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Introduction

This lecture series is devoted to the study of interactions between neu-
tral atoms. Taken literally, this is an extremely ambitious program since it
covers the fields of molecular physics and quantum chemistry. It is there-
fore out of the question to realize this program in all its generality. We will
focus on the case of cold atoms, for which the de Broglie wavelength is
much larger than the range of the interatomic potentials. This assumption
will bring considerable simplifications by reducing a complicated interac-
tion potential to the knowledge of a few numbers, like the scattering length
or the effective range.

In this year’s course, we will focus more specifically on the two-body
problem: what is the nature of the interaction between a pair of atoms,
what is the connection between the bound states of this pair and the result
of an elastic collision between the two particles, can this interaction be con-
trolled and manipulated by external fields? These are questions that have
been asked ever since the foundations of quantum mechanics were clari-
fied (Heitler & London 1927; Feynman 1939), but which have come back to
the forefront in the last twenty years, with the spectacular developments
in quantum gas physics.

The intense research activity on quantum gases is directly linked to
these interactions: if they were absent, we would be dealing with the ideal
gas model, an interesting problem leading for example to Bose–Einstein
condensation, but solved and understood a long time ago. Interactions
between atoms change the picture completely; they are at the origin of
new phase transitions, such as the Kosterlitz–Thouless transition or the
Mott superfluid–insulator transition, treated within the framework of this
chair in previous courses. They allow the realization of original compos-
ite objects, such as solitons or quantum vortices. The strength of these
interactions can be brought to the maximum value allowed by quantum

physics, which establishes a link between these cold atomic gases and some
strongly interacting systems known in nuclear or particle physics.

The study of the two-body problem is only a first step towards a de-
tailed understanding of interacting quantum gases. Its richness will be
enough to keep us busy in this year’s course, but this study will have to
be completed in a later course: we will then have to explain how the "two-
body" concepts we are going to derive here translate into the macroscopic
properties of a fluid. We will also postpone to a future course the important
but difficult problem of few-body physics: the concepts and tools we will
set up here will naturally serve as a basis for these further developments.

I warmly thank Bertrand Evrard and Raphael Lopes for their proofreading of a
first version of these notes.

These notes were translated from French using as a first step an automatic transla-
tor. This procedure may have introduced some typos or mistakes in the equations.
In case of doubt please consult the French version. Thanks in advance for signaling
these typos.
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Chapter I

The interaction potential between two atoms

In this first chapter, we will specify the physical processes that govern
the interaction between two atoms: how do these atoms behave when they
approach each other? Is there attraction, repulsion, possibility of forming
a bound state? These questions belong to both chemistry and physics, but
we will see that the most important elements for us are not necessarily
those that are emphasized in "traditional" courses of chemistry and molec-
ular physics. In particular, the fact that we approach the problem from the
point of view of cold atoms and quantum gases will give a central role to
the long-range behavior of the interaction potential.

To understand this point, let us recall that for a gas of atoms at a tem-
perature of the order of a microkelvin, or even below, the wavelength as-
sociated with each atom is large compared to the usual size of a diatomic
molecule. This wavelength is typically several hundred nanometers, com-
pared to a sub-nanometer size for a usual dimer. The delocalization of cold
atoms, an immediate consequence of the Heisenberg inequality, thus leads
to a "smoothing" of the interatomic potential, in a sense that we will specify
in the following lectures.

We will consider in this chapter a pair of atoms each prepared in its
electronic ground state. The description of the collision requires the deter-
mination of the interaction potential V (r) between these two partners, r
designating here the vector joining their centers of mass. In the most gen-
eral case, this potential depends on the spin state of each of the two atoms;
it can be anisotropic, i.e. it depends on the orientation of the r vector in
space. This will be the case if we consider, for example, magnetic dipole

interactions between polarized atoms: if the magnetic moment of the two
atoms is oriented along z, we know that the magnetic interaction will be
attractive if r is parallel to the z axis, and repulsive if it is perpendicu-
lar to it. In this lecture series, we will essentially restrict ourselves to the
case of an isotropic potential, where V depends only on the modulus of r.
This restriction is not very strong: it allows us to treat the effects which are
dominant in most situations.

As we have written above, considering collisions between cold atoms
makes the behavior of the long-range potential play an important role. We
will therefore start with the case of atoms relatively far from each other to
show that the corresponding interaction, called van der Waals interaction,
behaves like

V (r) = −C6

r6
, (1)

where the coefficient C6 is positive. It is thus in all cases an attractive in-
teraction: for most atomic species, it can alone form bound dimers, even
if the binding energies are very low compared to the usual molecules en-
countered in chemistry.

We will then discuss the description of the "true" chemical bond that
appears when the atoms are close to each other. It results from the pos-
sibility for the external electrons to jump from one atom to the other by
tunneling. We will examine the length and energy scales associated with
this tunneling interaction and we will finish by taking into account the sta-
tistical nature, fermions or bosons, of the electrons and nuclei involved.

9



CHAPTER I THE INTERACTION POTENTIAL BETWEEN TWO ATOMS § 1. The van der Waals interaction

This last point obviously plays a central role for quantum gases.

To keep this chapter to a reasonable size, we will limit ourselves to the
homo-nuclear case, i.e. two identical collision partners. The heteronuclear
case is of course also very interesting and we refer interested readers to the
comprehensive review articles of Weiner, Bagnato, et al. (1999), Köhler,
Góral, et al. (2006), and Chin, Grimm, et al. (2010). Moreover, we will
consider here only interactions between neutral atoms. The problem of
the interaction between neutral atoms and ions in the context of cold gas
physics is reviewed in the recent article by Tomza, Jachymski, et al. (2019).

1 The van der Waals interaction

Consider two neutral atoms, A and B, separated by a distance r. The
first effect, and the most important one from the point of view of cold
atom physics, is the long-range interaction that appears between these two
atoms when they are far enough apart. The "distance" criterion is obtained
by comparing the distance r to the size of the electron cloud of each atom,
this size being a few angströms. The atoms are considered to be far apart
if their two electron clouds do not overlap, i.e. , if there is no point in space
where the electron wave functions of A and B are both significantly non-
zero. When this criterion is satisfied, the exchange terms responsible for
the chemical bonding that we will study in § 4 are absent and only the van
der Waals interaction matters.

1-1 The electric dipole-dipole interaction

We are interested here in the electromagnetic interaction of two separate
systems, each composed of a nucleus and electrons, and each with zero
total charge. The most convenient way to treat this problem is to proceed
with a multipole expansion. The first term is the electric dipole-dipole in-
teraction:

Udip =
1

4πε0r3
[DA ·DB − 3 (u ·DA) (u ·DB)] , (2)

r

u

DA

DB

Figure 1. Dipoles DA and DB separated by a distance r.

where u is the unit vector joining the centers of mass of atoms A and B
(figure 1). The dipole operator DA is given by

DA =
∑
j

q(rj − rA), (3)

where the sum relates to all electrons of atom A, and an equivalent def-
inition for DB . The following terms of the development involve the
quadrupolar, octupolar,. . . electrostatic interactions, as well as magnetic
terms generated by the electron currents and spins within each atom. For
the following discussion, we will focus on the contribution of the term (2),
which is dominant.

1-2 Principle of the perturbative approach

We proceed here to a perturbative treatment of the dipole-dipole interac-
tion given in (2), to determine the modification to the energy E0 of the
ground state. We will denote this modification ∆E

(k)
0 , where k is the order

of the perturbation.

Interactions at first order. The first point to note is that the average elec-
tric dipole is always zero for an isolated atom placed in its ground state.

10



CHAPTER I THE INTERACTION POTENTIAL BETWEEN TWO ATOMS § 1. The van der Waals interaction

This results from the time-reversal invariance of the electromagnetic inter-
actions responsible for atomic stability. For a hydrogen atom for example,
the electronic ground state is the 1s state whose wave function is given by

ψ(r) =
e−r/a0√
πa3

0

, (4)

where we have assumed the center of the atom placed at the origin of the
coordinates and where a0 = ~2/(mee

2) is the Bohr radius, with me the
mass of the electron and e2 = q2/(4πε0). This wave function is spherically
symmetric and we have

〈1s| qr̂|1s〉 = 0. (5)

Note that the possible existence of an electronic or nuclear spin degeneracy
does not modify this result, which concerns the orbital part of the atomic
wave functions. It follows that if we take the two atoms A and B in their
electronic ground state ψ0, the average interaction Udip is always zero

∆E
(1)
0 = 〈A : ψ0;B : ψ0| Ûdip |A : ψ0;B : ψ0〉 = 0. (6)

At the first order of perturbation theory, the two atoms "do not see each
other": there is no interaction energy between them.

Interactions at second order. The situation is radically changed when we
go to the second order of perturbation theory. Before describing the physics
underlying the interaction that appears at this order, let us recall a general
mathematical result concerning perturbation theory. Let us start from a
Hamiltonian Ĥ0, characterized by its eigenstates and eigenenergies |ψn〉
and En with n integer and E0 ≤ E1 ≤ . . .. We suppose that a perturbation
Û is added to Ĥ0 and we look for the energy shift of the ground level E0. If
the first order term 〈ψ0|Û |ψ0〉 is null, as it is the case for the problem we are
interested in [cf. (6)], then the dominant term that appears at second order
in U ,

∆E
(2)
0 = −

∑
n6=0

|U0n|2
En − E0

, U0n = 〈ψ0|Û |ψn〉, (7)

is always negative (figure 2): all the terms of the sum written above are in
effect positive or zero if E0 is the minimal energy of the system. We can
immediately deduce that our two atoms will attract each other, at least in

E0

∆E
(2)
0

Figure 2. Second order energy shift for the ground state given in (7). This term is
always negative.

a certain range of distances: the introduction of the coupling U will indeed
lower their energy, compared to its value for r =∞.

1-3 Induced dipoles and correlations between atoms

Let us now examine the underlying physics responsible for this attraction.
For an atomic electron, the mean square of the dipole operator is not zero.
Returning to the hydrogen atom, a simple calculation gives

〈1s| r2 |1s〉 = 3a2
0. (8)

In a semi-classical picture, we can therefore represent each dipole as a ran-
dom variable D(t), with zero mean, but non-zero variance. The instanta-
neous dipole DA(t) creates an electric field at the location of atomB, which
responds by polarizing itself: an induced dipole appears in the atom B,
with an amplitude related to DA(t). This induced dipole in B in turn cre-
ates an electric field at the location of atom A, and this field interacts with
the initial dipole DA(t) (we neglect here the delay effects in this round trip
between A and B). In this scheme, the atom B plays the role of a mirror,
which sends back to A an image of the dipole DA(t) to which it gave birth.

The interaction between DA and this electric field leads to an energy
term varying as D2

A, which is non-zero. We have reasoned here by looking
at the influence of the fluctuating dipole A on itself, via the polarization of
the atom B. Of course, the reciprocal mechanism also exists, with the fluc-
tuating dipole DB(t) polarizing atom A, which sends back a "reflection" of
the initial fluctuation and gives rise to a D2

B interaction.

It is instructive to look at the same problem from a "more quantum" an-
gle by considering the first-order state vector of perturbation theory. Recall

11



CHAPTER I THE INTERACTION POTENTIAL BETWEEN TWO ATOMS § 1. The van der Waals interaction

first that if a Hamiltonian Ĥ0 has as its eigenstate basis the |ψn〉’s of energy
En and if we add a static perturbation Û , the |ψ(1)

n 〉 state at first order in V
is written in the case of a non-degenerate level:

|ψ(1)
n 〉 = |ψn〉+

∑
k 6=n

〈ψk|Û |ψn〉
En − Ek

|ψk〉, (9)

where we have by convention chosen null the projection of |δψ(1)
n 〉 =

|ψ(1)
n 〉 − |ψn〉 on |ψn〉 itself.

To simplify the notations, let us take the case of two hydrogen atoms
in their electronic ground state 1s, each of energy E1 = −EI where EI =
e2/2a0 = 13.6 eV designates the ionization energy of a hydrogen atom. The
unperturbed state is

|Ψ〉 = |A : 1s; B : 1s〉 ≡ |1s; 1s〉. (10)

Let us assume that the axisAB is parallel to the axis z so that Ûdip is written

Ûdip =
e2

r3
[x̂Ax̂B + ŷAŷB − 2 ẑAẑB ] , (11)

where x̂A, ŷA, ẑA denote the three components of the position operator of
the electron of atom A (and idem for B).

Starting from the ground state 1s (angular momentum 0), the position
operators x̂, ŷ, ẑ have a nonzero matrix element only with the p states (an-
gular momentum 1). The dominant element in the sum (9) is obtained
when we consider the first excited state 2p, corresponding to the principal
quantum number n = 2, of energy E2 = −EI/4. We limit ourselves to the
contribution of this state for simplicity. We also introduce the p level basis
composed of the pα with α = x, y, z. These states form the basis commonly
used in chemistry for a space of angular momentum J = 1. We will also
use that 〈2px| x̂ |1s〉 = 〈2py| ŷ |1s〉 = 〈2pz| ẑ |1s〉 ∝ a0 and 〈2pα| r̂β |1s〉 = 0
if α 6= β.

Under these conditions, there are only 3 terms that contribute to the
generic expression (9) at first order in Udip:

|1s; 1s〉+
∑

α=x,y,z

〈2pα; 2pα|Ûdip|1s; 1s〉
2E1 − 2E2

|2pα; 2pα〉 (12)

z

x

A

B

z

x

A

B

Figure 3. Left: dipoles induced by the contribution in |2px; 2px〉 to the state (13).
Right: same for the contribution in |2pz; 2pz〉.

that we write

|1s; 1s〉 − ε
(
|2px; 2px〉+ |2py; 2py〉 − 2 |2pz; 2pz〉

)
(13)

with

ε =
e2

2r3

(〈2pz| ẑ |1s〉)2

E2 − E1
, ε > 0. (14)

The expression (13) is interesting because it shows the quantum cor-
relations that appear between the two atoms. Taken individually, the
dipole moment of each atom remains zero at this order of the calculation:
〈Ψ(1)|x̂A |Ψ(1)〉 = 0. On the other hand, if atom A is found in the 2px state,
then we see that atom B is also in the 2px state. Moreover, the probability
amplitude −ε to find |2px; 2px〉 has the opposite sign to that of the starting
state |1s; 1s〉. This means that the two dipoles along x are anti-correlated,
i.e. they have opposite directions (figure 3):

〈Ψ(1)| x̂Ax̂B |Ψ(1)〉 = −2ε
(
〈1s| x̂ |2px〉

)2
< 0. (15)

Since the centers of these dipoles are located on a line parallel to z (figure
3, left), this configuration is attractive. The same is true for the y direction.
On the contrary, the dipoles along z are positively correlated: 〈ẑAẑB〉 > 0

12



CHAPTER I THE INTERACTION POTENTIAL BETWEEN TWO ATOMS § 1. The van der Waals interaction

0

r

V (r)

Figure 4. V (r) = −C6/r
6 van der Waals interaction. This interaction is dom-

inant at long distance (area colored in green). At short distance (zone colored in
red), the exchange interaction and the repulsion between nuclei become prepon-
derant.

(figure 3, right). This also corresponds to an attractive configuration, since
the z axis is parallel to the AB axis.

1-4 The van der Waals coefficient C6

Let us now turn to the discussion of the interaction energy itself. Since this
energy is obtained to second order in Udip [cf. eq. (7)] and Udip is itself
proportional to 1/r3, it follows that the energy varies as 1/r6 and therefore
takes the form first proposed by London (1930) (figure 4):

V (r) = −C6

r6
. (16)

The precise determination of the C6 coefficient requires a numerical cal-
culation of the wave functions of the excited atomic states, then the esti-
mation of the matrix elements of the electric dipole operator between the
ground state and these excited states. One can consult for example:

• For hydrogen : Kolos & Roothaan 1960.

• For helium and other noble gases: Tang, Toennies, et al. 1995; Tang &
Toennies 2003; Zhao & Truhlar 2006.

• For alkali metal atoms: Derevianko, Babb, et al. (2001) and Mitroy &
Bromley (2003),Coxon & Hajigeorgiou (2010).

• For alkaline earth atoms: Mitroy & Bromley (2003), Porsev & Dere-
vianko (2006), Li, Xie, et al. (2010), Yin, Li, et al. (2010), and Heaven,
Merritt, et al. (2011).

• For erbium and dysprosium : Lepers, Wyart, et al. (2014) and Li,
Wyart, et al. (2017) (a non-negligible anisotropy appears in this case
due to the complex structure of the electronic ground state).

The purpose of this section is to give a simple estimate of the C6 coef-
ficient for atoms commonly used in cold atom experiments, such as alkali
metal atoms (one peripheral electron) or alkaline earth atoms (two periph-
eral electrons).

To obtain this estimate, we will use the same approximation as in the
previous paragraph (§ 1-3), when discussing the correlations present in the
perturbed state. We will assume that in the sum over all excited states
that appears in the energy shift at order 2, the essential contribution comes
from the resonance line of the atom, which connects the ground state g to
a particular excited level e. Let us model this line as a transition from the
ground state of angular momentum Jg = 0 to the excited level of angular
momentum Je = 1; the level |e〉 corresponds to a space of dimension 3,
of which a possible basis is formed by the three orbitals |eα〉, α = x, y, z,
already used above.

We note ω = (Ee − Eg)/~ the frequency of the selected transition and
we restrict the sum to one level (i.e. three states)

∆E(2) = −
∑

α=x,y,z

|〈eα; eα|Ûdip |g; g〉|2
2~ω

. (17)

The numerator involves the matrix elements 〈eα|D̂α|g〉which also enter in
the expression of the natural width (inverse of the lifetime) of the e level,
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calculated within the electric dipole approximation:

Γ =
ω3d2

3πε0~c3
, (18)

where d = 〈e||D||g〉 is the reduced dipole between g and e.

Let us insert the expression (11) of the potential V̂ into the energy shift
(17). The contributions of D̂x, D̂y , D̂z sum with weights 1 : 1 : 4 to give

∆E(2) = −27

16

Γ

ω

~Γ

(kr)6
(19)

where k = ω/c = 2π/λ is the wave number of the transition of frequency ω
and wavelength λ. This very simple expression brings out the scaling law
C6 ∝ Γ2λ7.

Table 1 gives the approximate values of C6 obtained by the law (19),
compared to the most accurate numerical results (see also figure 5). Re-
call that the natural width Γ/2π of a resonance line is typically of the order
of 5 to 50 MHz (lifetime of e from 3 to 30 ns), and the corresponding wave-
lengths are of the order of a fraction of a micron. The ratio Γ/ω, which is the
small dimensionless parameter involved in the perturbative development
and which appears in (19), is thus ∼ 3× 10−9– 3× 10−8.

For all atomic species in this table, the agreement is excellent (error
lower than 20 %) except for those of the lanthanide family such as erbium,
dysprosium and ytterbium for which the approximation consisting in lim-
iting to only one resonance line is problematic (Safronova, Porsev, et al.
2012; Porsev, Safronova, et al. 2014)

Beyond the dipole-dipole interaction. The dipole-dipole interaction
term is only the first element of the multipole expansion, which comprises
an infinite number of terms, in −C2n/r

2n with n = 3, 4, 5, . . .. Each value
of n corresponds to a given multipole order: n = 3 for the dipole, n = 4 for
the quadrupole, etc. The coefficients C2n are called dispersion coefficients.
For the discussions in this course, we will just keep the first term −C6/r

6

which is dominant at long distance, but an accurate comparison of the cal-
culated potential with the experimental measurements requires to take into
account several terms of this sum (for example up to n = 12 for the He-He

system C6 [a.u.] Γ/2π [MHz ] λ [nm] C6 approximated [a.u.]
Li-Li 1389 5.87 671 1340

Na-Na 1556 9.80 589 1500
K-K 3897 6.04 767 3610

Rb-Rb 4691 6.07 780 4100
Cs-Cs 6870 5.22 852 5629

Mg-Mg 627 80.9 235 630
Ca-Ca 2121 34.6 423 1840
Sr-Sr 3103 32.0 461 2750
Er-Er 1760 29.7 401 930

Dy-Dy 2275 32.2 421 1550
Yb-Yb 1929 29 399 860

Table 1. Values of the van der Waals coefficient C6 for some atomic species fre-
quently used in cold atom experiments. Column 2 gives the value found in the
literature, resulting from a detailed analysis summing the contributions of the dif-
ferent atomic transitions (see the different references in the text). Column 5 gives
the value found by restricting to the main resonance line [cf. eq. (19)], whose
characteristics (width and wavelength) are presented in columns 3 and 4. In the
literature, C6 is traditionally expressed in atomic units (a.u.), i.e. E0a

6
0 with

E0 = e2/a0 = 1 Hartree. We have a0 = 0.5292 Å and e2/a0 = 27.21 eV, so
that the atomic unit for C6 is 9.55 × 10−80 Jm6. Recall that we have assumed
throughout this course e2 = q2/4πε0 with q = 1.602× 10−19C.

potential by Tang, Toennies, et al. (1995)). Let us also note an approximate
recurrence relation linking the different dispersion coefficients:

C2n ≈
(
C2n−2

C2n−4

)3

C2n−6 (20)

which allows one to calculate all these coefficients once the first three are
known [see Tang, Toennies, et al. (1995) and refs. in].

Delay effects. We have explained the origin of the van der Waals interac-
tion by starting with the instantaneous dipole of atom A that creates a field
polarizing atom B, and this induced dipole in turn creates a field on the A
atom. In doing so, we have neglected any delay effect in the establishment
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Figure 5. Relation between the experimentally measured value for the coefficient
C6 and its approximated value (19). The values of the table 1 are used here. The
red discs correspond to the alkali-metal species, the blue squares to the alkaline
earth species and the black lozenges to the lanthanides.

of these fields. This is an approximation which is only valid if the atoms
are not too far apart. More precisely, we have seen that the dynamics of
each atom is dominated by its resonance transition of frequency ω. If the
propagation time r/c of the electromagnetic field between the two atoms
is small compared to 1/ω, it will be legitimate to neglect the phase shift
induced by this propagation. The criterion of validity of the 1/r6 law is
therefore given by:

Negligible delay effects if
r

c
� 1

ω
⇔ kr � 1. (21)

For more distant atoms, delay effects must be taken into account and lead
to the replacement of the 1/r6 law by the faster 1/r7 decay (Casimir &
Polder 1948). Note, however, that these retardation effects are in practice
extremely small and do not play a significant role in the determination
of the scattering lengths which we will study later. As a check, one can
estimate the interaction energy (19) for kr = 1 and one finds energies of
the order of one picokelvin only.

2 Van der Waals interaction for excited atoms

In this lecture series, we will mainly focus on the case where the interacting
atoms are placed in their electronic ground state. Nevertheless, it is useful
at this stage to say a few words about the case where at least one of the two
atoms is placed in an excited electronic state.

2-1 Pair of atoms with an electronic excitation

We start our study with the case where only one of the two atoms is in an
excited electronic state. To simplify the discussion, we keep the model of
an atomic transition Jg = 0↔ Je = 1. We will see that the major difference
with the previous case is that the dipole-dipole coupling now acts at order
1, and thus gives rise to a 1/r3 interaction, with a larger range than for
atoms in their ground state.

The subspace associated to the physical situation we are interested in is
of dimension 6, with as possible basis

{|g; eα〉, |eα; g〉} , α = x, y, z. (22)

In the absence of coupling, this subspace is degenerate. To take into ac-
count the coupling Ûdip at order 1 of the perturbation theory, we have to
diagonalize the 6× 6 matrix corresponding to the restriction of Ûdip to the
subspace generated by (22).

Fortunately, this diagonalization is less complex than it seems. Let us
take as before the axis z parallel to the vector joining A to B. For a given
index α, the operator Ûdip has a non-zero component only between |g; eα〉
and |eα; g〉with for example:

〈g; ex| Ûdip |ex; g〉 =
e2

r3
|〈g| x̂ |ex〉|2 =

3

4

~Γ

(kr)3
(23)

with an identical result when we make the substitution x→ y, and a result
multiplied by −2 when we make the substitution x→ z.

Therefore, the diagonalization of the 6× 6 matrix can be reduced to the
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h̄ω

|g; g〉

|g; eα〉, |eα, g〉

r

V (r)

Figure 6. Energy levels of a pair of atoms with electronic excitation for a model
transition Jg = 0↔ Je = 1.

diagonalization of three 2× 2 submatrices:

[Vx,y] =
3

4

~Γ

(kr)3

(
0 1
1 0

)
and [Vz] = −2[Vx,y]. (24)

The diagonalization is immediate and gives the following energies and
eigenstates (with a global shift of ~ω with respect to the ground state |g; g〉):

E = ±3

4

~Γ

(kr)3

1√
2

(|eα; g〉 ± |g; eα〉) , α = x, y (25)

and
E = ±3

2

~Γ

(kr)3

1√
2

(|ez; g〉 ∓ |g; ez〉) . (26)

This result, which is plotted in Figure 6, calls for several remarks:

• The dependence (1/r3) on the distance r is much weaker than for the
case of a pair of atoms in their electronic ground state (1/r6). This
potential will therefore be felt at larger distances.

• This potential emerges at first order of perturbation theory, whereas
the one found in (19) came at second order. This is why the factor
Γ/ω ∼ 10−7 which appeared in (19) is absent here.

• The eigenstates in (25) and (26) involve the excited electronic state e
which is radiatively unstable and can de-excite by emitting a photon,
with a lifetime Γ−1 when the atom is isolated. These eigenstates are
therefore also unstable. When the atoms are close together, the precise
calculation of the lifetime of these states requires an elaborate formal-
ism and we will not do it here. Let us simply note that if we evaluate
the matrix element of the dipole operator between each of these states
and the ground state |g; g〉, we find that three of these states lead to
a zero value: they are subradiant states, of long lifetime. For the three
other states, the dipole is multiplied by

√
2 compared to the case of an

isolated atom; their lifetime is thus reduced by a factor of 2, they are
superradiant states.

2-2 Van der Waals interaction for Rydberg atoms

Let us now say a few words about the case where the atoms are each pre-
pared in an excited state. We consider alkali metal atoms and suppose that
the external electron of each atom has been brought into a highly excited
state |e〉 ≡ |n, `, j,m〉 with n � 1, i.e. , a Rydberg state. If the atoms are
far enough apart, one can always treat perturbatively the electric dipole-
dipole interaction Ûdip between them. As for the case of two ground-state
atoms, the first non-zero term of the energy appears at order 2 :

∆E = −
∑
e′,e′′

∣∣∣〈e′, e′′|Ûdip|e, e〉
∣∣∣2

Ee′ + Ee′′ − 2Ee
, (27)

where the sum covers all possible states for the outer electrons of the atoms.
In practice, the matrix element of the electric dipole operator that appears
in the numerator is governed by selection rules that strongly restrict the
class of eligible states. For example, if |e〉 is an s state, of orbital angular
momentum ` = 0, the only |e′〉, |e′′〉 states that can contribute are p states,
of orbital angular momentum ` = 1.

Since the operator Ûdip is proportional to 1/r3, where r is the distance
between the two atoms, the energy shift ∆E(r) can always be put in the
form ∆E = −C6/r

6. However, contrary to the case where the two atoms
were in their ground state and the van der Waals interaction was always
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attractive (C6 > 0), we cannot say anything about the sign of C6 this time.
The energy denominators involved in (27) can indeed be negative as well
as positive.

In fact, it often happens that the sum involved in (27) is dominated by
a single term, such that Ee′ + Ee′′ is very close to 2Ee. Saffman, Walker, et
al. (2010) give the example of the rubidium state |e〉 = |60p3/2〉, for which
the dominant term in the sum comes from the |60s, 61s〉 pair, the energy
denominator being only h× 0.3 GHz.

We will not describe in detail this interaction between Rydberg atoms
because it is a subject rich enough to deserve a course on its own. We will
simply mention two points that radically distinguish it from the case of
atoms in their ground state:

• The coefficient C6 is considerably larger than that found for the
ground state. This increase results from two factors: (i) the numerator
of (27) involves the matrix element of the position operator between a
state |n, `〉 and a neighboring state |n′, ` ± 1〉 with n′ ≈ n. This matrix
element varies as n2, so that the numerator of (27) varies as (n2)4 = n8.
(ii) The denominator of (27) involves energy differences of neighbor-
ing hydrogen states. As the energy of each state varies as 1/n2, this
difference varies as 1/n3. In the end, we find that the coefficient varies
as n8

1/n3 = n11, an exponent rarely found in scaling laws in physics! We
show in figure 7 the verification of this scaling law.

• The above reasoning is based on perturbation theory. But the very
large value predicted forC6 indicates that when the atoms move closer
together, the energy shift ∆E will quickly become of the order of the
energy differences Ee′ +Ee′′ − 2Ee which intervene in the denomina-
tor of (27). When this is the case, perturbation theory can no longer be
applied and one switches to a regime where the interaction potential
varies as 1/r3, as in the previous paragraph (§ 2-1) devoted to the res-
onant dipole-dipole interaction. This switch corresponds to the tran-
sition from the van der Waals regime to the Förster regime (Walker &
Saffman 2008).

Figure 7. Test of the scaling law |C6| ∝ n11 for a pair of rubidium atoms prepared
in a Rydberg state. The parameter |C6|/(n/60)11 is plotted as a function of the
principal quantum number n. The scaling law is well verified for a pair of atoms in
the |ns, ns〉 or |np3/2, np3/2〉 state. In the case of |np1/2, np1/2〉 pairs, accidental
compensations in the different contributions to C6 lead to a near cancellation of
this coefficient for n = 42. Figure taken from Sylvain de Léséleuc’s PhD thesis,
Paris-Saclay University, 2018.

3 The van der Waals dimers

3-1 When the covalent bond is absent

In chemistry, van der Waals interaction is usually only a small contribution
to the binding energy of a molecule. The dominant contributions, either
covalent or ionic, come from electron exchanges between atoms. These ex-
changes, which we will discuss in § 4, only occur when the electron clouds
of the atoms overlap, typically for distances r less than a few angströms.
They lead to potential wells, i.e. binding energies of the molecules, much
larger than those produced by the van der Waals interaction. For example,
for C6 = 100 atomic units, we find that the potential well created by the
van der Waals attraction at a distance r = 5 Å is 6 × 10−22 J, or 4 meV. A
typical covalent bond leads to energies that are rather on the order of one
electron volt.

17



CHAPTER I THE INTERACTION POTENTIAL BETWEEN TWO ATOMS § 3. The van der Waals dimers

However, there is a whole class of atoms, rare gas or alkaline earth
for example, for which the covalent bond cannot occur because their pe-
ripheral atomic layer is complete: the exchange process at the basis of the
chemical bond is therefore blocked. In some textbooks, one can read that
as a consequence, the diatomic molecule built with these atoms, He2 or
Be2, cannot exist. This assertion is in all rigor erroneous: the He2 or Be2

edifice exists and it is stable, in the sense that it has an energy lower than
that of two infinitely separated atoms. Its existence relies on van der Waals
attraction, with the overlap of electron clouds at short distances creating
essentially a repulsive potential.

3-2 The example of rare gases

A simple model of interaction energy between two noble gas atoms has
been proposed by Tang & Toennies (1984), then deepened and justified
from first principles by several authors. One can consult Tang & Toennies
(2003) for a detailed description of this potential called TT (Tang-Toennies).
The idea of this potential is (i) to start from the development

−
N∑
n=3

C2n

r2n
(28)

at long distance, (ii) to screen it when r approaches 0 to avoid its diver-
gence, and (iii) to substitute a repulsive short-range (Born–Mayer) poten-
tial, preventing the nuclei from getting too close to each other. In addition
to the coefficients C2n involved in (28), two parameters, A and b, must be
given to describe this short-range screening and repulsion.

The TT potential is written more precisely

V (r) = Ae−br −
N∑
n=3

fn(br)
C2n

r2n
(29)

where each screening function fn(x)

fn(x) = 1− e−x
2n∑
k=0

xk

k!
(30)

Figure 8. Left: interaction potential between two helium atoms, obtained by keep-
ing only the dipole-dipole term (N = 3) in (28), compared to the result obtained
with dipole, quadrupole and octupole interactions (N = 5). The dashed potential
is determined by a fit to the experimental data. Right: Interaction potential be-
tween rare gas atoms. The data are plotted in atomic units, a0 = 0.5292 Å for the
distances and e2/a0 = 27.21 eV for the energies. Figures extracted from Tang &
Toennies (2003).

goes continuously from 0 to 1 when r increases from 0 to infinity. In prac-
tice, the restriction to N = 5, which amounts to keeping only the dipolar,
quadrupolar and octupolar terms, gives a very good approximation of the
real potential (figure 8, left). Once N is fixed, the coefficients A and b are
adjusted to place the position rmin of the minimum of the potential and
its depth Vmin at the values determined from experimental or numerical
results [see Barrow & Aziz (1988) for an example of this determination].

We have plotted in figure 8 (right) the potential obtained for the rare
gases. We see that the depth of the potential well Vmin and the position
rmin of this minimum increase when we move down the periodic table.
The values of the coefficients C6 are reported in the table 2. These values

18



CHAPTER I THE INTERACTION POTENTIAL BETWEEN TWO ATOMS § 3. The van der Waals dimers

system rmin Vmin × 104 C6

He-He 5.6 0.35 1.5
Ne-Ne 5.8 1.3 6.4
Ar-Ar 7.1 4.5 64
Kr-Kr 7.6 6.4 130
Xe-Xe 8.3 9.0 290
Rn-Rn 8.5 13 420
Be-Be 4.8 36.0 214

Mg-Mg 7.4 19.6 627
Ca-Ca 8.1 50.1 2121
Sr-Sr 8.8 49.3 3103

Table 2. Parameters of van der Waals dimers formed from noble gases and alkaline
earth atoms. These data are in atomic units, a0 = 0.5292 Å for distances and
e2/a0 = 27.21 eV for energies.

are extracted from Tang & Toennies (2003) and one can also consult Gerber
(2006).

An important point is that for each noble gas species, including helium
4He which corresponds to the shallowest well, this interaction potential
gives rise to bound states [3 bound states for Ne2, 6 bound states for Ar2

for example (Ogilvie & Wang 1992)]. X2 molecules (with X=rare gas atom)
exist, even if their binding energy is low: the most bound is radon with a
potential well of 13× 10−4 atomic units, or 35 meV (400 Kelvins). The only
missing dimer is 3He2, which interacts with the same potential as 4He2,
but for which the quantum fluctuations related to the kinetic energy are
larger (factor 3/4 on the mass), which makes the bound state disappear.

Due to the lack of adequate lasers, it is not yet possible to cool and trap
rare gases optically, at least when they are in their electronic ground state.
But if this becomes possible, it is interesting to note that the resulting gases
will be in a relatively strong interaction regime, at least for the heaviest ele-
ments. Indeed, as we will see in the following, the scattering length, which
is the parameter characterizing the interactions between atoms at low tem-
perature, varies as (C6)1/4. The C6 coefficient of radon for example (400
atomic units) is only 3 to 10 times lower than that of alkali metal atoms, in
spite of the fact that for the latter, the covalent bond gives rise to potential

wells 100 times deeper. Unless there is a special scattering resonance, the
scattering length for radon will differ by a factor of 2 at most from that
of alkali metal atoms. One should therefore be wary of the intuition de-
rived from room temperature chemistry when approaching the physics of
interactions between ultra-cold atoms.

One notes on the table 2 that the dimers of rare gases are "large
molecules". The distance between atoms for the He2 molecule is 4 times
larger than for the di-hydrogen molecule H2. This is of course due to the
long-range nature of the potential.

3-3 Experimental study of the He2 molecule

The possible existence of the helium dimer has long been a subject of con-
troversy. The question has been definitively settled in a beautiful experi-
ment of wave physics by Schöllkopf & Toennies (1994). In this experiment,
a supersonic beam of helium is formed from a high pressure container (15
bar) with a 5 micron diameter hole. The jet passing through this hole prop-
agates in the vacuum, it cools down because of the supersonic expansion
and thus becomes quasi-monokinetic (∆v/v . 5 %). The wavelength asso-
ciated to each type of particle (atom, dimer, trimer), λ = h/mv, is then well
defined. For a temperature of 30 K, we find λ = 0.18 nm for He atoms.

