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Abstract—EdgeNet is a globally-distributed edge cloud testbed.
It aims to provide an experimentation platform to computer net-
works and distributed systems researchers. However, distributed
testbed providers encounter difficulties with node provisioning,
access, and maintenance when establishing an edge cloud con-
sisting of ubiquitous nodes. EdgeNet extends Kubernetes to the
edge and addresses these challenges. Employing an industry-
standard container orchestration system enables researchers
to straightforwardly deploy experiments across many vantage
points, maximizing their time for collecting and analyzing mea-
surement data. This paper describes three features that we have
developed as liberally-licensed, free, open-source extensions to
Kubernetes: federation, nodes in home networks, and easy node
deployment. We also discuss remote node maintenance as future
work.

Index Terms—Edge Cloud, Testbed, Kubernetes, Home Net-
work, Federation, Internet Researchers

I. INTRODUCTION

A growing number of internet users and their use of services
such as video streaming and gaming, along with data produced
by IoT devices, are placing heavy demands on cloud networks.
In recent years, edge computing, which can be broadly defined
as the processing of data where it is being generated [1],
[2], has been introduced to address this issue as well as to
process data in real-time. With edge computing comes edge
clouds, which aim to provide computing services ensuring
lower latency and jitter with decreased bandwidth pressure on
the core network [3].

This novel computing paradigm captures the attention of
researchers in launching experiments from such environments.
While providing an edge cloud testbed at scale is possible to
satisfy this demand, it poses a challenge since the nodes are
located and maintained at the edge and they require physical
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and remote access, thus incurring additional costs. If these
nodes are located behind network address translation (NAT)
boxes, it introduces an extra burden in terms of remote access.
Taken together, the issues of delivering, maintaining, and
accessing nodes at the edge, also considering hindrances that
come from NAT boxes, impair the long-term viability of edge
cloud testbeds due to economic constraints.

We grouped the challenges of delivering edge nodes into
three categories: provision, access, and maintenance. Geo-
graphically distributed infrastructure conceived for edge com-
puting causes an increase in the complexity of provisioning
nodes. In order to alleviate this complexity, an easy node
deployment procedure is necessary. However, this kind of
procedure does not address economic and organizational ob-
stacles to a provider establishing ubiquitous edge clouds that
run at scale. To overcome such economic and organizational
difficulties, a collaboration between edge cloud providers,
where they open up their infrastructures to each other’s users,
possibly through a federation, can be an efficient method.

The edge infrastructure mentioned above also limits physi-
cal access to the nodes. This physical access issue is primarily
related to maintenance and also urges collaboration across
organizations providing nodes. On the other hand, remote
access is a technical problem. Nodes behind NATs do not hold
a public IP address but a private IP address to communicate;
thus, they become unreachable outside the local network
remotely by default. That is to say, a system’s control plane
cannot reach such a node to take necessary actions such as
service deployment. Being physically inaccessible and having
connectivity issues raises maintenance challenges for edge
nodes.

We tackle these three issues: providing, accessing, and
maintaining edge nodes. We do so on EdgeNet, an edge
cloud testbed that we develop and operate. EdgeNet consists
in both a production globally-distributed edge cloud testbed1

for researchers; and the liberally-licensed, free, open-source
software2 that powers the testbed. This code consists in a set of

1The EdgeNet testbed https://edge-net.org/
2The EdgeNet software https://github.com/EdgeNet-projectISBN 978-3-903176-48-5© 2022 IFIP

https://edge-net.org/
https://github.com/EdgeNet-project


extensions to Kubernetes,3 the de facto industry standard tool
for orchestrating the deployment of containers to the cloud.

The multitenancy framework already offered by EdgeNet
empowers different researcher groups to conduct experiments
in parallel, thus opening up its infrastructure to a broader
community with the aim of achieving high resource utilization
in the cluster. However, other providers’ users cannot use it
without registering or EdgeNet users cannot benefit from other
providers’ infrastructure through this framework. Regarding
node deployment, our straightforward procedure, called the
multi-provider feature, to add nodes to the cluster required a
public IP address. This requirement prevented nodes behind
NAT boxes from joining the cluster.

This paper makes three contributions:

• Federation: We believe that a federation of edge clouds,
each cloud being offered by a different provider, is essen-
tial to establish heterogeneity and enable numerous van-
tage points. Such a federation can virtually address two
problems discussed above: provision and maintenance.
As multiple providers deliver edge nodes, a federation
can ensure an infrastructure at scale. It also facilitates
the maintenance of the nodes through physical operation,
thanks to a shared workload between the providers.
We developed an aggregate manager (AM), which
empowers researchers to use EdgeNet through
Fed4FIRE+ [4] as they do for the other federated
testbeds. That is to say, it removes the requirement of
registering with the testbed to conduct measurements on
our globally distributed edge cloud.

