume that the monitoring
system is perfect, i.e., that the signal observed
corresponds precisely to the degradation state of
the system. This assumption may be reasonable in
many applications, but is not always acceptable.
The question is then to investigate CBM policies
that would exploit the condition monitoring in-
formation while taking into account its potential
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inaccuracy in the best possible way. According to
Alaswad (2017) or de Jonge (2020), more research
should be done to study the effects of imperfect
condition monitoring on optimal dynamic CBM
policies. Here, we focus on the 1-item system, but
it is clear that more complex systems should also
be investigated.

In the present work, we illustrate the effi-
ciency of the partially observable Markov de-
cision processes (POMDPs), first introduced by
Sondik (1971), to solve such a maintenance plan-
ning problem. It is a rich and fecund framework
when dealing with imperfect observations of an
underlying system behaving as a Markov process.
Papakonstantinou (2014a) and Papakonstantinou
(2014b) proposed an interesting work summariz-
ing the modeling framework of POMDPs, ap-
plied explicitly to maintenance problems, and il-
lustrated on a real maintenance planning use case.
However, we believe that too few studies have
been conducted on the topic. More specifically,
through this paper, we aim at 1) illustrating the
convenience and efficiency of the POMDP frame-
work for such a problem of maintenance planning
optimization; 2) conducting a sensitivity analysis
on the quality of the monitoring system to in-
vestigate how different levels of imperfection in
the monitoring system impact the optimal main-
tenance policy; 3) illustrating in practice the con-
cept of value of information (VoI) developed in
Memarzadeh (2016) for the particular case of se-
quential decision-making. Since this work extends
Roux (2022), we may sometimes be quick on
the modeling details. The reader is nevertheless
highly encouraged to look at this more detailed
paper to find more precisions about the modeling
or algorithmic details that could be missing in the
present article.

In particular, this work differentiates from
Nguyen (2019) in several aspects. In that paper,
the authors built a POMDP-based CBM policy to
optimize inspection quality and maintenance de-
cisions jointly. They compared their strategy with
other CBM strategies through a numerical use
case to show that wisely selecting the inspection
quality at each time step could significantly im-
prove the maintenance policy. The present paper,

however, imposes a fixed condition monitoring
quality at the beginning of the optimization. In-
accurate observations are continuously collected
by a remote condition monitoring system with
a fixed performance. This imperfect monitoring
information can be complemented, if necessary,
by costly perfect inspections. We then use ap-
proximate dynamic programming to compute (to
some numerical precision) the optimal policy of
the maintenance problem modeled as a POMDP.
We eventually compare the results for different
levels of imperfect monitoring and analyze how
it impacts the expected total maintenance cost and
the structure of the optimal policy. To the best of
our knowledge, such a sensitivity analysis has not
been proposed in the literature and constitutes our
main contribution.

The problem and modeling choices are de-
scribed in Section 2. In Section 3, we briefly intro-
duce the solving method that we have used for this
article. Finally, we present our results in Section 4
where we analyze the impact of the quality of the
monitoring system in terms of expected cost and
structure of the optimal policy.

2. Problem description

2.1. Degradation model

We propose to optimize the maintenance interven-
tions of a single-item system subjected to degrada-
tion and random failures. The degradation process
is modeled by a Markov chain, where the different
states of the system are enumerated in the finite set
S = {S1, S2, S3, S4, F}. We consider here four
functioning states Si and only one failed state F ,
where S1 represents the as-good-as-new state, and
S4 is the most degraded functioning state.

The degradation process is defined by a tran-
sition matrix, noted P , describing the transition
probabilities between two consecutive time steps.
More specifically, we make the following assump-
tion about the degradation process:

i) The state of the system cannot spon-
taneously improve, meaning that transi-
tions F → Si and Si → Sj with j < i
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have a probability of zero.

P(F → Si) = P [F, Si] = 0, ∀Si

P(Si → Sj) = P [Si, Sj ] = 0, ∀ i > j

ii) The system can transition to failure from
any functioning state, but the more de-
graded the state, the most likely a failure
can occur at the next time step.