This beam is collimated by two 10 micron wide slits, located 47 cm
apart, and then passes through a periodic grating on which the particles
can be diffracted (figure 9). The period of the grating is d = 200µm and we
expect to observe diffraction peaks at angles θn ≈ nλ/d.

An example of signal is shown in Figure 2. We see a main peak on the
left, corresponding to non-diffracted particles. On the right, for an angle
θ1, the large peak corresponds to the first diffraction order (n = 1) of the
atoms. The interesting signal is located between these two large peaks:
we see two smaller peaks at θ2 = θ1/2 and θ3 = θ1/3, which correspond
to particles whose wavelength is respectively 2 and 3 times smaller than
those of atoms. They are respectively due to the dimers and the trimers,
which go at the same speed as the atoms because of the collisions at the
exit of the source, and have a mass 2 (resp. 3) times larger.

The helium dimer is a nice example of the objects of interest in this
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Figure 9. Experimental scheme using diffraction of matter waves to detect the
presence of helium dimers and trimers in a supersonic beam of atomic helium.
Figure taken from Schöllkopf & Toennies (1994).

course. In particular, its binding energy (∼ 10−7 eV) is much smaller than
the depth of the potential well visible in figure 8 (∼ 10−3 eV). This indicates
that the dimer is only very marginally bound (Grisenti, Schöllkopf, et al.
2000). Correlatively, the average distance between the two atoms, ∼ 50 Å,
is much larger than the distance rmin ∼ 3 Å at which the interaction energy
is minimal. This is the signature of a scattering resonance, a notion that
will be clarified in the following chapters.

Let us mention that the trimer is also a fascinating object. It is indeed a
weakly bound three-body state, a precursor of the states predicted by Efi-
mov (1971) [see also Lim, Duffy, et al. (1977) for the specific case of helium].
More precisely, the state highlighted by Schöllkopf & Toennies (1994) and
shown in figure 10 is the ground state of the trimer and its size is of the
order of 10 Å. More recently, Kunitski, Zeller, et al. (2015) have revealed
the first excited state of this trimer (in fact, the only possible excited state),
whose size exceeds 100 Å and which can be seen as a true Efimov state.

0 1 Θ  [mrad]

Figure 10. Angular distribution of diffracted particles. Since the beam is monoki-
netic, the comparison of the diffraction angles allows one to directly trace the mass
of the diffracted particles. The large peak on the left corresponds to the non-
diffracted beam and the large peak on the right to the first diffraction order for
helium atoms. The two smaller intermediate peaks reveal the existence of He2

dimers and He3 trimers. Figure extracted from Schöllkopf & Toennies (1994).

3-4 The alkaline earth atoms

The alkaline earth atoms belong to the second column of the periodic ta-
ble: Be, Mg, Ca, Sr, the last three being used in cold atom experiments.
They have two outer electrons in an s-type level, which means that this
layer is complete, the two electrons forming a spin singlet state. Therefore,
the exchange processes responsible for covalent bond cannot occur and the
attractive part of the potential is essentially due to van der Waals interac-
tions, as for rare gases. One can then use a TT type potential [cf. (29)]
to describe their interaction in an approximate way [see e.g. Li, Xie, et al.
(2010) for Mg and Yin, Li, et al. (2010) for Ca]. There are also numerical
methods of high accuracy, see for example Zhao & Truhlar (2006), Gerber
(2006), and Heaven, Merritt, et al. (2011).

The interaction potentials for Ca and Sr are shown in figure 11, together
with those of the "neighboring" rare gases Ar and Kr. The figure also shows
the interaction potential for mercury (Yin, Li, et al. 2010). For the physics
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Figure 11. Interaction potential for Ca, Sr and Hg. The potentials of the noble
gases Ar and Kr are shown for comparison. Figure extracted from Yin, Li, et al.
(2010).

of cold atoms, the two important points are that:

• The coefficient C6 takes for each species a significant value, compara-
ble to those of the alkali metal atom on the same line of the periodic
table: Na↔Mg, K↔Ca, Rb↔Sr (see table 1).

• The dimers all have a relatively large number of bound states; the in-
teratomic potential for the lightest of them (Be) leads to 10 or 11 bound
states, and this number increases as one moves down the periodic ta-
ble, the atoms becoming heavier and the C6 coefficient increasing.

As we will see in the remainder of the course, these two points are suf-
ficient to ensure that the typical scattering length is proportional to C

1/4
6

and comparable to that of alkali metal atoms, for which the covalent bond
exists. At very low temperatures, the gases formed with these atoms will
therefore have interaction energies similar to those of sodium or rubidium
gases, for example.

4 The "real" chemical bond

In the last section of this chapter, we are interested in the covalent bond,
which allows the formation of strongly bound homonuclear dimers. This
bonding results from the possibility for the electrons to tunnel from one nu-
cleus to the other, which increases the extension of their wave function and
thus decreases their kinetic energy. We will start our discussion with the
simplest atomic species to describe theoretically, hydrogen. We will then
generalize it to other atomic species relevant for cold atom experiments,
the alkali metal species.

4-1 Born–Oppenheimer approximation

The description of the interaction between two hydrogen atoms is a 4-body
problem, two nuclei (protons) noted A and B and two electrons noted 1
and 2. The 4-body problem is intrinsically very difficult to solve. Here, it
is greatly simplified by the Born–Oppenheimer approximation that takes
advantage of the very large difference between the mass M of a nucleus
and the mass me of an electron. This approximation allows us to reduce
to a two–body problem. Since this problem is itself globally translation
invariant, it can be further reduced to a one-body problem, treatable with
"standard" quantum physics methods.

To implement the Born-Oppenheimer approximation, one starts by fix-
ing the positions of the nuclei in rA and rB and looks for the eigenstates of
the total energy (kinetic+potential) of the electrons moving in the Coulomb
field created by the nuclei. Once this energy is known, at least in an ap-
proximate way, we use it as an effective potential energy, noted V (rAB), to
describe the motion of the nuclei. The Born-Oppenheimer approximation
is a variant of the adiabatic approximation that we have encountered sev-
eral times in previous years’ courses: since the mass me of the electron is
small, the electronic variables evolve with short time constants. These time
constants correspond to an energy typical of atomic physics, i.e. about ten
electron-volts for hydrogen. Because of this fast evolution, the electronic
variables can adapt almost instantaneously to the much slower motion of
the nuclei.
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0

Rmin

r

V (r)

Figure 12. Schematic representation of the effective potential V (r) between the
nuclei A and B, obtained after Born–Oppenheimer approximation. We have plot-
ted here only the potential corresponding to the minimum energy of the electrons,
calculated for each value of the distance r = |rA − rB |. In the green colored area,
the van der Waals interaction is dominant.

We will specify in the following paragraphs how to obtain an expres-
sion for V (r). Let us assume for the moment that this expression is known,
with the typical shape represented in figure 12. This potential tends to 0
when the two nuclei are far apart (r → ∞), it has a minimum for a partic-
ular value Rmin of the distance between nuclei, and it diverges when the
nuclei become very close to each other (r → 0). The problem of the inter-
action between the two hydrogen atoms is then reduced to the two-body
problem described by the Hamiltonian

Ĥ =
p̂2
A

2M
+

p̂2
B

2M
+ V̂ (|rA − rB |) . (31)

This Hamiltonian allows both:

• The treatment of the chemical bond of the dihydrogen molecule H2.
We then look for bound states in this potential. In particular, the posi-
tion Rmin of the minimum gives the size of the ground-state molecule
at equilibrium and V (Rmin) its binding energy.

• The treatment of the elastic collision between two hydrogen atoms.

We consider atoms with initial momenta pA,pB and we look for the
distribution of possible final momenta p′A,p

′
B .

In both cases, the problem is simplified by the fact that the system de-
scribed by the Hamiltonian (31) is translationally invariant, which allows
to separate the dynamics into a center-of-mass component, unaffected by
the potential V , and the part dealing with the relative variable. More pre-
cisely, we define

R =
1

2
(rA + rB), r = rA − rB (32)

with the conjugated moments

P = pA + pB , p =
1

2
(pA − pB) (33)

which allows to write Ĥ in the form:

Ĥ = Ĥcom + Ĥrel (34)

with

Ĥcom =
P̂ 2

2(2M)
, Ĥrel =

p̂2

2mr
+ V̂ (r) (35)

where we have introduced the reduced mass mr = m/2. If we define the
origin of the energies such that V (r) → 0 when r → ∞ [cf. figure 12], the
eigenstates of negative energy of Ĥrel correspond to the different bound
states of the molecule H2, with various degrees of excitation of the levels
of vibration and rotation of the nuclei. The positive energy states are used
to describe a collision between the two atoms.

The knowledge of the potential V (r) gives the energy scale relevant to
the molecular motion and allows one to validate the Born–Oppenheimer
approximation. For example, in the development of V (r) close to Rmin:

V (r) = V (Rmin) +
1

2
mrω

2 (r −Rmin)
2

+ . . . (36)

the quantity ω/2π corresponds to the vibration frequency of the molecule
around its equilibrium position. For H2, this frequency is 1.3 × 1014 Hz,
corresponding to an energy ~ω = 0.5 eV, which is indeed small in front of
the characteristic energies of the electron motion (10 eV).
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Born-Oppenheimer approximation or adiabatic approximation? The
starting point of the Born-Oppenheimer approximation is the large mass
difference between the nuclei and the electrons, which allows one to de-
termine the energy levels Vn(rAB) of the electrons for a given distance rAB
between the nuclei. We then treat each of these energy levels as a poten-
tial governing the evolution of the nuclei. This approach is very similar to
the one underlying the adiabatic approximation, where the electron state
adjusts almost instantaneously to the much slower motion of the nuclei.
There is however an additional ingredient that appears in the adiabatic ap-
proximation, once the energy levels Vn(rAB) and the associated electronic
states |ψn(rAB)〉 are known; these are the geometric potentials (scalar and
vector) related to the variation with rAB of the electronic states |ψn(rAB)〉.
These geometric potentials, related in particular to the Berry phase, played
a central role in the 2014 course, which was devoted to artificial magnetism
for cold atomic gases. In molecular physics, their effects, mostly weak,
are completely neglected in the Born–Oppenheimer approximation. For a
thorough discussion of their order of magnitude, one may consult Com-
parat (1999).

4-2 The Heitler–London method

Once the Born–Oppenheimer approximation has been performed, the pro-
cedure to be followed to obtain an approximate but reliable value of the
potential V (r) is described in many textbooks [see for example Demtröder
(2010)] and is inspired by the method introduced by Heitler & London
(1927). The Hamiltonian describing the motion of the two electrons, each
with mass me, is written:

Ĥel(rA, rB) =
p̂2

1

2me
+

p̂2
2

2me
+ V̂Coulomb + 2EI (37)

with

V̂Coulomb = − e2

r1A
− e2

r1B
− e2

r2A
− e2

r2B
+

e2

r12
+

e2

rAB
, (38)

with as before e2 = q2/(4πε0) and rαβ = rα − rβ . This Hamiltonian con-
tains:

• The two kinetic energy terms.

• All the Coulomb interaction terms. We are dealing here with 4 charged
particles, each of which can interact with the 3 others, and so there are
1
2 (4 × 3) = 6 terms, 4 being attractive and 2 repulsive. Note that we
have taken into account here the repulsion energy between the two
nuclei e2/rAB , even if this term represents at this stage only a constant
energy for the electron motion.

• We have also added1 the constant 2EI where EI = 13.6 eV is the ion-
ization energy of a hydrogen atom; this allows to set the zero-energy
reference for the situation where the two hydrogen atoms are each in
their electronic ground state and infinitely far from each other.

Let us forget for the moment that electrons and protons have a spin 1/2
and that they are indistinguishable particles that must obey the Pauli prin-
ciple. The starting point of the Heitler–London theory is that for rAB →∞,
the ground level of Ĥel is doubly degenerate. It can be obtained in two dif-
ferent ways, corresponding to the possible assignments of the electrons 1
and 2 to the nuclei A and B:

|ΨI〉 = |1 : ψA; 2 : ψB〉, |ΨII〉 = |1 : ψB ; 2 : ψA〉 (39)

or in "wave function" point of view:

ΨI(r1, r2) = ψA(r1)ψB(r2), ΨII(r1, r2) = ψB(r1)ψA(r2). (40)

Here ψA(r1) is the state of the electron 1 placed in the ground state 1s
around the nucleus A, itself located in rA:

ψA(r1) =
e−r1A/a0√

πa3
0

, (41)

where a0 = ~2/(mee
2) is the Bohr radius, already used above. The idea is

then to use the variational method in this two-dimensional space: for each
value of the distance between nuclei rAB , we look for the linear combina-
tions of Ψ = αΨI + βΨII which lead to an extremum of the mean energy

E(α, β, rAB) =
〈Ψ|Ĥel(rA, rB)|Ψ〉

〈Ψ|Ψ〉 . (42)

1Without this term, the zero energy would correspond to the physical situation where the
4 particles, protons and electrons, are each infinitely far from the three others.
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For well chosen test functions (which is the case here), we expect that these
extrema are close to some of the energy levels of Ĥel(rA, rB). Since the
wave functions ΨI,II are real, we can limit our study to the case where the
variational parameters α, β are also real.

Note 1. The method used here is not a first-order perturbation theory,
even if the result obtained below involves the matrix elements of Ĥ be-
tween the states ΨI,II. Indeed, the ΨI,II states are not eigenstates of a sin-
gle Hamiltonian that one would obtain from Ĥel. More precisely, ΨI is an
eigenstate of

Ĥ
(1)
0 =

p2
1

2me
+

p2
2

2me
− e2

r1A
− e2

r2B
(43)

whereas ΨII is eigenstate of

Ĥ
(2)
0 =

p2
1

2me
+

p2
2

2me
− e2

r1B
− e2

r2A
. (44)

We are therefore not in the canonical case of first-order degenerate pertur-
bation theory, where the degeneracy of two eigenstates of the same Hamil-
tonian Ĥ0 is lifted by a perturbation V̂ coupling these two states.

Note 2. From now on, we will identify the distance between nuclei rAB
with the distance r between atoms, since the center of gravity of an atom
practically coincides with its nucleus, thanks to the large mass difference
between nuclei and electrons.

4-3 Bonding and antibonding orbitals

The search for the extrema of the energy functional (42) is done without
major difficulty [see e.g. Schiff (1968)]. As one would expect given the
symmetry of the problem, the extrema are obtained for symmetric and an-
tisymmetric linear combinations of ΨI and ΨII:

A(1)B(2)±B(1)A(2) (45)

where we have noted for simplicity ψA(r1) ≡ A(1), etc.

A relatively long calculation allows to put these extremal energies in
the form of an effective potential for the motion of the nuclei

Veff,±(rAB) =
εdir ± εexc

1±∆2
. (46)

Let us briefly discuss the origin of the two energies εdir,exc and the di-
mensionless coefficient ∆ appearing in this expression, these three terms
being functions of the interatomic distance r.

• The direct energy εdir is given by:

εdir(r) = 〈1 : ψA; 2 : ψB |Ĥel |1 : ψA; 2 : ψB〉 (47)

and corresponds to the matrix elements of Ĥel where each electron
remains attached to its original nucleus.

• The exchange energy εexc is given by:

εexc(r) = 〈1 : ψB ; 2 : ψA| Ĥel |1 : ψA; 2 : ψB〉 (48)

and describes a process where the operator Ĥel swaps the assignment
of electrons to nuclei from A(1)B(2) to B(1)A(2).

• The dimensionless term ∆ represents the overlap between the two 1s
states located respectively on the A nucleus and the B nucleus:

∆(r) = 〈ψA|ψB〉. (49)

By construction, the terms εexc(r) and ∆(r) are nonzero only if there exist
points in space where the functions ψA(r) and ψB(r) both take nonzero
values. For example we find for the coefficient ∆

∆(r) =

∫
ψA(r1)ψB(r1) d3r1 =

(
1 +

r

a0
+

r2

3a2
0

)
e−r/a0 . (50)

which decreases exponentially fast with the internuclear distance r.

All the integrals involved in this problem are given by Slater (1968).
When the set of test functions is limited to the 1s states, this exponential
decay also appears for the direct term. But this is not always the case:
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Figure 13. Effective potentials Veff,+ (blue) and Veff,− (red) between two hydro-
gen atoms calculated for the test functions (45) (Heitler–London method). All
integrals necessary for the calculation are given in Slater (1968), table 21-1.

we have seen in § 1 that for an "enriched" choice of test functions, the van
der Waals interaction emerges and is significant even if there is no overlap
between wave functions.

Let us neglect for the moment the van der Waals interaction and stay
with only the orbitals from the 1s states. A numerical calculation shows
that Veff,+(r) < Veff,−(r) for all r. The variations of these energies with
the distance r are plotted in figure 13. They both tend to +∞ in r = 0
and to 0 exponentially fast when r → ∞. The potential Veff,−(r), always
positive, is a decreasing function of r whereas Veff,+(r) has a minimum of
−0.116 e2/a0 = −3.15 eV for r = 1.64 a0 = 0.87 Å. We can verify numeri-
cally that this potential is deep enough to contain bound states correspond-
ing to a stable four-body edifice (two protons and two electrons), i.e. the H2

molecule.

Let us now take into account the fact that (i) the two electrons are spin
1/2 particles and (ii) they are indistinguishable (Pauli’s principle):

(i) The existence of the electron spin increases the degeneracy of the lev-
els. Let us choose a quantization axis for the spins and note |±〉 the
two possible spin states for an electron. There are thus 4 possible states
for the electron pair and the degeneracy of the gound level when the

atoms are infinitely far from each other is now 2 × 4 = 8 [cf. eq. (39)
for the two states of the orbital part]. When r is not infinite, each of
the two energy levels Veff,±(r) is degenerated 4 times.

(ii) Let us now consider the Pauli principle. As always, the unique role of
this principle is to restrict the size of the Hilbert space by imposing that
the global "orbital+spin" state of the two electrons is antisymmetric in
the 1↔ 2 exchange. Since the spatial wave functions found above are
symmetric or antisymmetric in this exchange, it is sufficient to choose
the spin state with opposite exchange symmetry:

– The state associated with the + sign in (45,46), which leads to
a local minimum of the effective potential and a bound state of
the H2 dimer, must be antisymmetric with respect to spin, which
corresponds to the singlet state:

1√
2

(|1+, 2−〉 − |1−, 2+〉) . (51)

This state is often called a bonding orbital and corresponds to the
covalent chemical bond.

– The state associated with the − sign in (45,46) must be spin sym-
metric and thus an element of the triplet space (dimension 3) gen-
erated by :

|1+, 2+〉, 1√
2

(|1+, 2−〉+ |1−, 2+〉) , |1−, 2−〉. (52)

This set of states is called an antibonding orbital.

In the end, we arrive at two distinct interaction channels Veff,±(r) de-
pending on whether the total spin S = s1 +s2 of the two electrons is in the
singlet state S = 0 or the triplet state S = 1. We can therefore summarize
these two channels by the general formula:

V (r) = V0(r) +
ŝ1 · ŝ2

~2
V1(r) (53)

where the operator

ŝ1 · ŝ2 =
1

2

[
(ŝ1 + ŝ2)2 − ŝ2

1 − ŝ2
2

]
=

1

2

[
Ŝ2 − 3

2

]
(54)
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takes the values −3~2/4 and ~2/4 in the singlet and triplet states and

V0 =
1

4
(Veff,+ + 3Veff,−) V1 = Veff,− − Veff,+. (55)

Let us insist on the fact that this convenient writing does not imply that the
difference between the singlet and triplet potentials originates in a spin-
spin interaction.

Origin of the chemical bond. Within this simple model, we can estimate
the average energy terms for the bonding and antibonding orbitals. It is
therefore possible to determine the process that leads to the existence of
a minimum for the bonding orbital and thus to the chemical bond. One
finds that the dominant process is the lowering of kinetic energy due to
the symmetrization of the spatial wave function:

A(1)B(2) +B(1)A(2). (56)

This symmetrization makes the Ψ(1, 2) wave function "flatter" over a large
region of space, and thus decreases its kinetic energy which is proportional
to the integral of |∇1Ψ|2+|∇2Ψ|2 over space. On the contrary, the spatially
antisymmetric state must cancel at any point r1 = r2. It is thus confined
in a reduced region compared to the symmetric state and its kinetic energy
is larger. Note that the Coulomb energy is larger for the symmetric state
than for the antisymmetric state since the two electrons have a significant
probability of being close to each other. However, this penalty due to the
increase in electrostatic potential energy is more than compensated by the
gain due to the decrease in kinetic energy.

4-4 Improving the description of the interaction

Experimentally, one finds that the potential well for the bonding orbital of
the hydrogen molecule has a depth2 of 4.75 eV. The very simple approach
developed above gives a depth of 3.15 eV, thus less large (which is normal

2The potential minimum is located at Rmin = 0.74 Å and the well gives rise to 15 (vibra-
tional) bound states (Kołos & Wolniewicz 1975).

for a variational method), but relatively close. As always with the varia-
tional method, one can improve the result, i.e. decrease the lower bound,
by enriching the class of test functions.

A first possibility is to introduce an element of "ionic bonding" into the
problem, i.e. to allow states where both electrons are bound to the same
atom. This can be done while still considering only the 1s states, provided
that the spin state is the singlet state so as to ensure global antisymmetry.
We are thus led to take a class of test functions with the orbital part

[
A(1)B(2) +B(1)A(2)

]
+ β

[
A(1)A(2) +B(1)B(2)

]
. (57)

The variable β is a variational parameter that is adjusted for each value of
the inter-nuclear distance r, the case β = 0 corresponding to the bonding
orbital found above. This simple change of the variational space increases
the depth of the potential well to 3.8 eV, which is significantly closer to the
experimental value (Slater 1968).

To go further, it is necessary to incorporate in the basis of test functions
other states than the 1s states of the two atoms. In practice, this is done by
parameterizing the wave functions of each electron by several tens of coef-
ficients that are varied to minimize the energy. For the hydrogen molecule,
the results obtained are in agreement with the experimental data (Kolos
& Roothaan 1960; Kolos, Szalewicz, et al. 1986). In particular, this ap-
proach incorporates states where both atoms are in the |2pα; 2pα〉 state,
with α = x, y, z, which allows to take into account the van der Waals inter-
actions studied in § 1. The corresponding C6 coefficient is of the order of 2
a.u.

Once the van der Waals interactions are included in the potential, we
find as expected that the antibonding orbital is also attractive at large dis-
tances. It has a minimum in Rmin = 4.2 Å with depth 0.6 meV, that is∼ 104

times less than for the bonding orbital [see for example Walraven (1990)
and refs. in]. This very small value and the small mass of the H-nuclei
result in this potential well being too shallow to support a bound state,
similar to what we mentioned for 3He in § 3-2.
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4-5 Generalization to alkali metal species

The method we have just followed generalizes almost immediately to
atoms with one outer electron, i.e. the column of alkali metal atoms, which
are widely used in quantum gas physics. As for hydrogen, the electronic
ground state of these atoms is an s state for the external electron, the elec-
trons of the inner layers playing only a minor role in the establishment of
the chemical bond. We thus recover the notion of bonding and antibond-
ing orbitals, associated respectively with a singlet and triplet spin state for
the two external electrons (one per atom composing the dimer). We will
not detail here the characteristics of the corresponding potentials and we
refer the reader to the following references:

• Lithium: LeRoy, Dattani, et al. (2009)

• Sodium: Araujo, Weinstein, et al. (2003),Matsunaga & Zavitsas (2004)

• Potassium: Zavitsas (2006)

• Rubidium: Deiß, Drews, et al. (2015)

• Cesium: Coxon & Hajigeorgiou (2010)

Let us simply point out that the van der Waals forces play a more im-
portant role here than for hydrogen. Indeed, these atoms are much more
polarizable and the C6 coefficients are considerably increased. It follows
that the potential wells of the antibonding orbitals always contain a sig-
nificant number of bound states: about ten for lithium and this number
increases when we go down the periodic table. This point will play an im-
portant role to validate the use of the semi-classical method in the study of
the interaction between two alkali metal atoms.

Influence of nuclear spin. So far, we have not taken into account the fact
that atomic nuclei generally have a non-zero spin. To finish this first chap-
ter, we now briefly indicate how this modifies the results obtained so far.
To this nuclear spin is associated a magnetic moment that interacts with the
magnetic moment of the electron, which gives rise to the hyperfine struc-
ture of the atomic levels. The electronic ground state of each atom is split

Figure 14. Singlet (bonding orbital) and triplet (antibonding orbital) interaction
potentials between two rubidium 87Rb atoms, with the three channels associated
with the possible hyperfine states of each atom. Figure extracted from Weiner,
Bagnato, et al. (1999).

into two sublevels of energy Ef and total angular momentum f = i± 1/2,
resulting from the coupling ∝ ŝ · î of the electron spin angular momentum
s = 1/2 and that of the nucleus, noted i. For hydrogen, the nucleus is a
proton and we have i = 1/2. For several stable alkali metal atoms (7Li,
23Na, 39K,87Rb), we have i = 3/2 which leads to the two hyperfine levels
f = 1 and f = 2.

Let us now consider our pair of atoms, each in its ground state. There
are three possible values for the energy of the pair, as represented in fig-
ure 14 for rubidium 87, corresponding to the possibilities {f1, f2} equal to
{1, 1}, {1, 2} or {2, 2}. It is important to note that these three possible chan-
nels of interaction are coupled together. Indeed, the dominant hyperfine
Hamiltonian when the atoms are far apart, ∝ ŝ1 · î1 + ŝ2 · î2 does not com-
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mute with the one that gives rise to the bonding and antibonding orbitals,
marked by the total electron spin Ŝ = ŝ1 + ŝ2. This coupling between col-
lision channels will play an important role when we address the problem
of Fano–Feshbach resonances.

Indiscernability of the nuclei. We have taken into account in the above
the fact that electrons are indistinguishable particles (fermions), which led
us to impose a total spin S = 0 on the bonding orbital (symmetric or-
bital state, hence antisymmetric spin state), and the opposite for the anti-
bonding orbital of total spin S = 1. It is also necessary to take into account
the fact that nuclei are indistinguishable particles, bosons or fermions de-
pending on the integer or half-integer value of their spin. In fact, in the rest
of this course, rather than symmetrizing or anti-symmetrizing the state of
nuclei, we will work on the state of the atoms taken as a whole. For exam-
ple, for a 3/2 spin nucleus (fermion), the atom has an integer spin (f = 1 or
f = 2); it will therefore be treated as a bosonic particle: we will impose that
the wave function of the pair of atoms is symmetric in the global exchange
of all the particles that compose them. This prescription, together with the
fact that the electronic state has been chosen antisymmetric, ensures the
required antisymmetry by exchange of the nuclei.

In practice, we will see in the next chapter that for a rotationally invari-
ant potential, this symmetrization or antisymmetrization of the state of the
atom pair is done by restricting the possible values of the total orbital an-
gular momentum L to even or odd values.

Appendix: Interaction channels for alkali metal atoms

We specify in this appendix how one can identify the (many!) interaction
and collision channels for alkali atoms. It is necessary to take into account
both the spin of the external electron of each atom, s1 and s2, and the spin
of each nucleus, i1 and i2. In the absence of an external magnetic field,
there are two interactions related to these spins that must be taken into
account:

• At large distances, the dominant interaction is the hyperfine interac-

tion of each atom, described by the coupling

Vhf = α
(
ŝ1 · î1 + ŝ2 · î2

)
(58)

which can be diagonalized by introducing the spin of each atom f j =
sj + ij , j = 1, 2. This coupling gives rise to three energy levels (cf.
insert in figure 14).

• At short distances, the dominant interaction is the effective interaction
in ŝ1 · ŝ2 which describes the difference between singlet and triplet
potentials:

V (r) = V0(r) +
ŝ1 · ŝ2

~2
V1(r). (59)

There is no basis of the total spin space (of dimension 2 × 4 × 2 × 4 =
64 for i1 = i2 = 3/2) which allows to diagonalize simultaneously these
two couplings. The problem of the interaction between these atoms thus
necessarily involves a solution of the Schrödinger equation with different
coupled channels.

We can however simplify the problem by considering the total spin op-
erator

F̂ = ŝ1 + î1 + ŝ2 + î2 (60)

which commutes with these two couplings and is therefore a constant of
motion. We can therefore classify the interaction channels according to the
values of (F,MF ) where MF is associated with the projection of F on a
fixed axis. For a spin i = 3/2, F can take any integer value between 0 and
4. The next step is to take into account the orbital angular momentum L
of the pair of atoms to make sure that the total state (orbital+spin) has the
right symmetry with respect to the exchange of the two atoms. This may
lead to eliminate some values of F , depending on the chosen orbital state.
In the presence of an external magnetic field oriented along the z axis, the
total spin F is no longer a constant of motion, but its projection Fz remains
and the associated quantum number MF can still be used to classify the
different channels.
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Chapter II

Elements of Scattering Theory

In the previous chapter, we explained the physical origin of the inter-
action potential between two neutral atoms and gave the orders of magni-
tude in energy and distance that characterize it. We now move on to the
implementation of the theoretical tools that will allow us to quantitatively
treat the collision between two atoms under the effect of this potential. In
this chapter, we will present the general formalism called scattering the-
ory, to concentrate in the next chapter on the case of low-energy collisions
which govern the physics of quantum gases.

We have also underlined in the previous chapter that the interaction
potential between two neutral atoms is in a very good approximation
isotropic. This invariance by rotation allows to simplify considerably the
description of the collision by taking advantage of the conservation of the
relative orbital angular momentum of the two particles, a direct conse-
quence of this invariance. In particular, we will explain how taking this
symmetry into account allows us to describe the collision in terms of inde-
pendent one-dimensional channels, each associated to a particular angular
momentum `. More precisely, we will see that we can associate to each
channel a phase shift δ`(k) between the incident wave and the scattered
wave, k being here the relative wave vector between the two partners of
the collision.

Throughout this year’s course, we will be concerned with the two-body
physics resulting from the interaction between a pair of atoms. However,
the quantities that will appear in what follows, in particular the phase
shifts δ`(k), are directly usable to address the N -body problem, at least

in certain limits. A simple illustration of this point lies in the formula of
Beth & Uhlenbeck (1937), which relates the second virial coefficient b2 of a
gas of bosons or fermions to the phase shifts δ`(k) [see for example Huang
(1987)]:

b2(T ) = ± 1

25/2
+

23/2

π

∫ +∞

0

∑
`

(2`+ 1)
dδ`
dk

e−~
2k2/mkBT dk. (1)

Let us recall that the coefficient b2 gives the first correction to the ideal gas
model in the expansion of the equation of state of the fluid in powers of
the fugacity z = eµ/kBT :

Pλ3

kBT
= z + b2z

2 +O(z3), (2)

where µ is the chemical potential, T the temperature, P the pressure and
λ = ~

√
2π/mkBT the thermal wavelength. The gas is assumed here to be

polarized, i.e. to occupy only one spin state. In (1), the first term corre-
sponds to the correction due to the quantum statistics for the ideal gas and
the second term to the correction due to interactions. To simplify the writ-
ing, we assumed here that there was no contribution from bound dimer
states. For a reason that will become clearer in the rest of this chapter, the
sum on the angular momenta runs for even values of ` for bosons and odd
values for fermions.
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1 The scattering states

1-1 The two-body problem

We explained in the previous lecture how to approach the two-body prob-
lem by separating the motion of the center-of-mass from that of the relative
particle. Starting from the Hamiltonian describing the motion of two atoms
A and B of mass m interacting with the potential V (r),

Htot =
p2
A

2m
+

p2
B

2m
+ V (|rA − rB |) = Hcom +Hrel, (3)

we introduced the center-of-mass variables

R =
1

2
(rA + rB), P = pA + pB , (4)

and those of the relative variable

r = rA − rB , p =
1

2
(pA − pB). (5)

The center-of-mass Hamiltonian Hcom = P 2/4m is simply that of a free
particle of mass 2m and is therefore of no particular interest: an eigenstate
basis for this Hamiltonian is formed by the plane waves eiK·R and we will
assume in the following that we have placed ourselves in the center-of-
mass reference frame, which amounts to taking K = 0.

The interesting part of the physics of the collision between the two
atoms is described by the relative Hamiltonian

Hrel =
p2

2mr
+ V (r), (6)

where mr = m/2 is the reduced mass and we will thus be interested in the
eigenstates of this operator:

Ĥrel ψ(r) = E ψ(r). (7)

The problem of the collision between two particles can thus be reduced
to the study of the scattering of a single particle by the external potential
V (r). This subject is treated in all textbooks on quantum physics [see for

example Landau & Lifshitz (1975)] and we will simply summarize here the
important results for the rest of the course.

Recall that these eigenstates are of two types:

• If the energyE is lower than V (+∞) – which we will take equal to 0 by
convention –, then the state ψ(r) is localized around 0, corresponding
to a bound state of the di-atomic molecule AB. This is a vibrational state
that corresponds to a certain degree of excitation of theAB elongation.

• If the energy E is larger than V (+∞), the state ψ(r) is asymptotically
free and thus describes a collision betweenA andB. This state is called
a stationary scattering state.

In this section, we are interested in the collision process, thus in the case
E > 0 and we will set E = ~2k2/2mr.

1-2 The integral equation for scattering

To determine the scattering states, our starting point will be the eigenvalue
equation (7) that we write:

~2

2mr

(
∇2 + k2

)
ψ(r) = V (r)ψ(r). (8)

We will consider it as a differential equation where the right-hand side
term V (r)ψ(r) plays the role of a source and we will use the Green function
method to solve it.

We start with a particular solution of the equation without a source term

~2

2mr

(
∇2 + k2

)
ψ(r) = 0 (9)

that we take as a plane wave eik·r. As we will see below, the orientation of
the wave vector k corresponds to the direction of the relative momentum
of the particles before the collision. To associate a solution of equation (8)
with its source term to the solution eik·r of the equation without source, we
first determine the Green function of the free equation (9). This amounts to
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solving
~2

2mr

(
∇2 + k2

)
G0(r) = δ(r), (10)

whose two solutions can be written :

~2

2mr
G(±)

0 (r) = −e±ikr

4πr
. (11)

For a reason that will become clear in the next paragraph, we will use here
the Green function G(+)

0 which corresponds to an outgoing spherical wave.

Once this Green function is known, we can formally construct a solution
ψk of (8) in the presence of the potential V as

ψk(r) = eik·r +

∫
G(+)

0 (r − r′) V (r′) ψk(r′) d3r′. (12)

This equation is called integral equation for scattering or Lippmann-Schwinger
equation (Lippmann & Schwinger 1950).

The equation (12) is an implicit equation, more precisely a Fredholm’s
equation of the second type: one must know ψk(r′) to evaluate the integral
whose result then gives ψk(r). One could therefore doubt its relevance
to our problem. In fact, its interest is real when the potential V (r) has a
limited range b, i.e. when we can consider it as negligible for r > b. In
this case, (12) allows to link the values of ψk(r) at any point of space, in
particular asymptotically far from r = 0, to the values of ψk(r′) in the
neighborhood of 0. Indeed, because of the presence of V (r′) in the integral,
only those points close to 0 contribute significantly to the integral.

On the mathematical side, let us point out that one can prove that (12)
has a unique solution, provided that V (r) is sufficiently regular. This prop-
erty is no longer true when one tries to generalize this approach to the case
of three or more particles [see for example Joachain (1975), § 5.6 and § 16.1].

Remarks

• The notion of range for V (r) is clear when dealing with a square po-
tential for example. We will have to define it further when we are

interested in the van der Waals potential, which decreases as 1/r6 at
infinity.

• The stationary scattering state ψk(r) has been defined via the outgo-
ing Green function G(+)

0 ; strictly speaking, it should thus be denoted
ψ

(+)
k (r) and called the outgoing scattering state. We will omit this (+)

when there is no ambiguity. We can also define an incoming scattering
steady state, denoted ψ(−)

k (r), from G(−)
0 . We will not need this type of

state, except in § 2-3.

