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A B S T R A C T
On account of its many successes in inference tasks and imaging applications, Dictionary Learning
(DL) and its related sparse optimization problems have garnered a lot of research interest. In DL area,
most solutions are focused on single-layer dictionaries, whose reliance on handcrafted features achieves
a somewhat limited performance. With the rapid development of deep learning, improved DL methods
called Deep DL (DDL), have been recently proposed an end-to-end flexible inference solution with a
much higher performance. The proposed DDL techniques have, however, also fallen short on a number
of issues, namely, computational cost and the difficulties in gradient updating and initialization. While
a few differential programming solutions have been proposed to speed-up the single-layer DL, none of
them could ensure an efficient, scalable, and robust solution for DDL methods. To that end, we propose
herein, a novel differentiable programming approach, which yields an efficient, competitive and reliable
DDL solution. The novel DDL method jointly learns deep transforms and deep metrics, where each DL
layer is theoretically reformulated as a combination of one linear layer and a Recurrent Neural Network
(RNN). The RNN is also shown to flexibly account for the layer-associated approximation together
with a learnable metric. Additionally, our proposed work unveils new insights into Neural Network
(NN) and DDL, bridging the combinations of linear and RNN layers with DDL methods. Extensive
experiments on image classification problems are carried out to demonstrate that the proposed method
can not only outperform existing DDL several counts including, efficiency, scaling and discrimination,
but also achieve better accuracy and increased robustness against adversarial perturbations than CNNs.

1. Introduction
Dictionary Learning / Sparse Coding has demonstrated

its high potential in exploring the semantic information
embedded in high dimensional noisy data. It has been
successfully applied for solving different inference tasks,
such as image denoising Elad and Aharon (2006), image
restoration Xu, Jia, Pickering and Plaza (2016), image super-
resolution Zhong (2012); Skau, Wohlberg, Krim and Dai
(2016), audio processing Grosse, Raina, Kwong and Ng
(2007) and image classification Zhang, Liu, Zhang, Zhang,
Wang and Jing (2016).

Dictionary Learning can be decomposed into two princi-
pal themes of learning: Synthesis Dictionary Learning (SDL)
and Analysis Dictionary Learning (ADL) / Transform Learn-
ing. While SDL has been greatly investigated and widely used
Mairal, Ponce, Sapiro, Zisserman and Bach (2009); Aharon,
Elad and Bruckstein (2006); Ramirez, Sprechmann and
Sapiro (2010a); Yang, Zhang, Feng and Zhang (2014); Wang,
Yang, Nasrabadi and Huang (2013), the ADL /Transform
Learning, as a dual problem, has been getting greater attention
for its robustness property among others Rubinstein, Peleg
and Elad (2013); Bian, Krim, Bronstein and Dai (2016); Tang,
Otero, Krim and Dai (2016). Conventional DL based methods
have primarily focused on learning a single-layer dictionary
and its associated sparse representation. Other variations
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on the classification theme have also been appearing with
a goal of addressing some recognized limitations, such as
task-driven dictionary learning Mairal et al. (2009), first
introduced to jointly learn the dictionary, its sparse repre-
sentation, and its classification objective. In Aharon et al.
(2006), a label consistent term is additionally considered.
Class-specific dictionary learning has been recently shown
to improve the discrimination in Ramirez et al. (2010a);
Yang et al. (2014); Wang et al. (2013) at the expense of a
higher complexity. On the ADL side, more and more efficient
classifiers Guo, Guo, Kong, Zhang and He (2016); Wang,
Guo, Guo, Luo and Kong (2017); Wang, Guo, Guo and
Kong (2018); Tang, Panahi, Krim and Dai (2018, 2019a)
have resulted from numerous research efforts, and have
yielded to an outperformance of SDL in both training and
testing phases Tang, Panahi, Krim and Dai (2019b). All the
aforementioned SDL and ADL methods are, however, single-
layer-based. They thus possibly have limited learning capacity
to address the complex and diverse data in an end-to-end
manner. With the fast development of deep learning, Deep
Dictionary Learning (DDL) methods Tariyal, Majumdar,
Singh and Vatsa (2016); Mahdizadehaghdam, Dai, Krim,
Skau and Wang (2017) have thus come into play to achieve
the best performance in various image tasks, such as super-
resolution Huang and Dragotti (2018), image classification
Mahdizadehaghdam, Panahi, Krim and Dai (2019) and
unsupervised learning Maggu and Majumdar (2018); Gupta,
Maggu, Majumdar, Chouzenoux and Chierchia (2020).

Tang etal.: Preprint submitted to Elsevier Page 1 of 15



Deep Transform and Metric Learning Network

Figure 1: 2-layer DeTraMe-Net model. Each layer solves a DL problem, which is transformed into the combination of Transforming
Learning (i.e., linear layer in brown dashed lines) and Q-Metric Learning (i.e., RNN in red dashed dot lines). A truncated 2-iterations
RNN is unfolded. Sparsity is imposed by shifted-ReLU functions. In the forward pass, we first use a linear layer to learn the
new representation 𝐙(𝟏) for input data 𝐗. The RNN is then used to iteratively learn the optimal sparse representation 𝐔(𝟏)

∗ . For
the second layer, the sparse representation 𝐔(𝟏)

∗ is used as input to learn the second layer sparse representation 𝐔(𝟐)
∗ . Finally, a

cross-entropy loss based on 𝐔(𝟐)
∗ and ground truth 𝐘 is used. The parameters 𝐖(𝑖), 𝐖(𝑖), 𝐡(𝑖) and 𝐛(𝑖), 𝑖 = 1, 2, in the linear layer

and RNN parts are learned by back-propagation.

The conventional single-layer DL methods with their
associated sparse representations, present significant compu-
tational challenges addressed by different techniques, includ-
ing K-SVD Aharon et al. (2006); Rubinstein et al. (2013),
SNS-ADL Bian et al. (2016) and Fast Iterative Shrinkage-
thresholding Algorithm (FISTA) Beck and Teboulle (2009).
Meant to provide a practically faster solution, the alternating
minimization of FISTA still exhibited limitations and a
relatively high computational cost. Apparently, the DDL
training procedure is much more difficult than that of single-
layer DL. In addition to the extensive time cost, DDL training
also suffers from its initialization sensitivity and gradient
propagation issues. All these existing DDL models have, to
the best of our knowledge, fallen short on delivering fast,
robust and viable solutions.

To address such a computational difficulty of conven-
tional DL methods, differentiable programming solutions
Gregor and LeCun (2010); Zhou, Di, Du, Peng, Yang, Pan,
Tsang, Liu, Qin and Goh (2018) have thus been developed.
They take advantage of the efficiency of neural networks to
reduce the learning time. For example, LISTA Gregor and
LeCun (2010) was first proposed to unfold iterative hard-
thresholding into an RNN format, thus speeding up SDL.
Sparse LSTM (SLSTM) Zhou et al. (2018) adapts LISTA to a
Long Short Term Memory (LSTM) structure to automatically
learn the dimension of the sparse representation. Although
these approaches successfully resolve the computational
limitation of the single-layer DL methods, none of them offers
a fast, scalable and reliable solution for DDL methods.

We thus propose herein, such an efficient end-to-end
DDL solution, with an improved discriminative capability.

Specifically, we propose a novel differentiable programming
method for DDL, which jointly learns deep metrics together
with associated deep transforms. Cascading these canonical
paired structures of metric and transform learning allows us
to build a deep network with a stronger learning capacity, and
yields what we refer to as a Deep Transform and Metric
Learning Network (DeTraMe-Net). This newly proposed
approach not only increases the discrimination capabilities of
both single-layer DL and DDL, but also affords a flexibility
of constructing different DDL or Deep Neural Network
(DNN) architectures, as well as ensuring robustness against
adversarial attacks.

In this paper, we first theoretically reformulate DDL as a
deep cascaded paired structures of metric and transform learn-
ing. We subsequently show that a differentiable programming
training solution can be realized through a combination of
linear layers and RNNs in the neural network architecture. We
also introduce additional flexibility and improve the power of
DDL by decoupling the metric and the dual frame operator
(pseudo-inverse of dictionary) into two independent variables.
Our experiments demonstrate that these reformulations not
only improve the discriminative ability of the single-layer
DL, but also ensure that our proposed DeTraMe-Net is an
efficient, discriminative, scalable and robust DDL solution.
Additionally, the reformulations also yield independence
between the linear and RNN layers, and thus, induce more
flexibility when constructing different network architectures.
As a result, different new DeTraMe networks are obtained
by integrating the RNN part into various CNN architectures
such as Plain CNN Springenberg, Dosovitskiy, Brox and
Riedmiller (2014) and ResNets He, Zhang, Ren and Sun
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(2016). In our experiments, the resulting DeTraMe-Nets-
based architectures are also demonstrated to be more dis-
criminative and robust than original CNN models.