P(Si → F ) = P (Si, F ) > 0, ∀Si

P (Si, F ) < P (Sj , F ), ∀ i < j

2.2. Maintenance actions

To maintain our system, we decide to model ele-
mentary maintenance interventions. However, it is
sufficiently generic to accurately represent what is
at stake in a maintenance planning problem. This
model could easily be adapted with slight modifi-
cations (e.g., different levels of imperfect repairs),
but the core ideas and insights would remain valid.
We recall that, in the POMDP framework, the
decision-maker should select exactly one of the
following actions at each time step.

• NA (no action): No action is taken,
meaning that no maintenance interven-
tion will be performed on the system at
the current time step;

• PM (preventive maintenance): Preven-
tively replace a functioning item with a
new one; we then consider that the new
item is in as-good-as-new state S1;

• CM (corrective maintenance): Replace
a failed item with a new one; we then
consider that the new item is as-good-as-
new state S1;

• I (perfect inspection): Inspect the sys-
tem to have access to its true degrada-
tion state s ∈ S; if desired, based on
the inspection result, the decision-maker
may decide to conduct a PM in the same
time step following the inspection. This
action may be helpful to the maintenance
operator to complement the inaccurate
information collected by the continuous
monitoring system.

A cost is assigned to conducting each of these
actions. Actions NA costs 0. Generally, CMs are
much more expensive than PMs, explaining why
it is crucial to wisely schedule PMs before the
failure of the item. We note those costs costCM

and costPM , with costPM < costCM . Moreover,
we consider a use case where inspections I are
relatively cheap compared to other interventions
but not free (typically, it can be costly to stop the
system for inspection, or costly to pay the main-
tenance crew if the inspection is not straightfor-
ward); we note this cost costI . Eventually, to en-
sure that the decision-maker is willing to replace
any failed item as soon as possible, an opportunity
cost costOP will be incurred for every time step
when the system remains failed.

2.3. POMDP model

The time is discretized (typically with a granular-
ity of one day), and one maintenance decision (or
action) should be taken at each time step. The pur-
pose is to find the optimal maintenance strategy,
noted π∗, that minimizes the discounted sum of
maintenance costs over an infinite time horizon.
Such a time horizon is convenient because by do-
ing so, we are ensured to find a stationary policy.
It is then necessary to discount the maintenance
costs to avoid obtaining an infinite objective func-
tion. However, the main difficulty comes from the
imperfection in the monitoring system. Because of
that, the policy cannot directly use the degradation
state s ∈ S of the system to decide which action
to recommend.

In fact, in a POMDP framework, maintenance
decisions should be based, not on the true degra-
dation state s of the system, which is unknown,
but on what is called the belief b ∈ B about the
state of the system. As the condition monitoring
is imperfect, our knowledge about the system is
encapsulated in this belief, which is a probabil-
ity distribution over S describing our uncertainty
about the true degradation state. Formally, we note
b ∈ B = {b ∈ [0, 1]|S| :

∑
s∈S b[s] = 1}.

The optimization problem can then be formu-
lated. It is a sequential decision-making problem,
for which at each time step t, exactly one action at
should be chosen among A = {NA,PM,CM, I}.
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It consists in searching for the optimal policy π∗

minimizing the expected sum of discounted main-
tenance costs:

Vπ∗(b) := min
π∈Π

Vπ(b) = E

[+∞∑
t=0

γtc(st, at)
]

(1)

with at := π(bt) action taken at time t

bt : belief at time t (b0 = b)

0 < γ < 1 : discount factor

st : degradation state at time t

s0 : initial state of the system, distributed as b

c(s, a) : cost resulting from being in state s

and taking action a

The synthetic notation c(s, a) is widely used
in MDPs and POMDPs models. Here, for exam-
ple, we would have c(Si, PM) = costPM , or
c(F, CM) = costCM .

2.4. Imperfect monitoring matrix

The core notion in our study is the concept of
what we call the monitoring matrix. Indeed, the
condition monitoring may be imperfect, but it
can still output valuable data. Following tradi-
tional POMDP models, like in Papakonstantinou
(2014a) and Papakonstantinou (2014b), we sup-
pose that our monitoring system has a finite set
of outputs, noted O. In that context, collecting an
(imperfect) observation at time t means receiving
a certain value ot ∈ O. The potential inaccuracy
of this observation means that, from ot, there is no
way to conclude with absolute certainty the true
degradation state s of the system. However, we
assume that states s and observations o are statis-
tically correlated, and this dependence should be
exploited to update the belief bt when observing
the output ot.