• We can verify that the stationary scattering states ψ(+)
k (r) form an or-

thonormal set of functions of the Hilbert space when k describes the
whole space of wave vectors. We can obtain a basis of the Hilbert
space by adding to this set the possible bound states of Ĥ0 + V̂ . Simi-
larly, we can form an orthonormal basis of the Hilbert space by using
the set of ψ(−)

k (r) completed by the same bound states. On the other
hand, we cannot say anything at this stage about the scalar product of
a ψ(+)

k and a ψ(−)
k′ . We will see in § 2-3 that this product in fact provides

the matrix elements of the scattering operator Ŝ.

1-3 The Born approximation

As we mentioned, the equation (12) is implicit since the integrand involves
the unknown function ψk. However, this expression lends itself well to an
explicit perturbative expansion with respect to the potential V , since the
integrand is itself proportional to V . More precisely, the calculation of the
scattering state at order n in V requires for the right-hand side member the
knowledge of ψk(r′) at order n − 1 only. The perturbative expansion that
can be generated in this way is called Born expansion.

Let’s start with the result of this expansion at the lowest order. At order
0 in V , the scattering steady state is equal to the incident wave function
eik·r. The scattering steady state can thus be written at order 1 in V :

ψk(r) ≈ eik·r +

∫
G(+)

0 (r − r′) V (r′) eik·r′
d3r′, (13)
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which is easily calculated (at least numerically) for any potential V (r′).

This Born expansion can be conducted at any order and leads to the
infinite series:

ψk(r) = eik·r

+

∫
G(+)

0 (r − r′) V (r′) eik·r′

+

∫∫
G(+)

0 (r − r′) V (r′) G(+)
0 (r′ − r′′) V (r′′) eik·r′′

d3r′d3r′′

+ . . . (14)

The discussion of the validity of the Born approximation, and more gen-
erally of the convergence of the Born expansion, is not a simple problem.
One can consult for example Messiah (1962) and Landau & Lifshitz (1975).
In the low-energy limit which will interest us in the following, the follow-
ing condition is necessary: the attractive part of the potential V (r) must
be sufficiently shallow to not support any bound state. In practice, this
is not the case for real interatomic potentials, as we have seen in chapter
I. It is therefore not possible to use the Born approximation for these po-
tentials. On the other hand, one may use model potentials for which this
approximation is relevant.

2 The operatorial approach

The handling of integral expressions like (12) can be cumbersome, espe-
cially when one wants to proceed to expansion like Born’s. To simplify the
writing (without changing the problem in any way), one can adopt a more
formal writing in terms of operators and Dirac kets. Beyond the simpli-
fication of the writing, this formal scattering theory has the advantage of
being applicable to a larger class of problems, be it the scattering of mate-
rial particles with an internal degree of freedom (spin), or the scattering of
photons by atoms or phonons on impurities in a crystal.

2-1 The Green operators Ĝ0 and Ĝ

The starting equation (8) of the previous paragraph can be put in the form(
E − Ĥ0

)
|ψ〉 = V̂ |ψ〉, (15)

where Ĥ0 is the Hamiltonian of a free particle of mass mr: Ĥ0 = p̂2/2mr.
Its solution (12) is written

|ψk〉 = |k〉+ Ĝ
(+)
0 (E)V̂ |ψk〉 (16)

where the operator Ĝ(+)
0 (E), called the Green operator or resolvent of the

Hamiltonian Ĥ0, is formally written

Ĝ
(+)
0 (E) =

1

E − Ĥ0 + i0+

(17)

to represent the inverse of E − Ĥ0. Note that we have to add an imagi-
nary part to the denominator (here infinitely small and noted i0+) to avoid
divergences when E is equal to an eigenvalue of Ĥ0. In practice, this imag-
inary part is treated via the equality in the sense of distributions:

1

x− x0 + i0+
= PP

(
1

x− x0

)
− iπδ(x− x0), (18)

where PP denotes the principal part integral. We can verify directly that

〈r|Ĝ(+)
0 |r′〉 = G(+)

0 (r − r′). (19)

A similar relationship for the incoming Green function G(−)
0 is obtained

by taking an imaginary part i0− instead of i0+ in the definition (17) of the
Green operator. In what follows, we will omit the superscript "(+)" of
Ĝ

(+)
0 (E) when there is no ambiguity.

We can also introduce the Green operator of the total Hamiltonian Ĥ =
Ĥ0 + V̂ :

Ĝ(+)(E) =
1

E − Ĥ + i0+

. (20)

Unlike Ĝ0, it is generally not possible to compute explicitly the matrix ele-
ments of Ĝ in the position basis |r〉. Nevertheless, this operator will play a
central role in the following.
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It is useful to establish a number of simple relationships between Ĝ and
Ĝ0. Starting from :

E − Ĥ + i0+ = E − Ĥ0 + i0+ − V̂ , (21)

we immediately obtain
1

Ĝ
=

1

Ĝ0

− V̂ , (22)

and by multiplying (22) on the left by Ĝ and on the right by Ĝ0:

Ĝ0 = Ĝ− ĜV̂ Ĝ0 (23)

what we will write in the following:

Ĝ = Ĝ0 + ĜV Ĝ0. (24)

Of course, we can also multiply (22) on the right by Ĝ and on the left by Ĝ0

to obtain:
Ĝ = Ĝ0 + Ĝ0V̂ Ĝ. (25)

We can then iterate the relations (23) and (24) by substituting G with its
expression :

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ (26)

= Ĝ0 + Ĝ0V̂ Ĝ0 + Ĝ0V̂ ĜV̂ Ĝ0 (27)

= Ĝ0 + Ĝ0V̂ Ĝ0 + ĜV̂ Ĝ0V̂ Ĝ0 (28)

and so on, the important thing being that there is one and only one Ĝ in
the last term of the sum.

By iterating this procedure to infinity, we can also express Ĝ as a series
of products involving only Ĝ0 and V̂ :

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ0 + Ĝ0(V̂ Ĝ0)2 + . . . (29)

2-2 The transition matrix T̂

The Born approximation to order 1 in V̂ given in (13) is written with these
notations:

|ψk〉 ≈ |k〉+ Ĝ0V̂ |k〉, (30)

where we have set1 〈r|ψk〉 = ψk(r) and 〈r|k〉 = eik·r. The infinite Born
expansion (14) gives:

|ψk〉 = |k〉+ Ĝ0V̂ |k〉+ (Ĝ0V̂ )2|k〉+ . . . (33)

For the following, it will be convenient to introduce the transition oper-
ator (or matrix) T̂ (E) defined by

T̂ = V̂ + V̂ G0V̂ + V̂ (Ĝ0V̂ )2 + . . . (34)

which provides another form of the Lippmann–Schwinger equation:

T̂ = V̂ + V̂ Ĝ0T̂ . (35)

The operator T̂ provides a compact writing for the scattering state (33):

|ψk〉 = |k〉+ Ĝ0T̂ |k〉. (36)

We thus switch from the approximate Born expression (30) to the exact ex-
pression (36) by replacing the operator V̂ by the operator T̂ . Of course, the
formal simplicity of this result should not be misleading: all the difficulty
has been transferred to the explicit calculation of T̂ .

The matrix element of T̂ (E) between two states |ki〉 and |kf 〉 computed
from (34) takes into account all the “paths” allowing to couple these two
states by the potential V̂ , starting at order 1 (direct coupling), then with a
relay state |kr〉, etc:

〈kf |T̂ |ki〉 = 〈kf |V̂ |ki〉+
∑
kr

〈kf |V̂ |kr〉〈kr|V̂ |ki〉
E − Er + i0+

+ . . . (37)

with for each relay state a denominator involving the difference between
its energy Er and the energy E considered.

1We will pose in all this course:

〈r|q〉 = eiq·r , 〈r|r′〉 = δ(r − r′), 〈q|q′〉 = (2π)3 δ(q − q′), (31)

so that the closure relations in momentum and position representations can be written:

1̂ =
1

(2π)3

∫
|q〉〈q| d3q =

∫
|r〉〈r| d3r. (32)
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It is interesting to note the identity

V̂ |ψk〉 = T̂ |k〉 (38)

which is simply proved by combining (15) and (36):

V̂ |ψk〉 =
(
E − Ĥ0

) [
|k〉+ Ĝ0T̂ |k〉

]
= 0 +

(
E − Ĥ0

)(
E − Ĥ0

)−1

T̂ |k〉.
(39)

It is possible to express the series (34) defining the operator T̂ in terms
of the Green operator Ĝ of the total Hamiltonian. We have indeed:

T̂ = V̂ + V̂
[
Ĝ0 + Ĝ0V̂ Ĝ0 + . . .

]
V̂

= V̂ + V̂ ĜV̂ . (40)

This result is also rather formal, in the sense that the explicit calculation of
Ĝ(E) is generally impossible to do, unlike the calculation of Ĝ0(E). Nev-
ertheless, it presents a very interesting point: if we take for the energy E a
negative value corresponding to a bound state of Ĥ , then we find a diver-
gence in the expression of the scattering state. Anticipating slightly what
follows, we deduce from this expression that the poles of the scattering
amplitude (directly related to ψk) give the energies of the bound states.

Finally, the relation Ĝ = Ĝ0 + Ĝ0V̂ Ĝ between the two Green operators
and its iterations allow to rewrite the scattering state (36):

|ψk〉 = |k〉+ Ĝ0(V̂ + V̂ ĜV̂ )|k〉
= |k〉+ (Ĝ0 + Ĝ0V̂ Ĝ)V̂ |k〉
= |k〉+ ĜV̂ |k〉. (41)

We thus have a series of expressions allowing to link explicitly or im-
plicitly the plane wave |k〉 (eigenstate of Ĥ0 ) and the scattering state |ψk〉
(eigenstate of Ĥ):

|ψk〉 = |k〉+ Ĝ0T̂ |k〉 (42)

= |k〉+ Ĝ0V̂ |ψk〉 (43)

= |k〉+ ĜV̂ |k〉. (44)

ki

Figure 1. Incident wave packet of wave vector ki (in red) and scattered wave
packet (in blue).
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2-3 The scattering matrix Ŝ

In practice, we study a scattering process by preparing at the initial time
ti a wave packet of average energy Ei and average wave vector ki known
with a good precision, not covering the zone where V (r) takes significant
values. The wave packet propagates, arrives in the area where V (r) plays
a role, then leaves this zone as a scattered wave and a transmitted wave.
We are then interested in the probability amplitude to find the scattered
particle with a wave vector kf at a later time tf .

The quantity we want to evaluate is therefore of the type

〈kf |Û(tf , ti)|ki〉, ti → −∞, tf → +∞, (45)

where Û(tf , ti) = e−iĤ(tf−ti)/~ is the evolution operator associated to the
Hamiltonian Ĥ , but we have to work a bit to give an unambiguous mean-
ing to this expression. As a first step, we rewrite the previous expression
as:

〈kf |Û(tf , 0)Û(0, ti)|ki〉 (46)

which we interpret as the scalar product of two vectors of the Hilbert space:

Û(0, ti)|ki〉 and Û†(tf , 0)|kf 〉, (47)

where the instant 0 can be seen as the one where the wave packet has ar-
rived on the scattering center and where the interaction is maximal (the
precise value of this instant is not important).

Since we want to make sense of the limit of these quantities when
ti, tf → ±∞, we must eliminate their "trivial" oscillations. Let us con-
sider for example the first of these two terms. A first step in this direction
is to eliminate the free evolution of |ki〉 described by the oscillatory term
eiEiti/~ which would be present even if V were zero. So we take instead:

e−iEiti/~Û(0, ti)|ki〉, (48)

which corresponds to the interaction representation. Moreover, in order to
simulate the progressive arrival of the wave packet on the scattering center,
we will not consider a sudden branching of the coupling V̂ at time ti, as
it could create an irrelevant transient regime. We rather take an adiabatic

branching of this coupling and consider:

lim
η→0+

∫ 0

−∞
eηt e−iEit/~Û(0, t)|ki〉dt. (49)

This vector is none other than the stationary scattering state |ψ(+)〉. To
show it, we just have to use the expression of the evolution operator
Û(0, t) = eiĤt/~ and to perform the integration over time:

(49) = η

[∫ 0

−∞
e−i(Ei−Ĥ+iη~)t/~ dt

]
|ki〉

=
iη~

Ei − Ĥ + iη~
|ki〉

=

[
1 +

1

Ei − Ĥ + iη~
(Ĥ − Ĥ0)

]
|ki〉

= |ki〉+ Ĝ(+)(Ei)V̂ |ki〉 = |ψ(+)
ki
〉 (50)

where the limit η → 0+ is implicit. Note that we put here the explicit
mention (+) of the advanced Green operator, because we will also need the
retarded Green operator in what follows.

Similarly, we have to modify the other vector involved in the matrix
element as follows:

Û†(tf , 0)|kf 〉 −→ η

∫ +∞

0

e−ηte−iEf t/~Û†(t, 0)|kf 〉

−→
[

1 +
1

Ef − Ĥ − iη~
(Ĥ − Ĥ0)

]
|kf 〉

−→ |kf 〉+ Ĝ(−)(Ef )V̂ |kf 〉 = |ψ(−)
kf
〉. (51)

Now that the notion of limit ti, tf → ±∞ is well established, we can
define the amplitude of probability we are looking for:

Sfi = 〈ψ(−)
kf
|ψ(+)

ki
〉 ≡ 〈kf |Ŝ|ki〉. (52)

The explicit calculation of this matrix element is done without difficulty
and we find:

Sfi = δki,kf
− 2iπ δ(Ei − Ef )〈kf |T̂ (Ei)|ki〉. (53)
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r

uf

r′

Figure 2. Location of the points r and r′ for the calculation of the scattering
amplitude. The shaded area represents the range b of the potential.

The knowledge of the transition matrix T̂ is thus sufficient to determine all
the relevant transition amplitudes in a scattering process. We will explore
this notion more concretely in the next paragraph.

3 The scattering amplitude

We now give a physical meaning to the expression (12) found above for
the stationary scattering states. We will be interested in their asymptotic
behavior, i.e. their value at a point well outside the range of the potential.
This will allow us to derive the notions of scattering amplitude and colli-
sion cross-section, which will be very useful in the following.

3-1 Definition

To exploit (12), let us consider a point r located in a region far from the
area where V takes significant values (figure 2). We can expand the Green
function G(+)

0 (r − r′) in the form:

eik|r−r′|

|r − r′| ∼r→∞
eikr

r
e−ikuf ·r′

(54)

where uf = r/r is the unit vector giving the direction where we look at
the final product of the scattering. The Lippmann–Schwinger equation be-
comes

ψk(r) ∼
r→∞

eik·r + f(k,ui,uf )
eikr

r
(55)

where ui = k/k is the unit vector parallel to the initial wave vector ki and
where we defined the scattering amplitude

f(k,ui,uf ) = − mr

2π~2

∫
e−ikuf ·r′

V (r′) ψki
(r′) d3r′, (56)

which is a complex function of the energy E = ~2k2/2mr. Using the oper-
ator formulation developed in § 2, this definition can be written

f(k,ui,uf ) = − mr

2π~2
〈kf |V̂ |ψki

〉 (57)

with kf = kuf , or using (38):

f(k,ui,uf ) = − mr

2π~2
〈kf |T̂ |ki〉. (58)

Let us assume for simplicity that the potential V (r) is rotationally in-
variant. This implies that the scattering amplitude only depends on k and
the angle θ between ui and uf :

f(k,ui,uf ) = f(k, θ). (59)

Like the scattering integral equation, the form (55) is implicit since the cal-
culation of f(k, θ) requires the knowledge of ψk, at least in some regions
of space. It is nevertheless very meaningful; a scattering state can be seen
as the superposition of an incident plane wave ψ(inc)

k and a scattered wave
ψ

(scat)
k :

ψk = ψ
(inc)
k + ψ

(scat)
k , (60)

with the incident wave
ψ

(inc)
k (r) = eik·r (61)

and the scattered wave characterized by its amplitude f(k, θ) in a given
direction θ:

ψ
(scat)
k (r) ∼

r→∞
f(k, θ)

eikr

r
(62)

Note that if we had used the incoming Green function G(−)
0 instead of

G(+)
0 , we would have ended up with a scattering state composed of a plane

wave and an incoming spherical wave. As a proper state of Hrel, this state
is just as legitimate as (55), but it corresponds to a physical situation that is
difficult to realize in practice. It would correspond to waves incoming from
all directions of space with the adequate amplitude so that after collision,
one obtains the plane wave eik·r.
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Born approximation. Recall that this approximation consists in replacing
the stationary scattering state (a priori unknown) by its zeroth order ap-
proximation, eik·r, in the integral of (12) or (56). The scattering amplitude
at order 1 in V is thus written:

Born’s approximation: f(k, θ) ≈ − mr

2π~2

∫
eiq·r′

V (r′) d3r′ (63)

≈ −2mr

q~2

∫ +∞

0

sin(qr′)V (r′) r′ dr′,

where we recall that θ is the angle between the two unit vectors ui = k/k
and uf = r/r, and q = k(ui − uf ) with q = 2k sin(θ/2). At this order
of calculation, the scattering amplitude is therefore simply proportional to
the Fourier transform of the scattering potential.

3-2 The collision cross-section

To make the interpretation of the scattering state even more concrete, it
is useful to introduce the notion of collision cross-section. We define the
differential cross-section dσ

dΩ (Ω) using

δ2A =
dσ

dΩ
(Ω) δ2Ω. (64)

In this definition, δ2A (which has the dimension of a surface) is equal to
the ratio between two fluxes:

• The outgoing flux in the solid angle δΩ around the mean direction
defined by Ω (unit: s−1)

• the incoming flux for a well-defined incident direction ki (unit:
s−1m−2).

The quantity dσ
dΩ (Ω) is an intrinsic property of the potential V and does not

depend on the incident flux, since the outgoing flux is proportional to it.

To relate the differential cross-section to the scattering amplitude, the
simplest way is to calculate the probability currents corresponding to the

incident wave and the scattered wave. Let us recall the general definition
of the probability current associated with a wave function ψ(r):

J(r) =
~
m

Im {ψ∗(r) ∇ [ψ(r)]} . (65)

We find for the probability current associated with the incident wave (61)

J (inc)(r) =
~
mr

Im
{
ψ

(inc)∗
k ∇

[
ψ

(inc)
k

]}
=

~k
mr

ui (66)

and for the probability current associated with the scattered wave (62):

J (scat)(r) ∼
r→∞

~
mr

Im
{
ψ

(scat)∗
k ∇

[
ψ

(scat)
k

]}
=

~k
mr
|f(k, θ)|2uf

r2
(67)

Note that we have limited ourselves here to the dominant term at large
r, which varies as 1/r2. This is indeed the only term that contributes to
the outflow asymptotically. Note also that there is a third contribution to
the probability current, coming from the crossed term between ψ

(inc)
k and

ψ
(scat)
k in (65). We do not take this term into account for the moment. We

will see in our discussion of the optical theorem that it has a zero contribu-
tion to the scattered flux outside the forward direction, i.e. for θ 6= 0.

The ratio between the two currents in the definition (64) then gives the
very simple result

dσ

dΩ
(Ω) = |f(k, θ)|2. (68)

Note that in our reasoning based on probability currents, we have implic-
itly assumed that we are able, at least in principle, to distinguish between
the final state corresponding to a scattering with angle θ and a scattering
with angle π− θ (figure 3). When we look at the scattering of a "real" parti-
cle by a potential V (r), it is obvious. When we are interested in the collision
between two identical particles, it is more subtle: the two processes repre-
sented in figure 3 must not be equivalent, which imposes that the colliding
particles are discernible, for example via their spin state. When the parti-
cles are indistinguishable, the result (68) must be modified, as we will see
in § 4-3.

The total cross-section is defined as

σtot =

∫
dσ

dΩ
d2Ω = 2π

∫ π

0

|f(k, θ)|2 sin θ dθ. (69)
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θ

π − θ

Figure 3. Two collision processes leading to relative particle scattering of angle θ
(top) and π − θ (bottom). If the particles are discernible, via their spin state for
example, one can in principle distinguish these two processes and the result (68)
applies. The case of indistinguishable particles is treated in § 4-3.

By construction, this quantity is equal to the area of the surface that would
have to be put in front of the incident beam to block a number of particles
equivalent to that taken from the beam by the scattering process.

3-3 The optical theorem

In the preceding paragraphs, we arrived at the following asymptotic form
for a stationary scattering state, i.e. an eigenstate of the Hamiltonian with
energy E = ~2k2/2mr:

ψk(r) ∼
r→∞

eik·r + f(k, θ)
eikr

r
. (70)

It should not be inferred from this simple form that any complex function
f(k, θ) is eligible as a scattering amplitude. There are in fact several con-

straints on this function. The purpose of this paragraph is to present one
of the most important ones,

2 Im [f(k, θ = 0)] = k

∫ π

0

|f(k, θ)|2 sin θ, (71)

which can also be written

Im [f(k, θ = 0)] =
k

4π
σtot, (72)

and which is called the optical theorem. For a general review of the prop-
erties that the scattering amplitude f must satisfy, one can consult for ex-
ample Goldberger & Watson (2004), Landau & Lifshitz (1975) or Joachain
(1975).

The optical theorem finds its origin in the continuity equation verified
by any solution ψ(r, t) of the Schrödinger equation,

∇ · J +
∂ρ

∂t
= 0, (73)

where the probability current J has been defined in (65) and where ρ =
|ψ|2. This relation is itself a consequence of the fact that the evolution gov-
erned by the Schrödinger equation is unitary. For a state of fixed energy E,
the temporal evolution of ψ is given by ψ(r, t) = ψ(r, 0) e−iEt/~ so that ρ is
constant over time. We must therefore have:

Stationary state: ∇ · J = 0. (74)

As announced, this relation puts a strong constraint on the eligible func-
tions f(k, θ).

The condition ∇ · J = 0 leads to the fact that the flux of J through
a sphere is zero. Let us therefore take a sphere S centered at 0, with an
arbitrarily large radius r and impose the constraint∫

S
uf · J d2Ω = 0, (75)

where uf is as before the unit vector r/r. The probability current is a
quadratic function of the state (70) and is thus composed of three terms:

J = J (inc) + J (scat) + J (interf). (76)
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The first two terms have already been calculated in the previous para-
graph. The current J (inc) given in (66) is uniform in space and therefore
has a zero flux through the sphere S:∫

S
uf · J (inc) d2Ω = 0. (77)

The current J (scat) given in (67) is normal to the sphere and its flux is just
the total cross-section, with a multiplicative coefficient:∫

S
uf · J (scat) d2Ω =

~k
mr

σtot. (78)

We still have to evaluate the contribution of the "interference" term J (interf),
involving both the contribution of ψ(inc)

k and that of ψ(diff)
k :

J (interf) =
~
mr

Im
{
ψ

(inc)∗
k ∇

[
ψ

(scat)
k

]
+ ψ

(scat)∗
k ∇

[
ψ

(inc)
k

]}
(79)

For r large, the asymptotic form of ψ(scat)
k leads to:

J (interf) =
~
mr

Im
{

ik(ui + uf )
f(k, θ)

r
ei(kr−k·r)

}
. (80)

Its flow through the sphere S reads:∫
S
uf ·J (interf) d2Ω =

2π~
mr

Im
{∫ π

0

ikr (1 + cos θ) eikr(1−cos θ) f(k, θ) sin θ dθ

}
.

(81)
When we take the limit r → ∞, the exponential eikr(1−cos θ) oscillates very
fast around 0 and cancels the contribution of the different members of the
integral, except if θ is chosen very close to 0 to "soften" the variation of the
phase kr(1− cos θ). By expanding the different terms in the neighborhood
of θ = 0, we arrive at:∫

S
uf · J (interf) d2Ω =

4π~
mr

Im
{
f(k, 0)

∫ π

0

ikr eikrθ2/2 θ dθ

}
(82)

and the remaining integral is equal to −1 (to within a term oscillating in-
finitely fast).

In the end, we find that the total flux of J through the sphere S is equal
to 0 if and only if the sum of the three contributions (77), (78) and (82)
cancels out:

0 +
~k
mr

σtot −
4π~
mr

Im {f(k, 0) } = 0 (83)

which corresponds to the announced "optical theorem".

The lesson of this theorem is a variant of "nothing is lost, nothing is
created, everything is transformed": the particles that are scattered in the
solid angle of 4π steradians are taken from the incident beam, which is
therefore attenuated. This attenuation does not appear explicitly on the
expression (70) of the scattering steady state, but it is nevertheless present
in the form of a forward (destructive) interference between the incident
and scattered waves.

3-4 The optical theorem in the isotropic case

The following chapters will be essentially devoted to the case of isotropic
scattering, i.e. a scattering amplitude independent of the angle θ. The op-
tical theorem takes a very simple form in this case. The total cross-section
is:

σtot = 2π

∫ π

0

|f(k)|2 sin θ = 4π|f(k)|2 (84)

so that this theorem imposes

Im [f(k)] = k |f(k)|2 (85)

which can also be written

Im
[

1

f(k)

]
= −k. (86)

The imaginary part of 1/f is thus completely fixed by the optical theorem,
while there is no constraint at this stage on its real part. We will therefore
frequently have to check that the result of an isotropic collision model leads
to:

1

f(k)
= real function(k) − ik. (87)
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Note that the optical theorem imposes an upper bound on |f(k)|. It is in-
deed clear on (87) that

1

|f(k)| ≥ k ⇒ σ = 4π|f(k)|2 ≤ 4π

k2
. (88)

When this inequality is saturated, we say that we have reached the unitary
regime, i.e. the largest value allowed for the cross-section given the unitar-
ity of quantum physics.

4 Rotational symmetry and Pauli principle

The dominant terms of the interaction between two neutral atoms – van
der Waals potential at long range, exchange potential at short range – are
generally rotationally invariant. This invariance can be broken if the inter-
action between the magnetic dipoles of the atoms becomes significant, as is
the case for some species2 such as dysprosium, erbium or chromium: their
magnetic moment µ in the ground state is indeed equal to several times the
Bohr magneton and the magnetic interaction energy ∼ µ2/r3 can become
significant at very low temperatures. For the other species, it is generally
reasonable to neglect this magnetic interaction, which brings us back to a
rotation invariant potential.

We have already taken advantage of this invariance by writing the scat-
tering amplitude in the form f(k, θ), which assumes that this amplitude
depends only on the angle between the vectors u and u′, and not on their
particular orientation. But the consequences of rotation invariance go far
beyond this simplification, as we will see in this section.

4-1 Taking into account the rotational symmetry

For a rotationally invariant Hamiltonian Hrel, one can look for a basis of
eigenstates common to Hrel and to the orbital angular momentum, more

2For the lanthanides, another element breaks the rotational invariance: the orbital angular
momentum of the electrons in the ground state of the atom is not zero and the van der Waals
interaction acquires a significant anisotropic component (of the order of 10 % of the isotropic
part for Dy).

precisely the square of the angular momentum L2 and its projection on
a given axis, z for example. By working with this eigenstate basis, one
can make a partial wave expansion of the collision process, which greatly
simplifies its analysis and allows to characterize it completely.

Consider a wave function ψ(r) = ψ(r, θ, ϕ) eigenstate of L2 and Lz . We
know from the general theory of orbital angular momentum that the θ and
ϕ dependence of ψ(r) is fixed as a spherical harmonic:

ψ(r, θ, ϕ) = χ(r)Y`,m(θ, ϕ) (89)

with
L̂2ψ = ~2`(`+ 1) ψ, L̂zψ = ~m ψ, (90)

` being a positive or zero integer andm another integer of the set {−`,−`+
1, . . . ,+`}. The radial dependence χ(r) is at this stage arbitrary because the
operators L2 and Lz act only on the angular variables θ and ϕ.

Using the expression of the operator p̂2 = −~2∇2 in spherical coordi-
nates

p̂2ψ = −~2

r

∂2

∂r2
(rψ) +

1

r2
L̂

2
ψ (91)

we deduce that the reduced function u(r) = r χ(r) is a solution of the one-
dimensional differential equation

− ~2

2mr

d2

dr2
u(r) +

[
V (r) +

~2`(`+ 1)

2mrr2

]
u(r) = E u(r) (92)

on the ray r ≥ 0, with the boundary condition u(0) = 0.

The physical interpretation of (92) is simple: thanks to the invariance
by rotation, the 3D eigenvalue problem reduces to a series of independent
1D problems. Each value of ` corresponds to a "scattering channel" for a
particle of massmr moving along the ray r ≥ 0 with the effective potential:

Veff(r) = V (r) +
~2`(`+ 1)

2mrr2
, (93)

i.e. the sum of the interatomic potential discussed in the previous chap-
ter and the centrifugal potential associated with the angular momentum
~2`(` + 1)/2mrr

2. In this point of view, the scattering process is described
by considering a particle of mass mr which arrives from r = +∞ moving
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in the direction of decreasing r, penetrates in the zone where the potential
V (r) is appreciable, bounces on this zone to leave again towards r = +∞.
All the information about the scattering process is contained in the phase
shift accumulated during the interaction with the potential V .

To obtain the value of this phase shift, it is sufficient to compare the co-
efficients of e±ikr in the solution u(r) of the radial equation (92) according
to whether V (r) is present or not. The asymptotic form of the solution of
the radial equation (92) for a given value of ` is traditionally written as:

u`(r) ∼
r→∞

(−1)`+1e−ikr + e2iδ`eikr ∝ sin (kr − `π/2 + δ`) (94)

and solving the radial equation (92) will provide the phase δ`(E). The rea-
son for the coefficient (−1)`+1 in (94) will become apparent later [eq. (99)],
when we use the expansion of the plane wave eik·r on states with a well-
defined angular momentum.

Note on the optical theorem. The optical theorem that we established
in § 3-3 expresses the conservation of the number of particles during the
scattering process. Here, we have implicitly taken into account this conser-
vation in each channel ` by assuming that the effect of the potential V (r)
can be described by the phase shift δ`(k) of the outgoing wave, without
changing its amplitude. We therefore expect the optical theorem to be au-
tomatically satisfied in this case. We will see later that this is indeed the
case for each channel [cf. (105)].

4-2 The phase shifts δ`

For a given energy ~2k2/2mr, the set of states {Y`,m(θ, ϕ)u`(r)/r} that we
have just introduced (completed by the possible bound states in the poten-
tial V (r)) constitutes a basis of the Hilbert space. We can then decompose
the scattering state ψk(r) on this basis. Let us choose the z axis used for
the quantization of L̂z parallel to the incident k wave vector. Given the
rotation invariance of the potential, the state ψk(r) is independent of the
azimuthal angle ϕ and depends only on r and θ; it will therefore decom-

pose on the Y`,m=0(θ)u`(r)/r states:

ψk(r) =
∑
`

c`
u`(r)

r
Yl,0(θ) (95)

with by definition of spherical harmonics :

Y`,0(θ) =

√
2`+ 1

4π
P`(cos θ), (96)

where P`(x) is the Legendre polynomial of degree ` with the value P`(1) =
1 for θ = 0. Using the asymptotic expression (94) of the functions u`, we
thus obtain the expected behavior for ψk(r) at large r:

ψk(r) ∼
r→∞

e−ikr

r

∑
`

(−1)`+1 c`

√
2`+ 1

4π
P`(cos θ)

+
eikr

r

∑
`

e2iδ` c`

√
2`+ 1

4π
P`(cos θ) (97)

To relate the scattering amplitude to the phase shifts, it is sufficient to
match (97) to the asymptotic expression of ψk

ψk(r) ∼
r→∞

eikz + f(k, θ)
eikr

r
. (98)

A classical mathematical formula gives the expansion of the plane wave
eikz [see for example Landau & Lifshitz (1975)]:

eikz ∼
r→∞

1

2ikr

∑
`

(2`+ 1)P`(cos θ)
[
(−1)`+1e−ikr + eikr

]
, (99)

which leads to

ψk(r) ∼
r→∞

e−ikr

r

1

2ik

∑
`

(−1)`+1 (2`+ 1) P`(cos θ)

+
eikr

r

[
f(k, θ) +

1

2ik

∑
`

(2`+ 1) P`(cos θ)

]
(100)
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The term-by-term comparison of (97) and (100) of the e−ikr/r component
results in

c`

√
2`+ 1

4π
= 2`+ 1 (101)

and thus for the component in eikr/r:

f(k, θ) =
1

2ik

∑
`

(2`+ 1) P`(cos θ)
(
e2iδ` − 1

)
. (102)

This amplitude is null if and only if all the phases δ` are null (modulo π).

It is convenient to write this amplitude as

f(k, θ) =
∑
`

(2`+ 1) P`(cos θ) f`(k) (103)

where we have introduced the scattering amplitude of the ` channel:

f`(k) =
1

2ik

(
e2iδ` − 1

)
(104)

or equivalently
1

f`(k)
=

k

tan δ`(k)
− ik. (105)

The imaginary part of the scattering amplitude of each channel ` is thus
equal to −k, whatever the scattering potential.

Because of the orthonormality properties of spherical harmonics3, the
total cross-section, obtained by integrating |f(k, θ)|2 over the solid angle,
is written:

σtot =
∑
`

σ` with σ` =
4π

k2
(2`+ 1) sin2 [δ`(k)] . (107)

Each partial wave contributes positively to the total cross-section with an
upper limit 4π(2` + 1)/k2 for the `-channel. We can verify from these ex-
pressions the optical theorem announced above.

3We use the fact that P`(1) = 1 and∫ π

0
P`(cos θ)P`′ (cos θ) sin θ dθ =

2δ`,`′

2`+ 1
. (106)

4-3 Collision of indistinguishable particles

Let us now consider the case of a collision between two identical particles,
which can be bosons or fermions. For simplicity, we assume that these two
particles are prepared in the same spin state. Pauli principle thus imposes
the symmetry or antisymmetry of the orbital part of the wave function:

Ψ(rA, rB) = εΨ(rB , rA), (108)

with the sign ε = + for bosons and ε = − for fermions. When using the
center-of-mass and relative variables, the exchange rA ↔ rB is transcribed
into:

R↔ R, r ↔ −r. (109)

The Pauli principle does not constrain the state of the center-of-mass, but
it does require that the wave function of the relative variable verifies

ψ(−r) = ε ψ(r). (110)

For spherical coordinates, the transformation r → −r is written:

r → r, θ → π − θ, ϕ→ ϕ+ π (111)

Now the spherical harmonics verify the property

Y`,m(π − θ, ϕ+ π) = (−1)` Y`,m(θ, ϕ). (112)

Pauli principle thus comes down to the necessary and sufficient condition:

• The quantum number ` can only take even values (` = 0, 2, 4, . . .) if
the particles are bosons in the same spin state.

• The quantum number ` can only take odd values (` = 1, 3, . . .) if the
particles are fermions in the same spin state.

After this identification of the allowed collision channels, the character-
ization of the radial wave function in each channel is unchanged [cf. (92)].
Nevertheless, there is an additional modification to be made, which con-
cerns the link between scattering amplitude and cross-section. After sym-
metrization or antisymmetrization, the asymptotic part of the scattering
state is indeed written

ψk(r) ∼
r→∞

1√
2

[
eik·r + ε e−ik·r] +

1√
2

[f(k, θ) + ε f(k, π − θ)] eikr

r
. (113)
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The differential cross-section is then

dσ

dΩ
=

1

2
|f(k, θ) + εf(k, π − θ)|2 . (114)

When we develop this expression, we find the sum of the cross-sections in
θ and in π − θ, plus an interference term. The latter can have spectacular
consequences: for example, for polarized fermions, we find that the cross-
section always vanishes for θ = π/2, whatever the energy of the collision
partners.

The expression (107) of the total cross-section becomes

Bosons: σtot = 2
∑
` pair

σ` (115)

Fermions: σtot = 2
∑

` impair

σ` (116)

with σ` = (4π/k2) (2` + 1) sin2 δ`(k) as above. In other words, only half of
the `’s contribute to each sum (even or odd ` depending on the statistical
nature of the particles), but their contribution is doubled compared to the
case of discernible particles.