To further simplify and clarify our discussion, we first
show a two-layer DeTreMe-Net in Figure 1. In each layer
of DeTraMe-Net, the DL problem is decomposed into
a transform learning component, i.e. a linear layer stage
cascaded with a nonlinear component as a learned metric.
The latter, referred to as Q-Metric Learning, is realized by
an RNN. The learnable Q-Metric stage may also be viewed
as a non-separable weighted activation function for better
feature representations. The DeTraMe-Net training is then
hence similar to other neural network with the forward and
backward passes.

Consequently, our main contributions are summarized
below:

• We theoretically transform one-layer dictionary learn-
ing into transform learning and Q-Metric learning, and
deduce how to convert DDL into DeTraMe-Net.

• Such joint transform learning and Q-Metric learning
are successfully and easily implemented as a tandem
of a linear layer and an RNN. To the best of our
knowledge, this is the first work which makes an
insightful bridge between DDL methods and the com-
bination of linear layers and RNNs, with the associated
performance gains.

• The transform and Q-Metric learning uses two inde-
pendent variables, one for the dictionary and the other
for the dual frame operator of the dictionary. This
bridges the current work to conventional SDL while
introducing more discriminative power, and allowing
the use of faster learning procedures than the original
DL.

• The Q-Metric can also be viewed as a parametric
non-separable nonlinear activation function, while in
current neural network architectures, very few non-
separable nonlinear operators are used (softmax, max
pooling, average pooling). As a component of a neural
network, it can be flexibly inserted into any network
architecture to easily construct a DL layer.

• The proposed DeTraMe-Net is demonstrated to not
only greatly reduce the training and testing time, but
also improve the discrimination power of DDL and its
scalability.

• By easily integrating the Q-Metric in any CNN ar-
chitecture, the resulting DeTraMe-Net-based CNN
architectures achieve better accuracy than the original
CNNs with stronger robustness.

The paper is organized as follows: We first highlight the
difference between our work and the existing literature in
Section 2. Then, in Section 3, we introduce the required
background material. We derive the theoretical basis for
our novel approach in Section 4. Its algorithmic solution is

investigated in Section 5. Substantiating experimental results
and evaluations are presented in Section 6. Finally, we provide
some concluding remarks in Section 7.

2. Related Work
2.1. Deep Dictionary Learning

To improve the performance of conventional DL methods,
deep DL methods Tariyal et al. (2016); Mahdizadehaghdam
et al. (2017); Huang and Dragotti (2018); Mahdizadehaghdam
et al. (2019); Maggu and Majumdar (2018); Gupta et al.
(2020) have been increasing research attention. Tariyal et al.
(2016); Mahdizadehaghdam et al. (2017) first develop the
early multiple-layers DL methods, such as 2- or 3-layers, but
they are not as deep as the later developed methods Huang and
Dragotti (2018); Mahdizadehaghdam et al. (2019); Maggu
and Majumdar (2018); Gupta et al. (2020). In Huang and
Dragotti (2018), a deep model for ADL followed by a SDL
is developed for image super-resolution. Also, Mahdizade-
haghdam et al. (2019) deeply stacks SDLs to classify images
to achieve promising and robust results. Moreover, unsu-
pervised DDL approaches have also been proposed with
promising results in Maggu and Majumdar (2018); Gupta
et al. (2020). Our proposed DeTraMe-Net is a deep SDL
supervised learning method. The merit of DeTraMe-Net
is multifold, starting with the adoption of differentiable
programming for a neural network framework, with other
solutions Huang and Dragotti (2018); Mahdizadehaghdam
et al. (2019); Maggu and Majumdar (2018); Gupta et al.
(2020) relying on the alternating optimization of various
variables. Specifically in contrast to the SDL-based classifier
proposed in Mahdizadehaghdam et al. (2019), DeTraMe-Net
further decouples the dependency between the dictionaries
and their pseudo-inverse, while Mahdizadehaghdam et al.
(2019) updates its dictionaries as a composite function of the
dictionaries and their associated pseudo-inverses. It is also
worth noting that the layer reaches 23 with no significant
gain in performance beyond that in Mahdizadehaghdam et al.
(2019), while our architecture can reach up to 110 layers.
2.2. Differentiable Programming for DL

Differentiable programming is a numerical optimization
solution using automatic differentiation to address difficult
and large scale computational problems. In general, the
training of neural networks is always addressed by differ-
entiable programming due to its complex computational
graph. In the DL area, an additional difficulty is to handle
sparsity measures. FISTA Beck and Teboulle (2009) is
a popular iterative solution for classical optimization but
it is notorious for its computational time complexity. To
that end, LISTA Gregor and LeCun (2010) was the first
proposed differentiable programming approach for recasting
a FISTA-like solver into an RNN format. Unlike conventional
solutions for solving optimization problems, LISTA uses the
forward and backward passes to simultaneously update the
sparse representation and dictionary in an efficient manner.
SLSTM Zhou et al. (2018) learns the dimension of the sparse
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representation by changing the RNN format in LISTA with a
LSTM structure. Meanwhile, in Wang, Liu, Yang, Han and
Huang (2015) and Liu, Chen, Chen and Wassell (2018), the
authors used a CNN followed by an RNN for respectively
solving super-resolution and scene recognition tasks. They
directly used LISTA Gregor and LeCun (2010) in their model
to jointly learn the sparse representations. Our method solves
a problem similar to LISTA Gregor and LeCun (2010), in
the sense that it computes both the dictionary and its sparse
coefficients in a SDL context, rather than just enhancing the
sparsity as Wang et al. (2015) and Liu et al. (2018) did. A
single RNN format is used in LISTA Gregor and LeCun
(2010). In contrast, a linear layer followed by a specific RNN
is used in our method, which leads to a more discriminative
DL approach than a conventional DL. Moreover, LISTA is
grounded on the𝐿0 pseudo-norm as a sparsity measure, while
ours is based on the 𝐿1 norm. In addition, we also formally
derive the linear and RNN-based layer structure from DDL,
thus providing a theoretical justification and a rationale for
such approaches. This may also open an avenue to new and
more creative and performing alternatives.

In Hasannasab, Hertrich, Neumayer, Plonka, Setzer and
Steidl (2020), an 𝐿1 norm transformation is also used in con-
junction with the proximal operator Bach, Jenatton, Mairal
and Obozinski (2011); Parikh and Boyd (2014); Combettes
and Pesquet (2021) in a neural network framework, which
is also captured by the more general variational framework
developed in Combettes and Pesquet (2020). But it is worth
noting that in Hasannasab et al. (2020), there is no separation
of the dictionary and the pseudo-inverse into two independent
variables to learn the weighted operator as we propose here.
2.3. Notation

Symbols Descriptions
𝐀, (𝐚𝑖), (𝑎𝑖,𝑗) A Matrix
𝐀⊤, 𝐀(−1) The transpose and inverse of matrices
𝐈 The Identity Matrix
𝑎𝑖,𝑗 The 𝑖𝑡ℎ row and 𝑗𝑡ℎ column element of a matrix 𝐀
𝐚, 𝑎𝑖 A Vector and its 𝑖𝑡ℎ element
 An Operator

3. Preliminaries
3.1. Dictionary Learning for Classification

In task-driven dictionary learning Mairal et al. (2009),
the common method for single-layer dictionary learning
classifier is to jointly learn the dictionary matrix 𝐃, the
sparse representation 𝐚 of a given vector 𝐱, and the classifier
parameter 𝐂. Let (𝐱𝑗)1≤𝑗≤𝑁 be the data and (𝐲𝑗)1≤𝑗≤𝑁 the
associated labels. Task-driven DL can be expressed as a
solution to,

argmin
𝐃,(𝐚𝐣)𝟏≤𝐣≤𝐍,𝐂

𝑁
∑

𝑗=1
𝑓 (𝐱𝑗 ,𝐃, 𝐚𝑗) + 𝑔(𝐱𝑗 , 𝐲𝑗 ,𝐃, 𝐚𝑗 ,𝐂). (1)

In SDL, we learn the composition of a dictionary and a sparse
reconstruction in order to reconstruct or synthesize the data,

hence yielding the standard formulation,

𝑓 (𝐱,𝐃, 𝐚) = 𝟏
𝟐
‖𝐱 − 𝐃𝐚‖𝟐 + 𝜆‖𝐚‖𝟏, 𝜆 ∈ (0,+∞). (2)

Alternatively, in ADL, we directly operate on the data using
a dictionary, leading to,

𝑓 (𝐱,𝐃, 𝐚) = 𝟏
𝟐
‖𝐚 − 𝐃𝐱‖𝟐 + 𝜆‖𝐚‖𝟏, 𝜆 ∈ (0,+∞). (3)