• Home Networks: Since the advent of edge computing,
home networks have drawn heavy attention from internet
researchers for the past few years. With home networks,
the presence of NAT boxes is an important deterrent
to deployment. Thus, it is not a trivial task to manage
the life-cycle of an experiment, such as deployment and
version updates, that launches measurements from a node
behind a NAT box.
We offer a virtual private network solution that makes
it possible for nodes at home networks to take part in a
cluster, handling the access issue, as explained in Sec. IV.
An agent running on each node configures the VPN
network by actions such as assigning an IPv4/IPv6 pair of
addresses. Current deployment ensures a VPN tunnel is
established between two public nodes or between a public
node and a NATted node. In future releases, we plan
to support communication between two NATted nodes
through the VPN network.

• Node Deployment: A fundamental necessity is a simple
procedure that safely sets up a node and makes it join a
cluster. By providing nodes in such a forthright manner,
a contributor is less likely to give up during the process.
EdgeNet facilitates node contributions to the cluster via
its deployment procedure. We now include the installation

3Kubernetes https://kubernetes.io/

of the node agent mentioned above in this procedure to
automate VPN establishment.

This paper is organized as follows: Sec. II presents related
work regarding similar testbed platforms; Sec. III introduces
the architecture of our Fed4FIRE+ aggregate manager; Sec. IV
describes how EdgeNet extends to home networks; Sec. V
describes the node deployment procedure; Sec. VI discusses
future work to maintain and recover nodes remotely; and
Sec. VII is the conclusion.

II. RELATED WORK

The networking and distributed systems research commu-
nities have provided various edge cloud testbeds typically
spanning broad geolocations such as PlanetLab [5], PlanetLab
Europe [6], GENI [7], G-Lab [8], V-Node [9], and SAVI [10]
in the past decades. All of these testbeds required dedicated
hardware and delivered custom software. These two design
decisions hindered efficiency and sustainability.

First, dedicated hardware has caused an increase in mainte-
nance and scaling costs because of a need for on-site support
and initial purchase investment. Thus, contributors abandoned
nodes to their fate over time. Second, typically, these testbeds
have been supported by researchers writing custom software.
This introduces a heavy workload on coding and preparing
tutorials for those who maintain that testbed. Furthermore,
it commonly obliges an experimenter to learn a new control
framework for each testbed.

EdgeNet’s philosophy is different from these testbeds in two
respects. It encourages contributors to supply virtual machines
as a node instead of dedicated hardware, in order to decrease
the cost of providing and maintaining the testbed. And to
reduce programming and documentation workload, it adapts
industry-standard open-source software for the needs of the
testbed. Thus, we strive to attract potential contributors to the
cluster and contribute back to the open-source community.

III. FEDERATION

The EdgeNet testbed provides a platform for running Next-
Generation Internet (NGI) experiments. It currently provides
more than 50 nodes scattered around the world, with access
to the internet and private network connectivity between each
nodes. EdgeNet is based on Kubernetes and experimenters
deploys Docker containers. In order to provide a unified way
of accessing the testbed, we implement the GENI Aggregate
Manager (AM) API v3 mandated by the Fed4FIRE+ project.
Through this API, experimenters can deploy and access con-
tainers on nodes of their choice.

The Kubernetes API is natively a declarative API: users
define the desired state of a resource (e.g., a container) and a
control-loop (also called the controller) keeps the resource in
sync. In contrast, the AM API is imperative by nature: users
perform actions that change the state of a resource, such as
allocate, provision, shutdown, etc. In order to reconcile the
two paradigms, we have created an AM API that manages
Kubernetes objects on the behalf of the users.

https://kubernetes.io/


A. Mapping GENI resources to Kubernetes resources

The AM specification defines three main kinds of resources:
users, slices, and slivers. Slivers are collections of compute
resources and users are given rights to create slivers in slices.
In our case, we seek to offer to experimenters SSH access to
Docker containers running on EdgeNet. Thus, a sliver maps
to a collection of three Kubernetes objects:

• A Deployment object defines the specification of the
container: image, node and CPU architecture. Kubernetes
will ensure that a container matching these specifications
will always be running.

• A Service object maps an available TCP port of the host
node, to the SSH port of the container.

• A ConfigMap object holds the SSH keys of the user and
is mounted on ~/.ssh/authorized_keys.

Users can choose a specific Docker image, node and CPU
architecture (aarch64 or x86_64). If none are specified, the AM
API will choose a default image and Kubernetes will create
the container on any available node.

B. Resource expiration

Slivers have an expiration time, which can be extended
by performing the renew action. When a sliver expires, the
associated resources must be deleted. Kubernetes has cur-
rently no way of specifying expiration dates for objects and
automatically deletes them (excepted for Jobs resources). To
work around this, we run a garbage collector goroutine which
periodically checks for the expiration of the resources and
deletes them.