A nice illustration of this effect of quantum statistics on the collisional
cross-section is provided by Plattner & Sick (1981). These authors studied
the Coulomb scattering between 12C (a spinless boson) and 13C (a spin 1/2
fermion) carbon nuclei. A beam of C2+ ions is accelerated to an energy of
the order of 4 MeV and sent on a target composed of carbon. The main
results of this study are shown in figure 4. If the nuclei are discernible (12C
+ 13C), the differential cross-section does not show a marked structure: it
decreases with the angle as expected for Rutherford scattering:

dσ

dΩ
∝ 1

sin4(θ/2)
. (117)

On the other hand, when the two nuclei are identical, marked oscillations
are visible. The differential cross-section presents a local maximum at θ =
π/2 for bosons, because of the constructive interference between the two
processes in figure 3. For fermions, this differential cross-section is on the
contrary minimal in θ = π/2. This minimum is not strictly zero, contrary
to what one would expect from (114). This is due to the fact that the spins
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Figure 2 Coulomb scattering of C nuclei at E' = 4 MeV. 

measured intensity I ( @ ' ,  E'),  even though the 
physics is more  appropriately described in the 
centre-of-mass system. We assume that  the  reader 
is aware of the slight quantitative differences  be- 
tween the two systems. Of course we have  taken 
them  into  account wherever necessary for our 
work. 
(ii)The  data points shown as crosses in figure 2 
were  deduced from "C recoils and converted to 
scattered 13C intensities. The agreement with di- 
rectly observed I3C intensities is seen to  be good. 
(iii) For "C+ "C scattering the interference 
minima are  rather  deep, so that  the limited angular 
resolution of our set-up  leads to a visible filling in. 
If the theoretical  predictions  were  folded with this 
angular resolution, the measured data would be 
reproduced even in the minima. 

4. Interpretation 
Going  beyond the dry comparison between data 
and theory we should like to re-emphasise the 
underlying  fundamental aspects of quantum 
mechanics that provide the  major attraction for  the 
students. 
(i) Since identical particles are truly indistinguish- 
able, we find symmetry around 8 = 90" for  Mott 
scattering  but no symmetry for Rutherford 
scattering. 
(ii) Since indistinguishable processes must be  added 
coherently,  they  lead to interference as observed 
for  Mott scattering. 
(iii) Since processes involving different spin states of 
the colliding particles can be distinguished and 
must  be  added  incoherently, there is less interfer- 
ence  for particles with spin than  for  those  without, 
as is observed for 13C+13C (spin i) and I2C+ 12C 
(spin 0)  scattering. 
(iv) Since identical bosons must be in totally sym- 
metric  and  fermions in totally antisymmetric states 
according to  the generalised Pauli principle, the 
relative  phase of the  interference  terms is opposite 
for bosons and fermions, as observed by the anti- 
correlation of the oscillatory patterns for "C + "C 
and "C+  13C scattering. 

Here we mention that ordinary Rutherford scat- 
tering of unlike particles also leads to a symmetry 
around @ = 90" of the observed intensity-though 
without the oscillatory interference pattern!-if the 
scattered  and recoiling particles are not  distin- 
guished by the  detector. Thus, in case a  separation 
between the scattered I 3 C  and the recoil "C parti- 
cles  is not feasible because of insufficient energy 
resolution (see §2), the incoherent sum of scattered 
and recoil intensities would be observed according 
to 

~ ( e ) ~ ~ + ~ ~  = \fR(@)? + I f R ( r  - @)l2 .  (10) 
From  a didactical point of view this is also an 

acceptable  situation. Figure 4. Coulomb scattering between two carbon nuclei. 12C is a spinless boson
and 13C is a spin 1/2 fermion. The angle θ′ is approximately equal to θ/2. Figure
extracted from Plattner & Sick (1981).
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` = 0
V
(r
)

` 6= 0

V0

r

V
(r
)

Figure 5. Effective potential obtained by summing a Lennard–Jones potential in
C12/r

12 − C6/r
6 and the centrifugal potential proportional to 1/r2. Top: ` = 0,

bottom ` 6= 0. The green dashed curve represents the centrifugal potential alone.
For quantum gases, the barrier height for ` 6= 0 is generally much larger than the
thermal energies.

of the 13C nuclei were not polarized in the experiment: only a fraction of
the collisions in this case involve indistinguishable particles.

4-4 Centrifugal barrier and cold atoms

We can distinguish two cases in the partial wave expansion we have just
carried out (cf. figure 5):

• The zero angular momentum ` = 0 (s wave regime), in which case the
equation to solve involves only V (r):

` = 0 : u′′(r) +

[
k2 − 2mr

~2
V (r)

]
u(r) = 0. (118)

Since the spherical harmonic Y0,0 is independent of θ and ϕ, the wave
function in this channel is isotropic.

• The non-zero angular momenta ` = 1, 2, . . .:

` 6= 0 : u′′(r) +

[
k2 − `(`+ 1)

r2
− 2mr

~2
V (r)

]
u(r) = 0 (119)

in which case the dominant term in Veff(r) when r → ∞ is the cen-
trifugal potential which decreases as 1/r2, thus much slower than V (r)
which decreases as 1/r6. The effective potential then always presents
a strictly positive barrier at large r.

The centrifugal barrier plays a particularly important role in the case
of collisions between cold atoms. It is interesting to estimate the height of
the potential bump V0 resulting from the sum of the van der Waals poten-
tial and the centrifugal potential for the smallest possible non-zero angular
momentum4, ` = 1:

for r large: Veff(r) ≈ −C6

r6
+

~2

mrr2
. (120)

The maximum is found in r =
(
3mrC6/~2

)1/4 and leads to

V0 =
2

3
√

3

~3√
m3

rC6

. (121)

For rubidium atoms, this corresponds to an energy V0 ≈ kB × 30µK. The
thermal energies of quantum gases are generally lower than this barrier by
one or two orders of magnitude.

4-5 Power law potential and convergence criteria

In the following chapters, we will frequently use power-law potentials,
V (r) ∝ r−n, with in particular n = 6 for van der Waals interaction. It is
useful to keep in mind the convergence of the quantities introduced so far
depending on the value of n. Here, we only give the main results and we
refer the reader interested in their proofs to specialized works:

4In fact, as we have seen in § 4-3, the angular momentum must be even for indiscernible
bosons and the barrier should rather be estimated for ` = 2. Its effect would only be increased.
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• For n ≤ 1, the phases δ`(k) are infinite. They are well defined only for
n > 1.

• For n ≤ 2, the total cross-section diverges. This is in particular the
case for Coulomb scattering, as can be seen from the differential cross-
section given in (117), which behaves like 1/θ4 in the neighborhood of
θ = 0.

• The convergence of the forward scattering amplitude θ = 0,
i.e. f(k, 0), is obtained only for n > 3.
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Chapter III

Low-Energy Collisions

The previous chapter was devoted to the presentation of the formalism
allowing to treat a collision between two particles. We also explained how
one can take advantage of the rotation invariance of the interaction poten-
tial to simplify the problem. It allowed us to describe the collision in terms
of the phase shifts δ`(k) associated to the various angular momenta `. We
now turn to the case of a low-energy collision, such as kb � 1, where k is
the relative wave vector of the two collision partners and b the range of the
interaction potential.

This problem is of great importance for the physics of cold atoms. It
will bring a considerable simplification on the mathematical level: only the
lowest partial waves (essentially ` = 0 or 1) contribute significantly, and
when they play a role, they can be characterized by only one or two phys-
ical parameters like the scattering length or the effective range. This sim-
plification allows in particular to replace the real potential between atoms,
which can be complicated to determine as we have seen in chapter I, by
a much simpler potential leading to the same set of physical parameters.
Here, we will discuss the examples of the square well and the pseudo-
potential.

The origin of this simplification is well known in all fields of wave
physics, optics or acoustics for example: if one observes a system of size
b with a wave whose wavelength is such that λ ∼ 1/k � b, one cannot
distinguish the details of this system, which thus appears as a point object.
We can then model the scattering of the wave by this system by replacing
it by a simpler one.

1 The low energy radial equation

1-1 The range of the scattering potential

The notion of low-energy expansion is intimately related to the range b of
the scattering potential, i.e. the range of distances around r = 0 on which
the potential V (r) has an effect. For a potential such as a square well, which
we will study in detail in § 3, the range is just equal to the width of the well.
For a potential behaving like a power law at large r:

V (r) ∼ −Cn
rn
, (1)

this notion is more subtle. In fact, it only makes sense in quantum physics:
if we consider a wave packet localized at an average distance σ from the
center and with an extension also∼ σ, the potential energy∼ −Cn/σn will
be significant compared to the kinetic energy related to the localization
∼ ~2/mσ2 when

Cn
σn

&
~2

mσ2
⇔ σ .

(
mCn
~2

)1/(n−2)

, (2)

which defines, to within an arbitrary multiplicative coefficient, the range
of the potential −Cn/rn. Note that this reasoning only makes sense for
n > 2. The Coulomb potential (n = 1) is of infinite range in both quantum
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and classical mechanics. For the van der Waals potential −C6/r
6, we will

define throughout this course1

RvdW =
1

2

(
2mrC6

~2

)1/4

. (3)

The energy scale associated to this length scale is

EvdW =
~2

2mrR2
vdW

. (4)

1-2 The different spatial areas to consider

In the previous chapter, we established the radial equation verified by the
reduced wave function u(r) = r ψ(r) for a given value ` of angular mo-
mentum:

− ~2

2mr

d2u

dr2
+

(
~2`(`+ 1)

2mr
+ V (r)

)
u(r) = E u(r) (5)

which can be written

u′′ +

(
k2 − `(`+ 1)

r2
− 2mrV (r)

~2

)
u = 0 (6)

withE ≡ ~2k2/2mr and u′′(r) ≡ d2u/dr2. In what follows, we characterize
the solutions of this equation, taking advantage of the existence of two
well-separated length scales for the low energy problem:

• The "short distance" scale given by the range of the potential b
(i.e. RvdW for the van der Waals potential). For r � b, we can neglect
the influence of V (r) in (6).

• The "long distance" scale given by 1/k, i.e. the reduced de Broglie
wavelength associated to the incident particle. For r � 1/k, one can
neglect the influence of k2 in (6).

1When defining scales of length, energy, etc. from dimensional considerations, it is gen-
erally preferable not to incorporate numerical factors (2, π, e,. . . ) because these cannot be
restored at the end of the calculation by simple homogeneity considerations. However, for
the definition of the length scale RvdW, the weight of traditions is such that we preferred not
to adopt a definition different from the one most common in the literature.

r
0 b 1/k

1/r2 important negligible

V (r) important negligible

k2 importantnegligible

Figure 1. The three spatial zones to consider when analyzing the behavior of the
solutions of (6) for ` = 1. For ` = 0, the first line is not useful.

There are therefore three zones of space to be considered, represented
in figure 1:

• The inner area where the action of V is significant:

r < b : u′′ −
(
`(`+ 1)

r2
+

2mrV (r)

~2

)
u = 0 (7)

Solving exactly this equation requires the precise knowledge of the po-
tential V (r). The solution is independent of k, and thus of the energy,
in this low-energy limit. As it is a second-order differential equation,
there are two independent solutions, but we keep only the physically
acceptable solution canceling at r = 0, since u(r) = r ψ(r).

• The intermediate zone where we can neglect both the contribution of
V (r) and k2:

b� r � 1/k : u′′ − `(`+ 1)

r2
u = 0. (8)

Two independent solutions of this equation are r`+1 and 1/r`. The
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physically interesting solution is written in this zone:

u(r) ∝ α r`+1 +
β

r`
. (9)

or u(r) = αr + β for ` = 0.

• The outer region where k2 dominates in front of `(`+ 1)/r2 and V (r),
i.e. r � 1/k for ` of the order of unity (or r � `/k otherwise):

k � r : u′′ + k2u = 0. (10)

The solutions are sin kr and cos kr and we saw in the previous chapter
that it is interesting to put the physically relevant linear combination
in the form

u(r) ∝ sin(kr − `π/2 + δ`),

∝ sin(kr − `π/2) + tan(δ`) cos(kr − `π/2), (11)

where the action of the scattering potential V (r) is characterized by
the phase shift δ`(k).

1-3 The connection between zones

The goal of the theoretical study of a scattering problem is the determina-
tion of the phase shift δ`(k) for a given potential V (r). This determination
amounts to connecting the solution in the outer region r � 1/k to that
found in the inner region r < b.

The connection at the level of r ∼ b between the inner and the inter-
mediate zone is done on a case-by-case basis. According to the expression
of the potential V (r), an analytical or numerical resolution allows to deter-
mine the ratio α/β to be taken to connect to the solution verifying u(0) = 0.

The connection at the level of r ∼ 1/k between the intermediate and the
external zone is done thanks to the exact solutions of the equation

u′′ +

(
k2 − `(`+ 1)

r2

)
u = 0. (12)

These solutions are linear combinations of :
√
kr J`+1/2(kr) and

√
kr Y`+1/2(kr) (13)

where Jα(x) and Yα(x) are the Bessel functions of first and second kind.
Let us give here some relevant properties of these Bessel functions:

• For kr � 1, we have
√
kr J`+1/2(kr) ∼ cJ (kr)`+1, (14)
√
kr Y`+1/2(kr) ∼ −cY (kr)−` (15)

which gives the expected behavior in (9). We will not specify here
the proportionality coefficients cJ and cY , which are simple numbers
involving Γ(`+ 1/2) and Γ(`+ 3/2).

• For kr � 1, we have
√
kr J`+1/2(kr) ∼

√
2/π sin(kr − `π/2), (16)

√
kr Y`+1/2(kr) ∼ −

√
2/π cos(kr − `π/2) (17)

which gives the behavior expected from (11). More precisely, tan δ`
characterizes the relative weight of Y`+1/2 compared to J`+1/2:

u(r) ∝
[√

kr J`+1/2(kr)
]
− tan δ`

[√
kr Y`+1/2(kr)

]
. (18)

We can therefore deduce from the above the behavior of the phase shift
δ` with k. The extension of (18) in the intermediate zone gives:

u(r) ∝
[
cJ (kr)−`+1

]
+ tan δ`

[
cY (kr)−`

]
(19)

i.e. by comparing with (9):

β

α
=
cY
cJ

tan δ`
k2`+1

. (20)

We have already mentioned that the ratio β/α, obtained by connecting the
intermediate zone with the inner zone, is independent of k. Therefore, we
deduce the scaling law at low energy:

tan [δ`(k)] ∝ k2`+1. (21)
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This result is important for the following. It shows that for a given energy,
the effect of the potential V (r) – characterized by a non-zero value of tan δ`
– will be weaker the larger ` is. In practice, the smallest value ` = 0 will
play a dominant role or, for polarized fermions for which only odd values
of ` are allowed, the value ` = 1.

The central role played by s-wave scattering (` = 0) is easily understood
when we examine the effective potential formed by the real potential V (r)
and the centrifugal barrier ~2`(`+ 1)/2mr. This potential, plotted in figure
2 for V (r) of the Lennard-Jones form, comprises:

• a long-distance wing dominated by the centrifugal term,

• a local maximum for r ∼ RvdW with a barrier height r ∼ EvdW.

• a short-distance behavior dominated by V (r).

We have already mentioned in chapter II that in a quantum gas, the
thermal energy of an atom is much lower than EvdW. Therefore, as soon
as ` 6= 0, the relative particle incident from r = +∞ has an energy E much
smaller than the height of the centrifugal barrier. Except in very specific
cases (the shape resonances investigated in Chapter V), the particle will
bounce back around the classical turning point r`(E), whose position is
almost the same as in the absence of the scattering potential (figure 2). The
scattering channels in the non-zero angular momentum waves are thus
"inoperative", and everything happens for them as if the particles did not
interact. Only the scattering in the s-wave (` = 0) remains.

1-4 Validity of the low-energy expansion

The above treatment consisted in completely neglecting the effect of V (r)
in the region r > b. When V (r) is a square potential, which is strictly zero
beyond b, this is obviously correct. On the other hand, this approximation
can be problematic for a power-law potential −Cn/rn. To assess the valid-
ity of this treatment, we need to compare the effect of the centrifugal term
in 1/r2 with that of 1/rn on the solution considered for b� r � 1/k:

u(r) ∝ α r`+1 +
β

r`
. (22)

V0

r`(E)

E

` 6= 0

r

V
(r
)

E

` = 0

r

V
(r
)

Figure 2. Top figure, angular momentum ` 6= 0. Red: Lennard-Jones potential
superimposed on the centrifugal potential; blue: centrifugal potential alone. In
a quantum gas, an atomic collision is generally done at an energy E � V0 so
that the atoms explore only the region dominated by the centrifugal barrier. The
channels corresponding to ` 6= 0 therefore give rise to a much weaker scattering
than the ` = 0 channel (bottom figure), at least when s-wave scattering is allowed
(this excludes polarized fermions).

More precisely, we have to make sure that V (r)× (α r`+1) always remains
small in front of (~2`(`+ 1)/2mrr

2)× (β/r`) over this whole area. A priori,
we expect these two terms to be comparable at the boundary r = b, and
so the first term must decrease faster than the second when we take r � b.
This imposes

n− `− 1 > 2 + ` ⇔ n > 2`+ 3. (23)

This is a very restrictive condition. For a van der Waals potential n = 6,
we see that the above, in particular the scaling law (21), is only valid for
` = 0 (s wave) or ` = 1 (p wave). For partial waves of higher angular
momentum, the phase shift δ`(k) decreases less rapidly with k than the
law (21) indicates [Landau & Lifshitz (1975), § 132].
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2 The s-wave and p-wave scattering

We have shown in the previous section that at low energy, scattering occurs
mainly in channels of low angular momentum, starting with the s-wave,
` = 0. We will therefore concentrate first on this channel, and then we will
say a few words about the next channel ` = 1.

Let us recall some important results established in the previous chap-
ter from the partial wave expansion. The scattering amplitude f(k, θ) is
written in the general form

f(k, θ) =
∑
`

(2`+ 1) P`(cos θ) f`(k), (24)

which gives when restricted to the channel ` = 0:

f(k, θ) = f0(k), (25)

i.e. an isotropic scattering, as expected for a zero-angular momentum state.
Furthermore, we related each amplitude f`(k) to the phase shift δ`(k) by:

1

f`(k)
=

k

tan δ`(k)
− ik. (26)

where the imaginary part of 1/f(k), i.e. the −ik term, comes from the opti-
cal theorem and is essential to ensure the unitarity of the scattering process:
the outgoing flux must be equal to the incoming flux.

In this low-energy limit, the differential cross-section is isotropic, which
leads to a very simple expression for the total cross-section:

Low energy:
dσ

dΩ
(Ω) = |f(k)|2, σtot = 4π|f(k)|2. (27)

2-1 Scattering length and effective range

For s-wave scattering, the general result (21) is written as:

k → 0 : tan[δ0(k)] ∝ k. (28)

The proportionality coefficient has the dimension of a length and we thus
define the scattering length:

a = − lim
k→0

tan[δ0(k)]

k
. (29)

Taking for the moment tan[δ0(k)] = −ak (the first corrective term will be
discussed below), we obtain the low energy s-wave scattering amplitude:

1

f(k)
≈ −1

a
− ik ⇔ f(k) ≈ − a

1 + ika
. (30)

The scattering length can be positive, negative, zero or infinite.

Next order of expansion of f(k): the effective range. It can be shown [cf.
Messiah (1962) and Landau & Lifshitz (1975)] that the expansion of the real
part of 1/f involves only even powers of k, up to an order determined by
the rapidity of the decay of V (r). For the van der Waals potential decaying
as r−6, we get to order 2 in k:

order 2 in k :
1

f(k)
≈ −1

a
− ik +

1

2
rek

2, (31)

where we have introduced the effective range re, a real quantity which also
has the dimension of a length. For the energy domain of quantum gases,
the knowledge of the scattering length a and of the effective range re is
largely sufficient to describe correctly the whole physics of s-wave colli-
sions. In fact, in this course, we will often limit ourselves to (30), i.e. a
scattering with zero effective range (re = 0). This limit corresponds in
particular to the pseudo-potential that we will introduce later.

"Unitary" regime. When we consider in a situation where 1/a = 0
(a = ±∞), the scattering amplitude at low energy is equal to i/k and the
cross-section to 4π/k2 (for discernible particles). These two quantities thus
reach (in modulus) their maximum value allowed by the optical theorem
and the unitarity of quantum mechanics. We will come back in the follow-
ing chapters on the means to reach this regime and on its physical conse-
quences.

51



CHAPTER III LOW-ENERGY COLLISIONS § 2. The s-wave and p-wave scattering

Distinguishable vs. indistinguishable particles The results given above
were established for discernible particles and they lead to the total effective
cross-section:

Discernible particles, low energy: σtot ≈
4πa2

1 + k2a2
. (32)

We have established in the previous chapter how to take into account the
indistinguishability of particles, bosons or fermions. For polarized bosons,
this indistinguishability doubles the contribution of even waves and can-
cels the contribution of odd waves; for fermions, the contributions are re-
versed. We deduce that in the s-wave regime of interest here, we have:

Polarized bosons, low energy: σtot ≈
8πa2

1 + k2a2
, (33)

Polarized fermions, low energy: σtot ≈ 0. (34)

For polarized fermions, the dominant term is p-wave scattering, as we will
see in § 2-4.

2-2 Scattering length and last bound state

We mentioned in the previous chapter that the transition matrix T̂ and the
scattering amplitude f diverge when evaluated for an energy E equal to
the energy of a bound state of the Hamiltonian p2/2mr + V (r). If the scat-
tering amplitude f(E) is known precisely, it is therefore interesting to look
at its poles to deduce the energy of the bound states without calculation.
We will see an example of this for the square well in § 3-3.

When one has only an approximate value of f(k), this connection be-
tween the scattering amplitude and the bound states is of variable interest.
When we use the expression of f(k) given in (30), we find a single pole in
k = i/a corresponding to the bound state:

eikr

r
−→ e−r/a

r
with E =

~2k2

2mr
= − ~2

2mra2
. (35)

This expression is acceptable only for a > 0, so that the state can be nor-
malized. We will see in the rest of the course, in particular in § 3-3 for the
square well, that it provides a good estimate of the energy of the last bound
state when a� b.

2-3 How to calculate a scattering length

We have given in (11) the general expression of the reduced wave func-
tion u(r) for a state of angular momentum `. For s-wave scattering, this
expression simplifies into

u(r) ∝ sin(kr) + tan(δ0) cos(kr). (36)

Let us take the limit k → 0 of this expression using tan[δ0(k)] ≈ −ka. For a
given r, we have sin kr ≈ kr, cos kr ≈ 1, so that

k → 0 : u(r) ∝ k(r − a). (37)

To determine a, it is therefore sufficient to look for the zero-energy solution
of the radial equation (6) for ` = 0:

u′′(r) +
2mrV (r)

~2
u(r) = 0. (38)

Only the physically acceptable solution leading to u(0) = 0 must be re-
tained. In the outer region where V (r) is negligible, the radial equation
(38) is written u′′(r) = 0 and the solution retained is therefore of the form
u(r) = αr + β. The comparison of this form with (37) allows to deduce the
scattering length a = −β/α.

2-4 p-wave Scattering

For p-wave scattering (` = 1), the general result (21) becomes

k → 0 : tan[δ1(k)] ∝ k3. (39)

We are therefore led to introduce the scattering volume:

v = − lim
k→0

tan[δ1(k)]

k3
. (40)

Moreover, the Legendre polynomial P1(x) = x so that the scattering
amplitude is

f(k, θ) = 3 cos θ f1(k) (41)
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with
1

f1(k)
=

k

tan[δ1(k)]
− ik ≈ − 1

k2v
− ik. (42)

At small k, the dominant term of the scattering amplitude is therefore the
real part f1(k) ∝ k2, the differential cross-section varies as

dσ

dΩ
= |f(k, θ)|2 ∝ k4 cos2 θ (43)

and the total cross-section as σ ∝ k4.

The expression (42) above gives the dominant term of the real part for
k small, as well as the exact value of the imaginary part. However, since
these two terms differ by a factor k3, it is important to specify whether
other terms (in k−1 or in k0) can contribute significantly to the real part of
1/f(k), with an amplitude that could exceed that of the imaginary part.

In an "effective range" type of expansion, similar to that carried out for
the s-wave regime in (31), one indeed finds a correction of order k2 with
respect to the dominant term:

k3

tan[δ1(k)]
≈ −1

v
+
ke
2
k2, (44)

where ke has the dimension of a wave number. This additional term pro-
vides a correction to the scattering amplitude given in (42):

1

f1(k)
≈ − 1

k2v
+
ke
2
− ik. (45)

This correction plays a more important role than its s-wave equivalent.
Indeed, in the presence of a Fano–Feshbach resonance which provides v =
∞ and thus cancels the dominant term, it is the effective range term which
becomes preponderant, and not the universal term ik as it is the case for s-
wave scattering when a =∞. Thus the description of a p-wave resonance
leads to the introduction of two Tan’s contacts, one associated with the
volume v and the other associated with ke (Yu, Thywissen, et al. 2015).

What we have just described applies well for potentials decreasing very
fast at infinity (faster than 1/r7), but is strictly speaking incorrect for the
van der Waals potential decaying as 1/r6 (Mott & Massey 1949). In this

case, it can be shown that an additional term, of order 1/k, contributes to
the expression (45) giving the scattering amplitude (Gao 1998a). However,
this term can generally be neglected in the case where the p-wave scatter-
ing is induced by a Fano–Feshbach resonance (Yoshida & Ueda 2015).

2-5 Examples of cold collision experiments

We now illustrate the above results with two experiments conducted on
quantum gases.

s-wave collisions for bosons. Our first example concerns the observa-
tion of s-wave collisions, therefore isotropic, with bosons all prepared in
the same spin state. The experiment was carried out at the Laboratoire
Charles Fabry of the Institut d’Optique by Jaskula, Bonneau, et al. (2010)
(see also Perrin, Chang, et al. (2007) for an earlier experiment carried out
by the same group). The starting point is a Bose–Einstein condensate of
metastable helium atoms, in which the particles have a negligible veloc-
ity. A light pulse with two pairs of laser beams induces a stimulated Ra-
man transition to another internal state of the atom. This pulse creates
two groups of atoms propagating in opposite directions with velocities
v = ±2vrec, and a third group is constituted by the atoms remaining at
rest. The velocity vrec is the recoil velocity associated with the absorption
or emission of a single resonant photon, that is 9.2 cm/s for metastable he-
lium. Once collisions occurred, an image of the atomic cloud is taken after
a ballistic expansion, which allows to determine its velocity distribution.

An example of result is shown in figure 3. Here, the product of the
collision between the group of atoms at v = 2vrec and the group of atoms at
v = 0 was selected. It corresponds to a center-of-mass velocity equal to vrec.
We observe what remains of the two initial groups of atoms (bright spots
at the top and bottom of the picture) and a spherical halo corresponding
to the product of s-wave collisions. Since collisions are elastic, the final
velocities of the atoms are equal in modulus to the initial velocity. The
isotropy of the scattering amplitude results in a uniform density over the
whole sphere.
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sweep [21]. The laser trap is then switched off and 1 !s
later the condensate is split by applying counterpropagat-
ing laser beams for 2:5 !s. These beams are blue detuned
from the 23P0 state by 600 MHz, inclined at a 7! angle to
the vertical axis and linearly polarized along the quantiza-
tion axis. About one-third of the atoms are diffracted into
each of two momentum classes traveling at "2vrec, where
vrec ¼ 9:2 cm=s is the recoil velocity. Most of the rest
remain at zero velocity. Binary collisions take place be-
tween atoms of all three velocity classes producing three
collision halos with center of mass velocities "vrec and
zero. Since the atomic spin is orthogonal to the local field,
50% of the atoms are in themx ¼ 0 state with respect to the
magnetic field axis [21], and these atoms fall to the detec-
tor, unperturbed by magnetic field gradients. The trajecto-
ries of atoms in the mx ¼ "1 states are perturbed by
residual field gradients, and we therefore apply an addi-
tional gradient that causes these atoms to miss the detector
entirely. The analysis is only focused on the collision halo
centered at þvrec [see Fig. 1(a)].

The collision halo centered at v ¼ 0 has a radius 2vrec

and is too large to be entirely captured by the detector
while the two halos centered at "vrec, with radii vrec, are
entirely detected. In addition to binary scattering events,
these two latter halos can be populated by spontaneous
photon scattering whenever an atom at v ¼ 0 scatters a
photon from one of the diffraction laser beams. The dif-
fraction efficiency depends on the product I1I2 of the two
laser intensities, while the spontaneous scattering into a
given halo depends on only one of these intensities. So to
reduce this effect we introduce an intensity imbalance in

the two laser beams such that the halo centered at þvrec is
populated by the weaker beam and contains fewer such
optically scattered atoms.
If squeezing is present, we expect a sub–shot-noise

variance in the number difference of any two diametrically
opposed volumes in the scattering halo [22]. For any other
pair of volumes, we expect a variance corresponding to
shot noise. We define the halo as a spherical shell of radius
vrec and thickness "0:15vrec. The results are only weakly
sensitive to this thickness, but as defined, it includes about
95% of the scattered atoms. We remove the areas on the
halo containing the scattered BECs. The excised regions
correspond to vertical velocities jvzj> 0:5vrec. We divide
the remainder of the halo in half at the equator and then
make p vertical cuts along the meridians, dividing the halo
intoNZ ¼ 4p equal zones, as shown in Fig. 1(b) for p ¼ 2.
We define a normalized number difference variance for
zones i and j:

Vi;j ¼
hðNi & NjÞ2i& hNi & Nji2

hNiiþ hNji
: (1)

The brackets h. . .i denote the average over the 3600 shots,
and Ni refers to the number of atoms detected in the ith
zone on a single shot. On average, we detect 150 atoms per
shot on the whole analyzed region. If the zones i and j are
uncorrelated, the normalized variance should be unity.
Figure 2 shows the measured variances of all possible pairs
of zones when the halo is cut into 16 zones. The eight pairs
of correlated zones indeed show sub-Poissonian number
differences (V < 1), and the 112 pairs of uncorrelated
zones do not.
Perfectly correlated pairs and perfect detection would

result in a zero variance. This, however, is almost unattain-
able in practice because of various imperfections, the most

FIG. 1 (color online). View of the halo after the collision of
two BECs and a subsequent ballistic expansion. (a) The experi-
mental data plotted in momentum space, with each dot corre-
sponding to a detected atom. Atoms on the collision halo are
black, while the colliding, pancake-shaped BECs at the top and
the bottom of the halo are orange/yellow. The collision axis vz

and the optical trap axis are both almost vertical. (b) Schematic
view of the analyzed part (jvzj< 0:5vrec) of the collision halo.
Here we use NZ ¼ 8 zones that are separated from each other for
better visualization. An example of two correlated zones is
shown (red arrows). The number difference between these two
zones shows sub–shot-noise fluctuations.

FIG. 2 (color online). Variance of all possible pairs of zones
for the halo cut into 16 zones and summing Ns ¼ 3600 shots.
The normalized variance is Vi;j and the error bars reflect its

standard deviation "Vi;j with "V2
i;j ¼ 1

Ns

hðNi&NjÞ4i&hðNi&NjÞ2i2
hNiþNji .

Circles correspond to the eight correlated zones and crosses to
the 112 uncorrelated ones. The two horizontal lines correspond
to the mean of each data set with a thickness given by twice the
standard deviation of the mean, considering each pair of zones as
independent.
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Figure 3. Collision between two Bose-Einstein condensates of metastable helium.
The spherical halo is in agreement with the prediction for s-wave scattering. Each
point corresponds to the detection of an atom. Figure extracted from Jaskula, Bon-
neau, et al. (2010).

Collision inhibition for polarized fermions. For polarized fermions, the
allowed scattering channels are the odd ` partial waves, in particular ` = 1
at low temperature. To highlight this phenomenon, DeMarco, Bohn, et al.
(1999) studied the thermalization rate of a fermion cloud (40K) in a har-
monic trap. They started from a gas of 107 atoms at equilibrium in an
anisotropic trap, so that the sizes of the gas along the three axes α = x, y, z
of the trap verify the equipartition law of the energy 1

2mω
2
αr

2
α = 1

2kBT .
At a given time, one of the three eigenfrequencies of the trap is modified
and one looks at the time necessary for the shape of the cloud to adapt to
this new configuration under the effect of elastic collisions (Guéry-Odelin,
Zambelli, et al. 1999). An example of relaxation to equilibrium is shown in
figure 4 (left).

When the same experiment is repeated for lower temperatures, one ob-
serves a spectacular lengthening of the relaxation time, which is explained

Figure 4. Left: measurement of the relaxation towards equilibrium for an atomic
cloud of 40K (fermions) confined in a harmonic trap. This relaxation is the result
of elastic collisions, in a cloud having initially an aspect ratio different from the
one expected for the harmonic trap. Right: variation of the cross-section with the
temperature of the cloud, for polarized atoms (closed symbols) and for a mixture
of two spin states (open symbols). Figures extracted from DeMarco, Bohn, et al.
(1999).

by a decrease of the cross-section for polarized fermions (figure 4, right,
closed symbols). This decay follows the law expected for the p-wave,
σ ∝ k4 ∝ T 2 between 5 and 50µK. A control experiment consists in do-
ing the same experiment with a mixture of two spin states (figure 4, right,
open symbols). One then finds a cross-section that is approximately inde-
pendent of temperature, as expected for s-wave collisions.

3 The example of the square well

A square-well potential is probably the simplest system on which to ap-
ply the concepts we have just outlined, in order to test and understand
the main predictions. We consider in this section the attractive potential
shown in figure 5, of depth V0 > 0 and range b. We start by calculating
the scattering length for this well. Then we study the stationary scattering
states (positive energies) and the bound states (negative energies).

54



CHAPTER III LOW-ENERGY COLLISIONS § 3. The example of the square well

r

V (r)

b

−V0

0

Figure 5. Square potential well of depth V0 and width b.

3-1 The scattering length for a square well

As we wrote in § 2-3, the simplest method to determine the scattering
length is to look for the eigenstate of the Schrödinger equation of zero en-
ergy. The reduced wave function u(r) of this state verifies

r < b : u′′(r) + k2
0u(r) = 0 (46)

r > b : u′′(r) = 0 (47)

with V0 = ~2k2
0/2mr. The solution is written

r < b : u(r) = A sin(k0r) (48)

r > b : u(r) = αr + β (49)

The continuity of u and its derivative in r = b imposes:

k0 cos(k0b)

sin(k0b)
=

α

αb+ β
(50)

from which we deduce the scattering length via a = −β/α:

a = b− tan(k0b)

k0
. (51)

The scattering length is plotted in figure 6 as a function of the depth
of the potential well. When the well is shallow (k0b � 1), this scattering
length is small and negative. This is easily understood by the Born approx-
imation:

k → 0 : f(k) ≈ − mr

2π~2

∫
V (r) d3r =

k2
0b

3

3
(52)
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−10
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k0b/π
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Figure 6. Variation of the scattering length of a square well as a function of its
depth V0 = ~2k2

0/2mr.

which corresponds to the first non-zero term of the low-k0 expansion of
(51). When k0 increases and becomes of the order of 1/b, the scattering
length (51) diverges2 tending towards −∞ when k0b → π/2 by negative
values, then switches to +∞ to decrease again, then meets a second diver-
gence in k0b = 3π/2, etc.

In order to understand these divergences, we will search for the bound
states in this square well in § 3-3. We will show that each divergence is as-
sociated with the appearance of a new bound state (Levinson’s theorem).
Before that, in order to get an intuition of the physical meaning of the scat-
tering length, we will study the eigenstates of the Schrödinger equation
with a slightly positive energy.