The term 𝑔(𝐱, 𝐲,𝐃, 𝐚,𝐂) may correspond to various kinds of
loss functions, such as least-squares, cross-entropy, or hinge
loss.
3.2. Deep Dictionary Learning for Classification

An efficient DDL approach Mahdizadehaghdam et al.
(2019) consists of computing

�̂� = 𝜑(𝐂𝐱(𝐬)), (4)
where �̂� denotes the estimated label, 𝐂 is the classifier matrix,
𝜑 is a nonlinear function, and

𝐱(𝑠) = (𝑠)◦𝐃(𝑠)◦ (𝑠−1)◦𝐃(𝑠−1)◦

… ◦ (1)◦𝐃(1) (𝐱(0)),
(5)

where ◦ denotes the composition of operators. For every layer
𝑟 ∈ {1,… , 𝑠},  (𝑟) is a reshaping operator, which is a tall
matrix. Moreover, 𝐃(𝑟) is a nonlinear operator computing
a sparse representation within a synthesis dictionary matrix
𝐃(𝑟). More precisely, for a given matrix 𝐃(𝑟) ∈ ℝ𝑚𝑟×𝑘𝑟 ,

𝐃(𝑟) ∶ ℝ𝑚𝑟 → ℝ𝑘𝑟

𝐱 ↦ argmin
𝐚∈ℝ𝑘𝑟

𝑅(𝐃(𝑟), 𝐚, 𝐱), (6)

with

𝑅(𝐃(𝑟), 𝐚, 𝐱) = 1
2
‖𝐱 − 𝐃(𝑟)𝐚‖2𝐹 + 𝜆𝜓𝑟(𝐚) +

𝛼
2
‖𝐚‖22

+ (𝐝(𝑟))⊤𝐚, (7)
where (𝜆, 𝛼) ∈ (0,+∞)2, and 𝜓𝑟 is a function in Γ0(ℝ𝑘𝑟 ),
the class of proper lower semicontinuous convex functions
from ℝ𝑘𝑟 to (−∞,+∞]. 𝐝(𝑟) ∈ ℝ𝑘𝑟 is a vector for the general
linear penalty in (7) to balance fidelity and classification. For
conventional DL, a simple choice consists in setting 𝐝(𝑟) to
zero, while adopting the following specific form for 𝜓𝑟;

𝜓𝑟 = ‖ ⋅ ‖1 + 𝜄[0,+∞)𝑘𝑟 , (8)
where 𝜄𝑆 denotes the indicator function of a set 𝑆 (equal to
zero in 𝑆 and +∞ otherwise). Note that Eq. (6) corresponds
to the minimization of a strongly convex function, which thus
admits a unique minimizer, so making the operator 𝐃(𝑟)

properly defined.
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4. Joint Deep Metric and Transform Learning
4.1. Proximal interpretation

Our goal here is to establish an equivalent but more
insightful solution for 𝐃 in each layer.
To simplify notation, we omit the superscript which denotes
the layer in Eq. (6) which, in turn, aims at finding the sparse
representation 𝐚.
Claim 1: 𝐃 can be solved by a proximal operator Bach
et al. (2011); Parikh and Boyd (2014); Combettes and Pesquet
(2021) related to transform learning with a metric 𝐐:

𝐃(𝐱) = prox𝐐𝜆𝜓 (𝐅𝐱 − 𝐜) (9)
with

𝐐 = 𝐃⊤𝐃 + 𝛼𝐈, 𝐅 = 𝐐−1𝐃⊤, 𝐜 = 𝐐−1𝐝. (10)

Indeed, for every 𝐃 ∈ ℝ𝑚×𝑘, 𝐚 ∈ ℝ𝑘, and 𝐱 ∈ ℝ𝑚,
Eq. (7) can be re-expressed as follows:

𝑅(𝐃, 𝐚, 𝐱) = 1
2
(

‖𝐱‖2 − 2𝐱⊤𝐃𝐚 + 𝐚⊤(𝐃⊤𝐃 + 𝛼𝐈)𝐚
)

+ 𝜆𝜓(𝐚) + 𝐝⊤𝐚

= ̃𝑅(𝐃, 𝐚, 𝐱) + 1
2
(‖𝐱‖2 − ‖𝐅𝐱‖2𝐐 − ‖𝐜‖2𝐐)

+ 𝐱⊤𝐃𝐜,
(11)

where
̃𝑅(𝐃, 𝐚, 𝐱) = 1

2
‖𝐚 − 𝐅𝐱 + 𝐜‖2𝐐 + 𝜆𝜓(𝐚), (12)

and ‖⋅‖𝐐 =
√

(⋅)⊤𝐐(⋅) denotes the weighted Euclidean norm
induced by 𝐐. Determining the optimal sparse representation
𝐚 of 𝐱 ∈ ℝ𝑚 is therefore, equivalent to computing the
proximity operator in Eq. (12), that is Eq. (9):

𝐃(𝐱) = argmin
𝐚∈ℝ𝑘

̃𝑅(𝐃, 𝐚, 𝐱) = prox𝐐𝜆𝜓 (𝐅𝐱− 𝐜). (13)

This thus establishes a re-expression of the solution of the rep-
resentation procedure as the proximity operator of 𝜆𝜓 within
the metric induced by the symmetric positive definite matrix
𝐐 Combettes and Pesquet (2010); Chouzenoux, Pesquet and
Repetti (2014). Furthermore, it shows that the SDL can be
equivalently viewed as an ADL formulation involving the
dictionary matrix 𝐅, provided that a proper metric is chosen.
4.2. Multilayer representation

Consequently, by substituting Eq. (13) in Eqs. (4) and (5),
the DDL model can be re-expressed in a more concise and
comprehensive form as

�̂� =𝜑◦(𝑠+1)◦ prox𝐐
(𝑠)

𝜆𝜓𝑠
◦(𝑠)◦ prox𝐐

(𝑠−1)

𝜆𝜓𝑠−1
◦…

◦ prox𝐐
(1)

𝜆𝜓1
◦(1)(𝐱(0)),

(14)

where, for 1 ≤ 𝑟 ≤ 𝑠, the affine operators (𝑟) mapping
𝐳(𝑟−1) ∈ ℝ𝑘𝑟−1 to 𝐳(𝑟) ∈ ℝ𝑘𝑟 by an analysis transform 𝐖(𝑟)

and a shift term 𝐜(𝑟), and explicitly as,
∀𝑟 ∈ {1,… , 𝑠},(𝑟) ∶ℝ𝑘𝑟−1 → ℝ𝑘𝑟

𝐳(𝑟−1) ↦ 𝐖(𝑟)𝐳(𝑟) − 𝐜(𝑟)
(15)

with 𝑘0 = 𝑚1 and
𝐖(1) = 𝐅(1),

∀𝑟 ∈ {2,… , 𝑠},

𝐖(𝑟) = 𝐅(𝑟) (𝑟−1),

𝐖(𝑠+1) = 𝐂 (𝑠)

∀𝑟 ∈ {1,… , 𝑠},

𝐐(𝑟) = (𝐃(𝑟))⊤𝐃(𝑟) + 𝛼𝐈,
𝐅(𝑟) = (𝐐(𝑟))−1(𝐃(𝑟))⊤,

𝐜(𝑟) = (𝐐(𝑟))−1𝐝(𝑟).

(16)

Eq. (15) shows that, for each layer 𝑟, we obtain a structure
similar to a linear layer by treating𝐖(𝑟) as the weight operator
and 𝐜(𝑟) as the bias parameter, which are referred as the
Transform learning part in DeTraMe method. In standard
Forward Neural Networks (FNNs), the activation functions
can be interpreted as proximity operators of convex functions
Combettes and Pesquet (2020). Eq. (14) attests that our
model is more general, in the sense that different metrics are
introduced for these operators. In the next section, we propose
an efficient method to learn these metrics in a supervised
manner.

5. Q-Metric Learning
5.1. Prox computation

Reformulation (14) has the great advantage to allow us
to benefit from algorithmic frameworks developed for FNNs,
provided that we are able to compute efficiently

prox𝐐𝜆𝜓 (𝐙) = argmin
𝐔∈ℝ𝑘×𝑁

1
2
‖𝐔 − 𝐙‖2𝐹 ,𝐐 + 𝜆𝜓(𝐔), (17)

where ‖ ⋅ ‖𝐹 ,𝐐 =
√

tr((⋅)𝐐(⋅)⊤) is the 𝐐-weighted Frobenius
norm. Hereabove, 𝐙 is a matrix where the 𝑁 samples
associated with the training set have been stacked columnwise.
A similar convention is used to construct 𝐗 and 𝐘 from
(𝐱𝑗)1≤𝑗≤𝑁 and (𝐲𝑗)1≤𝑗≤𝑁 .