More specifically, in order to optimize the
maintenance strategy, we assume that we know
the conditional probability Q(s, o) = P(o|s) of
receiving the observation o given that the system
is in state s. The matrix Q is called the moni-
toring matrix, and the rest of our paper aims at
illustrating to what extent this matrix influences
the optimal policy.

2.5. Modeling details

We are aware that we were a bit quick on the mod-
eling part, so we strongly encourage the curious
reader to look at Roux (2022), where the same
problem is exposed with much more modeling de-
tails. In particular, we would like to be precise that
the model we implement is slightly more complex
since it comprises the two additional constraints
mentioned in Roux (2022), but which were not
detailed here for simplicity.

3. Solving method

Solving a POMDP is a difficult task in general,
more complicated than a classical Markov deci-
sion process (MDP). This complexity is due to
the belief state space B, which is continuous and
forces us to consider approximate dynamic pro-
gramming methods to compute approximate solu-
tions (see Hauskrecht (2000)). The current state-
of-the-art POMDP solver is SARSOP, for Suc-
cessive Approximations of the Reachable Space
under Optimal Policies, and details can be found
in Kurniawati (2008).

We, however, choose to implement a slightly
different approximate solving method, yet very
much inspired by SARSOP. Like SARSOP, our
method is a point-based value iteration (PBVI)
algorithm, which is an adaptation of the value
iteration algorithm for classical MDPs. The value
function V is computed on specific points bgrid ∈
B̂dyn of a dynamic grid, and the whole value func-
tion is approximated by interpolation for points
b /∈ B̂dyn that are not grid points. The method
is explained more in detail in Roux (2022). Still,
such a method has a very interesting property as it
provides a lower bound on the value of the prob-
lem. That bound will be valuable for estimating
our approximate solutions’ quality.

4. Numerical experiment

4.1. Case study

This section applies our POMDP maintenance
model to an illustrative use case. Numerical values
do not come from real industrial use cases, but
orders of magnitude are directly inspired from
Yildirim (2017) and the wind turbine industry. The
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problem may seem relatively poor, with a limited
number of actions for example, but the purpose
here is really to illustrate the potential offered by
the POMDP framework and start deriving some
insights about the quality of the monitoring. Our
main contribution is to study the impact of dif-
ferent monitoring matrices on the optimal mainte-
nance policy obtained. For concision purposes, the
cost parameters, transition matrix P , and discount
factor γ used in this case study are the same as in
Roux (2022) and are therefore not explicated here.

To study the sensitivity to the quality of the
monitoring, we generate four monitoring matri-
ces, noted Q1, Q2, Q3, and Q4, described below.
To keep the model simple and easily interpretable,
we suppose there is one observation os for each
degradation state s ∈ S (e.g., an observation o1
indicates that the system is probably in state S1).
Hence intuitively, the closer to one the diagonal
elements, the more accurate the monitoring.

• Low monitoring performance

Q1 =

⎡
⎢⎢⎣

0.7 0.2 0.09 0.01

0.25 0.4 0.3 0.05

0.1 0.32 0.43 0.15

0.01 0.05 0.3 0.64

⎤
⎥⎥⎦

• Low+ monitoring performance

Q2 =

⎡
⎢⎢⎣

0.8 0.13 0.06 0.01

0.17 0.6 0.2 0.03

0.07 0.21 0.62 0.1

0.01 0.03 0.2 0.76

⎤
⎥⎥⎦

• Good- monitoring performance

Q3 =

⎡
⎢⎢⎣

0.85 0.1 0.045 0.005

0.125 0.7 0.15 0.025

0.05 0.16 0.715 0.0125

0.005 0.025 0.15 0.82

⎤
⎥⎥⎦

• Good monitoring performance

Q4 =

⎡
⎢⎢⎣

0.925 0.05 0.022 0.003

0.062 0.85 0.075 0.13

0.025 0.08 0.858 0.037

0.002 0.013 0.075 0.91

⎤
⎥⎥⎦

4.2. Methodology

To evaluate the proposed POMDP framework and
solving method, we proceed in two phases:

• optimization phase: for each monitoring
matrix Q, we compute an approximate
policy πQ;

• simulation phase: then, we simulate the
execution of this policy multiple times on
a time horizon of 15 000 time steps.