3-2 The square well: scattering states

The reduced wave function of a scattering state with positive energy E =
~2k2/2mr verifies

r < b : u′′(r) + k2
1u(r) = 0, k2

1 = k2
0 + k2, (53)

r > b : u′′(r) + k2u(r) = 0, (54)

2It is also possible to compute analytically the effective range for this square model (Castin
2007). The behavior of this parameter also presents a succession of divergences.
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whose solution is written:

r < b : u(r) = A sin(k1r) (55)

r > b : u(r) = B sin(kr + δ0) (56)

The connection of u and its derivative at the point r = b gives the value
of the phase shift δ0(k):

1

k1
tan(k1b) =

1

k
tan(kb+ δ0) (57)

which can be written

δ0(k) = −kb+ arctan

[
k

k1
tan(k1b)

]
mod [π]. (58)

We check on this expression that the scattering length found above [cf. (51)]
is obtained as − limk→0 tan [δ0(k)] /k.

Let us start by examining the case of a positive scattering length
by taking as an example the point marked by a red circle in figure 6
(k0b = 0.55π). Let us look at the behavior of three low-energy eigenstates:
k/k0 = 0.02, 0.03, 0.05 (figure 7). The long-range variation (figure 7, top) is
a sinusoid of period 2π/k, as expected. When we zoom in on the central
part (figure 7, bottom), we see that these states all share the same node,
located to a very good approximation at the level of the scattering length.
They therefore all behave like

u(r) ∝ sin[k(r − a)]] (59)

for r & a, as expected from (56) and from δ0(k) ≈ −ka.

The physical interpretation of the scattering length is therefore simple
in the case a > 0: the behavior of the scattering states for r > a is identical
to the one we would have if we were working with a hard-core potential,
of radius equal to the scattering length. Of course, here the u(r) functions
are non-zero for r < a, contrary to the case of a hard-core potential. This
would play a role if we were interested in inelastic collisions leading to
dimer formation. But for elastic processes, a positive scattering length is
equivalent to a hard-core potential and therefore tends to keep the particles
away from each other by forcing the relative wave function to cancel at
r = a.

0 20 40 60 80 100 120 140 160 180 200

−1

0

1

0 1 2 3 4 5 6 7 8

−0.4

−0.2

0

0.2

Figure 7. Scattering states for a square well, in the case a > 0 (red point in figure
6). The wave numbers are k/k0 = 0.02, 0.03, 0.05 and the scattering length is
a = 4.7 b.

Let’s move on to the case of a negative scattering length, with the pur-
ple point of figure 6, corresponding to k0b = 0.475π. We still consider the
three low-energy states: k/k0 = 0.02, 0.03, 0.05 (figure 8). We now see that
the long-range sinusoidal behavior corresponds to curves that would inter-
sect at the r = a (negative) point if extended into the non-physical region
r < 0. Such a behavior is also in agreement with the expected variation
in sin[k(r − a)] and it leads to an increased probability of finding the two
particles close to each other, compared to what one would have if they did
not interact.
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Figure 8. Scattering states for a square well in the case a < 0 (purple point in
figure 6). The wave numbers are k/k0 = 0.02, 0.03, 0.05 and the scattering length
is a = −7.5 b.

3-3 The square well: bound states

We now relate the divergences found for the scattering length to the ap-
pearance of bound states in the square well. Let us start by recalling that
in three dimensions, such a well does not always admit bound states. To
prove this, we start from the reduced radial wave function expected for a
bound state. Since E < 0, we introduce κ and k1 such that

~2κ2

2mr
= |E|, k2

1 = k2
0 − κ2. (60)

0 1 2 3 4
0

0.5

1

1.5

2

k1b/π

κ
b/
π

Figure 9. Principle of the graphical solution allowing to find the bound states in
a 3D square well [cf. (65) and (66)]. We have to find the intersection between the
curve y = −x cot(πx) (with x = k1b/π and y = κb/π) and the circle of radius
k0b/π. The threshold of the first (resp. second) bound state corresponds to the
orange (resp. cyan) circle of radius k0b/π = 1/2 (resp. 3/2). There is no bound
state for k0b/π = 0.4 (red circle), only one bound state for k0b/π = 0.7 (green
circle) and two bound states for k0b/π = 1.7 (purple circle).

The reduced radial wave function of a bound state must verify

r < b : u′′(r) + k2
1u(r) = 0 (61)

r > b : u′′(r)− κ2u(r) = 0 (62)

with the boundary condition u(0) = 0. The physically acceptable solution
is therefore written, to within a multiplicative factor:

r < b : u(r) = A sin(k1r) (63)

r > b : u(r) = B e−κr (64)

and we need to connect the sin(k1r) inside the well with the decreasing
exponential outside the well, by equating the left and right values of the
function and its first derivative in r = b.

If the well is too shallow, the sine will be a strictly increasing function in-
side the well, even for the maximum possible value k1 = k0 (see for exam-
ple figure 8). When this is the case, it cannot then be smoothly connected
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to the decreasing exponential for r > b. More precisely, the condition for
connecting u and u′ in r = b imposes

k1 cot(k1b) = −κ (65)

that we link to the relationship

k2
1 + κ2 = k2

0 (66)

to make a graphical resolution (figure 9). In the region (k1 > 0, κ > 0), we
have to find the intersection between the curve defined by (65), drawn in
blue in figure 9 and the circle (66). We can see that the first bound state
appears for k0b = π/2, the second bound state for k0b = 3π/2, etc. These
thresholds of existence of the bound states match the divergences of the
scattering length found above.

We can also check on this completely solvable case the link between
the energies of the bound states and the poles of the scattering amplitude.
The latter is calculated here from the phase shift δ0(k) given in (58) and
the relation (26). The energies of the first bound states are plotted in figure
10, as a function of the parameter k0 controlling the well depth. We also
show the approximate prediction −~2/(2mra

2), giving the energy of the
last bound state when it is close to the dissociation limit. This prediction is
useful when a is very large, but we find that it quickly becomes inaccurate
when we move away from this limit.

4 Pseudo-potential and Bethe–Peierls condition

In what precedes, we have established the laws which govern the inter-
actions between particles at low energy. This low-energy domain cor-
responds to the regime where the thermal wavelength of the particles
λ = 2π/k is large compared to the range b of the potential. Equivalently,
the kinetic energy of the particles must be small in front of ~2/mb2. When
this condition is fulfilled, the collisions occur mostly in the s-wave regime,
at least when it is not forbidden by Pauli principle.

The scattering amplitude is then written:

Low energy:
1

f(k)
≈ −1

a
− ik +

1

2
rek

2 + . . . (67)
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Figure 10. Energies of the first bound states in a square potential well. The dotted
curve indicates the approximate prediction −~2/(2mra

2), valid near the disso-
ciation threshold. The lower figure is an enlargement of the upper one near the
threshold for the first bound state.
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The imaginary part of f(k) in ik is imposed by the unitarity of quantum
mechanics. The scattering length a and the effective range re are real quan-
tities with the dimension of a length, characterizing the potential. In gen-
eral, out of the vicinity of a resonance, a and re are of the order of b, i.e. of
the order of RvdW for the van der Waals potential. Thus, since the relevant
k are such that kb� 1, the three contributions to f(k) rank according to:

1

|a| � |ik| � |rek
2|. (68)

and it is then sufficient to know a, the correction in rek
2 having only a

minor influence.

The scattering length thus plays a central role in the description of
quantum gases. In most cases, knowing its value is sufficient to deter-
mine the collective properties of the fluid, whether static (e.g. equation of
state) or dynamic: collective excitations such as phonons, solitons, vortices,
or even demixing phenomena in multicomponent systems. Since it is the
only relevant parameter, it is legitimate to replace the real potential by a
model potential leading to the same scattering length.

The aim of this paragraph is to propose a simple model potential of zero
range, leading to a purely isotropic scattering f(k, θ) = f(k) and whose
expansion in k stops at order 1:

1

f(k)
= −1

a
− ik, (69)

so that the effective range will be zero. Note that this type of model po-
tential admits at most one bound state, since we know that the energies of
the bound states correspond to the poles of the scattering amplitude. More
precisely if (69) is exact, there is only one pole k = i/a and the wave func-
tion∝ eikr = e−r/a corresponds to a bound state if a > 0; the energy of this
state is −~2/(2mra

2). There is no bound state if a < 0.

Satisfying this requirement is not obvious; we will start from a contact
potential, proportional to the Dirac distribution δ(r), which seems the most
natural choice, but we will almost immediately encounter mathematical
difficulties related to the action of δ(r) on wave functions which behave
like 1/r in the neighborhood of the origin. We will then switch to a reg-
ularized contact potential, the pseudo-potential, and show its equivalence
with the Bethe–Peierls boundary condition.

4-1 Contact potential in position representation

We begin our analysis by explaining why a contact potential V̂ = ḡ δ(r)
is not suitable, whereas its one-dimensional equivalent is quite legitimate.
The contact potential is defined by its action on a wave function by

V̂ [ψ(r)] = ḡ ψ(0) δ(r), ḡ real, positive or negative. (70)

A difficulty arises when we consider the wave function ψk(r) of a scatter-
ing state, calculated for example from the Born expansion.

Let us recall the principle of this expansion. We start from the
Lippmann-Schwinger equation

ψk(r) = eik·r +

∫
G0(r − r′) V̂ [ψk(r′)] d3r′, (71)

with the Green function associated to the Hamiltonian of a free particle:

G0(r) = − mr

2π~2

eikr

r
. (72)

We look for the solution of this equation in powers of the scattering poten-
tial, so here of the parameter ḡ:

ψk = ψ
(0)
k + ψ

(1)
k + ψ

(2)
k + . . . (73)

We have ψ(0)
k (r) = eik·r and the recurrence relation

ψ
(n+1)
k (r) =

∫
G0(r − r′) V̂

[
ψ

(n)
k (r′)

]
d3r′. (74)

The calculation of the first order term is straightforward:

ψ
(1)
k (r) =

∫
G0(r − r′) V̂

[
eik·r′

]
d3r′ = ḡ

∫
G0(r − r′) δ(r′) d3r′

= ḡ G0(r) = − ḡmr

2π~2

eikr

r
. (75)

However, a problem arises when we try to calculate the second order term
in the expansion of ψk(r):

ψ
(2)
k (r) =

∫
G0(r − r′) V̂

[
ψ

(1)
k (r′)

]
d3r′

= − ḡmr

2π~2

∫
G0(r − r′) V̂

[
eikr′

r′

]
d3r′ (76)
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where we used the result (75) giving ψk at order 1 in V . We are led to
act with the potential V̂ , thus the Dirac distribution, on a function which
diverges in r′ = 0!

The action of δ(r) on the 1/r function has no well-defined mathematical
meaning and we cannot use this δ(r) distribution as it is: we will have to
regularize it and this will be the subject of § 4-3 and § 4-4. Before doing so, it
is nevertheless useful to take up the problem of the "real" Dirac distribution
in the momentum representation, i.e. to study the behavior of the elements
of the scattering matrix T̂ (E) between two plane waves.

4-2 Contact potential in momentum representation

In the preceding paragraph, we looked at the scattering states in the po-
sition representation and we were stuck at order 2 of the Born expansion,
when we had to act with δ(r) on the function eikr/r. We now take up the
same problem again, but in the momentum representation.

We again use the Born expansion, this time written in terms of the tran-
sition matrix T̂ (E) introduced in Chapter II:

T̂ (E) = V̂ + V̂
1

E − Ĥ0 + i0+

V̂ + . . . , E =
~2k2

2mr
. (77)

At order 1 in ḡ, computing the matrix element of T̂ between any two mo-
mentum states q1 and q2 poses no problem3 :

Order 1 : 〈q1|T̂ |q2〉 = 〈q1|V̂ |q2〉 = ḡ

∫
e−iq1·r δ(r) eiq2·r d3r = ḡ. (80)

Difficulties arise at order 2. By inserting the closure relation (79) for the

3 Recall that we set throughout this course (cf. chapter II):

〈r|q〉 = eiq·r , 〈r|r′〉 = δ(r − r′), 〈q|q′〉 = (2π)3 δ(q − q′), (78)

so that the closure relations in momentum and position representation are written:

1̂ =
1

(2π)3

∫
|q〉〈q| d3q =

∫
|r〉〈r| d3r. (79)

momentum at the level of the free propagator 1/(E − Ĥ0 + i0+), we find:

Order 2 : 〈q1|T̂ |q2〉 = ḡ +
ḡ2

(2π)3

∫
1

E − ε(q) + i0+
d3q, (81)

with ε(q) = ~2q2/2mr. Now the quantity

I(E) =
1

(2π)3

∫
1

E − ε(q) + i0+
d3q (82)

is divergent when the integral is performed on q up to infinity. This prob-
lem is of course the same as the one encountered in the position represen-
tation, with the action of δ(r) on the function 1/r.

Nevertheless, let us forget momentarily that I(E) is divergent. All or-
ders of the Born series can be treated as we did above for order 1 and we
end up with a geometric series which we can sum:

〈q1|T̂ (E)|q2〉 = ḡ
{

1 + ḡ I(E) + [ḡ I(E)]
2

+ . . .
}

=
ḡ

1− ḡ I(E)
. (83)

We now see how to make sense of this formal summation by introducing
a cutoff in the momentum space. We assume that the integral over the
moments q does not extend to infinity, but stops at a cutoff value noted
qmax. The integral is then easily computed and we find (up to a term in
1/qmax):

I(E) = − mr

π2~2

∫ qmax

0

q2

q2 − k2 − i0+
dq

= − mr

π2~2

(
qmax + i

πk

2

)
. (84)

Generally, the scattering amplitude from the wave vector k to the wave
vector k′ is written as a function of the T̂ matrix element (see chapter II):

f(k,k′) = − mr

2π~2
〈k′|T̂ |k〉 (85)

which gives using (83) and (84):

1

f(k)
= −2π~2

mr

[
1

ḡ
− I(E)

]
= −2π~2

mrḡ
− 2qmax

π
− ik. (86)
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Let us first notice that we find the form requested in (69), in particular
the imaginary part imposed by unitarity. Then, we can assign a scattering
length to this problem thanks to the cut in momentum space:

1

a
=

2π~2

mrḡ
+

2qmax

π
. (87)

This expression is the basis of an approach to the problem in terms of
renormalization. It is used for example to calculate the Lee-Huang-Yang
correction to the energy of a weakly interacting Bose gas using the follow-
ing steps (Pethick & Smith 2008a; Pitaevskii & Stringari 2016):

• The real (physical) scattering length a and the associated coupling g
are assumed to be known:

g =
2π~2a

mr
=

4π~2a

m
. (88)

• We give ourselves a bare coupling ḡ and a cutoff qmax verifying (87),
which is rewritten:

1

g
=

1

ḡ
+Qmax with Qmax =

mrqmax

π2~2
(89)

or equivalently

ḡ =
g

1− gQmax
≈ g(1 + gQmax + . . .). (90)

• The calculations are carried out for the contact potential ḡ δ(r), written
in momentum representation within the second quantization formal-
ism:

ḡ

2L3

∑
q1,q2,q

â†q1+qâ
†
q2−qâq2

âq1
, (91)

with the parameters ḡ and Qmax. Finally, the result is expressed as a
function of g. If the result is of order 1 in ḡ, we simply replace ḡ by g,
using (90) at order 0 in Qmax. If the result contains terms going to a
higher order in ḡ, as for the Lee-Huang-Yang correction, one performs
a systematic expansion of each term using again (90). The final result
for a physical quantity must be expressed in terms of g only, the Qmax

terms having been eliminated.

For a more complete and rigorous implementation of this renormalization
procedure, see Braaten, Kusunoki, et al. (2008).

4-3 The pseudo-potential

We now turn to the study of an interaction potential V̂ of zero range which
does not exhibit the singularities of the Dirac distribution. The lesson of
the previous study is that we must "erase" the divergence in r = 0 of the
eikr/r function. We wish to achieve this result without modifying the ac-
tion of δ(r) when it acts on a regular function in r = 0. There are many
ways to achieve this goal [see Olshanii & Pricoupenko (2001)]. The sim-
plest one was proposed by Huang & Yang (1957) [see also Breit (1947)],
which consists in taking

V̂pp [ψ(r)] = g δ(r)
∂

∂r
[rψ(r)]

∣∣∣∣
r=0

. (92)

With this definition, any function ψ(r) that diverges in 0 as

ψ(r) =
α

r
+ ψreg(r) (93)

with ψreg regular in 0, leads to a well-defined value for V̂ppψ(r):

V̂pp [ψ(r)] = g ψreg(0) (94)

whatever the value of α which is simply "erased". In particular, for the
function eikr/r which comes from the first order of Born expansion, we
write

eikr

r
=

1

r
+ ψreg(r) with ψreg(r) =

eikr − 1

r
→ ik when r → 0, (95)

and we obtain

V̂pp

[
eikr

r

]
= igk δ(r). (96)

It is remarkable that this simple prescription is sufficient to allow the
calculation of all terms of the Born expansion giving the scattering states
of the Hamiltonian

Ĥ = − ~2

2mr
∇2 + V̂pp. (97)
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One could have feared that the terms of order 2,3,. . . lead to stronger di-
vergences as r−2, r−3, . . ., which would have required regularization pro-
cedures with increasing complexity. Fortunately, this is not the case, as can
be seen by examining the second order term. Taking its expression from
where we left it [cf. (76)] and using (96), we obtain:

ψ
(2)
k (r) =

−gmr

2π~2
(igk)

∫
G0(r − r′) δ(r′) d3r′ = ik

(−gmr

2π~2

)2
eikr

r
. (98)

Order 2 has therefore the same mathematical structure in eikr/r as order 1,
and it differs from it only by its prefactor independent of r.

The quantity gmr/2π~2 has the dimension of a length and (anticipating
a little) we will note it

a ≡ gmr

2π~2
. (99)

We will indeed see that a is equal to the scattering length for this pseudo-
potential.

Scattering state for the pseudo-potential. The result of the calculation of
the scattering state at order 2 reads

ψk(r) = eik·r − aeikr

r
+ ia2k

eikr

r
+ . . . (100)

The calculation of the following orders is then not a problem. The recur-
rence relation (74) allows to express the order n + 1 as a function of the
order n:

ψ
(n+1)
k (r) =

∫
G0(r − r′) V̂pp

[
ψ

(n)
k (r′)

]
d3r′, (101)

which gives

ψ
(n+1)
k (r) = −ika ψ

(n)
k (r) = (−ika)

n
ψ

(1)
k (r). (102)

Thanks to this recurrence relation, the scattering state is obtained from the
geometric series

∞∑
n=0

(−ika)
n

=
1

1 + ika
(103)

hence the result:
ψk(r) = eik·r +

1

1 + ika
ψ

(1)
k (r) (104)

or

ψk(r) = eik·r − a

1 + ika

eikr

r
. (105)

This state is associated with the scattering amplitude

f(k) = − a

1 + ika
⇔ 1

f(k)
= −1

a
− ik. (106)

As an exercise, we can check directly that ψk is a solution of the
Schrödinger equation

− ~2

2mr
∇2ψ(r) + V̂pp [ψ(r)] = E ψ(r) with E =

~2k2

2mr
. (107)

For this we use

∇2

(
eikr

r

)
= ∇2

(
1

r

)
+∇2

(
eikr − 1

r

)
with ∇2

(
1

r

)
= −4π δ(r)

(108)
and for the radially symmetric regular function f(r) = (eikr − 1)/r:

∇2f =
1

r

d2

dr2
(rf) = (ik)2 eikr

r
. (109)

This verification shows that the validity of the expression of ψk is not
linked to the convergence of the geometric series (103).

There are several important points to make about this result:

• The scattering amplitude does not depend on the angle θ, while we
did not make the assumption that k was small. The pseudo-potential
has the peculiarity to scatter only in the s-wave, whatever the collision
energy.

• The expression (105) of the scattering state is not only asymptotic as
for a non-zero range potential: it is valid at any point r different from
the origin.
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• The quantity that we have noted a corresponds indeed to the scatter-
ing length, defined as − limk→0 f(k).

• The imaginary part of 1/f(k) is indeed equal to −ik , as required from
unitarity.

• The expression on the right-hand side of (106), which holds regardless
of k, shows that the effective range re of the pseudopotential is zero.

• All scattering states behave identically in the neighborhood of r = 0:

r → 0 : ψk(r) ∝ 1

r
− 1

a
+O(r). (110)

This point will play a central role in deriving the Bethe-Peierls bound-
ary condition.

Bound state of the pseudo-potential. In a one-dimensional contact po-
tential, V (x) = g δ(x), we find one (and only one) bound state if and only
if the coefficient g is negative. It is almost the same for the 3D case, with
one major difference: the potential V̂pp [ψ(r)] = g δ(r) ∂∂r [rψ(r)] admits one
(and only one) bound state if and only if g is positive !

To show this result, the quickest way is to use the fact (already men-
tioned several times) that the bound states, when they exist, correspond
to the poles of the scattering amplitude. In the present case, we know the
exact expression of the scattering amplitude [cf. (106)]. It has a single pole

1 + ika = 0 ⇒ k =
i

a
, E = − ~2

2mra2
(111)

and this pole corresponds to an acceptable physical bound state if and only
if the corresponding state∼ eikr/r = e−r/a/r is normalizable. It is therefore
necessary that a and consequently g are positive.

More precisely, we can check explicitly that the state

ψbound(r) =
e−r/a

r
(112)

is a solution of the Schrödinger equation (107) for the energy E =
−~2/(2mra

2). We use for that [cf. (108) and (109)]

∇2

[
e−r/a

r

]
= −4πδ(r) +

1

a2

e−r/a

r
(113)

and

V̂pp

[
e−r/a

r

]
= g δ(r)

d

dr

(
r

e−r/a

r

)
= −g

a
δ(r), (114)

hence the result since g = 2π~2a/mr. We notice that the variation around
r = 0 of this bound state is identical to that of the scattering states [cf.
(110)]:

r → 0 : ψbound(r) ∝ 1

r
− 1

a
+O(r). (115)

4-4 The Bethe-Peierls boundary condition

When looking for the eigenstates of the Hamiltonian in the presence of the
pseudo-potential, we have found wave functions varying like 1/r in the
neighborhood of the origin. This kind of variation is unusual4: when V (r)
is a continuous function of r, possibly divergent in r = 0 like the Coulomb
potential, the eigenstates in the vicinity of r = 0 vary as ψ(r) = β0 +O(r),
where O(r) represents a term tending to 0 at least linearly when r → 0.
The appearance of a 1/r term in the eigenstates calls for several remarks:

• The variation in 1/r near the origin remains compatible with the fact
that the function is square-integrable. Indeed, the integral∫ (

1

r

)2

d3r =

∫ (
1

r

)2

4πr2 dr (116)

is convergent in r = 0. This would not be the case if the divergence
were more violent (like 1/r2 for example).

• In the presence of the pseudo-potential V̂pp, the eigenstates are written
in the neighborhood of r = 0

ψ(r) =
β−1

r
+ β0 +O(r), (117)

4This variation cannot show up for the eigenstates of the Hamiltonian in a regular po-
tential, as shown by the following reasoning. Suppose that ψ contains such a term, ψ(r) =

α1/r+ψreg(r) where ψreg is non-divergent in r = 0. When we applyH = − ~2
2mr
∇2 +V (r)

onψ, the Laplacian of the kinetic energy acting on the term in 1/r gives∇2 (1/r) = −4π δ(r).
If the potential V (r) does not itself contain a term proportional to the Dirac distribution
to compensate for this δ(r) coming from the kinetic energy, the function ψ will not satisfy
Ĥψ(r) = E ψ(r).
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where the term inO(r) can be expanded into a series
∑
n≥1 βn(θ, ϕ) rn.

The fact that an additional β−1/r term appears in this expansion
could lead one to think that the set of functions accessible through
the pseudo-potential has been "enlarged": the β−1 coefficient seems
to provide an additional degree of freedom with respect to the
{β0, β1, β2, . . .} coefficients. This is not the case; indeed, for a pseu-
dopotential of fixed scattering length a, we found that all eigenstates
of H , whether free or bound, behave as

ψ(r) ∝ 1

r
− 1

a
+O(r). (118)

The coefficients β−1 and β0 are therefore not independent, but related
by β−1 = −aβ0.

This discussion suggests the equivalence between the following two
points of view:

• The strategy adopted in 4-3 consists in adding the pseudo-potential
V̂pp to the kinetic energy term. We then compute the eigenstates
(bound or free) of the Hamiltonian

Ĥ = − ~2

2mr
∇2 + V̂pp. (119)

We deduce that all these eigenstates behave as (118) and so does any
physically acceptable wave function of the system, which must be
written as a linear combination of the eigenstates of Ĥ .

• We "forget" V̂pp and we work with the Hamiltonian of a free particle
for the relative motion:

Ĥ0 = − ~2

2mr
∇2, (120)

but any physically acceptable wave function of the system is required
to behave as

ψ(r) ∝ 1

r
− 1

a
+ O(r) (121)

in the vicinity of r = 0 or equivalently

d

dr
[rψ(r)]

∣∣∣∣
r=0

= −1

a
[rψ(r)]r=0. (122)

This point of view, introduced by Bethe & Peierls (1935) [see also Wigner
(1933)], is often favored when one wishes to deal with systems with more
than two particles. One takes into account the interactions between parti-
cles by imposing that the N -body wave function verifies for any pair (i, j)
[see for example Werner & Castin (2012) for bosons]:

rij → 0 : Ψ(r1, . . . , rN ) =

(
1

rij
− 1

a

)
Aij [Rij , {rk}k 6=i,j ] + O(rij)

(123)
where Aij is a regular function of the coordinates of the N − 2 other parti-
cles and of Rij = (ri + rj)/2.

The action of Ĥ0 on the eigenstates of Ĥ found in (105) and (112) is

Ĥ0ψk(r) =
~2k2

2mr
ψk(r) − a

1 + ika

2π~2

mr
δ(r) (124)

for the scattering states and

Ĥ0ψbound(r) = − ~2

2mra2
ψbound(r) +

2π~2

2mr
2mr δ(r) (125)

for the bound state. In this point of view, r = 0 is singular since all the
wave functions are infinite at this point and it is simpler to write

At any point r 6= 0 : Ĥ0ψk =
~2k2

2mr
ψk, (126)

and for a > 0:

At any point r 6= 0 : Ĥ0ψbound = − ~2

2mra2
ψbound, (127)

and then modify slightly the definition of the scalar product of two func-
tions

〈ψ2|ψ1〉 =

∫ ′
ψ∗2(r)ψ1(r) d3r (128)

where the symbol
∫ ′ means that we take the integral over the whole space

except a ball centered in 0, whose radius is made to tend to 0. With this
definition, we have

∫ ′
δ(r)f(r) = 0 for any function f . This redefinition of

the scalar product allows us to state that the ψk (completed by ψbound when
a > 0) form an orthogonal basis of the space of wave functions of a system
of scattering length a, this basis being an eigenbasis of the kinetic energy
Hamiltonian in the sense of (126) and (127).
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Domain of the Hamiltonian. The boundary condition (121), which must
be satisfied by any physically acceptable wave function, defines the domain
of the Hamiltonian. It can be compared to the treatment of the 1D infinite
square well in the introductory courses to quantum physics: to describe
the motion of a particle on the segment x ∈ [0, L], we take a purely kinetic
Hamiltonian, Ĥ0 = − ~2

2m
d2

dx2 , and we impose on any physically acceptable
wave function to cancel out at x = 0 and x = L, which constitutes the
domain of the Hamiltonian in this case.

It is essential to work only with functions in this domain, in order to
avoid inconsistencies in the results. In the case of the 1D infinite square
well, Castin & Werner (2012) provide the very simple example of the con-
stant function 1/

√
L, which has zero kinetic energy while the energies of

the eigenstates, satisfying the boundary conditions ψ(0) = ψ(L) = 0, are
strictly positive: En = n2E1 with n strictly positive integer and the ground
state energy E1 = π2~2/(2mL2). This apparent violation of the theorem

∀ψ : 〈ψ|Ĥ0|ψ〉 ≥ E1 (129)

is simply due to the fact that ψ(x) = 1/
√
L has been chosen outside the

domain of Ĥ0, thus not allowed.

In the 3D case of interest here, a simple example of the importance of
respecting the domain of the Hamiltonian is obtained for the g < 0 case.
We know that there is no bound state in this case, and that a basis of eigen-
functions is provided by the scattering states, which all have a positive
energy. We deduce that for any physical state of the system, the average
energyE(ψ) = 〈ψ|Ĥ|ψ〉must also be positive. Nevertheless, if we consider
a Gaussian function ψ(r) ∝ exp(−r2/4σ2), we can find values of σ leading
to E(ψ) < 0. The reason is simple: this Gaussian function does not ver-
ify the boundary condition (121) and is therefore not eligible as a possible
state of the system. One can consult the lecture notes by Castin (2007) for
a more detailed discussion of this point.

What is the value of the kinetic energy? The answer to this question
is tricky for potentials of zero range, whether one uses V̂pp or the Bethe–
Peierls boundary condition. Let us start by recalling that for sufficiently
regular wave functions in r = 0, the kinetic energy term can be computed

indifferently from both members of the equality

− ~2

2mr

∫
ψ∗(r) ∇2ψ(r) d3r = +

~2

2mr

∫
∇ (ψ∗(r)) ·∇ (ψ(r)) d3r. (130)

which is obtained by an integration by parts, assuming that the wave func-
tion decreases sufficiently fast at infinity.

The problem becomes more complicated when we handle functions
that vary like 1/r in the neighborhood of r = 0. In the left-hand side,
∇2ψ(r) contains δ(r) and the quantity

∫
ψ∗(r)δ(r)d3r is not defined. In

the right-hand side, ∇ψ and ∇ψ∗ each vary as 1/r2, so that we end up
with an integral of type

∫
0
r−2 dr, which is divergent.

When we take the option of using the Bethe-Peierls boundary condi-
tion, we can make sense of the left-hand side member, provided we replace∫

by
∫ ′ as we saw above. But the result is then the total energy, for exam-

ple −~2/2mra
2 for the bound state. It is obviously not the kinetic energy

which must always be positive.

We therefore arrive at the following conclusion for eigenstates in a zero-
range potential: whether one uses V̂pp or the Bethe–Peierls boundary con-
dition, the average kinetic energy, computed thanks to the right-hand side
of (130), is infinite (and positive) and the interaction energy is infinite (and
negative); only the sum of the two is a finite quantity, equal to +~2k2/2mr

for a scattering state and −~2/2mra
2 for the bound state. To give a precise

meaning to each of the two components of the energy, we have to go back
to a potential of non-zero range b.

The fact that the kinetic energy is infinite in the case studied here can
be understood simply by looking at the behavior of the momentum distri-
bution of the states for large values of q. For a wave function ψ(r), the mo-
mentum distribution is given by n(q) = |ψ̃(q)|2, where ψ̃(q) is the Fourier
transform of ψ(r). Now, we know that the Fourier transform of 1/r is, to
within one numerical coefficient, 1/q2:

2π2 1

r
=

∫
1

q2
eiq·r d3q. (131)

Since a function ψ(r) satisfying the Bethe-Peierls boundary condition di-
verges as 1/r at the origin (except if a = 0), the dominant term of the mo-
mentum distribution of this function for large moments is n(q) ∝ |1/q2|2 =
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1/q4. We then immediately understand that the 3D integral giving the ki-
netic energy

Ekin =

∫
~2q2

2mr
n(q) d3q (132)

is divergent. This divergence plays a central role in the formalism of the
Tan contact.
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Chapter IV

Van der Waals Interaction and Low-Energy Universality

The previous chapters were devoted to the general formalism allowing
to study the interaction between two particles. Among the main results,
we have established that at low energy and for a potential V (r) decreasing
fast enough when r → ∞, the interaction can be characterized by a single
number, the scattering length. The goal of this chapter is to apply these
results to a realistic atomic potential, varying as −1/r6 at large distances.

For the species commonly used in cold atom experiments, the potential
V (r) describing the interaction between two atoms contains many vibra-
tional states. It follows that the theoretical study of the problem can be
performed using a semi-classical approach, based on the WKB (Wentzel–
Kramers–Brillouin) method, with some subtleties that we will describe.
The WKB approach leads to a remarkable universality of the result, linking
the value of the scattering length to the energy of the weakly bound states
in the interatomic potential1.

We will also present the most accurate experimental method currently
available to determine the position of the last bound states. This method,
called two-color photo-association, allows to deduce the scattering length
thanks to the universality mentioned above. It consists in measuring the
rate of formation of weakly bound dimers in a gas of ultra-cold atoms illu-
minated by a pair of resonant light beams.

1I thank Raphaël Lopes and Sylvain Nascimbene for several enlightening discussions on
this subject.

1 The semi-classical approximation

The square well studied at the end of the previous chapter is one of the
rare examples of potentials where we have an exact analytical solution to
the scattering problem. In the general case, one must resort to numerical
calculations or approximate methods. Among these, the WKB method is
particularly well adapted to the situation we are interested in. It requires
a potential which varies continuously with distance and which has many
bound states. These two conditions are fulfilled for the case of the interac-
tion potential between neutral atoms.

In this first section we will recall the main ingredients of the semi-
classical approximation. For more details, we refer the reader to the book
by Schiff (1968) and to the review article by Berry & Mount (1972).

1-1 Principle of the approximation

The semi-classical method consists in searching for the solutions of the one-
dimensional Schrödinger equation

− ~2

2mr
V (x) + V (x) = E(x) (1)

in the form ψ(x) = exp(iS(x)/~) and expand S(x) in "powers of ~":

S(x) = S0(x) + ~S1(x) + ~2S2(x) + . . . , (2)
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~ being formally treated as a small parameter. This is of course an abuse
of language since the small parameter of a perturbative expansion must
in principle be dimensionless. We will give a more precise criterion of the
validity of the approximation later on.

The Schrödinger equation is written as a function of S(x).

S′2 − i~S′′ = 2mr [E − V (x)] . (3)

At order 0 in ~, we obtain

Order 0: S′20 = 2mr [E − V (x)] , (4)

whose solution is written according to the relative value of the energy E
and the potential V (x):

• allowed region E > V (x):

S′0(x) = ±p(x) with p(x) =
√

2mr(E − V (x)), (5)

• forbidden region E < V (x):

S′0(x) = ±ip(x) with p(x) =
√

2mr(V (x)− E). (6)

At order 1, we find

Order 1: 2S′0S
′
1 − iS′′0 = 0 ⇒ S′1 = i

S′′0
2S′0

, (7)

whose solution is i
2 log(p(x)).

By limiting ourselves to this order of calculation, we have the approxi-
mate solutions:

allowed region: ψ(x) =
C√
k(x)

exp

(
±i

∫ x

k(x′) dx′
)

(8)

forbidden region: ψ(x) =
C√
κ(x)

exp

(
±
∫ x

κ(x′) dx′
)
, (9)

where p(x) = ~k(x) in the allowed region and p(x) = ~κ(x) in the forbid-
den region.

E

xa b

V (x)

Figure 1. Semi-classical approximation in a potential well. The connection at the
turning points a and b is made using the conditions (12,13).

The physical interpretation of this semi-classical expression is interest-
ing. At least in the allowed region, it is a mixture of wave physics, with the
oscillating phase which can give rise to an interference phenomenon, and
corpuscular physics, with the prefactor whose square modulus ∝ 1/p(x)
expresses the fact that the density of a fluid is inversely proportional to its
velocity, for a given flux2.

1-2 First condition of validity: continuity

A necessary condition for the validity of the above expansion is related to
the hypothesis S′2 � ~|S′′|, i.e.∣∣∣∣ d

dx

(
~
S′

)∣∣∣∣� 1. (10)

Let us consider for example the allowed region. The quantity ~/S′ =
1/k(x) represents, to within a factor of 1/2π, the de Broglie wavelength
λ(x) of the particle. The validity criterion is therefore written:

1

2π

∣∣∣∣dλdx

∣∣∣∣� 1. (11)

which is indeed a condition on a dimensionless parameter.

The criterion of validity (11) consists in imposing that the wavelength
and thus the potential V (x) vary little on the length scale λ. This excludes
in particular:

2a phenomenon well known to all drivers who have experienced accordion-like traffic on
a congested road...
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• Any discontinuous potential, since λ does not then have the same
value on each side of the discontinuity; the square well studied in the
previous chapter cannot be treated by the semi-classical method.

• The "classical turning points" in a regular potential well like the one
in figure 1, i.e. the points where E = V (x); indeed, the de Broglie
wavelength diverges at these points since the classical velocity cancels
out there, and the constraint (11) cannot be satisfied. We will see in the
next paragraph how to handle such points.