An elastic-net like regularization is chosen by setting
𝜓 = ‖ ⋅ ‖1 + 𝜄[0,+∞)𝑘×𝑁 + 𝛽

2𝜆‖ ⋅ ‖2𝐹 with 𝛽 ∈ (0,+∞).
We have, in particular, observed that the last quadratic term
has a positive influence in increasing stability and avoiding
overfitting. As 𝐐 = 𝐃⊤𝐃+𝛼𝐈 in Eq. (10), Eq. (17) is actually
equivalent to solving the following optimization problem:

minimize
𝐔∈[0,+∞)𝑘×𝑁

1
2
‖𝐃(𝐔 − 𝐙)‖2𝐹 + 𝛼

2
‖𝐔 − 𝐙‖2𝐹

+
𝛽
2
‖𝐔‖2𝐹 + 𝜆‖𝐔‖1.

(18)

Tang etal.: Preprint submitted to Elsevier Page 5 of 15



Deep Transform and Metric Learning Network

Various iterative splitting methods could be used to find
the unique minimizer of the above optimized convex function
Boyd and Vandenberghe (2004); Komodakis and Pesquet
(2014). Our purpose is to develop an algorithmic solution
for which classical NN learning techniques can be applied in
a fast and convenient manner. We show next the following
property.
Claim 2: The solution of Eq. (18) is obtained as an iteration
of the form:

𝐔𝑡+1 = ReLU
(

(𝐡𝟏⊤)⊙ 𝐙 +𝐖(𝐔𝑡 − 𝐙) − 𝐛𝟏⊤
)

, (19)
where 𝐖 is a symmetric 𝑘 × 𝑘 matrix, 𝐡 ∈ [0, 1]𝑘, 𝐛 ∈
[0,+∞)𝑘, and 𝟏 = [1,… , 1]⊤ ∈ ℝ𝑁 .

By subdifferential calculus, the solution 𝐔 to the problem
(18) satisfies the following optimality condition:

𝟎 ∈ 𝐐(𝐔 − 𝐙) + 𝛽𝐔 + 𝜆𝜕�̃�(𝐔), (20)
where �̃� = ‖ ⋅ ‖1 + 𝜄[0,+∞)𝑘×𝑁 . Element-wise rewriting of
Eq. (20) yields, for every 𝑖 ∈ {1,… , 𝑘}, and 𝑗 ∈ {1,… , 𝑁},

0 ∈
𝑘
∑

𝓁=1
𝑞𝑖,𝓁(𝑢𝓁,𝑗 − 𝑧𝓁,𝑗) + 𝛽𝑢𝑖,𝑗 +

⎧

⎪

⎨

⎪

⎩

(−∞, 𝜆] if 𝑢𝑖,𝑗 = 0
𝜆 if 𝑢𝑖,𝑗 > 0
∅ if 𝑢𝑖,𝑗 < 0

.

(21)
Let us adopt a block-coordinate approach and update the 𝑖-th
row of 𝐔 by fixing all the other ones. As 𝐐 is a positive
definite matrix, 𝑞𝑖,𝑖 > 0 and Eq. (21) implies that

𝑢𝑖,𝑗 =

{ 𝑞𝑖,𝑖
𝑞𝑖,𝑖+𝛽

𝑧𝑖,𝑗 − 𝑣𝑖,𝑗 if 𝑞𝑖,𝑖𝑧𝑖,𝑗 > (𝑞𝑖,𝑖 + 𝛽)𝑣𝑖,𝑗
0 otherwise, (22)

where 𝑣𝑖,𝑗 = 𝜆+
∑𝑘

𝓁=1,𝓁≠𝑖 𝑞𝑖,𝓁(𝑢𝓁,𝑗−𝑧𝓁,𝑗 )
𝑞𝑖,𝑖+𝛽

. And let

𝐖 = −
( 𝑞𝑖,𝓁
𝑞𝑖,𝑖 + 𝛽

(1 − 𝛿𝑖−𝓁)
)

1≤𝑖,𝓁≤𝑘
,

𝐡 =
( 𝑞𝑖,𝑖
𝑞𝑖,𝑖 + 𝛽

)

1≤𝑖≤𝑘
∈ [0, 1]𝑘,

𝐛 =
(

𝜆
𝑞𝑖,𝑖 + 𝛽

)

1≤𝑖≤𝑘
∈ [0,+∞)𝑘,

(23)

where (𝛿𝓁)𝓁∈ℤ is the Kronecker sequence (equal to 1 when
𝓁 = 0 and 0 otherwise). Then, Eq. (22) suggests that the
elements of 𝐔 can be globally updated, at iteration 𝑡, as shown
in Eq. (19):

𝐔𝑡+1 = ReLU
(

(𝐡𝟏⊤)⊙ 𝐙 +𝐖(𝐔𝑡 − 𝐙) − 𝐛𝟏⊤
)

,

with ⊙ denoting the Hadamard (element-wise) product. Note
that a similar expression can be derived by applying a

preconditioned forward-backward algorithm Chouzenoux
et al. (2014) to Eq. (18), where the preconditioning matrix is
Diag(𝑞1,1,… , 𝑞𝑘,𝑘), which has been detailed in the Appendix
A. The implementation of the method allowing us to compute
the proximity operator in (17) is summarized below:
Algorithm 1 Q-Metric ReLU Computation
Input: matrix 𝐖 and 𝐙, vectors 𝐡 and 𝐛, and maximum

iteration number 𝑡max
Output: Sparse Representation 𝐔∗

1: Initialize 𝐔0 as the null matrix and set 𝑡 = 0
2: while not converged and 𝑡 < 𝑡max do
3: Update 𝐔𝑡+1 according to Eq. (19)
4: 𝑡 ← 𝑡 + 1
5: end while

5.2. RNN implementation
Although𝐖, 𝐡, and 𝐛 are defined on the basis of matrix𝐐,

for more flexibility, we will treat them as decoupled variables.
Then, given independent 𝐖, 𝐡, and 𝐛, Alg. (1) can be viewed
as an RNN structure for which 𝐔𝑡 is the hidden variable and 𝐙
is a constant input over time. By taking advantage of existing
gradient back-propagation techniques for RNNs, (𝐖,𝐡,𝐛)
can thus be directly computed in order to minimize the global
loss . This shows that, thanks to the re-parameterization in
Eq. (23), Q-Metric Learning has been recast as the training
of a specific RNN.

Note that𝐐 is a 𝑘×𝑘 symmetric matrix. In order to reduce
the number of parameters and ease of optimizing them, we
choose a block-diagonal structure for 𝐐. In addition, for each
of the blocks, either an arbitrary or convolutive structure
can be adopted. Since the structure of 𝐐 is reflected by the
structure of 𝐖, this leads in Eq. (19) to fully connected or
convolutional layers where the channel outputs are linked to
non overlapping blocks of the inputs. In our experiments
on images, Convolutional-RNNs have been preferred for
practical efficiency.
5.3. Training procedure

We have finally transformed our DDL approach in an
alternation of linear layers and specific RNNs. This not only
simplifies the implementation of the resulting DeTraMe-Net
by making use of standard NN tools, but also allows us to
employ well-established stochastic gradient-based learning
strategies. Let 𝜌𝑡 > 0 be the learning rate at iteration 𝑡, the
simplified form of a training method for DeTraMe-Nets is
provided in Alg. 2.

The constraints on the parameters of the RNNs have been
imposed by projections. In Alg. 2, 𝖯 denotes the projection
onto a nonempty closed convex set  and 0 is the vector
space of 𝑘 × 𝑘 matrices with diagonal terms equal to 0.

6. Experiments and Results
In this section, our single-layer DeTraMe-Net is eval-

uated on four well-known small datasets: Extended YaleB
Tang etal.: Preprint submitted to Elsevier Page 6 of 15
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Algorithm 2 Deep Transform and Metric Learning Network
Initialization:

1: for 𝑟 = 1,… , 𝑠 + 1 do
2: Randomly initialize 𝐖(𝑟)

0 , 𝐜(𝑟)0 , 𝐖(𝑟)
0 , 𝐡(𝑟)0 , and 𝐛(𝑟)0 .