We recall that because the solving method is ap-
proximate, we are not able to compute the optimal
policy, but only an approximation πQ (which is
dependent on Q). Moreover, thanks to the prop-
erty of the PBVI-interpolation algorithm, we can
get a lower bound on the value of the problem. It
is helpful in practice since it provides an excellent
way to check the policy obtained at the end of the
procedure. Ideally, we would like the average total
cost computed via Monte-Carlo simulations to be
sufficiently close to the lower bound, indicating
that we have found a good quality approximate
policy.

The tests are performed on an office laptop,
Intel Core i7, with 32 Go RAM. The solutions ob-
tained below required, to be computed, one hour
of optimization phase and one hour of simulation
phase for each monitoring matrix.

4.3. Value of information (VoI)

Fig. 1. Average total discounted cost (simulation) vs.
monitoring quality

From Figure 1, we can clearly see how much
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the expected total maintenance cost is dependent
on the quality of the monitoring. It plays an im-
portant role and, consequently, should not be ne-
glected in the modeling of CBM strategies. Ob-
viously, it was expected that the better the mon-
itoring system, the lower the maintenance cost.
However, we believe it constitutes an natural and
interesting extension to the analysis proposed by
Memarzadeh (2016), which suggests a way to
evaluate the value of information (VoI) of a flow
of information in a sequential decision-making
framework. If we were to quantify the VoI brought
by each monitoring system, this could immedi-
ately be obtained by reading the gap with the ”no
monitoring” case. On the opposite, by looking
at the ”perfect monitoring” case, we can see the
maximum value one should be ready to pay for a
monitoring system because no condition monitor-
ing system can have a higher VoI than the ”perfect
monitoring” one.

Moreover, we also represent the lower bound
given by the dynamic programming value function
on the graph. In all of our six cases, we observe
that the gap between the analytical lower bound
and the Monte-Carlo average cost is very small.
This reinforces our confidence in the result and
provides an additional argument in favor of using
this framework to quantify the VoI (as defined in
Memarzadeh (2016)) of an imperfect monitoring
system.

For example, we believe that being able to test
easily and efficiently different monitoring scenar-
ios can be a substantial advantage when com-
paring different investments in sensors and an-
alytic technologies with different costs and per-
formances. The decision-maker would only have
to compute the VoI of each potential monitoring
matrix Q and compare them to select the most
profitable one.

4.4. Structure of the optimal maintenance
policy

From Figure 2, we can see how the quality of the
monitoring influences the structure of the optimal
policy. The following observations can be made:

1) the better the monitoring system, the
lower the number of CMs; this means

Fig. 2. Average # interventions (simulation) vs. mon-
itoring quality

that with more accurate monitoring, we
can prevent some unexpected failures,
which are very expensive;

2) under a certain minimum quality of mon-
itoring, PMs are never performed alone
but are always checked before by an in-
spection I; such inspections are used to
make sure PMs are really worth it;

3) the more inaccurate the monitoring, the
more simple inspections we make; this
means that with low monitoring quality,
we tend to perform many inspections,
but a lot of them are not followed by a
PM because the system is in fact not so
degraded.

Through this simple illustration, we also intend
to highlight that maintenance policies are very de-
pendent on the quality of the monitoring system.
This is why it seems crucial to us that monitoring
uncertainties are correctly modeled and taken into
account when they exist. It also raises some ques-
tions because this high sensitivity of the mainte-
nance policy to the monitoring performance can
also be dangerous when some uncertainties about
the monitoring matrix subsist. Therefore, we be-
lieve there is more space for additional research in
that direction.
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5. Conclusion

In this paper, we modeled and practically applied
a classical sequential maintenance problem using
the POMDP framework. Our case study illustrated
that such a modeling framework is very conve-
nient and efficient, and we encourage more re-
searchers and practitioners in the domain to pay
attention to this tool. In particular, we illustrated
on a practical example the fecund concept of value
of information applied to this quite particular case
of sequential monitoring observations. We believe
that this work opens two research directions in
the coming future. First, it could be interesting
to look at strategies that could be adopted when
we have some uncertainty about the monitoring
performance. Second, it seems that this frame-
work should be extended to multi-items systems.
However, such a POMDP approach will quickly
become intractable. To the best of our knowledge,
satisfying heuristic approaches are still to be in-
vestigated to scale up to larger and more complex
systems.
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