• For a continuous potential and outside the turning points, some areas
can also be excluded. This is precisely the case for the potential in 1/r6,
as we will see when we deal with the quantum reflection phenomenon.

1-3 Quantification of energy in a well

Let us consider the problem represented in figure 1, where a particle of
energy E is confined in a potential well. To derive a quantization condi-
tion on the energy, we need to start from the constraint on the wave func-
tion in the two forbidden regions to the left and to the right of the well.
In both cases, we want the wave function to tend to 0 when |x| → ∞.
This imposes the choice exp

(
−
∫ a
x
κ(x′)dx′

)
in the left forbidden region

and exp
(
−
∫ x
b
κ(x′)dx′

)
in the right forbidden region

Then, we must analyze the consequences of these conditions on the
wave function in the allowed region. To do this, we have to get around the
difficulty mentioned at the end of the previous paragraph, which indicates
that the semi-classical approximation is not valid around a turning point.
The standard method to connect the allowed and forbidden regions is to
linearize the potential in the neighborhood of this point. We can then take
advantage of the fact that we know the exact solutions of the Schrödinger
equation in a linear potential (they are Airy functions) and we can use their
asymptotic form on both sides of the turning point to connect to the WKB
wave functions. We will come back to the validity of this connection in the
next paragraph.

All calculations done, we arrive at the following rule at the turning

point a:

1√
κ(x)

exp

(
−
∫ a

x

κ dx′
)
−→ 2√

k(x)
sin

(∫ x

a

k dx′ +
π

4

)
(12)

and at the turning point b:

1√
κ(x)

exp

(
−
∫ x

b

κ dx′
)
−→ 2√

k(x)
sin

(∫ b

x

k dx′ +
π

4

)
. (13)

A little algebra then allows us to show that the two expressions (12,13) for
the allowed region are compatible with each other if and only if∫ b

a

k(x′, E) dx′ =

(
j − 1

2

)
π. (14)

with j non-zero integer: j = 1, 2, . . ..

For a harmonic potential, we can check that this condition leads to the
exact quantization of the energy levels. Note that in general, the semi-
classical approximation is not intended to give precisely the least excited
states because the validity criterion (11) is generally not satisfied for these
states.

The result (14) is obtained by assuming a smooth potential at the two
turning points a and b. If there is a hard-core potential on one side and a
smooth one on the other side, this result is slightly modified. If we take
for example a hard core in a, the WKB function must be 2√

k
sin
(∫ x
a
k dx′

)
instead of (12). The quantization condition then becomes

With a hard core on one side:
∫ b

a

k(x′, E) dx′ =

(
j − 1

4

)
π. (15)

Finally, if we assume that there is a hard core in both a and b, the additional
term 1/4 disappears and we get:

With a hard core on each side:
∫ b

a

k(x′, E) dx′ = j π. (16)

1-4 Second condition of validity: connection

In the previous paragraph we described the connection procedure at a
point x = b at the boundary between permitted and forbidden regions.
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Figure 2. Airy function, solution of (18).

We have indicated that we replace the potential V (x) in this region by its
linear approximation:

V (x) ≈ V (b) + (x− b)V ′(b) (17)

We then use the exact solution in this linear potential, which is an Airy
function. Recall that the generic Airy function A(u) is defined as a solution
of

−d2A

du2
+ uA(u) = 0, (18)

which is effectively a 1D Schrödinger equation by taking ~ = 1, 2mr = 1, a
linear potential V (u) = u and the energy E = 0.

This function is plotted in figure 2. Its asymptotic regime on either side
of u = 0 is written:

u� 1 : A(u) ∼ 1

2
√
π
,

exp
(
− 2

3u
3/2
)

u1/4
(19)

u� −1 : A(u) ∼ 1√
π

sin
(

2
3 |u|3/2 + π

4

)
|u|1/4 . (20)

We recognize in these asymptotic expressions the behaviors of the WKB
functions given in (8) and (9), taking:

k(u) =
√
|u| ⇒

∫ |u|
0

k(u) du =
2

3
|u|3/2. (21)

For the energy E = V (b), the Schrödinger equation in the linearized
potential (17) reduces to (18) by

u =
x− b
`Airy

where `Airy =

(
~2

2mrV ′(b)

)1/3

(22)

and its solution is therefore:

ψ(x) = A

(
x− b
`Airy

)
. (23)

In order to allow for the connection of the asymptotic expressions of the
Airy function with the WKB solutions, the approximation (17) should be at
least valid on the range [b−`Airy, b+`Airy]. In other words, the second-order
correction to V (x) must be small over this range:

1

2
`2Airy |V ′′(b)| . `Airy|V ′(b)|. (24)

We will see that this constraint is not always satisfied for the van der Waals
potential.

2 Bound states in a vdW potential

Having established these few general results regarding the semi-classical
method, we now use them to estimate the energies of bound states in a
potential well behaving at large distances as V (r) = −C6/r

6. Before mov-
ing on to a quantitative study, let us recall the length and energy scales
associated with the van der Waals potential (cf. chapter 3):

RvdW =
1

2

(
2mrC6

~2

)1/4

, EvdW =
~2

2mrR2
vdW

. (25)

2-1 The binding energies

To begin our study, we will treat the slightly more general case of a power-
law potential V (r) = −Cn/rn. We start from the equation verified by the
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reduced radial wave function:

− ~2

2mr
u′′(r) + V (r)u(r) = E u(r). (26)

We are of course mainly interested in the case n = 6, but it is equally simple
to treat the case of an arbitrary exponent. The results we are going to find
were obtained by LeRoy & Bernstein (1970).

Here we consider weakly bound states in this potential well, which are
essentially localized in the region where the van der Waals potential domi-
nates over the short-range potential. Therefore, the results that we will ob-
tain depend very little on the exact shape of this short-distance potential.
To simplify the notations, we will model it as a hard core at the Ra point.
One can consult the articles of Comparat (2004) and Jelassi, Lesegno, et al.
(2008) for an improvement of this simple approximation.

Our starting point will be Eq. (15) that we will use to find the variation
with j of the energy Ej of the weakly bound states (recall that we take here
the zero energy at the atomic dissociation limit so that Ej < Ej+1 < 0). For
this, we rewrite this formula

j =
1

4
+

1

π

∫ Rb

Ra

k(r, E) dr, (27)

and we will derive this formula with respect to the energy E by formally
treating j as a real number for a moment. Then, we will of course be inter-
ested in the particular values of E which give an integer value of j.

The left turning point is set to the positionRa of the hard core, as shown
above. The right turning point,Rb, is defined byE = −Cn/Rnb . The deriva-
tive of (27) with respect to E gives

dj

dE
=

1

π

∫ Rb

Ra

∂k

∂E
dr +

1

π

∂Rb
∂E

k(Rb, E) (28)

and the second term of the right-hand side cancels out since k(Rb, E) = 0.
We thus find after the change of variable x = (r/Rb)

n:

dj

dE
=

√
2mr C

1/n
n

2πn~ |E|(n+2)/2n

∫ 1

(Ra/Rb)n
x(2−n)/2n (1− x)

−1/2
dx. (29)

This integral can be computed analytically by taking the limit Ra/Rb → 0
and we find finally3 the differential equation:

dE

dj
≈ Kn|E|(n+2)/2n with Kn =

2~
√
π

√
2mr C

1/n
n

n Γ(1 + 1/n)

Γ(1/2 + 1/n)
. (30)

The integration of this differential equation is simple:

dE

|E|(n+2)/2n
= Kn dj ⇒ 2n

n− 2
|E|(n−2)/2n = Kn [j(0)− j(E)]

(31)
For energy E = 0, (27) gives:

j(0) ≡ jd =
1

4
+

Φ

π
with Φ =

∫ +∞

Ra

k(r, E = 0) dr. (32)

The integral is computed at the dissociation limit of the dimer: the turning
point Rb is then rejected at infinity and the result depends on the position
of the hard core Ra (the integral diverges if we take Ra → 0). Note that jd
is generally not an integer. Moreover, a necessary condition for the validity
of the semi-classical approximation is jd � 1.

Once the value of jd is known, we see that the energy of a bound state
j ≤ jd is such that (with j integer):

Ej = −K̃n(jd − j)2n/(n−2) with K̃n =

(
n− 2

2n
Kn

)2n/(n−2)

. (33)

If we trust the semi-classical approximation even for the deepest levels,
then we find that there are jmax = E(jd) bound states, whereE(jd) denotes
the integer part of jd.

In the particular case of the van der Waals potential (n = 6) truncated
at Ra, this relation becomes

Ej ≈ −28.65 (jd − j)3 EvdW (34)

and the value of jd deduced from (32) is:

Φ = 2

(
RvdW

Ra

)2

⇒ jd =
1

4
+

2

π

(
RvdW

Ra

)2

. (35)

3The result can be expressed in terms of the special function B(p, q) =
∫ 1
0 x

p−1(1 −
x)q−1 dx = Γ(p)Γ(q)/Γ(p+ q), with Γ(1/2) =

√
π.
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rjd rjd + 1

Figure 3. Variation of the position of the bound states in a truncated van der Waals
potential, when we move the position of the hard core towards r = 0 in order to
increase jd by 1. The number of levels is also increased by 1, and we recover the
energies already present plus a new eigenvalue corresponding to the energy of the
ground state in the new well. Note that this is a schematic diagram and that the
energies are not to scale.

When we vary the position of the hard core and thus the value of jd, we
find the following result: there is a perfect periodicity of the position of
the last bound states: the passage jd → jd + 1 gives back exactly the same
values of the bound energies provided that we make the substitutionEj →
Ej+1. In other words, the potential well obtained for jd + 1, deeper than
the one for jd, will contain exactly one more state, its ground state located
at the bottom of the well. All the other eigenenergies for jd + 1 will be
identical to the energies found for jd (figure 3).

Finally, let us return to the value of the parameter jd whose integer part
gives the number of bound states in the potential V (r). The value given
in (35) was obtained for a short-range potential and by trusting the semi-
classical approximation even for energies extremely close to the dissocia-
tion limit. Two corrections must be made to this value:

• If the short-range potential is not a hard core, but a regular potential,
the 1/4 term in (32) must be replaced by 1/2, as we have seen for the
passage from (14) to (15).

• Moreover, we will see in § 2-3 and § 4-3 that the semi-classical approxi-
mation must be corrected for an energyE very close to the dissociation
limit. This leads to replace the 1/2 term by 3/8.

Thus, for a regular short-range potential and taking into account the cor-

rections to the WKB approximation near the dissociation limit, we have
(Flambaum, Gribakin, et al. 1999):

Number of bound states : integer part of
3

8
+

1

π

∫ +∞

Ra

k(r, E = 0) dr. (36)

2-2 A first universality: weakly bound states

The relation (34) is a first example of universality for our problem: if we
give ourselves the atomic parameters (mr, C6) and if the experiment pro-
vides the energy Ej of the j-th level, we can deduce the value of jd and
thus the energies of the other levels, at least those weakly bound for which
the van der Waals potential plays a dominant role. Two questions can nev-
ertheless be raised in front of this statement:

• The universality found here relies on the semi-classical approxima-
tion, but is this correct for weakly bound states?

• Universality has been obtained for a potential strictly equal to−C6/r
6

up to the hard-core point Ra. Does it hold for another type of short-
range repulsive potential?

To answer the first question and to study the validity of the semi-
classical approximation for the determination of bound states, let us start
by comparing the predictions (34,35) with the results of a numerical cal-
culation of the bound states. We consider in both cases a van der Waals
potential −C6/r

6, truncated by a hard core potential in Ra, and we plot in
figure 4 the position of the last bound states as a function of Ra, for two
ranges of variation of Ra. We see that the agreement is excellent in both
cases, except for the very last bound state, when it approaches the disso-
ciation limit (Boisseau, Audouard, et al. 1998). We will come back to this
problem related to the last bound state in the next paragraph (§ 2-3), but
the answer to the first question raised above is clearly positive: the univer-
sality found above is not an artifact of the semi-classical approximation.

For completeness, we have plotted the wave functions of these bound
states in figure 5 (top). We can distinguish two zones in this plot:
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Figure 4. The last bound states in a van der Waals potential truncated at r = Ra.
Comparison of the semi-classical result (34, in black) and a numerical calculation
(in red). The number of bound states is 25, 24 or 23 in the top graph (resp. 38, 37
or 36 in the bottom graph) for this range of Ra values. On the top figure, the three
energies marked by a purple circle will be studied in more detail in figure 7, where
we plot the wave functions of the corresponding states.
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Figure 5. Top: the last 5 bound states for a hard core potential inRa = 0.13RvdW.
Bottom: the last 5 bound states for a Lennard-Jones potential with a minimum in
0.10RvdW.

• In the small r area, colored in green, all wave functions oscillate in
phase. This is well understood from the semi-classical approximation:
the wave functions all start with a node at the hard core in Ra and the
local wave numbers k(r, Ej) for r small are almost all equal. In this
region, the van der Waals potential C6/r

6 is indeed much larger than
the energy differences Ej − Ej′ for weakly bound states.

• In the region of large r, colored in blue, the value of C6/r
6 is reduced,

the difference between wave numbers becomes appreciable, and the
wave functions are out of phase with each other; in particular, they
have different turning points Rb.
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Figure 6. Positions of the last bound states for a Lennard-Jones potential. There
are 68,67 or 66 bound states in the potential for this range of values of rmin.

Let us now turn to the second question, concerning the modification of
the result when considering another type of short-range repulsive poten-
tial. We have plotted in figure 6 the result obtained for the energies of the
last bound states for a Lennard-Jones potential:

V (r) =
C12

r12
− C6

r6
, (37)

by adjusting the coefficient C12 of the repulsive term so that the minimum
of the potentialRmin is at a given location, here≈ 0.10RvdW. The result ob-
tained here is almost identical to the result obtained for a truncated van der
Waals potential, except for a translation of the abscissae, which depends on
the precise link between Rmin and Ra. Here again, the knowledge of the
energy of a weakly bound state is sufficient to determine the position of all
the others, with a law identical to that obtained for the truncated van der
Waals potential.

To understand the origin of this universality in the behavior of the last
bound states, it is useful to look at the shape of the wave functions of these
states. We have plotted them in figure 5 (bottom) for the Lennard-Jones
potential with Rmin = 0.10RvdW. We can distinguish three regions of r

values on this graph:

• The inner zone, colored in red, corresponds to values of r where the
repulsive potential C12/r

12 plays a significant role, insofar as its value
is at least equal to 10% of the absolute value of the van der Waals po-
tential C6/r

6. The behavior of the states in this region is therefore not
universal and depends on the precise form adopted for the repulsive
potential. Let us simply note that (i) the inner turning point is almost
identical for all states and (ii) the wave functions oscillate in phase: in-
deed, the wave numbers k(r, Ej) are almost all equal due to the value
of the potential C12/r

12 − C6/r
6, much larger than the differences in

energies |Ej − Ej′ |.

• The intermediate zone, colored in green, is the important part for our
discussion. In this zone, the repulsive potential is negligible and the
dynamics is entirely controlled by the van der Waals potential. In this
zone, the local wave numbers k(r, Ej) remain almost equal because
the van der Waals potential C6/r

6 is much larger than the energy dif-
ferences |Ej−Ej′ |: therefore, the wave functions still oscillate in phase.

• In the external area, colored in blue, the different eigenstates have dif-
ferent behaviors, linked to the fact that they have different energies
and therefore different turning points.

In conclusion, due to the "locking" of the phases of the wave functions
in the intermediate (green) region, we infer that the evolution of the wave
functions in the outer (blue) region will be the same as for a truncated van
der Waals potential (figure 5, top), provided that we adjust the position of
the hard core to reproduce the phase found in the central part. The role of
the repulsive potential for weakly bound states is simply to fix the value of
this global phase of the wave functions. Even if the precise characteristics
of this repulsive potential are not known, the experimental measurement
of the energy of a single weakly bound state is sufficient to assign the value
of this phase, to then deduce the position of all other weakly bound states.
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2-3 The problem of the last bound state

Since our study of the square well in the previous chapter, we know that
this domain of parameters leading to a very weakly bound state corre-
sponds to a divergence of the scattering length (Levinson’s theorem). It
can therefore play an important role in the experiments and we will inves-
tigate further the discrepancy between the WKB prediction and the numer-
ical calculation visible in figure 4.

The key to understanding this discrepancy lies in the validity condition
(24) associated with the connection between the allowed and forbidden
regions of the classical motion. Recall that this condition relates to the cur-
vature of the potential V (r), which must be sufficiently small for the linear
approximation of this potential to be valid over an adequate range of val-
ues of r.

When we transpose this condition to the van der Waals potential with
a turning point in Rb, we find

Rb . RvdW. (38)

For the energy Ej = −C6/R
6
b given by (34), the turning point Rb,j is

Rb,j
RvdW

≈ 1√
jd − j

. (39)

The validity condition (38) will thus be satisfied essentially for all values
of j except jmax, since jd − jmax can become notably smaller than 1 when
the last level is very close to the dissociation limit. In this case, the turning
point exceeds the value RvdW, the validity condition (38) is violated and
this explains the observed discrepancy between WKB prediction and nu-
merical calculation for this last level (Boisseau, Audouard, et al. 1998; Gao
1999)

As an example, we have plotted in figure 7 the variation of the proba-
bility density |ujmax

(r)|2 of the last bound state jmax for three neighboring
positions of the hard core corresponding to significantly different energies
of the last bound state: -11.3,-2.95,-0.20EvdW. It can be seen that for the first
two, the relative particle is located relatively close to the origin (r . RvdW)
while in the third case, weakly bound, the particle is mostly beyond this
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Figure 7. Probability distribution of the last bound state (jmax = 25) for differ-
ent positions of the hard core, 0.1580, 0.1588 and 0.1596 RvdW, corresponding
to significantly different binding energies: -11.3,-2.95,-0.20 EvdW (red, purple,
blue).

point. According to the criterion (38), one expects the semi-classical pre-
diction to be correct in the first two cases, and less so in the third. This is
indeed what we see when we return to figure 4 for these values of the hard
core position (each point is marked by a purple circle).

Let us note finally that this failure of the semi-classical approximation
for the last bound state does not call into question the universality of the
relative positions of weakly bound states. Simply the position of the last
state must be calculated numerically as a function of the position of the
hard core, as we have done in figure 4. Once this calculation is done, the
experimental knowledge of the position of a weakly bound state allows to
predict the position of the others.

75



CHAPTER IV VAN DER WAALS INTERACTION AND LOW-ENERGY UNIVERSALITY § 3. Observation of weakly bound states

2-4 Bound states of angular momentum ` = 2

In all the above, we have been interested in states of angular momentum
` = 0; indeed, because of the very low temperatures involved in the exper-
iments, the s-wave regime dominates the collisions between atoms. How-
ever, we will see that experimentalists can produce, from collisions in the
s-wave, bound states of angular momentum ` = 2; this is possible because
the free-bound transition is done by passing through an excited state that
is itself a quantum superposition of states with different angular momenta.

The calculation of the bound states of angular momentum ` = 2 is done
as for ` = 0, by making the substitution

−C6

r6
−→ −C6

r6
+

~2`(`+ 1)

2mrr2
with ` = 2. (40)

The introduction of the centrifugal potential does not introduce any length
scale (a manifestation of scale invariance) as can be seen by writing the
Schrödinger equation with the units of length and energy RvdW and EvdW

for a truncated potential:

−d2u

dr2
+

(
−16

r6
+
`(`+ 1)

r2

)
u = Eu with u(Ra) = 0 and ` = 2. (41)

Using the parameters of figure 4, we have plotted in figure 8 the ener-
gies of the last bound states for the two angular momenta ` = 0 (in red)
and ` = 2 (in green). We see that the energy E`=2

j is generally close to
E`=0
j . This is easily understood from the Schrödinger equation (41): if the

bound state occupies only the region r � RvdW, the centrifugal potential
1/r2 is a small perturbation of the van der Waals potential 1/r6, the energy
E`=2
j being just slightly higher than E`=0

j . On the other hand when the
last bound state is close to the dissociation limit, the 1/r2 term cannot be
treated perturbatively. The link between the behaviors of weakly bound
states of various angular momenta ` is studied in detail by Gao (2000) and
Gao (2001).
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Figure 8. The last bound states in a van der Waals potential truncated in Ra, for
angular momentum ` = 0 (red dots, identical to those in figure 4) and ` = 2 (green
dots). An almost identical figure (except for a global translation) is obtained for
any other type of short-range potential, such as the C12/r

12 term of the Lennard-
Jones potential.

3 Observation of weakly bound states

The predictions we have just made about the energies of weakly bound
states are extremely constraining. If we assume the value of C6 to be
known, the position of these states is determined by a single parameter, the
position of the hard core for a truncated van der Waals potential or more
generally the global phase imposed on the different wave functions by the
short-range potential. For a given atomic species, the energies of the differ-
ent bound states must therefore be positioned on a vertical line in the plots
of figures 6 or 8. We will show that this is indeed the case, by taking the
example of recent experiments on the ytterbium atom. These experiments
use a very precise experimental technique, the two-color photoassociation.

We will not give here an exhaustive bibliography on the subject of pho-
toassociation of cold atoms. In France, the researchers of the Aimé Cot-
ton laboratory have played a pioneering role in the development of this
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Figure 9. Top: principle of a two-color photoassociation experiment in a gas of
cold atoms. Bottom : if the incident angular momentum of the pair of atoms is not
zero, the centrifugal barrier prevents the atoms from getting close enough to make
the transition to a bound state.

technique and we refer the interested reader to the review article of Pil-
let, Vanhaecke, et al. (2003), as well as to Thorsheim, Weiner, et al. (1987),
Weiner, Bagnato, et al. (1999), Stwalley & Wang (1999), Abeelen & Verhaar
(1999), Kostrun, Mackie, et al. (2000), Bahns, Gould, et al. (2000), Araujo,
Weinstein, et al. (2003), and Dulieu, Raoult, et al. (2006).

3-1 Two-color photoassociation

Starting from a very cold gas, one illuminates the atoms with a light beam
containing two frequencies ω1 and ω2 and one tries to induce transitions
from the asymptotically free state of a pair of atoms to a weakly bound
dimer (figure 9, top). If we neglect the incident kinetic energy, which is
very low, the transition will take place with a maximum rate when the
resonance condition is reached:

~(ω1 − ω2) = |Ej | (42)

is satisfied. To be efficient, we must choose frequencies ω1 and ω2 close to
a resonance with an excited electronic state.

Let us consider a pair of bosonic atoms. The incident collisional state
corresponds to ` = 0. Otherwise, the centrifugal barrier prevents the atoms
from getting close enough for the overlap with the targeted bound state
to be appreciable (figure 9, bottom). As explained by Ciuryło, Tiesinga,
et al. (2004) and Borkowski, Ciuryło, et al. (2009) for the case of alkaline
earth atoms, one can thus form, after passage in the excited electronic state,
dimers of angular momentum in the electronic ground state ` = 0 and
` = 2.

3-2 An example : the ytterbium atom

To illustrate this technique, let us consider the recent experiments con-
ducted on the Ytterbium atom by Borkowski, Buchachenko, et al. (2017)
in the group of Y. Takahashi at Kyoto University [see also Kitagawa,
Enomoto, et al. (2008)]. The experiments were performed on a Bose-
Einstein condensate, which allows to eliminate the contribution of the ini-
tial kinetic energy to the shift and broadening of the photoassociation line.

The experimental scheme is shown in figure 10. The two wavelengths
necessary for the photoassociation are generated from the same light beam
thanks to two acousto-optic modulators (AOM). The photoassociation sig-
nal consists of a loss of atoms when the "free-bound" Raman resonance is
reached (figure 11). The measurement is made for several light intensities
and atomic densities, and then extrapolated to zero intensity and density
to remove associated systematic effects.

The measurements of Borkowski, Buchachenko, et al. (2017) have been
made for several isotopes of ytterbium (168, 170,174) which allows to test
the variation of theoretical predictions for several reduced masses. Let
us concentrate here on the isotope 170Yb: Borkowski, Buchachenko, et al.
(2017) measured six lines corresponding to the weakest bound states, three
being assigned to a ` = 0 state and the other three to ` = 2 state (see table
1).
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Figure 10. Schematic diagram of the two-color photo-association experiment
conducted in Y. Takahashi’s group on Ytterbium atoms. Figure extracted from
Borkowski, Buchachenko, et al. (2017).

Figure 11. A typical photo-association signal in a 170Yb condensate. A significant
fraction of the atoms are lost when the resonance from the incident (free) state to
one of the bound states of the molecular potential is reached. Figure extracted from
Borkowski, Buchachenko, et al. (2017).

` = 0 ` = 2

27.70024 (44) 3.66831 (32)
463.72552 (80) 398.05626 (46)

1922.01467 (505) 1817.14074 (80)

Table 1. Photo-association resonances (in MHz) measured by Borkowski,
Buchachenko, et al. (2017) for the isotope 170Yb, for which EvdW/h = 3.5 MHz.

3-3 Comparison with the theoretical model

To verify that the model described above does indeed account for these
results, let us repeat in figure 12 the plot of figure 8 made for a truncated
van der Waals potential. We now restrict the plot to a variation interval
of Ra/RvdW corresponding to a period for the sequence of appearance
of the new states. Let us also plot the six levels of table 1 as horizontal
lines, taking the value of C6 given in Chapter I: C6 = 1929 atomic units
(EvdW/h = 3.5 MHz), and let us look when the energies of these 6 levels
intersect the theoretical predictions. We see that the six intersections occur
almost all for the same value of Ra/RvdW ≈ 0.1614, which is a remarkable
confirmation of the simple theoretical model developed here.
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Figure 12. Validation of the previously developed model: the horizontal lines rep-
resent the experimentally measured energies for the last 6 bound states of the dimer
170Yb2. The intersections of these lines with the calculated positions of the energy
levels (` = 0 in red and ` = 2 in green) are done for one and the same value of the
only free parameter of the model, the ratioRa/RvdW, which is therefore completely
determined (modulo the period of the model).

The fact that the value Ra/RvdW ≈ 0.1614 is determined only modulo
the period of appearance of the new bound states is not a problem if we
are aiming at determining the scattering length. Indeed, we will see that
its value is governed by the same laws as these last bound states.

In practice, the extreme accuracy of the measurements of Borkowski,
Buchachenko, et al. (2017), better than 1 kHz, allows considerable refine-
ment of the model presented here. One can add corrective terms concern-
ing the long-range attraction, in −C8/r

8 and −C10/r
10. One can also test

(weak) corrections to the Born–Oppenheimer approximation (Lutz & Hut-
son 2016).

4 Scattering length for vdW interaction

There are many methods for estimating the scattering length of a gas of
atoms, from measuring the elastic collision cross-section σ = 8πa2 in a
thermalization experiment to using the mean-field energy 2π~2aρ/mr in a
Bose–Einstein condensate of density ρ. We will not review all these meth-
ods here, but focus on the most accurate technique, based on its link with
the positions of the last bound states that we have studied in the previous
sections.

4-1 Scattering states and quantum reflection

Since we have at our disposal both the WKB approximation and the nu-
merical solution of the Schrödinger equation, it is interesting to start our
study by comparing the positive energy solutions, corresponding to the
stationary scattering states. The WKB solution for the reduced wave func-
tion u(r) of energy E is written for the van der Waals potential truncated
by a hard core at the point Ra:

u(r) =
1√
k(r)

sin

(∫ r

Ra

k(r′) dr′
)

with
~2k2(r)

2mr
= E +

C6

r6
. (43)

When r → ∞, this solution behaves as a superposition of e±ik0r/
√
k0 with

E = ~2k2
0/2mr, which corresponds to a normalization ensuring a proba-

bility flux independent of E. We will take here the same normalization
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convention for the solutions of the Schrödinger equation found numeri-
cally.

We show in figure 13 three solutions corresponding to the three en-
ergies4 E/EvdW = 0.0025, 0.025, 0.25 for a given hard core (Ra/RvdW =
0.1588). The red plots correspond to the numerically calculated solutions
and the blue plots to the WKB approximation. On this large scale plot
(r/RvdW between 0 and 200), no major difference appears between the two
sets of predictions.

Now let’s enlarge the area to small r (figure 14). We can see that the
WKB solution has a notably larger amplitude in the inner region (r .
RvdW) than the exact solution (note the difference in vertical scale between
the two plots). More precisely, the three WKB solutions are almost iden-
tical in this area for the three considered energies. On the contrary, the
amplitudes of the exact solutions decrease when E decreases : more pre-
cisely, the probability for finding the relative particle in this zone decreases
approximately as

√
E.

This important difference in magnitudes between the exact numerical
result and the WKB approximation is even more evident in figure 15, where
the probability density of presence |u(r)|2 has been plotted in the lowest
energy case, E/EvdW = 0.0025. We can see that the probability found
numerically is reduced by a factor of 20 compared to the WKB prediction.

To understand this major flaw in the WKB approximation for very low
energy scattering states, one must return to the validity condition (11), ex-
pressing that the wavelength must vary slowly on its own scale. Let us
take a particle arriving from r = +∞with a kinetic energy E. At a point r,
its kinetic energy is equal to E + C6/r

6 and a simple calculation gives

1

2π

∣∣∣∣dλdr
∣∣∣∣ =

3r2/4

(1 + Er6/16)3/2
(44)

where lengths and energies are expressed in units of RvdW and EvdW. This
function, which must be small in front of 1 for the WKB approximation
to be good, is plotted in figure 16. We see that the approximation is just
marginal for the largest of the energies considered here, E/EvdW = 0.25

4For rubidium, EvdW/h = 6 MHz (or equivalently EvdW/kB = 300µK). The energies
considered here correspond to temperatures of 750 nK, 7.5µK and 75µK, which is represen-
tative of the parameters encountered in a cold atom experiment.
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Figure 13. Reduced wave functions for low and positive energies E/EvdW =
0.0025, 0.025, 0.25 for a van der Waals potential −C6/r

6 truncated in
Ra/RvdW = 0.1588. Top: numerical solution of the Schrödinger equation. Bot-
tom: solution obtained in the semi-classical approximation. The normalization
chosen here leads to a probability flux independent of E.
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Figure 14. Same wave functions as in figure 13, with a zoom on the central part.
We see that the probability density in the vicinity of the origin is strongly reduced
for the exact solution, compared to the semi-classical approximation. More pre-
cisely, the probability density for the exact solution varies as

√
E and thus tends

to 0 when E → 0.
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Figure 15. Probability density for the lowest of the energies considered in figures
13 and 14, E/EvdW = 0.0025. We see that the semi-classical approximation (in
blue) overestimates this probability of presence by a factor∼ 20 with respect to the
exact result (in red).

and becomes really poor for the lowest energies, at least for distances r of
the order of RvdW.

The physical meaning of this failure of the WKB approximation is re-
lated to the fact that the van der Waals potential actually varies too fast
for the wavelength to "adiabatically adapt" as the relative particle, arriving
from r = +∞, approaches r = 0 and is accelerated by the potential. The
situation we encounter here is called quantum reflection, the simplest illus-
tration of which consists of a simple potential step, like the one shown in
figure 17. Let us consider a particle arriving from the right with an energy
E � V0; instead of going down this step as one would classically expect,
the quantum particle can make a half-turn, and the probability for this non-
intuitive behavior tends to 1 when E/V0 → 0: the transmitted flux tends to
0 as E/V0 → 0, and the reflected flux is then almost equal to the incident
flux.

The quantum reflection phenomenon has been observed for atoms on
a liquid helium surface (Nayak, Edwards, et al. 1983; Berkhout, Luiten,
et al. 1989) or on a solid surface (Shimizu 2001; Druzhinina & DeKieviet
2003; Pasquini, Shin, et al. 2004). Its role in cold atom collisions has been
mentioned by Côté, Heller, et al. (1996), but it remains nevertheless not so
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Figure 16. Variation of 1
2π

∣∣dλ
dr

∣∣ with r, for the three energies considered in the
text, E/EvdW = 0.0025, 0.025, 0.25 (solid, dashed, and dotted-dotted).

well known. However, it is essential for the success of experiments with
quantum gases: the considerable reduction of the probability of finding the
two atoms close to each other, compared to what would be expected semi-
classically, leads to a drastic reduction of losses in cold and dense gases.

4-2 The exact solution for a truncated vdW potential

It is clear from the above that the semi-classical approximation is not suit-
able for the quantitative description of very low energy collisions in the
van der Waals potential. Its validity condition dλ

dr � 1 is not satisfied and
it cannot provide the value of the scattering length. In order to progress,
we will present in this paragraph an exact treatment for the case of a van
der Waals potential truncated by a hard core inRa, as we did for the search
for bound states. Once this particular case is understood, we will move
on in the next paragraph (§ 4-3) to the case of any short-range repulsive
potential.

We start from the equation verified by the reduced wave function for
E = 0:

d2u

dr2
+

16

r6
u(r) = 0 with r ≤ Ra : u(r) = 0, (45)

where distances are expressed in units of RvdW, and thus Ra � 1. Follow-

x

E

V0

E

Figure 17. Quantum reflection on a potential step; a particle arriving from x =
+∞ with an energy E � V0 turns back with a probability close to 1, while a
classical particle would continue towards −∞.

ing Landau & Lifshitz (1975), § 132 [see also Gribakin & Flambaum (1993)],
we can make the following change of variable and function:

r =

√
2

x
, u(r) =

1

x1/4
φ(x) (46)

to arrive at the following equation

x2 d2φ

dx2
+x

dφ

dx
+(x2−α2)φ(x) = 0 with α =

1

4
and x ≥ xa : φ(x) = 0,

(47)
where the point xa = 1/2R2

a � 1 corresponds to the position of the hard
core.

This equation is well known in mathematics since it is used to define
the Bessel functions. For a given value of α, the solutions form a space of
dimension 2, generated by the functions Jα(x) and Yα(x), the Bessel func-
tions of first and second kind. We will use here the asymptotic behavior of
these functions (cf. Wikipedia):

• when r →∞, so when x→ 0:

J1/4(x) ≈ 1

Γ(5/4)

(x
2

)1/4

, (48)

Y1/4(x) ≈ −Γ(1/4)

π

(
2

x

)1/4

+
1

Γ(5/4)

(x
2

)1/4

; (49)
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• when r → Ra � 1, so when x→ xa � 1:

J1/4(x) ≈
√

2

πx
cos

(
x− 3π

8

)
, Y1/4(x) ≈

√
2

πx
sin

(
x− 3π

8

)
.

(50)

Let’s write the solution of (47) in the form

φ(x) = AJ1/4(x) +B Y1/4(x). (51)

The condition φ(xa) = 0 with xa � 1 imposes

A

B
= −Y1/4(xa)

J1/4(xa)
≈ tan

(
xa −

3π

8

)
. (52)

Examining the solution for x� 1 then gives:

φ(x) ≈ A+B

Γ(5/4)

(x
2

)1/4

− BΓ(1/4)

π

(
2

x

)1/4

, (53)

which gives for the function u(r):

u(r) ∝ r − a with a = ā

[
1− tan

(
xa −

3π

8

)]
(54)

By reintroducing the natural unit of length RvdW = 1
2

(
2mrC6/~2

)1/4, we
find that the quantity ā introduced above is defined by 5.

ā

RvdW
=

π

Γ(1/4)Γ(5/4)
≈ 0.9560. (55)

Finally, let us note that the quantity xa which plays the role of a phase
in (54) has a simple interpretation. By reintroducing here also the unit of
length RvdW, we have

xa = 2
R2

vdW

R2
a

=

∫ +∞

Ra

k(r, E = 0) dr. (56)

This phase xa is therefore equal to the phase accumulated between r = Ra
and r = +∞ calculated in the WKB approximation. We said above that
the WKB approximation alone does not allow us to calculate the scattering
length, but it is nevertheless not totally absent from the correct result.

5This definition is found in different forms in the literature, these forms being linked to-
gether by Γ(x)Γ(1− x) = π/ sin(πx).