3: end for
4: Set 𝑡 = 0.
5: while not converged and 𝑡 < 𝑡max do
6: Forward pass:
7: 𝐔(0)

𝑡 = 𝐗
8: for 𝑟 = 1,… , 𝑠 + 1 do
9: 𝐙(𝑟)

𝑡 = 𝐖(𝑟)
𝑡 𝐔(𝑟−1)

𝑡 − 𝐜(𝑟)𝑡
10: if 𝑟 ≤ 𝑠 then
11: 𝐔(𝑟)

𝑡 = prox𝐐
(𝑟)
𝑡

𝜆𝜓𝑟
(𝐙(𝑟)

𝑡 ) by Alg. 1
12: end if
13: end for
14: �̂�𝑡 = 𝜑(𝐙(𝑠+1)

𝑡 )
15: Loss: ′(𝜽𝑡) = (𝐘, �̂�𝑡), 𝜽𝑡: vector of all parameters
16: Backward pass:
17: for 𝑟 = 1,… , 𝑠 + 1 do
18: 𝐖(𝑟)

𝑡+1 = 𝐖(𝑟)
𝑡 − 𝜌𝑡

𝜕′

𝜕𝐖(𝑟) (𝜽𝑡)
19: 𝐜(𝑟)𝑡+1 = 𝐜(𝑟)𝑡 − 𝜌𝑡

𝜕′

𝜕𝐜(𝑟) (𝜽𝑡)20: end for
21: for 𝑟 = 1,… , 𝑠 do
22: 𝐖(𝑟)

𝑡+1 = 𝖯0

(

𝐖(𝑟)
𝑡 − 𝜌𝑡

𝜕′

𝜕𝐖(𝑟)
(𝜽𝑡)

)

23: 𝐡(𝑟)𝑡+1 = 𝖯[0,1]𝑘
(

𝐡(𝑟)𝑡 − 𝜌𝑡
𝜕′

𝜕𝐡(𝑟) (𝜽𝑡)
)

24: 𝐛(𝑟)𝑡+1 = 𝖯[0,+∞)𝑘
(

𝐛(𝑟)𝑡 − 𝜌𝑡
𝜕′

𝜕𝐛(𝑟) (𝜽𝑡)
)

25: end for
26: 𝑡 ← 𝑡 + 1
27: end while

Georghiades, Belhumeur and Kriegman (2001), AR Martinez
and Benavente (June 1998), Caltech101 Fei-Fei, Fergus and
Perona (2007) and Scene15 Lazebnik, Schmid and Ponce
(2006). The deep DeTraMe-Net method is evaluated on three
popular datasets, namely CIFAR10 Krizhevsky, Hinton et al.
(2009), CIFAR100 Krizhevsky et al. (2009) and Street View
House Numbers (SVHN) Netzer, Wang, Coates, Bissacco,
Wu and Ng (2011). Since the common NN architectures
are plain networks such as ALL-CNN Springenberg et al.
(2014) and residual ones, such as ResNet He et al. (2016) and
WideResNet Zagoruyko and Komodakis (2016), we compare
DeTraMe-Net with these three respective state-of-the-art
architectures. All the experiments of the state-of-the-arts and
our method are re-implemented and repeated over 5 runs for
the large datasets, and repeated over 10 runs for the small
datasets.
6.1. Architectures

Since we break SDL into two independent linear layer and
RNN parts, RNNs can be flexibly inserted into any nonlinear
layer of a neural network. To comprehensively compare our
DeTraMe-Net and other various DL and DDL methods, we

compose a single-layer DeTraMe-Net and two different deep
DeTraMe-Net architectures with inserted RNNs into Plain
Networks and residual blocks.

A linear forward layer followed by a linear Q-Metric
learning is used to construct a single-layer DeTraMe-Net.
The convolutional Q-Metric ReLU is employed in the deep
DeTraMe-Nets. For the two different deep DeTraMe-Nets,
one solution is to replace all the ReLU activation layers in
PlainNet with Q-Metric ReLU, leading to DeTraMe-PlainNet.
Another one is to replace the ReLU layer inside the block
in ResNet by Q-Metric ReLU, giving rise to DeTraMe-
ResNet. When replacing all the ReLU layers, DeTraMe-
PlainNet becomes equivalent to DDL as explained in Section
5. When only replacing a single ReLU layer in the ResNet
architecture, a new DeTraMe-ResNet structure is built. The
detailed architectures are illustrated in the Appendix B.

For the PlainNet, we use a 9 layer architecture similar to
ALL-CNN Springenberg et al. (2014) with dropouts, as listed
in Table 1. For the ResNet architecture, we follow the setting
in He et al. (2016), the first layer is a 3×3 convolutional layer
with 16 filters. 3 residual blocks with output map size of 32,
16, and 8 are then used with 16, 32 and 64 filters for each
block. The network ends up with a global average pooling
and a fully-connected layer. The parameters listed in Table 2
are respectively chosen equal to 𝑛 = 1, 3, 9, 18, 27 for ResNet
8, 20, 56, 110 and 164-layer networks, and we respectively
use 𝑛 = 2, 𝑞 = 4 and 𝑛 = 2, 𝑞 = 8 for WideResNet 16-4 and
WideResNet 16-8 networks as suggested in Zagoruyko and
Komodakis (2016).

For a single-layer DeTraMe-Net, the conventional RNN
is used with 3 iterations in all our experiments, as chosen by
cross validation. For deep DeTraMe-Net, as CNNs settings
have demonstrated good results without overfitting, and for
fair comparison, we choose the exact same number of filters
in CNNs as our dictionary size. Since the matrix in Q-
Metric part is actually a surrogate to the pseudo-inverse
of the dictionary, we set this weighted matrix in RNN of
the same size as the dictionary pseudo-inverse. So, we use
convolutional RNNs having the same filter size (resp. number
of channels) as those in the convolutional layer before. The
number of parameters of each model as well as the number
of iterations performed in RNNs, are indicated in Table 6.
Each iteration number shown in Table 6 is also chosen by
cross validation.
6.2. Datasets and Training Settings
6.2.1. Small Datasets

Extended YaleB Georghiades et al. (2001): The Ex-
tended YaleB face dataset contains 2414 frontal face images
of 38 persons under various illumination and expression
conditions. Each person has about 64 images, each cropped
to 168× 192 pixels. In our experiment, each Extended YaleB
face image is reduced to a 504-dimensional feature vector.
Half of the images are randomly chosen for training, and
the rest for testing. The dictionary size is set to 1216 atoms
and the total number of epochs is 226. AR Martinez and
Benavente (June 1998): The AR Face dateset has 2600 color
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DeTraMe-PlainNet 3-layer PlainNet 3-layer PlainNet 6-layer PlainNet 9-layer PlainNet 12-layer
Input 32 x 32 RGB Image with dropout(0.2)

3 × 3 conv 96 3 × 3 conv 96 RELU 3 × 3 conv 96 RELU 3 × 3 conv 96 RELU 3 × 3 conv 96 RELU
+ Q-Metric: 3 × 3 conv 96 3 × 3 conv 96 RELU 3 × 3 conv 96 RELU 3 × 3 conv 96 RELU

3 × 3 conv 96 RELU 3 × 3 conv 96 RELU
with stride=2, dropout(0.5) with stride=2, dropout(0.5)

3 × 3 conv 192 RELU
3 × 3 conv 96 3 × 3 conv 96 RELU 3 × 3 conv 96 RELU 3 × 3 conv 192 RELU 3 × 3 conv 192 RELU
with stride=2 with stride=2 with stride=2, dropout(0.5) 3 × 3 conv 192 RELU 3 × 3 conv 192 RELU

+ Q-Metric: 3 × 3 conv 96 3 × 3 conv 192 RELU 3 × 3 conv 192 RELU with stride=2, dropout(0.5)
with stride=2, dropout(0.5) 3 × 3 conv 192 RELU

3 × 3 conv 10 3 × 3 conv 10 RELU 3 × 3 conv 192 RELU 3 × 3 conv 192 RELU 3 × 3 conv 192 RELU
with stride=2 with stride=2 3 × 3 conv 10 RELU 1 × 1 conv 192 RELU with stride=2

+Q-Metric: 3 × 3 conv 10 with stride=2 1 × 1 conv 10 RELU 3 × 3 conv 192 RELU
1 × 1 conv 192 RELU
1 × 1 conv 10 RELU

Global Average Pooling
Softmax

Table 1
Model Description of PlainNet

output map size 32 × 32 16 × 16 8 × 8
# layers 1 + 2𝑛 2𝑛 2𝑛
#filters 16 32 64

WideResNet #filters 16 × 𝑞 32 × 𝑞 64 × 𝑞

Table 2
ResNet Model He et al. (2016)

images of 50 females and 50 males. Each person has about
26 images of size 165 × 120. Each face image is projected
to a 540 dimensional feature vector for its random face
feature. 20 images of each person are randomly selected as a
training set and the other 6 images for testing. The dictionary
size is 2000 atoms and the total number of epochs is 133.
Caltech101 Fei-Fei et al. (2007): The Caltech101 dataset
has 101 different categories of different objects and one non-
object category. Most categories have around 50 images. A
three-level segmentation Scale-Invariant Feature Transform
(SIFT) is used for feature extraction. Its codebook size is
1024 and its final PCA reduction feature dimension is 3000.
30 images per class are randomly chosen as training data, and
other images are used as testing data. The dictionary size is
set to 3060 and the total number of epochs is 60. Scene15
Lazebnik et al. (2006): Scene15 dataset contains a total of
15 categories of different scenes, and each category has
around 200 images. A four-level spatial pyramid dense SIFT
and a 200 size codebook are used here, and 3000 features
are obtained. 100 images per class are randomly picked as
training data, and the rest of images are used as testing data.
The dictionary size is set to 1500 and the total number of
epochs is 107.