C. Object naming

Object names are derived from the first 8 bytes of the
SHA512 hash of the sliver name. This allows the creation
of objects with names that are valid in the GENI AM specifi-
cation, but not in Kubernetes which allows only alphanumeric
chars.

D. Non-standard TLS certificated workaround

As per the specification, clients are authenticated us-
ing client TLS certificates. The certificates provided by
Fed4FIRE+ contain non-standard OIDs (Object IDentifiers)
which cannot be parsed by the Go X.509 parser. Specifically,
the Authority Information Access OID contains numbers larger
than 32-bits. This makes it impossible to authenticate clients
using Go code and prevents the use of reverse proxies written
in Go such as the popular Caddy4 and Traefik5 proxies. Upon
discussion with the Fed4FIRE+ administrators, it became clear
that there is no immediate plan for the Fed4FIRE+ OID format
to change. To work around this issue, we place an NGINX6

reverse proxy in front of our AM API server. This proxy
performs client TLS authentication and forwards the request
to the AM API server by including the certificate in a custom

4Caddy https://caddyserver.com
5Traefik https://doc.traefik.io/traefik
6NGINX https://www.nginx.com

X-Fed4Fire-Certificate HTTP header. This information is
then passed to external tools by the AM API, such as xmlsec1
to validate credentials and authorize users.

E. Deployment

Our AM API is publicly deployed7 and its source code
is available on GitHub.8 It can easily be deployed on any
Kubernetes cluster to federate that cluster with Fed4FIRE+.
That is to say, the API that we provide is general to Kubernetes
and is not specific to just the EdgeNet Kubernetes cluster.

IV. HOME NETWORKS

Kubernetes is designed for centralized data centers, and on
that basis, the system assumes that cluster nodes share a local
network. Put another way, it does not provide an off-the-shelf
solution for nodes on different networks without public IP
addresses. This introduces two communications problems:

• A node behind a NAT box can access control plane nodes,
but a control plane node cannot access that node.

• Containers on a node behind a NAT box are unreachable
from other cluster nodes.

Kubernetes has an extensible architecture that allows de-
veloping and using plugins. A container network interface
(CNI) plugin typically establishes networking between pods.
EdgeNet employs VMware’s Antrea CNI9 for this purpose.
Antrea uses the OVS bridge on every node. Furthermore, it
forms a virtual ethernet (veth) pair for each pod, a gateway
(gw) to the node subnet, and a tunnel (tun) for inter-node
communications.10

The OVS bridge forwards packets using veth pairs on the
node regarding local pod traffic. If traffic is toward an external
destination, packets to be routed are forwarded through the
gateway port. Antrea benefits from source network address
translation (SNAT) so that the pod IP address is preserved. In
terms of inter-node communication, tunnels encapsulate and
decapsulate packets. Fig.1a depicts the traffic flow where every
node has a public IP address.

However, if a node is behind a NAT box on another
network, it blocks inter-node communication. To overcome
this problem, we set up a VPN tunnel between every pair
of nodes in the cluster. We settled on using the WireGuard
VPN [11] for multiple reasons:

• its performance: it offers throughput 5 times higher than
OpenVPN and 1.1 times higher than IPsec on the same
configuration;11

• its simplicity: it only requires generating of public/private
pair of keys for each client and does not requires a PKI
infrastructure as OpenVPN certificate-based authentica-
tion does;

7EdgeNet AM API https://fed4fire.edge-net.io.
8EdgeNet AM software https://github.com/EdgeNet-project/fed4fire.
9VMware Antrea https://antrea.io/
10The VMware Antrea architecture https://antrea.io/docs/main/docs/design/

architecture/
11The WireGuard benchmarking https://www.wireguard.com/performance
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• its integration in the Linux kernel: it is natively integrated
in the kernel since Linux 5.6, requiring no additional
kernel modules.

Our solution provides IPv4 and IPv6 peer-to-peer communi-
cation for every nodes of the cluster (with the exception of
NAT-to-NAT communications, see Sec. IV-B) over the public
IPv4 internet, as seen in Fig. 1b.

A. Bootstrapping VPN peers

A node must have established VPN connectivity with the
rest of the cluster before Kubernetes starts. To achieve this,
an agent present on each node performs the following actions
on boot:

1) It checks if a public/private key pair has ever been
generated. If none, it generates one and saves it for
subsequent boots.

2) It checks if an IPv4/IPv6 pair of address has ever been
generated. If none, it queries the cluster to get the list
of used IP address in the VPN network, and chooses
a random pair of addresses amongst the ones available.
Randomization allows to reduce the risk of two new
nodes choosing the same IP address if booted at the
same time.

3) It publishes its public key, its private IP address pair,
and its public IP address to the cluster by creating a
VPNPeer Kubernetes resource.