4-3 The Gribakin and Flambaum approach

Gribakin & Flambaum (1993) have given a very elegant generalization of
the above discussion for the case of a potential behaving like −C6/r

6 at
infinity, but with an arbitrary short-range repulsive potential. We will not
repeat here the details of their approach, but we will summarize it with the
help of figure 18. The top diagram shows what we discussed in the pre-
vious paragraph. In the case of a truncated −C6/r

6 potential, the solution
written as a linear combination of the Bessel functions J1/4(x) and Y1/4(x)
is valid for all r and provides the desired result. It is therefore useless to use
the WKB solution, which in any case would only be valid at relatively short
distances (green zone), but would become incorrect around r = RvdW.

In the case of an arbitrary short-range repulsive potential, the solution
in terms of Bessel functions is only correct for large r, when this short-
range potential is negligible in front of the van der Waals potential. This
range of values for r corresponds to the green and the blue zones in the
bottom diagram of figure 18. The WKB solution is valid for relatively small
r (r < RvdW, red and green zones on this same diagram). The idea of
Gribakin & Flambaum (1993) is therefore to:

• choose a point r∗ inside the green zone;

• use the WKB solution to the left of this point, for r < r∗;

• use a linear combination of J1/4(x) and Y1/4(x) to the right of this
point, for r > r∗;

• connect these two solutions in r∗, and check that the result for a does
not depend on the precise value chosen for r∗.

The implementation of this method does not pose any practical problem.
The final result takes a form almost identical to (54-56):

a = ā
[
1− tan

(
Φ− π

8

)]
with Φ =

∫ +∞

Ra

k(r, E = 0) dr, (57)

where Ra is the interior turning point for E = 0. We thus find again the
WKB phase accumulated on the whole accessible domain which was al-
ready involved in the definition of xa in (56). The only difference between
(54) and (57) is the additional term π/4 in the tangent argument. This term
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Figure 18. Top: for a truncated van der Waals potential, the solution in terms of
Bessel functions J1/4 and Y1/4 is valid over the whole range r > Ra (green and
blue areas). The semi-classical solution, on the other hand, can only be used for
Ra < r < RvdW (green zone). Bottom: for a regular short-range potential, the
semi-classical solution is valid from the internal turning point to RvdW (green
zone and red zone). The solution in terms of Bessel functions is valid when the
short-range potential is negligible (green and blue zones). It is therefore possible
to connect the two types of solution at a point in the green zone, the final result
not depending on the point chosen.
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Figure 19. Variation of the scattering length with the phase Φ.

is not surprising: it simply comes from the semi-classical phase difference
between a steep edge and a regular edge, a difference that we had already
pointed out in (14–15).

We plotted the variation of a with the phase Φ in figure 19. This vari-
ation shows successive divergences of a, each time the argument of the
tangent is π/2 modulo π, that is:

Φ =
5π

8
mod [π]. (58)

According to Levinson’s theorem, this condition corresponds to the thresh-
old for the appearance of a new bound state in the potential V (r), when we
vary for example the amplitude of the short-range potential [cf. the result
already announced in (36)]. Note that we find here the fact already studied
in (14): the semi-classical approximation is inaccurate to describe this last
bound state, since the formula (14) would predict a threshold of appear-
ance at Φ = π

2 mod [π]. One can check that the shift of π8 between the two
predictions is directly observable in the plots of figure 4.

Note that the scattering length that we find here is "mostly" positive; if
we assume that the phase Φ is random and uniformly distributed between
0 and π, we obtain a positive value of a with a probability of 3/4 and a
negative one for a probability of 1/4.
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Effective range. It is also possible to calculate the effective range re using
this approach (Gao 1998a; Flambaum, Gribakin, et al. 1999):

re = C ā

[
1− 2

ā

a
+ 2

( ā
a

)2
]

with C =
[Γ(1/4)]4

6π2
≈ 2.918. (59)

In this case, this quantity is positive and diverges whenever a vanishes.

4-4 Universality in the van der Waals problem

We now turn to the last point of our study which concerns the universal-
ity of the energy spectrum associated with the van der Waals potential, in-
cluding the value of the scattering length and the position of the last bound
states. Various facets of this universality have been discussed, not always
explicitly, by different authors and in particular by Gao (1998b), Crubellier,
Dulieu, et al. (1999), Flambaum, Gribakin, et al. (1999), and Boisseau, Au-
douard, et al. (2000). We will summarize the main results here and present
them in a graphic form [see figure 21].

To begin with, let us recall the result already obtained for the bound
states. We started from the "phasing" of the wave functions uj(r) of these
different states in the intermediate (green) region of the figure 7. This in-
termediate region corresponds to the positions r for which the short-range
repulsive potential is negligible in front of C6/r

6; the phasing is due to the
following two elements: (i) The left turning point is almost the same for
all these states; (ii) In this region where the semiclassical approximation is
valid, the wave numbers k(r, Ej) (at a given point r) are almost the same
for all Ej energies of weakly bound states. Therefore, it is not necessary to
know the details of the short-range potential. All that matters is the com-
mon phase it imposes on these wave functions. One could also replace this
short-range potential by a hard core located at a point Ra equal to one of
the nodes common to all functions uj(r) in the intermediate region: the
Ej ’s would not be modified in this substitution.

Let us now consider the zero-energy state, whose asymptotic behavior
u0(r) ∝ r−a determines the scattering length. The previous "phasing" also
occurs for this state because its left turning point is almost the same as that
of a weakly bound state and its wave number in the intermediate region
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V
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)

u
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)

Figure 20. Wave function ujmax
(r) of the last bound state (red) and of the

u0(r) state of zero energy (blue) in a Lennard-Jones potential with a minimum
in Rmin = 0.1002RvdW .

k(r, E = 0) is also very close to the wave number k(r, Ej) of the last bound
states. This point is illustrated by an example in figure 20.

The universality found for the bound states thus immediately extends
to the scattering length a, whose value is a function only of

∫
k(r, E = 0) dr

modulo π [Eq. (57)]. As for Ej , the value of a would not be modified if we
substituted the short-range potential with a hard core located at any of the
nodes common to uj(r) and u0(r) in the intermediate region colored in
green in figures 7 and 20. Therefore, for the problem of interest here, the
only role of the short-range repulsive potential is to fix the common phase
of the oscillation of uj(r) and u0(r) in the intermediate region. Once this
phase is fixed, the set

{a,Ejmax
, Ejmax−1, Ejmax−2, . . .} (60)

is fully determined.

Ideally, the knowledge of only one element of this set allows to go back
to the common phase and thus to all the other elements. This is the an-
nounced universality. In practice, it is often useful to measure two or three
energies Ej of bound states to refine the determination of C6 and other
possible long-range corrections (−C8/r

8 for example), and then to deduce
the scattering length with an excellent accuracy. Moreover, let us recall that
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the relevant energies Ej must be sufficiently close to zero to reach the zone
colored in green.

Once we know that all the numbers (60) depend on only one variable
(the common phase of uj and u0), it becomes possible to use one of them
as a parameter and plot all the others according to this parameter. This is
what we have done in figure 21. This is a plot in polar coordinates (θ, ρ),
where the angle θ is defined as

θ

2
= Φ− π

8
⇒ a = ā [1− tan(θ/2)] (61)

with as in (55) ā = 0.956RvdW. The polar angle θ = 0 thus corresponds to
a = ā, the angle θ = π to a scattering length a = ±∞. The sector a < 0
corresponds to the quarter plane between θ = π/2 and θ = π. Along the
ray of angle θ, we have marked in blue (resp. red) the value of the energies
of the last bound states of ` = 0 (resp. ` = 2), plotted at the points

ρj =

( −Ej
EvdW

)1/3

(62)

The choice of the power 1/3 allows to obtain a curve close to an
Archimedean spiral ρ ∝ θ, taking into account the relations (34-57)

We have checked that this plot remains almost unchanged when we
take a hard-core potential, a Lennard-Jones potential or another type of
short-range repulsive potential. The only important point is to have
enough bound states so that the intermediate region dominated by the
−C6/r6 van der Waals potential has an appreciable size.

Finally, we have plotted the known experimental parameters for some
atomic species in figure 22, superimposed on the theoretical prediction al-
ready shown in figure 21. We see that the agreement with the simple model
used in this chapter is excellent. The data presented in this plot are ex-
tracted from the following articles:

• Metastable helium : Moal, Portier, et al. (2006)

• Lithium 7: Abraham, McAlexander, et al. (1995)

• Calcium 40: Pachomow, Dahlke, et al. (2017)
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Figure 21. Plot in polar coordinates of the universal relation linking the set
{a,Ejmax

, Ejmax−1, Ejmax−2, . . .} where the Ej are the energies of the bound
states of angular momentum ` = 0 (blue) or ` = 2 (red). The polar angle
parametrizes the scattering length according to the law (61) and the distance to
the origin represents the value of the energies of the bound states according to
(62). The area colored in red corresponds to a negative scattering length.
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Figure 22. Same plot as for figure 21, with a set of atomic data. The model devel-
oped in this chapter accounts very well for the universal link between the scatter-
ing length and the energies of the last bound states.
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Figure 23. Comparison between the exact value of the energy of the last bound
state (solid red line) and the approximations (63) in dashed green and (64) in
dashed blue. The calculation is done for a van der Waals potential truncated in
Ra in the vicinity of the resonance, with the scattering length a varying from
3.2RvdW to +∞.

• Rubidium 85: Tsai, Freeland, et al. (1997)

• Rubidium 87: Wynar, Freeland, et al. (2000)

• Strontium 88: Escobar, Mickelson, et al. (2008)

• Ytterbium 170 and 174: Borkowski, Buchachenko, et al. (2017). For
this atomic species, it is possible to perform measurements on several
isotopes and thus verify the atomic mass scaling laws as well as the
corrections to the Born–Oppenheimer approximation (Verhaar, Kem-
pen, et al. 2009).

For alkali metal atoms, we have essentially restricted ourselves to the case
where we could find reliable data for collisions in the triplet state, for
which only one channel contributes. For other types of collisions, the
multi-channel description complicates the laws found here.

To conclude, let us insist on the fact that the universality found here that
links the scattering length and the energies of the last bound states goes far
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beyond the relation

Ebound ≈ −
~2

2mra2
(63)

which gives (whatever the potential is) the energy of the last bound state
when a → ∞. The universality highlighted here is valid whatever the
value of a provided that the potential well is deep enough to contain many
bound states. Let us also point out without proof an improvement of the
approximation (63) as an expansion in powers of 1/(a− ā) with the domi-
nant term (Gao 2004):

Elie ≈ −
~2

2mr(a− ā)2
. (64)

The two approximations (63) and (64) are plotted together in figure 23; we
can see that the second approximation is indeed more accurate than the
first one.
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Chapter V

Scattering Resonances

In the following two chapters, we will discuss scattering resonances
and more precisely, Fano–Feshbach resonances. This is an essential tool in
quantum gas physics; it has opened the way to the regime of strong interac-
tions, which is reached when the scattering length becomes on the order of
the distance between particles in the gas. Fano–Feshbach resonances also
allow the preparation of gases with almost zero interaction (a = 0), thus
realizing the ideal gas model. They are a source of very precise data on the
structure of dimers and thus on the interatomic potentials. Finally, they
have allowed the development of a very original research on few-body
systems, including the study of Efimov states.

We will start by situating the Fano–Feshbach resonances in the general
framework of scattering resonances which, for an s-wave collision, lead
to a divergence of the scattering length. We will show the originality of
the Fano–Feshbach resonances which involve two collision channels, one
open, the other closed, whose relative energies can be controlled, allowing
one to scan through the resonance. We will also investigate the meaning of
an infinite scattering length and we will study for that purpose a very in-
structive model proposed by Busch, Englert, et al. (1998), which gives the
eigenstates of a two-particle system confined in a harmonic trap. We will
then develop a simple two-channel resonance model, for which an analyti-
cal treatment can be conducted. This model will use the notion of separable
potential that we will specify beforehand in the single channel case. In the
next chapter, we will deepen this model to bring out the important notion
of resonance width and clarify the contribution of the closed channel. We

will then describe more quantitative treatments of these resonances, and
finish by presenting some recent experiments. We will examine the main
tools available in the laboratory to characterize these resonances and we
will see that they can have unexpected extensions, in connection for exam-
ple with quantum chaos.

In the last twenty years, the literature dealing with Fano–Feshbach res-
onances in atomic gases has become extremely vast and it is not possible to
cite here all the important work that has been done. We refer the reader
to the review articles of Köhler, Góral, et al. (2006) and Chin, Grimm,
et al. (2010) which presented at the time of their publication a complete
overview of the field.

1 Examples of scattering resonances

In this chapter and the next one, we will be mainly interested in Fano-
Feshbach resonances, obtained by coupling two scattering channels, one
open, the other closed. To put these resonances in perspective, we will
briefly review in this first section some types of resonances encountered in
cold atom physics.
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Figure 1. Zero-energy resonance. Left: This type of resonance occurs when the
last bound state of the potential V (r) is very close to the dissociation limit or if a
new bound state is about to appear for a small variation of V (r) (N.B. Here, the
position of the energy levels is purely indicative). Right: the solid line represents
the variation of the scattering cross-section according to (2). When the bound
state is exactly at the dissociation limit, the cross-section varies as 8π/k2 and thus
diverges in k = 0 (dashed curve).

1-1 Zero-energy resonance

The zero-energy resonance is a process that we have already met in the
previous chapters. It occurs for s-wave collisions, when a new bound state
is about to appear or when it has just appeared, following the variation of
one of the parameters of the interatomic potential V (r), the coefficient C6

for example (figure 1, left).

The scattering amplitude can be written in this case:

f(k) ≈ − a

1 + ika
(1)

which corresponds to a cross-section for polarized bosons varying as (cf.
figure 1, right):

σ(k) = 8π|f(k)|2 =
8πa2

1 + k2a2
with E =

~2k2

2mr
. (2)

At the precise point where the resonance occurs (a =∞), the cross-section

Figure 2. Measurement of the elastic collision cross-section for a gas of polarized
cesium atoms. This measurement is based on the relaxation time to thermal equi-
librium τR, for a known density n and root-mean-square velocity v̄. The solid line
represents the prediction obtained by molecular dynamics for a gas of the same
density and temperature, and placed in the unitary regime (3). Figure extracted
from Arndt, Dahan, et al. (1997).

reaches its largest value allowed by the unitarity of quantum mechanics:

Unitary regime for polarized bosons: σ(k) =
8π

k2
. (3)

Cesium in zero magnetic field has the particularity to be naturally in
this regime (Arndt, Dahan, et al. 1997). We show in figure 2 the measure-
ment of the cross-section for elastic collisions as a function of temperature
for a gas of polarized cesium atoms (triplet state |f = mf = 4〉 for which
the spins of the external electron and the nucleus are aligned). We see that
the cross-section varies as σ(T ) ∝ 1/T , in agreement with the prediction of
the unitary regime (3).

A precise analysis of these results and of the position of the last bound
states allowed Kerman, Chin, et al. (2001) to determine the scattering
length for this triplet state and they found a = 2400 ± 100 a0 = 130 nm. It
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Figure 3. Shape resonance. Left: interaction potential in the presence of a cen-
trifugal barrier for a non-zero angular momentum. A quasibound state of energy
E∗ can exist at small distances from r, its lifetime being limited by the tunneling
effect through the barrier. Right: resonance of the scattering cross-section for an
incident energy close to E∗.

is not strictly speaking infinite, but it is 25 times larger than the most prob-
able value ā (i.e. an cross-section 625 times larger than naively expected!).
At first sight, such a large scattering length seems to be good news for ob-
taining a Bose–Einstein condensate, as it allows to carry out the evapora-
tive cooling extremely quickly. Unfortunately, this scattering resonance is
accompanied (as almost always for bosons) by important losses due to in-
elastic collisions, which prevent the condensation in a weak magnetic field
(Söding, Guery-Odelin, et al. 1998). The judicious use of Fano–Feshbach
resonances in a higher magnetic field and of an internal state different from
the triplet state allowed Weber, Herbig, et al. (2003) to circumvent this dif-
ficulty and to finally condense this atomic species.

1-2 Shape Resonance

A shape resonance occurs when the interatomic potential behaves repul-
sively at infinity, as is the case for partial-wave collisions of non-zero an-
gular momentum. In this case, the centrifugal potential varying as 1/r2 is
dominant at long range compared to the van der Waals potential in −1/r6.

Incident beam

Reflected beam

Figure 4. Fabry-Perot cavity formed by two mirrors with high reflection coeffi-
cient. The variation of the phase shift of the reflected beam with respect to the
incident beam is similar to that found for a shape resonance.

The situation is then analogous to that of a Fabry–Perot cavity in optics.
There may be one (or more) positive energy state E∗ confined inside the
potential well located in the vicinity of r = 0 (figure 3). This state is equiv-
alent to the light field trapped in a cavity formed by two mirrors (figure 4).
A dimer prepared in this state is unstable and eventually dissociates, just
as the light field eventually escapes from the Fabry–Perot cavity since the
mirrors are not perfectly reflecting. The lifetime of the dimer can be large
when compared to the typical period of molecular oscillations.

Let us now consider a collision between two initially free atoms of en-
ergy close to E∗. The relative particle can of course bounce back outside
the potential barrier, but the dimer can also be formed temporarily. The
interference between these two processes causes a rapid variation of the
phase shift associated to this partial wave, and thus a peak in the colli-
sion cross-section. This peak is all the more narrow as the lifetime of the
quasi-bound state is large.

Several cold atom experiments have demonstrated this type of reso-
nance. Volz, Dürr, et al. (2005) have observed it for the d-wave on a ru-
bidium 87 condensate, with a rather subtle detection method, since it uses
molecules themselves formed from a Fano–Feshbach resonance. Very re-
cently, Yao, Qi, et al. (2019) have observed such a d-wave resonance in a
potassium 41 Bose–Einstein condensate.
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Figure 5. Fano–Feshbach resonance: the incident particles are prepared in an
internal state corresponding to the open channel. During the collision, the quasi-
resonant coupling to a bound state |φ0〉 of the closed channel causes a significant
change in the collisional phase shift, and thus a resonance of the scattering ampli-
tude and the corresponding cross-section.

1-3 Fano–Feshbach resonance

Unlike the two processes described above, a Fano–Feshbach resonance in-
volves at least two collision channels (figure 5). This type of multi-channel
resonance was introduced in nuclear physics by Feshbach (1958) [see also
Feshbach (1962)] and in the context of atomic physics by Fano (1961). The
early historical developments around these ideas are described in detail in
the review article of Chin, Grimm, et al. (2010).

In the context of quantum gas physics, the first mentions of this type
of resonance came from the physics of atomic hydrogen, which was the
only system available before the advent of laser cooling of other atomic
species. It was the Dutch team around B. Verhaar who transposed these
ideas to alkali collisions (Tiesinga, Verhaar, et al. 1993; Moerdijk, Verhaar, et
al. 1995). The first experimental demonstrations of these resonances were
made at MIT by Inouye, Andrews, et al. (1998), at the University of Austin
by Courteille, Freeland, et al. (1998), in Boulder (Roberts, Claussen, et al.
1998) and in Stanford (Vuletic, Kerman, et al. 1999).

We are interested here in the case of collisions between cold atoms and
will therefore describe this process for s-wave interactions, which are the
most relevant in practice. Channel 1, called open channel and described
by the interatomic potential V1(r), is the one in which the two colliding
particles arrive. This channel corresponds to a certain spin state of the
incident atoms. The channel 2 described by V2(r) corresponds to another
spin state of the atoms. It is a closed channel: the value of V2(r) at infinity
is well above the incident energy of the particles and its population after
the collision is negligible. On the other hand, the coupling between the
two channels during the collision is significant; it can induce a variation
of the phase shift δ0, and thus modify the scattering amplitude and the
corresponding cross-section.

The analogy with the Fabry–Perot cavity given above is also interesting
in this case. One naively expects (and this will be confirmed by a quantita-
tive analysis) that the influence of the closed channel is important when the
latter presents a bound state |φ0〉whose energy Ecl is close to the energy of
the incident particles, i.e. Ecl ≈ V1(∞).

An essential aspect of these resonances is that it is possible to finely
tune the energy difference Ecl − V1(∞). It is sufficient that the magnetic
moments of the spin states of the two channels are different. The varia-
tion of the ambient magnetic field will shift the V2(r) curve with respect to
V1(r), and thus of varying the gap Ecl − V1(∞).

The variation of the scattering length in the vicinity of a Fano–Feshbach
resonance controlled by a magnetic field is traditionally written in the form

a = abg

(
1− B1

B −B0

)
, (4)

and thus depends on three parameters: abg represents the background
scattering length; this is essentially the value associated with the open
channel far from the resonance. The field B0 gives the position of the res-
onance where the scattering length diverges, and the parameter B1 gives
the "width in magnetic field" of the resonance. Let’s assume for the sake of
argument that B1 is positive; to the left of the resonance, when we go from
B = B0 to B = B0 − B1, the value of a falls from infinity to 2abg; to the
right of the resonance, for B = B0 + B1, the scattering length cancels out
(figure 6).
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Figure 6. Variation of the scattering length with the magnetic field, according to
the law (4), plotted here for B1 > 0. The dashed line indicates the value of the
background scattering length abg.

Let’s anticipate a bit on the results that will follow: we will show that
the Fano–Feshbach resonance does not occur exactly for Ecl = 0, but for
Ẽcl ≡ Ecl − ∆ = 0 where ∆ is an energy shift that we will calculate. The
link between the magnetic field B and the energy Ecl of the bound state
|φ0〉 of the closed channel (measured with respect to the dissociation limit
of the free channel) is thus done by

Ecl −∆ = δµ (B −B0) (5)

where δµ is the difference between the magnetic moment of the pair of
atoms in the free channel and the magnetic moment of the bound dimer in
the |φ0〉 state.

Let us also point out an important point concerning the expression (4).
We will see in the next chapter that the main characteristic of a Fano–
Feshbach resonance is its width, which determines the relative weights of
the open and closed channels in the states that may appear. It would be
tempting to assume that this width is given solely by |B1|. We will see that
the reality is more complex: the equation (4) is a convenient parameteri-
zation, but it partially hides the important physical quantities that really
characterize the resonance.

We will present at the end of the next chapter some recent experiments
which illustrate the diversity of situations where a Fano–Feshbach reso-
nance can occur. Here, we show in figure 7 the result of one of the first
experiments where these resonances have been seen in the framework of
cold atomic gases (Inouye, Andrews, et al. 1998). This experiment was
conducted on a condensate of sodium atoms, for which the resonance
is around 900 Gauss (0.09 T). The resonance manifests itself both by an
increased loss of atoms due to inelastic collisions and by a variation of
the interaction energy, measured by ballistic expansion of the gas. In the
same period, Fano–Feshbach resonances were observed for 85Rb (Roberts,
Claussen, et al. 1998; Courteille, Freeland, et al. 1998) and for 133Cs (Vuletic,
Kerman, et al. 1999).

1-4 Confinement Induced Resonance

These resonances, initially predicted by Olshanii (1998), then physically in-
terpreted by Bergeman, Moore, et al. (2003), occur when atoms are strongly
trapped along one or two directions in space. Consider for example atoms
moving freely along a tube of axis z, with a strong confinement in the xy
plane characterized by the oscillation frequency ω⊥. Starting from atoms
interacting with a scattering length a in 3 dimensions, Olshanii (1998) and
Bergeman, Moore, et al. (2003) show that the interaction between two con-
fined atoms can be modeled by a Dirac distribution, g1D δ(z1 − z2), with

g1D =
2~2a

mra2
⊥

1

1− Ca/a⊥
with C = 1.4603, (6)

where a2
⊥ = ~/mrω. A scattering resonance occurs when a⊥ = Ca.

The interpretation of this phenomenon is in fact very close to a Fano–
Feshbach resonance. The different channels are the different states of exci-
tation of the transverse atomic motion. The open channel corresponds to
the ground state of energy ~ω⊥. The closed channel of interest is the ex-
cited level of the transverse motion of energy 3~ω⊥, which contains a state
of orbital angular momentum `z = 0 and which can thus couple resonantly
to the ground state during a collision. Bergeman, Moore, et al. (2003) show
that this channel always contains a bound state, and that the resonance
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Figure 7. Fano–Feshbach resonance in a sodium atom condensate. The top graph
shows the loss of atoms in the vicinity of the resonance. The lower graph shows the
variation of the scattering length, deduced from the measurement of the interaction
energy of the gas, itself deduced from the ballistic expansion of the atomic cloud
when it is released from the trap. Figure extracted from Inouye, Andrews, et al.
(1998).

condition a⊥ = Ca corresponds precisely to the point where the energy of
this bound state is equal to ~ω⊥, the dissociation limit of the open channel.
A similar phenomenon occurs with a confinement along one direction of
space, the collisions being then two-dimensional (Petrov, Holzmann, et al.
2000).

This type of resonance was observed in Innsbruck by Haller, Gus-
tavsson, et al. (2009). Starting from a Bose-Einstein condensate of ce-
sium atoms, the Innsbruck researchers placed this gas in a series of tubes
formed by a two-dimensional optical lattice. A Fano–Feshbach resonance
is then used to adjust the ratio a/a⊥. Thanks to this confinement-induced
resonance, Haller, Gustavsson, et al. (2009) succeeded in producing a
one-dimensional gas in strong interaction (a phase called super Tonks–
Girardeau).

Finally, it should be noted that Massignan & Castin (2006) and Nishida
& Tan (2008) (see also Xiao, Zhang, et al. (2019)) have shown that this type
of resonance can be extended to interactions between atoms of different
species, one of which is strongly confined along certain directions in space
and the other not at all. A first experimental study of this phenomenon
was conducted by Lamporesi, Catani, et al. (2010).

2 Is the limit a = ±∞ singular?

The scattering resonances we will be interested in the following, namely
the Fano–Feshbach resonances, are characterized by a scattering length
that tends to±∞while the range of the potential remains finite. In a mean-
field approach, where the interaction energy of a particle is proportional
to an where n is the density of the gas, a singularity appears when a di-
verges. We show in the following that this singularity is only an artifact of
the mean-field approach.

We will present here the model developed by Busch, Englert, et al.
(1998), who considered two particles interacting through the pseudo-
potential V̂pp (thus of zero range). These two particles are placed in an
isotropic harmonic potential of frequency ω. We will see that there is a
perfect continuity of the energy levels of this binary system through the
a = ±∞ resonance. On the other hand, we will see that there is no conti-
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nuity around a = 0: for the pseudopotential, the limits a→ 0+ and a→ 0−
are not equivalent.

We are therefore interested in the Hamiltonian

Ĥtot =

(
p̂2
A

2m
+

1

2
mω2r2

A

)
+

(
p̂2
B

2m
+

1

2
mω2r2

B

)
+ V̂pp(rA − rB). (7)

We will take here the definition of the pseudo-potential based on the Bethe–
Peierls boundary condition (see chapter 3).

2-1 Center-of-mass and relative variable

The interest of the choice of a harmonic confinement potential is that it
preserves the separation between center-of-mass and relative variables. We
have indeed

R =
1

2
(rA + rB) r = rA − rB ⇒ 2R2 +

r2

2
= r2

A + r2
B (8)

which leads to
1

2
mω2r2

A +
1

2
mω2r2

B =
1

2
Mω2R2 +

1

2
mω2r2 (9)

with M = 2m for the total mass and mr = m/2 for the reduced mass.

The motion of the center-of-mass is that of a particle of massM confined
in a harmonic potential. The corresponding energy levels are unchanged
by the interaction between particles and are therefore (n+ 3/2) ~ω, with
n = 0, 1, . . .. In the following, we concentrate on the motion of the relative
particle which is governed by the Hamiltonian

Ĥ =
p̂2

2mr
+

1

2
mrω

2r2 + V̂pp(r). (10)

Let us note that Chen, Xiao, et al. (2020) have recently extended this study
to the case of an anisotropic harmonic potential.

2-2 The one-dimensional case

Before tackling the 3D case, it is interesting to consider the one-
dimensional case for which the simple contact potential V (x) = g δ(x) is

legitimate. The eigenvalue equation for the relative variable is then writ-
ten

− ~2

2mr

d2ψ

dx2
+

1

2
mrω

2x2ψ(x) + g δ(x)ψ(x) = E ψ(x). (11)

Let us use the natural energy and length scales1 for the harmonic oscillator,
i.e. ~ω and aho =

√
~/mrω. This eigenvalue equation is simplified to

−1

2
ψ′′(x) +

x2

2
ψ(x) +Gδ(x)ψ(x) = E ψ(x) with G = g/(aho~ω).

(12)

The problem is parity invariant (change x↔ −x). We can therefore look
for solutions in the form of even or odd functions ψ(x). For an odd func-
tion, ψ(0) = 0 so that the contact potential does not contribute. We thus
find the same eigenfunctions (Hermite functions) and the same spectrum
as in the absence of interaction:

Energies of odd functions : En = n+
1

2
, n = 1, 3, . . . (13)

These energies are plotted in red in figure 9.

We now focus on the even functions. For these, the presence of δ(x)
creates a singularity at x = 0: the first derivative of ψ(x) is discontinuous at
this point with a jump obtained by integrating (12) on an arbitrarily small
interval centered in 0:

−1

2
[ψ′(0+)− ψ′(0−)] +Gψ(0) = 0. (14)

The parity of ψ implies that ψ′(0−) = −ψ′(0+) hence the boundary condi-
tion:

Even functions : ψ′(0+) = Gψ(0). (15)

Two examples of even functions with this type of angular point in x = 0
are plotted in figure 8.

To solve the problem completely, it is now sufficient to find out under
which condition on the energy E there exists on the open interval x ∈
(0,+∞) a solution of

−1

2
ψ′′(x) +

x2

2
ψ(x) = E ψ(x) (16)

1We define here aho from the reduced mass mr and not from the mass of each atom m.
This introduces a factor

√
2 with respect to Busch, Englert, et al. (1998).
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Figure 8. Examples of angular points at x = 0 for even eigenfunctions, resulting
from the presence of the potential Gδ(x) in the Schrödinger equation.

which

• satisfies the boundary condition (15),

• tends to 0 when x→ +∞.

The general solution of (16) is written2 in terms of the Kummer function
M(a, b, z).

ψ(x) ∝
[
αM

(
1

4
− E

2
,

1

2
, x2

)
+ βxM

(
3

4
− E

2
,

3

2
, x2

)]
e−x

2/2. (19)

In the vicinity of the origin, we find M(a, b, x2) = 1 + O(x2) so that the
boundary condition (15) imposes β = αG. When x → +∞, the Kummer

2To show this result, we make the changes of variable and function z = x2 and φ(z) =
ψ(x), which allows to rewrite (16) in the form of Kummer equation:

zφ′′ + (b− z)φ′ − aφ = 0, (17)

with

a =
1

4
− E

2
b =

1

2
, (18)

whose solutions are the Kummer functions M(a, b, z) and z1−bM(a + 1 − b, 2 − b, z) (cf.
Wikipedia page Confluent hypergeometric function).
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Figure 9. 1D Case. Blue: variation of the energies of even wave functions for the
relative variable of two trapped particles. Red: energies of the odd wave functions.

function diverges as:

M(a, b, z) ∼ Γ(b)

Γ(a)
ez za−b. (20)

To prevent ψ(x) from diverging as ex
2/2 at infinity, the divergences of the

two contributions to (19) must cancel each other and we have to impose:

Γ(1/2)

Γ(1/4 − E/2)
+G

Γ(3/2)

Γ(3/4 − E/2)
= 0 (21)

or by using Γ(1/2) = 2Γ(3/2):

G = −2
Γ(3/4 − E/2)

Γ(1/4 − E/2)
. (22)

For each value of G, this relation selects an (infinite) series of discrete val-
ues of E. These values are plotted in blue in figure 9.

Let’s comment on a few elements regarding this figure:

• For G large and negative, the potential Gδ(r) simulates a deep attrac-
tive well, with a strongly bound state corresponding to an even wave
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function. The other even states must be orthogonal to this localized
state. This almost amounts to impose a node in x = 0 to these states,
as for the odd states. The energy of an excited even state is then close
to that of the immediately lower odd state.

• InG = 0, there is no interaction and we find the unperturbed energies,
1/2, 5/2, 9/2 for the even states. We find this result on (22) since the
function Γ(x) is infinite for all values x = 0,−1,−2, . . . of the argu-
ment.

• For G large and positive, we have the equivalent of a hard core poten-
tial in the neighborhood of x = 0, which practically imposes on the
even wave functions to have a node at this point (cf. figure 8, right).
Their energy is then very close to the odd wave function of n immedi-
ately above.

The interpretation of the one-dimensional results is therefore consistent
with intuition.

2-3 The three-dimensional case

The pseudo-potential has an effect only on wave functions with zero an-
gular momentum. Therefore, we will restrict ourselves to this class of
isotropic states in what follows. We continue to use the energy scales ~ω
and aho =

√
~/mrω for energy and position. We thus look for the solutions

of the radial Schrödinger equation for the wave function u(r) = rψ(r)

−1

2
u′′(r) +

r2

2
u(r) = E u(r) (23)

with the Bethe–Peierls boundary condition:

u(r) ∝ r − a ⇔ u′(0) = −1

a
u(0). (24)

Recall that in the absence of interaction or for a regular potential, the
boundary condition for the reduced radial wave function is u(0) = 0.

The problem is thus formally identical to the one we solved in 1D, pro-
vided that we make the substitution

G −→ −1

a
. (25)
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Figure 10. 3D Case. Energies of the ` = 0 states for the relative variable of two
trapped particles. The red dashed line gives the −~2/2mra

2 energy of the bound
state that appears for a > 0 in the absence of a harmonic trap. The black dashed
lines show the energies of the ` = 0 states in the absence of interaction.

Therefore, we simply take the results of figure 9 as they are, and plot them
in figure 10 as a function of 1/a (this simply means reversing the x-axis).

Despite this formal similarity in the calculations, the interpretation of
the results is very different. The following points should be noted:

• In figure 10, we have drawn in black dashed lines the position of the
energy levels for the states ` = 0 in absence of interaction,En = n+3/2
with n = 0, 2, 4, . . .. The first remark concerns the position of the
ground state in the presence of interaction: it is always below the low-
est of the dashed lines. This means that the pseudo-potential must
be considered as attractive, in the sense that it lowers the energy of
the ground state whatever the sign of a. This result is obviously very
different from the one found at 1D, where the position of the ground
state can be above or below the non-interacting value, depending on
the sign of G.

• When 1/a → −∞, i.e. a → 0−, the energy levels in the presence of in-
teraction approach the unperturbed energy levels. It is thus this limit
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(and only it) which allows to find with certainty the case without in-
teraction.

• When we place ourselves exactly at 1/a = 0, the Bethe-Peierls bound-
ary condition (24) is written u′(0) = 0, i.e. a horizontal tangent in
r = 0. This condition is equivalent to the one imposed on the even
functions in the 1D case in the absence of interaction (§ 2-2). We thus
find the n+ 1/2 energy levels with n = 0, 2, 4, . . . : in the unitary limit,
the interactions lower each ` = 0 state by 1 (i.e. ~ω) with respect to the
limit without interaction.

• When we cross the 1/a = 0 region, i.e. a = ±∞, no singularity ap-
pears on the position of the energy levels. This result is of course very
different from what one would expect in a mean-field theory, where
the energy is proportional to a and therefore would diverge towards
±∞ at this point.

• When 1/a → +∞, i.e. a → 0+, the energy of the ground state tends
towards−∞. This can be explained simply by the existence of a dimer
in this region with an energy −~2/(2mra

2) (red dotted line). Strictly
speaking, this result for the dimer energy is only correct for free par-
ticles, but it is expected to approximately hold in the trapped case as
soon as the corresponding energy becomes dominant with respect to
~ω.

• In this region 1/a large and positive, one can recover the non-
interacting limit, but one has to prepare the system on its first excited
state. The energy of this state tends towards 3/2 ~ω when a → 0+.
As this energy is higher than the energy found for the ground state
in the absence of interaction, one often uses the term repulsive branch
to designate this state. In particular, its generalization to the N -body
problem allows to describe the atomic condensates observed in the
a > 0 regime. However, it should be noted that, as this is an excited
state, it can be fragile if an energy dissipation channel allows its decay
towards the true ground state, i.e. the dimer.