Preprocessing: Each face dataset image is projected onto
an 𝑛-dimensional random face feature vector. The projection
is performed by a randomly generated matrix with a zero
mean normal distribution whose rows are 𝐿2 normalized.
For the object or scene images, a spatial pyramid method
Lazebnik et al. (2006) based on the dense SIFT features

with three or four segmentation sizes, such as 1 × 1, 2 × 2,
4 × 4 and 8 × 8, is applied to capture salient information at
different scales. The dense SIFT feature is computed using
16 × 16 patches and with a 6-pixel stride. At the same time,
an associated codebook is trained by 𝑘-means clustering
for spatial pyramid features. Spatial pyramid features of
each subregion are then concatenated together as a vector to
represent one image. Due to the sparse nature of the spatial
pyramid features, PCA is finally used to reduce the feature
dimensions. All the preprocessing procedures follow the same
settings used in Jiang, Lin and Davis (2013).

Training Settings: The models for all small datasets are
trained by SGD optimizer to minimize the MSE loss with
a weight decay of 1 × 10−5 and 0 momentum on an Nvidia
V100 32Gb GPU. The learning rate starts with 0.001. For
AR, Caltech101 and Scene15 datasets, the learning rate is
also reduced by 0.1 at the 100-th, 120-th epochs. Rather than
using a whole batch for training, all datasets are trained by
the mini-batches, whose size is respectively 2, 20, 12 and 15
for the Extended YaleB, AR, Caltec101 and Scene 15 dataset.
No data augmentation is used for this case.
6.2.2. Big Datasets

CIFAR10 Krizhevsky et al. (2009) contains 60,000 32 ×
32 color images divided into 10 classes. 50,000 images are
used for training and 10,000 images for testing. CIFAR100
Krizhevsky et al. (2009) is also constituted of 32 × 32 color
images. However, it includes 100 classes with 50,000 images
for training and 10,000 images for testing. SVHN Netzer
et al. (2011) contains 630,420 color images with size 32×32.
604,388 images are used for training and 26,032 images are
used for testing.

Preprocessing: For CIFAR datasets, the normalized input
image is 32×32 randomly cropped after 4×4 padding on each
sides of the image and random flipping, similarly to He et al.
(2016); Zagoruyko and Komodakis (2016). No other data
augmentation is used. For SVHN, we normalize the range of
the images between 0 and 1.
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Methods Extended YaleB AR Caltech101 Scene15
SRC Wright, Yang, Ganesh, Sastry and Ma (2009) 96.5%∗ 97.5%∗ 70.7%∗ 91.8% ∗

CRC Zhang, Yang and Feng (2011) 97.0%∗ 98.0%∗ 68.2%∗ 92.0%∗

DLSI Ramirez, Sprechmann and Sapiro (2010b) 97.0%∗ 97.5%∗ 73.1%∗ 91.7%∗

FDDL Yang et al. (2014) 96.7% 97.5% 73.2% 92.3%
LC-KSVDJiang et al. (2013) 96.7%∗ 97.8%∗ 73.6%∗ 92.9%∗

DFEDLLi, Zhang, Qin, Zhang and Shao (2019) 93.8% 92.0% 73.1% 98.2%
DeTraMe-Net 96.5% 99.2% 73.2% 98.5%

Table 3
Accuracy: DeTraMe-Net vs. single-layer DL. All the results with
’*’ of the competing methods were reported from the original
papers.

Training Settings: All the models are trained on an Nvidia
V100 32Gb GPU with 128 mini-batch size. The models of
both PlainNet and ResNet architectures are trained by SGD
optimizer with momentum equal to 0.9 and a weight decay
of 5 × 10−4. On CIFAR datasets, the algorithm starts with a
learning rate of 0.1. 200 epochs are used to train the models,
and the learning rate is reduced by 0.2 at the 60-th, 120-th,
160-th and 200-th epochs. On SVHN dataset, a learning rate
of 0.01 is used at the beginning and is then divided by 10
at the 80-th and 120-th epochs within a total of 160 epochs.
The same settings are used as in Zagoruyko and Komodakis
(2016).
6.3. Results

To comprehensively compare our DeTraMe-Net with
the DL technologies, the single-layer DL and deep DL are
respectively evaluated. The single-layer DL comparison aims
to show the improved discrimination power of our DeTrame-
Net compared to that of state-of-the-art DL methods. The
deep DL evaluation is used for an in-depth evaluation of
the discriminative ability, efficiency, and robustness of our
DeTrame-Net and of other learning methods.
6.3.1. DeTraMe-Net vs. Single-layer DL

First, we compare our results with six single-layer dis-
criminative DL methods, which include two classical DL
algorithms: Sparse Representation based Classification (SRC)
Wright et al. (2009) and Collaborative Representation based
Classification (CRC) Wright et al. (2009), and four state-of-
the-art DL methods: Dictionary Learning with Structured
Incoherence (DLSI) Ramirez et al. (2010b), Fisher Discrim-
ination Dictionary Learning (FDDL) Yang et al. (2014),
Label Consitent KSVD (LC-KSVD) Jiang et al. (2013)
and Discriminative Fisher Embedding Dictionary Learning
(DFEDL) Li et al. (2019).

For the small datasets, the proposed DeTraMe-Net
achieves comparable or better performance. For the Extended
YaleB dataset, although accuracy of the DeTraMe-Net is
not the best one, it is still comparable to other competitive
results. It is barely 0.2% lower than the FDDL Yang et al.
(2014) and LC-KSVD Jiang et al. (2013), and still achieves
the same performance as SRC Wright et al. (2009). For the
AR dataset, DeTraMe-Net achieves the best performance
with a 1.18% significant improvement over the 98% basis of
the best state-of-the-art methods. For the objective dataset,
Caltech101, DeTraMe-Net is just slightly lower than LC-
KSVD Jiang et al. (2013) but is still equal or greater than
other state-of-the-art approaches. For the Scene 15 dataset,

Model # Parameters CIFAR10 CIFAR100
PlainNet 9-layer Springenberg et al. (2014) 1.4M 90.31% ± 0.31% 66.15% ± 0.61%
DDL 9 Mahdizadehaghdam et al. (2019) 1.4M 93.04%∗ 68.76%∗

DeTraMe-Net 9 3.0M 93.05% ± 0.46% 69.68% ± 0.50%
DeTraMe-Net 9 (Best) 3.0M 93.40% 70.34%

Table 4
Accuracy: DeTraMe-Net vs. DDL: the architectures are listed
in the fourth column in Table 1. The number with ’*’ was
reported in the original paper.

Model #Parameters Training (s) Testing (s)
DDL Mahdizadehaghdam et al. (2019) 0.35 M 0.2784∗ 9.40×10−2∗

DeTraMe-Net 12 2.4 M 0.1605 3.52×10−4

Table 5
Time Complexity: DeTraMe-Net vs. DDL: The number with ’*’
was averaged based on the reported one in the original paper.

DeTraMe-Net also achieves a 0.3% higher accuracy than
state-of-the-art methods. The comparable performance, and
sometimes significant improvements demonstrate that the
discriminative ability of our DeTraMe-Net is truly increased
by the independency between the dictionary variable and its
pseudo-inverse. The new added variable of the dictionary
pseudo-inverse plays an important role in re-weighting each
input representation feature in the Q-Metric ReLU to obtain
the best output feature representation.

In our comparison, we should point that breaking the
dictionary and its pseudo-inverse into two independent
components, helps enhance the discriminative capacity of
our DETraME-Net. In contrast, the Fisher discrimination
criterion was used in both FDDL Yang et al. (2014) and
DFEDL Li et al. (2019), and label consistency was used in LC-
KSVD Jiang et al. (2013). Comparing to other methods, this
change in our method is lower cost than other discriminative
techniques.
6.3.2. DeTraMe-Net vs. DDL

We subsequently compare our results with those achieved
by the DDL approach in Mahdizadehaghdam et al. (2019), as
both DeTraMe-Net and DDL with 9-layer follow the ALL-
CNN architecture in Springenberg et al. (2014). DDL in
Mahdizadehaghdam et al. (2019) is a state-to-the-art DDL
based classifier, whose solution is based on alternatively up-
dating the dictionaries and its sparse coefficients at each layer
by K-SVD Aharon et al. (2006) and FISTA Beck and Teboulle
(2009), while each layer dictionary and sparse coefficients
of our DeTraMe-Net are obtained by a linear forward layer
followed by a Q-Metric learning. In addition, the dictionary
and its pseudo-inverse are coupled in Mahdizadehaghdam
et al. (2019) while they are decoupled into two independent
variables in DeTraMe-Net.