4) It queries the list of VPNPeer resources and configures
the tunnel interface to add each peer.

B. NAT-to-NAT communications

In our current deployment, a VPN tunnel can be established
between two public nodes, or between one public node and one
NATted node. Establishing a connection between two NATted
nodes requires the use of an external server to exchange port
numbers and perform UDP hole punching. We will implement
such a technique in future iterations.

V. NODE DEPLOYMENT

Anyone can contribute a node to the EdgeNet public cluster.
Deploying a node involves setting up Kubernetes, the container
runtime, the network, and joining the cluster. In order to
make this process as easy and as transparent as possible,
we developed a set of Ansible playbooks12 that automatically
perform all of these steps. Our current deployment procedure
is as follows and will spawn a node in under 5 minutes:

• The user runs the bootstrap.sh script on the target node.
This script will install Ansible, fetch the deployment
playbook and run it.

• The playbook will install Kubernetes, the container run-
time, and a dedicated node agent written in Go.

• The node agent will start and configure the VPN as
described in Sec. IV-A, and it will join the cluster.

This architecture is very flexible:

12EdgeNet node provisioning https://github.com/EdgeNet-project/node.

• The bootstrap script works on any recent Debian or
RedHat-based Linux distribution, on aarch64 or x86_64
architectures, and it doesn’t requires any preinstalled
software.

• The bootstrap script URL can be passed to cloud-init13

to automatically set up the instances on first boot.
• The Ansible playbooks can be used in a standalone

fashion for bulk deployment or node maintenance.
• The Ansible playbooks can be used together with

Packer14 to create VM images with our software pre-
installed.

In our current implementation, no input is required from the
user and anyone can contribute a node without an EdgeNet
account.

VI. NODE ROBUSTNESS

In comparison to other testbeds such as PlanetLab, EdgeNet
nodes are not expected to be maintained by system adminis-
trators. A node can be deployed in a user’s home with limited
debugging time and knowledge. As such, we must ensure
that the nodes are able to self-heal in case of problems. We
have currently identified two main issues: unresponsive nodes
and file system corruption. We describe below two tentative
solutions that we will try to implement in the next iteration of
EdgeNet.

A. Unresponsive nodes

A node can become unresponsive if some application con-
sumes all of its resources, or if an excessive amount of network
traffic saturates the network interface and the CPU. We are
investigating the use of the hardware watchdog present on
Raspberry Pi and ODROID single-board computers to auto-
matically reboot unresponsive nodes. The kernel periodically
sends heartbeats to the watchdog. If the watchdog stops
receiving heartbeats, it power cycles the node. This procedure
can fix unresponsive nodes without any user intervention.

B. File system corruption

Single-board computers often use flash-based memory such
as SD cards or eMMCs. These memories are prone to failure
as they are usually not designed for continuous random
writes over long period of times. When these memories fail,
the file system is corrupted and the systems stops working
properly. It is also possible that a user improperly changes the
configuration of a node.

To handle this issue, we are exploring the possibility of
booting nodes over the internet. The petitboot15 bootloader
can boot a kernel and a live disk image over the internet. The
disk image and the kernel would live in RAM, and the node’s
flash storage would only be used to store container data. If the
flash memory fails, the node would still be accessible and the
user would only have to replace the SD card.

13cloud-init ttps://cloud-init.io
14Packer https://www.packer.io
15petitboot https://github.com/open-power/petitboot
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(a) Pod traffic where every node has a public IP address. Orange is for pod-
to-external, cyan is for inter-node, and purple is for intra-node traffic.
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(b) Pod traffic where a node has a private IP address. Cyan shows that traffic
is routed through edgenetmesh both on the source and destination nodes.

Fig. 1. Traffic flow in EdgeNet. The drawings are inspired by VMware architecture documentation.10

This method also has the benefit of making system updates
very easy: deploy a new disk image on the server and reboot
the remote nodes. If the update fails, roll back the disk image
on the server. The main concern with this approach is security
and how to authenticate the boot server as well as the disk
images.

VII. CONCLUSION

We have introduced challenges related to nodes at the edge
that distributed testbed providers face: provision, access, and
maintenance. Three contributions, federation, home networks,
and node deployment, addressed these issues. Our aggregate
manager (AM), which federates EdgeNet into Fed4FIRE+,
shows that our testbed is capable of running in concert with
other testbeds. A node agent configures a virtual private
network, thus enabling nodes behind NAT boxes to participate
in a cluster with the help of the native VPN peer controller
in Kubernetes. Finally yet importantly, a node can join a
cluster in less than ten minutes via our node deployment
procedure that includes installing the above-mentioned agent.
In conclusion, these three features allow the testbed to reach
out to a wider community and scale up the cluster, including
edge nodes typically blocked by NAT boxes. This paper also
discusses how to tackle remotely maintaining edge nodes as
future work.
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