As shown in Table 4, DDL Mahdizadehaghdam et al.
(2019) leads to improvements compared to PlainNet 9-layer
Springenberg et al. (2014), which is similar to the results
shown in Mahdizadehaghdam et al. (2019). However, to
compare with DDL Mahdizadehaghdam et al. (2019) , our
DeTraMe-Net obtain another improvements of accuracy and
training and testing time over all datasets. In comparison to
the best performance in Mahdizadehaghdam et al. (2019),
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Accuracy (%) CIFAR10 + CIFAR100 + SVHN
Network Architectures Original DeTraMe-Net Original DeTraMe-Net Original DeTraMe-Net

(#iteration) (#iteration) (#iteration)
PlainNet 3-layer 35.14 ± 4.94 88.51 ± 0.17 (5) 22.01 ± 1.24 64.99 ± 0.34 (3) 45.64 97.21 (8)
PlainNet 6-layer 86.71 ± 0.36 92.24 ± 0.32 (2) 62.81 ± 0.75 69.49 ± 0.61 (2) 97.55 98.17 (5)
PlainNet 9-layer 90.31 ± 0.31 93.05 ± 0.46 (2) 66.15 ± 0.61 69.68 ± 0.50 (2) 97.98 98.26 (5)
PlainNet 12-layer 91.28 ± 0.27 92.03 ± 0.54 (2) 68.70 ± 0.65 70.92 ± 0.78 (2) 98.14 98.27 (3)

ResNet 8 87.36 ± 0.34 89.13 ± 0.23 (3) 60.38 ± 0.49 64.50 ± 0.54 (2) 96.70 97.50 (3)
ResNet 20 92.17 ± 0.15 92.19 ± 0.30 (3) 68.42 ± 0.29 68.62 ± 0.27 (2) 97.70 97.82 (2)
ResNet 56 93.48 ± 0.16 93.54 ± 0.30 (3) 71.52 ± 0.34 71.52 ± 0.44 (2) 97.96 98.04 (2)
ResNet 110 93.57 ± 0.14 93.68 ± 0.32 (2) 72.99 ± 0.43 73.05 ± 0.40 (2) - -

WideResNet 16-4 95.18 ± 0.10 95.18 ± 0.13 (2) 76.72 ± 0.13 76.85 ± 0.48 (3) 98.06 98.16 (3)
WideResNet 16-8 95.62 ± 0.12 95.66 ± 0.22 (2) 79.55 ± 0.12 79.69 ± 0.55 (3) 98.17 98.23 (3)

Table 6
CIFAR10 and CIFAR100 with + is trained with simple translation and flipping data augmentation. All the presented results are
re-implemented and run by using the same settings. SVHN is too large to train, so it is only run once for reference.

the best DeTraMe-Net accuracy also respectively achieves
0.36% and 1.58% improvements on CIFAR10 and CIFAR100
datasets and, in terms of averaged performance, 0.01%
and 0.92% accuracy improvements are still respectively
obtained on these two datasets. Furthermore, when DDL
Mahdizadehaghdam et al. (2019) processes a 28 × 28 image
with 0.35M parameters in 0.2784 second for training and
9.4×10−2 s for testing, the proposed DeTraMe-Net processes
a 32 × 32 image with 2.4M parameters in 0.1605 second
for training and 3.52×10−4 s for testing. This shows that our
method with 6 times more parameters than DDL only requires
half training time and a faster testing time by a factor 100.

Although it is also shown in Table 4 that a higher
number of parameters is involved in DeTraMe-Net than in
Mahdizadehaghdam et al. (2019), DeTraMe-Net presents
three main advantages: (1) it has a better discriminative
capability, as we decouple the dictionary and its pseudo-
inverse into two independent variables. (2) DeTraMe-Net is
much faster for both training and testing phases. Since it is
implemented in a neural network structure, with no need for
extra functions to compute gradients at each layer, which
greatly reduces the time complexity. (3) Also, owing to
the network implementation, DeTraMe-Net is easy to scale
up to 110 layers, while the maximum number of layers in
Mahdizadehaghdam et al. (2019) is 23.
6.3.3. DeTraMe-Net vs. CNNs

We next compare DeTraMe-Net with CNNs with re-
spect to five different aspects: Accuracy, Parameter number,
Capacity, Adversarial robustness and robustness to random
noise and Time complexity. In comparison to deep CNNs,

first, the proposed DeTraMe-Net improves the classification
accuracy with respect to the same architectures of CNNs
over all three datasets. Then, in terms of trade-off between
the accuracy and the number of parameters, for the same
architecture, DeTraMe-Net has twice as many parameters as
CNNs. However, by allocating the same number of parame-
ters, DeTraMe-Net still achieves a better performance than
CNNs. Note, that a significant improvement in performance

for DeTraMe-Net is achieved with a lower network depth
and a slightly larger width. In addition, DeTraMe-Net is
demonstrated to be much more robust against the noise
and adversarial perturbations than CNNs. Finally, while
the training time for DeTraME with a larger number of
parameters is about twice that of CNN, the testing time is
generally only marginally higher. Moreover, our testing time
is only slightly increased. In general, although DeTraMe-
Net has more number of parameters, it also shows a better
dicriminative power and robustness than CNNs.

Accuracy. As shown in Table 6, with the same archi-
tecture, using DeTraMe-Net structures achieves an overall
better performance than all various CNN models do. For
PlainNet architecture, DeTraMe-Net increases the accuracy
with a median of 3.99% on CIFAR10, 5.11% on CIFAR100
and 0.45% on SVHN, and respectively increases the accuracy
of at least 0.75%, 2.22%, 0.13% on theses three datasets.
For ResNet architecture, DeTraMe-Net also consistently
increases the accuracy with a median of 0.05% on CIFAR10,
0.13% on CIFAR100 and 0.10% on SVHN.

Parameter number. Although, in comparison to original
standard CNNs, DeTraMe-Net involves more parameters for
a given architecture, it improves the accuracy. Meanwhile, as
demonstrated in Figure 2, for a given number of parameters,
DeTraMe-Net still outperforms the original CNNs over all
three datasets. Plots corresponding to DeTraMe-Net for both
PlainNet and ResNet architectures are indeed above those
associated with standard CNNs.

Capacity. In terms of depth, comparing improvements
with PlainNet and ResNet, shows that the shallower the
network, the more accurate. It is remarkable that DeTraMe-
Net leads to more than 42% accuracy increase for PlainNet
3-layer on CIFAR10, CIFAR100 and SVHN datasets. When
the networks become deeper, they better capture discrimi-
native features of the classes, and albeit with smaller gains,
DeTraMe-Net still achieves a better accuracy than a deep
CNN, e.g. around 0.11% and 0.05% higher than ResNet 110
on CIFAR10 and CIFAR100. In terms of width, we use
WideResNet-16-4 and WideResNet-16-8 as two reference
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Model CIFAR10+ (𝜉 = 5𝑒 − 2) CIFAR100+ (𝜉 = 5𝑒 − 2) SVHN(𝜉 = 2𝑒 − 4)
Original WideResNet-16-8 18.03% ± 1.75% 59.61% ± 2.72% 46.84% ± 3.05%
DeTraMe WideResNet-16-8 6.78% ± 0.73% 23.65% ± 1.84% 23.61% ± 5.61%

Table 7
Fooling Rate versus Adversarial Attack. 𝜉 in Moosavi-Dezfooli, Fawzi, Fawzi and Frossard (2017) controls the attack magnitude.
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Figure 2: Classification accuracy versus number of parameters.
The blue color curves are based on ResNet architecture (left
axis), while the orange curves are based on PlainNet architecture
(right axis). The solid line denotes DeTraMe-Net, while the
dash-line denotes the original CNNs. ’*’ denotes for CIFAR10,
’o’ denotes for CIFAR100 and ’+’ denotes for SVHN.

models, since both of them include 16 layers but have different
widths. Table 6 shows that increasing width is beneficial
to DeTraMe-Net. Since the original models have already
achieved excellent performance for CIFAR10, CIFAR100 and
SVHN, DeTraMe-Nets with various widths show similarly
slightly improved accuracies. However, the experiments still
demonstrate that enlarging the width for DeTraMe-Net leads
to an increase in the accuracy gain. This may be explained
by the fact that increasing width provides more redundant
features, so yielding more flexibility for improvements.

Adversarial robustness and robustness to random
noise. The UAP tool Moosavi-Dezfooli et al. (2017) is
used to adversarially attack the best performance models of
DeTraMe-Net and original CNN over 3 datasets. As shown in
Table 7, the fooling rate of DeTraMe-Net is greatly reduced by
more than half compared to the original CNN one. Moreover,
by attacking PlainNet, Fig. 3 shows that while increasing
the adversarial attack magnitudes, our DeTraMe-PlainNet
has a performance similar to PlainNet architecture in terms
of fooling rate. While in comparing with the ResNet archi-
tecture, DeTraMe-ResNet greatly reduces the fooling rate,
probably by taking advantage of the firmly nonexpansiveness
properties of the proximal operator in the 𝑄-metric, which is
also observed and mentioned in Hasannasab et al. (2020), a
stacked proximal operator network. However, the robustness
of residual networks in the presence of adversarial noise,
remains theoretically an open issue, and hence deserves
additional future investigation.
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Figure 3: The fooling rate is averaged over 5 runs of CIFAR10+
dataset.

Concerning the robustness to random noise, we randomly
generate a zero-mean Gaussian noise 𝐯 and add it to the input
data, where E(‖𝐯‖22) = 𝜌‖𝐱‖22, 𝜌 controls the magnitude of
random noise level with respect to the average image energy.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

=Ratio of the random noise energy

to the average image energy          

0

0.2

0.4

0.6

0.8

1

1.2

F
o

o
li
n

g
 R

a
te

10
-3 Random Noise

PlainNet 9

WideResNet-16-8

ResNet110

DeTraMe-PlainNet 9

DeTraMe-WideResNet-16-8

DeTraMe-ResNet110

Figure 4: The fooling rate is averaged over 5 runs of CIFAR10
dataset.

As shown in Fig. 4, ResNet110 incurs a highest fool-
ing rate as the noise is amplified by propagating deeply.
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Training Time (s) Testing Time (×10−4 s)
CIFAR10 + CIFAR10 +

Network Architectures Original DeTraMe Original DeTraMe
PlainNet 3-layer 2964.45 5837.72 1.93 2.50
PlainNet 6-layer 3762.75 6706.76 1.94 2.94
PlainNet 9-layer 3948.24 7451.42 2.01 3.24
PlainNet 12-layer 4087.98 8023.02 2.12 3.52

ResNet 8 3152.10 3962.09 1.76 2.10
ResNet 20 3840.02 5316.47 1.90 2.21
ResNet 56 6411.03 8752.61 2.27 3.37
ResNet 110 7709.55 12997.66 3.10 4.53

WideResNet 16-4 4562.02 6425.65 2.41 2.84
WideResNet 16-8 7104.62 11897.93 3.26 5.15

Table 8
CIFAR10 with + is trained with simple translation and flipping
data augmentation. All the presented results are re-implemented
and run by using the same settings.

However, WideResNet-16-8 incurs the second highest fool-
ing rate, while our DeTraMe-ResNet110 and DeTraMe-
WideResNet-16-8 achieve better performances. DeTraMe-
PlainNet9 reaches a higher fooling rate than the original
PlainNet, but it should be noticed that the magnitude of the
fooling rate is very small, and our accuracy is about 3% higher
than the one of the original PlainNet CNN.

Time complexity. Based on the running times in Table 8,
training takes almost twice as much time than for CNNs. This
appears consistent with the fact that the number of parameters
of DeTraMe-Net is twice as many than for CNNs. However,
it is worth noting that the training can be performed off-line
and that testing can still be completed in real time, with only
a slight increase of the testing time with respect to an original
standard CNN, that is 100 times faster than a conventional
DDL method (as shown in Table 5).

7. Conclusion
Starting from a DDL formulation, we have shown that

it is possible to reformulate the problem in a standard
optimization problem with the introduction of metrics within
standard activation operators. This yields a novel Deep
Transform and Metric Learning method. This has allowed us
to show that the original DDL can be performed as a network
mixing linear layer and RNN algorithmic structures, thus
leading to a fast and flexible network framework for building
more efficient and deeper DDL-based classifiers with a
higher discriminiative ability. Our experiments show that the
resulting DeTraMe-Net performs better than the original DDL
approach and original CNNs with much more robustness
against adversarial and random perturbations. We think that
the bridge we established between DDL and DNN will help in
further understanding and controlling these powerful tools so
as to attain better performance and properties. It would also
be interesting to explore other image processing applications
and understand the scope of the proposed approach.

A. Alternative Derivation of Algorithm 1
We have presented in our paper a simple approach for

deriving the recursive model:
𝐔𝑡+1 = ReLU

(

(𝐡𝟏⊤)⊙ 𝐙 +𝐖(𝐔𝑡 − 𝐙) − 𝐛𝟏⊤
)

, (24)
in order to compute

prox𝐐𝜆𝜓 (𝐙) = argmin
𝐔∈ℝ𝑘×𝑁

1
2
‖𝐔 − 𝐙‖2𝐹 ,𝐐 + 𝜆𝜓(𝐔). (25)

We propose an alternative approach which is based on
the classical forward-backward algorithm for solving the
nonsmooth convex optimization problem in (25). The 𝑡-th
iteration of the preconditioned form of this algorithm reads

𝐔𝑡+1 = prox𝚯𝛾𝜆𝜓 (𝐔𝑡 − 𝛾𝚯
−1𝐐(𝐔𝑡 − 𝐙)) (26)

where 𝛾 is a positive stepsize and 𝚯 is a preconditioning
symmetric definite positive matrix, and 𝐔0 ∈ ℝ𝑘×𝑁 . The
algorithm is guaranteed to converge to the solution to (25)
provided that

𝛾 < 2
‖𝚯−1∕2𝐐𝚯1∕2

‖S
, (27)

where ‖ ⋅ ‖S denotes the spectral norm. Eq. (26) can be
reexpressed as

𝐔𝑡+1 = prox𝚯𝛾𝜆𝜓
(

(𝐈 − 𝛾𝚯−1𝐐)(𝐔𝑡 − 𝐙) + 𝐙
)

. (28)
Assume now that 𝚯 is a diagonal matrix Diag(𝜃1,… , 𝜃𝑘)where, for every 𝑖 ∈ {1,… , 𝑘}, 𝜃𝑖 > 0. When the sparsity
promoting penalization is chosen equal to

𝜓 = ‖ ⋅ ‖1 + 𝜄[0,+∞)𝑘×𝑁 +
𝛽
2𝜆

‖ ⋅ ‖2𝐹 , (29)
the proximity operator involved in (28) simplifies as

∀𝐔 = (𝑢𝑖,𝑗)1≤𝑖≤𝑘,1≤𝑗≤𝑁 ∈ ℝ𝑘×𝑁 ,

prox𝚯𝛾𝜆𝜓 =
(

prox𝛾𝜆𝜃−1𝑖 𝜌(𝑢𝑖,𝑗)
)

1≤𝑖≤𝑘,1≤𝑗≤𝑁 (30)
where 𝜌 = 𝜆| ⋅ |+ 𝜄[0,+∞)+

𝛽
2 (⋅)

2. In addition, for every 𝑢 ∈ ℝ
and 𝑖 ∈ {1,… , 𝑘},
prox𝛾𝜆𝜃−1𝑖 𝜌(𝑢) = argmin

𝑣∈[0,+∞)

𝜃𝑖
2
(𝑣−𝑢)2+𝛾

(

𝜆|𝑣|+
𝛽
2
𝑣2
)

. (31)

After some simple algebra, this leads to
prox𝛾𝜆𝜃−1𝑖 𝜌(𝑢) = ReLU

( 𝜃𝑖
𝜃𝑖 + 𝛾𝛽

𝑢 −
𝛾𝜆

𝜃𝑖 + 𝛾𝛽

)

. (32)
Altogether (28), (30), and (32) allow us to recover an update
equation of the form (19), where

𝐖 = (𝚯 + 𝛾𝛽𝐈)−1(𝚯 − 𝛾𝐐),

𝐡 =
(

𝜃𝑖
𝜃𝑖 + 𝛾𝛽

)

1≤𝑖≤𝑘
,

𝐛 =
(

𝛾𝜆
𝜃𝑖 + 𝛾𝛽

)

1≤𝑖≤𝑘
.

(33)

Note that, if 𝛾 = 1 and, for every 𝑖 ∈ {1,… , 𝑘}, 𝜃𝑖 = 𝑞𝑖,𝑖, 𝐖is a matrix with zeros on its main diagonal.
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B. Illustration of DeTraMe-Net Architectures
B.1. DeTraMe-PlainNet

To replace all the RELU activation layers in PlainNet
with Q-Metric ReLU leads to DeTraMe-PlainNet. Since all
the RELU layers are replaced by Q-Metric ReLu, DeTraMe-
PlainNet becomes equivalent to DDL.

Figure 5: Architectures of PlainNet vs. DeTraMe-PlainNet

B.2. DeTraMe-ResNet
Replacing the RELU layer inside the block in ResNet by

Q-Metric ReLU, allows us to build a new structure called
DeTraMe-ResNet.

Figure 6: Architectures of ResNet vs. DeTraMe-ResNet

In our experiments, for ResNet architecture, the RNN
part accounting for Q-Metric learning, makes use of 3 × 3
filters.
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