Figure 11. Preparation of a wave packet in a system of two 6Li atoms confined
in an optical tweezer, thanks to a quench consisting in suddenly changing the
stiffness of the trap. Figure extracted from Guan, Klinkhamer, et al. (2019).

2-4 Experimental Study

Guan, Klinkhamer, et al. (2019) have conducted a detailed experimental
study of this model by confining two 6Li atoms in an optical tweezer. The
atoms are prepared in two different spin states, so that s-wave interactions
are allowed. Starting from the ground state of the two atoms in the op-
tical tweezer for an adjustable scattering length, they perform a quench
by abruptly changing the stiffness of the tweezer, which has the effect of
preparing a coherent superposition of several eigenstates (figure 11).

The number of states contributing significantly to this superposition de-
pends on the value of the scattering length, which is controlled by the mag-
netic field via a resonance:

• When a is small and negative (left of figure 11), a large number of
states, close to those of the non-interacting case, are populated. Guan,
Klinkhamer, et al. (2019) estimate that the population of the most pop-
ulated state does not exceed 2 %.

• When a is very large (unitary regime in the center of figure 11), only a
few states are significantly populated.
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Figure 12. Probability densities of the relative variable, measured and calculated
at t = 3.5 ms after the quench. These measurements are made for different values
of the scattering length, shown in units of aho (along the z axis). Figure extracted
from Guan, Klinkhamer, et al. (2019).

• When a is small and positive (right-hand side of figure 11), only
the bound dimer is appreciably populated, both before and after the
quench.

Once the quench is done, Guan, Klinkhamer, et al. (2019) let the system
evolve freely for an adjustable time t before measuring the position of the
two particles. This measurement is made with a resolution of 4µm, which
corresponds to∼ 0.5 aho. The results for the relative density after the delay
t = 3.5 ms, corresponding to about 4 collisions between the two partners,
are given in figure 12.

These results fully confirm the interpretation given above for this
model:

• In the case a < 0 and small (left of figure 11), the large number of
populated states leads to a rapid dephasing of the various amplitudes
contributing to the wave packet and one observes a broad, almost
unmodulated distribution of the relative variable, as for independent
particles.

• In the intermediate regime (|a| large, a situation close to the uni-
tary regime), one can observe interference between a few amplitudes.
These interferences allow to "follow" in real time the collisions be-
tween the two atoms by measuring the accumulated phase shifts.

• For a > 0 and small (right-hand side of figure 11), only the strongly
bound dimer is significantly populated; the probability distribution
for the relative variable is therefore strongly peaked around 0.

For completeness, it should be noted that these experiments were car-
ried out in a non-isotropic harmonic trap and that the model developed
above must be refined in order to make a quantitative treatment of the col-
lision process (solid lines in figure 12).

3 A convenient tool: separable potentials

Before moving on to the modeling of a resonance of a two-channel scat-
tering process, we will briefly study a very convenient tool for modeling
a single-channel scattering process, the separable potentials. We will first
explain how these potentials differ from the potentials considered so far,
and then we will show that they lead to an analytical solution for the de-
termination of the eigenstates of the Hamiltonian, both for the bound and
the scattering states.

3-1 Local potential vs. separable potential

As we have seen several times in this course, the problem of the interaction
between two particles can be reduced to a one-body problem evolving in
a potential described by the operator V̂ . Among the possible V̂ operators,
we can distinguish (among many others) two remarkable classes:

99



CHAPTER V SCATTERING RESONANCES § 3. A convenient tool: separable potentials

• The most used one concerns the local operators3. A local operator is
such that the action on a wave function ψ(r) ≡ 〈r|ψ〉 gives at the point
r a result depending only on the value of the function ψ at that point,
and not on the values ψ(r′) at r′ 6= r. The matrix elements of V̂ , which
is Hermitian, are written in position representation:

〈r|V̂ |r′〉 = V (r) δ(r − r′) (26)

so that

〈r|V̂ |ψ〉 =

∫
〈r|V̂ |r′〉 〈r′|ψ〉d3r′ = V (r) ψ(r). (27)

• Another interesting class is the separable operators introduced by Yam-
aguchi (1954), whose matrix elements in position representation are
such that

〈r|V̂ |r′〉 = V0 φ0(r)φ0(r′), (28)

where V0 is a real coefficient having the dimension of an energy and
where the function φ0 is supposed to be real, normalized

〈φ0|φ0〉 =

∫
φ2

0(r) d3r = 1, (29)

and can be understood as the wave function of a localized state |φ0〉.
The separable potential V̂ is therefore proportional to the projector on
|φ0〉:

V̂ = V0 |φ0〉〈φ0|. (30)

The action of V̂ on a wave function ψ(r) is written:

〈r|V̂ |ψ〉 = V0 φ0(r)

∫
φ0(r′)ψ(r′) d3r′, (31)

which is generally non-local, in the sense defined above: the result
at point r of the action of V̂ on |ψ〉 involves the values ψ(r′) over
the whole area where φ0 takes significant values. The range of the
operator V̂ is thus given by the size of this zone.

3This name does not assume anything about the range of the potential. A potential can be
long-ranged, like the Coulomb potential, and verify the locality criterion defined in (26-27)

These separable potentials are not realized as such in nature, but they
are very convenient models because they can be treated analytically in full.
The simple model of a Fano–Feshbach resonance that we will discuss later
will use this type of potential to describe the interaction between the atoms.
Before tackling this two-channel problem, it is useful to look at the treat-
ment of the one-channel problem:

Ĥ =
p̂2

2mr
+ V̂ , (32)

both from the point of view of scattering states and bound states.

Note that the contact potential V̂ = g δ(r−r0) (which has no singularity
in 1D) can be seen as a separable potential for which the projector is on the
well-defined position state |r0〉:

V̂ = g |r0〉〈r0|. (33)

The contact potential is therefore both local and separable.

3-2 Bound state in a separable potential

The eigenvalue equation of the Hamiltonian (32) for a bound state of en-
ergy E = −~2κ2/2mr is:

− ~2

2mr
∇2ψ(r) + V0I φ0(r) = −~2κ2

2mr
ψ(r) (34)

with

I = 〈φ0|ψ〉 =

∫
φ0(r′)ψ(r′) d3r′ =

1

(2π)3

∫
φ̃0
∗
(q′) ψ̃(q′) d3q′. (35)

This equation is simpler to solve in Fourier space4:(
q2 + κ2

)
ψ̃(q) =

I

σ0
φ̃0(q), (37)

4Recall the convention adopted in this course for the passage in Fourier space, i.e. from
the continuous basis in position |r〉 to the continuous basis in wave vector |q〉:

ψ̃(q) = 〈q|ψ〉 =

∫
〈q|r〉〈r|ψ〉 d3r =

∫
e−iq·rψ(r) d3r, (36)

and 〈q|q′〉 = (2π)3δ(q − q′).
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where we put

V0 = − ~2

2mrσ0
. (38)

Here the real quantity σ0 has the dimension of a surface and can be positive
or negative. The solution of (37) is written :

ψ̃(q) =
I

σ0

φ̃0(q)

q2 + κ2
, (39)

the value of κ being determined so as to satisfy the self-consistency condi-
tion imposed to the definition of I :

I =
1

(2π)3

∫
φ̃0
∗
(q) ψ̃(q) d3q =

I

σ0 (2π)3

∫ |φ̃0(q)|2
q2 + κ2

d3q, (40)

which entails
1

(2π)3

∫ |φ̃0(q)|2
q2 + κ2

d3q = σ0. (41)

The left-hand side is a decreasing function of κ and so there is, at σ0 and φ0

fixed, at most one value of κ that can be a solution of this equation. Note
that there is no solution when σ0 is negative.

Conversely, if one wishes to model a problem for which one knows (ap-
proximately) the energy of the bound state and the form of its wave func-
tion, the equation (41) gives the coupling V0 to be used in the expression of
the separable potential V̂ .

3-3 Scattering states in a separable potential

Let us now consider a scattering state of energy E = ~2k2/2mr, continu-
ously connecting to the plane wave eik·r when the coupling g tends to 0.
The eigenvalue (Lippmann–Schwinger) equation is:

(E − Ĥ0)|ψ〉 = V0I |φ0〉 (42)

whose physically relevant solution is

|ψk〉 = |k〉+
V0I

E − Ĥ0 + i0+

|φ0〉. (43)

This solution reads in position and momentum representations:

ψk(r) = eik·r + V0I

∫
G(+)

0 (r − r′)φ0(r′) d3r′ (44)

ψ̃k(q) = (2π)3δ(q − k)− I

σ0

φ̃0(q)

k2 − q2 + i0+
. (45)

For simplicity, we will restrict ourselves in what follows to the case
where the real quantity φ0(r) is spherically symmetric, which implies that
φ̃0(q) is also real and spherically symmetric. The scattered wave appear-
ing in (43) is then isotropic, indicating that scattering occurs only in the
s-wave. Using the asymptotic expression of G(+)

0 seen in chapter 2:

G(+)
0 (r − r′) = − mr

2π~2

eik|r−r′|

|r − r′| ≈ −
mr

2π~2

eikr

r
e−ikf ·r′

, (46)

we arrive at the scattering amplitude

f(k) =
I

4πσ0
φ̃0(k). (47)

As for the search for a bound state, we still have to determine the value of
the integral I , which is done from the self-consistency condition:

I =
1

(2π)3

∫
φ̃0(q) ψ̃k(q) d3q = φ̃0(k)− I

σ0 (2π)3

∫
φ̃0

2
(q)

k2 − q2 + i0+
d3q, (48)

which can be written

I = φ̃0(k)

[
1 +

1

σ0 (2π)3

∫
φ̃0

2
(q)

k2 − q2 + i0+
d3q

]−1

= φ̃0(k)

[
1 +

1

σ0 (2π)3

∫
PP

(
φ̃0

2
(q)

k2 − q2

)
d3q − i

k

4πσ0
φ̃0

2
(k)

]−1

(49)

The scattering amplitude is then:

1

f(k)
=

1

φ̃0
2
(k)

[
4πσ0 +

1

2π2

∫
PP

(
φ̃0

2
(q)

k2 − q2

)
d3q

]
− ik. (50)

We recover the imaginary part−ik imposed by the optical theorem and we
have an exact analytical expression for the real part.
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3-4 An example of separable potential

Yamaguchi (1954) proposed the following example, which can be treated
entirely analytically5:

φ0(r) =
1√
2πb

e−r/b

r
, φ̃0(q) =

√
8π

b

1

q2 + 1
b2

, (53)

where the length b represents the range of the potential.

A necessary condition for having a bound state is V0 < 0, i.e. σ0 > 0.
More precisely, the condition of existence of a bound state (41) is

1

(κ+ 1
b )2

= σ0 ↔ κ =
1√
σ0

− 1

b
. (54)

So we must take 0 < σ0 < b2 for the bound state to exist. When this is the
case, its wave function is written:

ψ̃(q) ∝ 1

(q2 + κ2)(q2 + 1
b2 )

, ψ(r) ∝ 1

r

(
e−κr − e−r/b

)
. (55)

In the same way, we can determine the scattering states and arrive in
particular at the expression of the scattering length:

a

b
=

2b2

b2 − σ0
. (56)

In particular, we find that the scattering length diverges at the threshold
for the appearance of a bound state, σ0 = b2; it is positive when the bound
state exists and negative otherwise.

5We recall the closure relations in position and momentum spaces:

1̂ =

∫
|r〉〈r| d3r =

1

(2π)3

∫
|q〉〈q| d3q (51)

which lead to the following normalization for φ0(r) = 〈r|φ0〉 and φ̃0(q) = 〈q|φ0〉:

1 = 〈φ0|φ0〉 =

∫
|φ0(r)|2 d3r =

1

(2π)3

∫
|φ̃0(q)|2 d3q. (52)

0
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Figure 13. Simplified model of a Fano–Feshbach resonance: we assume that there
is no interaction in the entrance channel. Moreover, we make the approximation
that only one bound state of the closed channel contributes significantly to the
resonance.

4 A simple model of Fano–Feshbach resonance

In this section, we develop a simplified model of a Fano–Feshbach reso-
nance, which will allow us to calculate analytically all the properties of
the system. In the next chapter, we will see that this model is in fact rich
enough to identify the important parameters such as the width of the res-
onance and the contribution of the closed channel. Other analytical ap-
proaches based on simple model potentials can be found in the literature,
see for example Kokkelmans, Milstein, et al. (2002), Duine & Stoof (2004),
Gogolin, Mora, et al. (2008), and Chin, Grimm, et al. (2010).

4-1 The physical model

We assume that the two atoms collide in a channel for which there is no
interaction (figure 13). The Hamiltonian of this open channel is

Ĥ0 =
p̂2

2mr
(57)
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for the relative variable. For the closed channel which will allow the reso-
nance, we make the approximation that only a bound state contributes, in
a way similar to what we saw in the previous paragraph in the framework
of separable potentials. We will note this state |φ0〉 and its energy Ecl.

The wave function φ0(r) is assumed to be normalized,
∫
|φ0(r)|2 d3r =

1, and it is "rigid"; the only control parameter in all that follows is the en-
ergy Ecl, which can be varied for example by changing the ambient mag-
netic field. This energy Ecl is referenced to the zero energy of the open
channel, corresponding to zero incident kinetic energy.

In this model, a given state of the relative variable for our pair of atoms
is therefore a two-component spinor, giving the probability amplitudes for
the two channels:(

open
closed

)
=

(
|ψ〉
|φ〉

)
with |φ〉 = α|φ0〉. (58)

The unknowns are the wave function ψ(r) and the proportionality coeffi-
cient α (a complex number), which must be determined according to the
problem studied.

We will denote Ŵ the operator coupling the open and the closed chan-
nels. We will assume that this operator is local in position and thus char-
acterized by a function W (r). Just like the wave function of the bound
state φ0(r), the function W (r) is localized in the neighborhood of the ori-
gin, where the inter-channel couplings mentioned in § 1 are significant. We
will see very soon that the results depend only on the product W (r)φ0(r).
To simplify the notations, we will assume that this product is real, but our
approach can be easily generalized to the complex case. Moreover, we will
assume it to be isotropic so that its Fourier transform will also be isotropic.
This assumption is correct if the bound state is formed in an s-wave chan-
nel. An eigenstate of energy E of the two-channel model must therefore
satisfy the two coupled equations

Ĥ0|ψ〉+ Ŵ |φ〉 = E |ψ〉 (59)

Ŵ |ψ〉+ Ecl|φ〉 = E |φ〉. (60)

This system of two equations is valid both for the search of scattering
states, asymptotically free and thus with energy E > 0, and of possible
two-channel bound states, with energy E < 0.

4-2 Search for scattering states

Let us choose an energy E > 0 and solve the system (59-60). Look at the
first of these equations in which we replace |φ〉 by its value α|φ0〉, with-
out trying to determine the complex coefficient α for the moment. This
equation is written

(E − Ĥ0)|ψ〉 = αŴ |φ0〉 (61)

and can be solved by the usual technique of Green function that we used in
chapter II. It is formally identical to the one found for a separable potential
in the previous paragraph [eq. (42)] and we will therefore solve it in the
same way. We use here the operator notation, which is a bit more compact.
We introduce as in chapter 2

Ĝ0(E) =
1

E − Ĥ0 + i0+

(62)

where we added as before an infinitesimal and positive imaginary part,
corresponding to the advanced Green function (outgoing spherical wave).
A particular solution of the equation (61) without a source term is a state
with a well-defined momentum, |k〉, i.e. the plane wave eik·r, so that a
physically relevant solution of (61) for our problem is

|ψk〉 = |k〉+ α Ĝ0(E) Ŵ |φ0〉. (63)

This expression, similar to the equation (43) obtained for a separable po-
tential, already constitutes a first element of answer to our scattering prob-
lem. The above expression has indeed the canonical form of a scattering
state with an incident plane wave of wave vector k (with E = ~2k2/2mr)
and a scattered wave. An identical approach to that of chapter 2 based on
the asymptotic expression of the Green function G0(r − r′) = 〈r|Ĝ0(E)|r′〉
leads to the asymptotic wave function:

ψk(r) ∼
r→∞

eik·r − α mr

2π~2

eikr

r

∫
e−ikf ·r′

W (r′)φ0(r′) d3r′. (64)

We recognize here the Fourier transform of the function W (r)φ0(r), taken
at the point kf = kr/r. In the following, it will be useful to introduce the

103



CHAPTER V SCATTERING RESONANCES § 4. A simple model of Fano–Feshbach resonance

function proportional to this Fourier transform:

g(k) =

√
mr

2π~2

∫
φ0(r)W (r) e−ik·r d3r (65)

=

√
mr

2π~2
〈k|Ŵ |φ0〉. (66)

As we wrote above, the assumption of reality and isotropy for φ0W entails
that g is also real and isotropic: g(k) = g(k).

The scattering amplitude associated with the state (64) is written

f(k) = −α
√

mr

2π~2
g(k), (67)

and we now need to determine the coefficient α to complete our study of
the scattering problem.

To do this, we transfer the result (63) for |ψk〉 into the second equation
of the system (59-60) and we find

Ŵ |k〉+ α Ŵ Ĝ0(E) Ŵ |φ0〉+ Ecl α |φ0〉 = Eα |φ0〉. (68)

We project this equation onto |φ0〉 and group the terms proportional to α
to arrive at the explicit expression:

α =
〈φ0|Ŵ |k〉

E − Ecl − 〈φ0|Ŵ Ĝ0(E) Ŵ |φ0〉
. (69)

The numerator of (69) also involves the Fourier transform of the function
φ0(r)W (r) taken at point k. The matrix element in the denominator can
be written:

−〈φ0|Ŵ Ĝ0(E) Ŵ |φ0〉 = − 1

(2π)3

∫ |〈φ0|Ŵ |q〉|2
E − ε(q) + i0+

d3q, (70)

where we have set as in the previous chapters ε(q) = ~2q2/2mr. Here
again, the result is expressed in terms of the Fourier transform of
φ0(r)W (r), this time taken at a generic point q.

To evaluate (70), we use :

1

E − ε(q) + i0+
= PP

(
1

E − ε(q)

)
− iπ δ(E − ε(q)). (71)

Let us first look at the imaginary part of this expression. We have δ(E −
~2q2

2mr
) = δ(k − q) mr

~2q , which leads to the simple result:

imaginary part of (70) : ik g2(k). (72)

As for the real part, it cannot be calculated explicitly at this stage and we
will simply pose, once the angular integral is done:

real part of (70) : δEcl(k) =
2

π

∫ +∞

0

q2

q2 − k2
g2(q) dq. (73)

The value of α is therefore:

α =

√
2π~2

mr
g(k)

E − Ecl + δEcl(k) + ik g2(k)
(74)

from which we obtain the scattering amplitude using (67):

f(k) =
g2(k)

Ecl − δEcl(k)− E − ikg2(k)
, E =

~2k2

2mr
. (75)

Let us insist on the fact that within the framework of the model, we have
not made any approximation. The function f(k) must therefore satisfy all
the properties required for a scattering amplitude, in particular the optical
theorem. We verify indeed that

1

f(k)
=
Ecl − δEcl(k)− E

g2(k)
− ik, (76)

with the correct imaginary part.

4-3 Scattering length

The scattering length is defined as a = − limk→0 f(k), which gives using
(75):

a = − g2
0

Ecl −∆
with g0 ≡ g(0) (77)

and

∆ ≡ δEcl(0) =
2

π

∫ +∞

0

g2(q) dq, (78)
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∆

Ef

a

Figure 14. Variation of the scattering length a with the energy Ecl of the state
|φ0〉 for our simple model [Eq. (77)].

the quantity ∆ being obviously positive.

The result (77), plotted in Figure 14, is the first lesson of our study. Any
value for the scattering length, positive or negative, can be obtained by
properly adjusting the control parameter Ecl. The resonance itself is ob-
tained by taking

resonance : Ecl = ∆. (79)

The position of this resonance is not Ecl = 0 as one could have naively ex-
pected: the maximum (infinite) scattering length is obtained by adjusting
the position of the bound state above theE = 0 energy of the open channel,
with the following formal expression for the shift ∆ [see also (78)]

∆ = −〈φ0|Ŵ Ĝ0(0) Ŵ |φ0〉 ≥ 0. (80)

In the context of our model, this result is exact. As we will show in the next
chapter, its structure is reminiscent of the result of second-order perturba-
tion theory for the |φ0〉 state, with the square of the matrix element of W in
the numerator, and the energy of the free states in the denominator. In the
next chapter, we will also study how to connect this simple model with the
physical problem of two-atom interaction via a van der Waals potential.
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Chapter VI

Characterization of a Fano–Feshbach resonance

We continue in this chapter our study of the Fano–Feshbach resonances.
Let us recall that this is a process involving two collision channels, one
open, the other closed, whose relative energies can be controlled which al-
lows one to scan the resonance. Thanks to this remarkable tool, one can
now use dilute quantum gases to approach the physics of strong interac-
tions, with a scattering length that can reach, or even exceed, the average
distance between particles.

In the previous chapter, we presented a simple model to describe a
Fano–Feshbach resonance, with a non-interacting open entrance channel
and a closed channel described by a separable potential associated to a
function φ0. We have shown that it leads to a resonant behavior of the
scattering length when the energy Ecl of the closed channel approaches
the zero energy of the open channel. We now wish to deepen the predic-
tions of this model to reach the important notion of resonance width and to
clarify the contribution of the closed channel. We will then move on to de-
scribe more quantitative treatments of these resonances, ending with the
presentation of some recent experiments. We will examine the main tools
available in the laboratory to characterize these resonances and we will see
that they can have unexpected extensions, in connection for example with
quantum chaos.

As we have already indicated in the previous chapter, the literature
dealing with Fano–Feshbach resonances in atomic gases is extremely vast
and it is not possible to cite here all the important work that has been done.
We refer the interested reader to the review articles by Köhler, Góral, et al.

(2006), Chin, Grimm, et al. (2010) and Naidon & Endo (2017).

1 A simple model (continued)

1-1 The ingredients of the model

The model introduced in the previous chapter is based on the following
elements (figure 1):

• The particles do not interact in the open channel.

• In the closed channel, the interaction potential is separable, corre-
sponding to the projector on the localized state φ0(r).

• The coupling between open and closed channels is described by the
potential W (r).

In this model, a given state of the relative variable for our pair of atoms
is a two-component spinor, giving the probability amplitudes for the two
channels: (

open
closed

)
=

(
|ψ〉
|φ〉

)
with |φ〉 = α|φ0〉. (1)

The unknowns are the wave function ψ(r) and the proportionality coeffi-
cient α, these unknowns being determined by solving the eigenvalue equa-
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Figure 1. Modeling of a Fano–Feshbach resonance. We assume that the particles
do not interact in the input channel (open channel). Moreover, we assume that
only one bound state of the closed channel contributes to the resonance.

tion for the Hamiltonian. More precisely, an eigenstate of energy E in this
two-channel model satisfies the two coupled equations

Ĥ0|ψ〉+ Ŵ |φ〉 = E |ψ〉 (2)

Ŵ |ψ〉+ Ecl|φ〉 = E |φ〉. (3)

The main result of the analysis carried out in the previous chapter is the
expression of the s-wave scattering amplitude f(k):

f(k) =
g2(k)

Ecl − E + 〈φ0|Ŵ Ĝ0(E)Ŵ |φ0〉
with E =

~2k2

2mr
, (4)

=
g2(k)

Ecl − δEcl(k)− E − ikg2(k)
, (5)

where the coupling g(k) is related to the Fourier transform of the product
W (r)φ0(r), which we assume to be real and isotropic:

g(k) =

√
mr

2π~2

∫
e−ik·rW (r)φ0(r) d3r =

√
mr

2π~2
〈k|Ŵ |φ0〉. (6)

|q〉

open channel

Ef
|φ0〉

closed channel

Ẽf ≡ Ef −∆
∆

Ŵ

Ŵ

E

0

Figure 2. The energy of the closed channel is displaced due to its coupling with
the continuum formed by the open channel. The resonance occurs when this dis-
placement brings the level |φ0〉 to zero energy [cf. eq. (10)].

The energy shift δEcl(k) is given by

δEcl(k) =
2

π

∫ +∞

0

q2

q2 − k2
g2(q) dq. (7)

The limit k → 0 of the scattering amplitude f(k) gives the value of scatter-
ing length

a = − g2
0

Ẽcl

with g0 ≡ g(0), Ẽcl ≡ Ecl −∆ (8)

and

∆ ≡ δEcl(0) = −〈φ0|Ŵ Ĝ0(0) Ŵ |φ0〉 =
2

π

∫ +∞

0

g2(q) dq. (9)

The expression (8) shows that the resonance a = ±∞ occurs when we
adjust the energy of the closed channel to

Ẽcl = Ecl −∆ = 0. (10)

One could have naively expected that the resonance would occur when
Ecl = 0, i.e. when the energy of the state of the closed channel coincides
with the asymptotic energy of the open channel, in this caseE = 0. But this
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would ignore the fact that the coupling between the two channels shifts the
energy of the state of the closed channel.

The shift of the resonance to Ecl = ∆ can be explained simply by con-
sidering the energy shift of |φ0〉 at order 2 of the perturbation theory1 (cf.
figure 2):

E
(2)
cl = Ecl +

∑
q

|〈q|Ŵ |φ0〉|2
Ecl − εq

with εq =
~2q2

2mr
,

= Ecl +
1

(2π)3

∫ |〈q|Ŵ |φ0〉|2
Ecl − εq

d3q. (11)

At this order of the perturbation theory, the resonance between the two
channels is expected for E(2)

cl = 0, i.e.

0 = Ecl +
1

(2π)3

∫ |〈q|Ŵ |φ0〉|2
−εq

d3q (12)

where we have takenEcl = 0 in the integral of the right-hand side, since the
numerator of this integral already involves the coupling to order 2. Using
the relation (6) between the matrix element 〈q|Ŵ |φ0〉 and g(q), we immedi-
ately verify that this resonance condition is equivalent to (10), i.e. Ẽcl = 0.

In what follows, we will use the "renormalized" energy Ẽcl = Ecl − ∆
rather than the "bare" energy Ecl to characterize the position of the state
|φ0〉 in the vicinity of the resonance.

1-2 Is there a bound state?

As we have seen in the previous chapters, the problem of low-energy scat-
tering is intimately related to the search for weakly bound states. More
precisely, we know that for single channel scattering, the divergence of a
is associated with the appearance of a new bound state: this state appears
when a switches from large and negative values to large and positive val-
ues. Its energy in the regime of large a is given by

Ebound ≈ −
~2

2mra2
, (13)

1The shift at order 1 is null because we have assumed 〈φ0|Ŵ |φ0〉 = 0.

and its wave function is

ψbound(r) ≈ e−κr

r
with

~2κ2

2mr
= |Ebound|. (14)

This result remains valid in our two-channel model, at least in the imme-
diate vicinity of the resonance.

The explicit search for bound states is carried out in the appendix of
this chapter. It is shown that there is at most one bound state and that its
energy (when it exists) is given by the pole of the scattering amplitude (4),
i.e. an energy E satisfying the equation :

E − 〈φ0|Ŵ Ĝ0(E) Ŵ |φ0〉 = Ecl. (15)

It is also shown that this equation has a solution only if Ẽcl < 0, corre-
sponding to a positive scattering length. This is summarized in figure 3.

We can recover this result from the calculated scattering amplitude2 to
order 1 in k, so in the immediate vicinity of the resonance:

order 1 in k: f(k) ≈ g2
0

Ẽcl − ikg2
0

(17)

At this order in k, the function f(k) admits a single pole in k = iκ with
κ = −Ẽcl/g

2
0 = 1/a, so that the corresponding state3 ∝ eikr/r = e−κr/r is

decreasing at infinity only if κ > 0, so a > 0. The energy of the bound state
is then given by the "universal" law (13).

Let us note moreover that the extension 1/κ = a of the bound state
wave function is very large in the near-resonant regime. It thus exceeds
that of the |φ0〉 state of the closed channel, which is a fixed quantity. There-
fore, we expect the bound state to be essentially carried by the open chan-
nel in this regime. We will verify and clarify this point in the next section.

2Note that because of the spherical symmetry of the function Wφ0, its Fourier transform

g(q) =
2π

q

∫ +∞

0
sin(qr)W (r)φ0(r) r dr (16)

has a Taylor expansion including only even powers of q.
3Remember that we selected eikr/r and not e−ikr/r by taking the advanced Green func-

tion.
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Ẽcl

a

Ẽcl
Ebound

Figure 3. Top: variation of the scattering length a with the renormalized energy
Ẽcl of the |φ0〉 state [Eq. (8)]. Bottom: variation of the energy of the bound state
according to the "universal" law (13). The bound state appears in the domain
Ẽcl < 0, corresponding to positive values of a. The limits of the region where this
universal law is valid are discussed in § 2.

1-3 Structure of the resonance

Before going further in the exploration of our model, it is useful to check
that the form (5) found for the scattering amplitude corresponds to the
canonical expressions given in the literature. Let us start with Landau &
Lifshitz (1975), who propose the following expression in the vicinity of a
scattering resonance [their eq. (134.17)]:

f(k) = −α− ~γ
√

2mr

(
E − E0 + iγ

√
E
) , (18)

where α represents the background scattering length taken equal to zero
in our model. Our result (5) reduces to this expression when we take the
small k limit: g(k)→ g0, δEcl(k)→ ∆; it is then sufficient to take E0 ≡ Ẽcl

and to define the width γ by:

~γ√
2mr

= g2
0 , (19)

to identify (5) and (18).

Very recently, Naidon & Pricoupenko (2019) have made a critical anal-
ysis of the treatments used so far for Fano–Feshbach resonances in atomic
physics. They use the following form for the scattering length [their eq.
(17)]:

a = abg −
limk→0 Γ/2k

Em + ∆
. (20)

This corresponds to our expression (8) with the same definition of ∆ (ex-
cept for the sign), the identification Em ≡ Ecl and the definition of the
width Γ:

Γ = 2kg2
0 . (21)

In the two cases mentioned above, the widths γ and Γ are proportional to
our parameter g2

0 , and they are not dimensionless. To define unambigu-
ously the notion of wide/narrow resonances, it is preferable to use a di-
mensionless number, i.e. to compare γ or Γ to a physically relevant quan-
tity expressed in the same physical unit. This is what we will do in the
following paragraph.
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1-4 The width of the resonance

A Fano–Feshbach resonance leads to a divergence of the scattering length
to positive or negative values, depending on the sign of Ẽcl. Close to
resonance, it coincides with the universal regime of a zero-energy res-
onance found in the single channel case, with a bound state of energy
≈ −~2/2mra

2 when Ẽcl is close enough to 0 and negative. To better charac-
terize a Fano–Feshbach resonance, we must now specify its width, i.e. the
domain over which the universal regime applies.

We start from a "reasonable" value for a, which we take equal to the
length RvdW = 1

2

(
2mrC6/~2

)1/4 introduced in chapter IV for van der
Waals interaction. We can assume that the open channel, which we have
taken here without interaction to simplify the calculations, has in fact a
scattering length of this order. The important question at this point is: Can
the universal regime cover all values of |a| from infinity up to ∼ RvdW or
does it stop much earlier? We will see that the answer to this question
depends on the strength of the coupling between the two channels.

To characterize the coupling strength in our model, we will use the en-
ergy ∆ defined in (9), which gives the shift of the closed channel state in-
duced by the coupling Ŵ , at order two of perturbation theory. It will be
useful to relate this energy ∆ to the parameter g2

0 which enters the expres-
sion of a [cf. (8)]; to do this, let us assume that the product W (r)φ0(r) has
itself a spatial extension of the order of RvdW, i.e. an extension ∼ 1/RvdW

for its Fourier transform g(q) defined in (6). Since the energy ∆ defined in
(9) involves the integral over q of g2(q), we find:

∆ ∼ g2
0

RvdW
. (22)

In what follows, we will assume for simplicity that the above relationship
is an equality. The introduction of a multiplicative factor of order 1 would
not change our conclusions.

The van der Waals problem provides a natural energy scale, EvdW =
~2/(2mrR

2
vdW), and it is therefore natural to measure the energy ∆ using

this scale. We will explain in detail in § 2 why the ratio ∆/EvdW is decisive
to characterize the nature of the resonance. More precisely, we will use the

following classification:

Large resonance : ∆� EvdW, (23)

Narrow resonance : ∆� EvdW. (24)

We can already give a qualitative justification of this choice by returning
to the expression (5) of the scattering amplitude f(k). The physically in-
teresting values of k are . 1/RvdW since beyond this value, the contri-
butions of the other partial waves become significant. At order 0 in k,
we have f(k) = −a which we have already commented. At order 1,
Ecl − δEcl(k) = Ecl −∆ = Ẽcl, g(k) = g0, E = 0 and we find

order 1 in k : f(k) =
g2

0

Ẽcl − ikg2
0

(25)

which leads to the "universal" regime. Let us now look at the possible
corrections to order 2 in k which are of two kinds:

• The Taylor expansion of g2(k) and δEcl(k): if one takes a smoothly
varying function g(k) on the scale of 1/RvdW, one does not expect
these corrections, which are of the type effective range, to play a role
different from that which they have for a single-channel scattering.

• The energy E = ~2k2/2mr which is to be compared to the linear term
ikg2

0 for k up to the value 1/RvdW. Using (22), it is then immediately
noticed that this term is negligible for a broad resonance, while it is
dominant for a narrow resonance.

It is therefore expected – and this will be confirmed in § 2 – that for
a broad resonance, the properties of the resonance are similar to those of
a single-channel zero-energy resonance. One can therefore stick to (25),
which can be written

Broad: f(k) ≈ −a
1 + ika

with a = − g2
0

Ẽcl

(26)

for all values of k up to R−1
vdW.

On the contrary, for a narrow resonance, only the immediate vicinity of
Ẽcl = 0, with a very large scattering length, can be described with the for-
malism of a single channel resonance. As soon as one leaves this domain,
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one must return to the description in terms of coupled channels; in par-
ticular, the contribution of the closed channel dominates that of the open
channel for the bound state associated with the scattering resonance. Re-
garding the scattering amplitude, it reads (Petrov 2003):

Narrow: f(k) ≈ −a
1 + ika+ k2R∗a

with R∗ ≡
~2

2mrg2
0

. (27)

For a narrow resonance, the length R∗ is much larger than RvdW and the
quadratic term in the denominator of (27) becomes dominant even for rel-
atively small values of k. Note that (27) has the general structure that we
derived in Chapter 3 for the s-wave scattering amplitude in terms of scat-
tering length a and effective range re:

f(k) =
−a

1 + ika− 1
2k

2rea
, (28)

with the effective range re = −2R∗ negative and large compared to its
"usual" value ∼ RvdW.

Link with other parameterizations. The dimensionless parameter
∆/EvdW used here is equivalent to that introduced by Naidon & Endo
(2017):

∆

EvdW
∼ RvdW

R∗
. (29)

One can check that this parameter also coincides with the parameter sres

introduced by Chin, Grimm, et al. (2010) [their equation (35)], once refer-
ences to the background scattering length abg and the magnetic moment
of the atoms are removed. The table 1 gives the width of this parame-
ter sres ≈ ∆/EvdW for some known Fano–Feshbach resonances for alkali
metal atoms.

1-5 Useful domain for the model parameters

Our treatment of the resonance is based on two dimensionless parameters

∆

EvdW
and

Ẽcl

EvdW
. (30)

Atom B [G] abg [a0] sres
6Li 834.1 -1405 59

690.4 -1727 29
811.2 -1490 46

7Li 736.8 -25 0.80
23Na 907 63 0.09
39K 402.4 -29 2.1
40K 224.2 174 2.7

85Rb 155.04 -443 28
87Rb 1007.4 100 0.13
133Cs 48.0 926 0.67

Table 1. Width sres of some Fano–Feshbach resonances for alkali metal atoms. We
reproduce here the values given by Chin, Grimm, et al. (2010) for their dimen-
sionless parameter sres which practically coincides with our g2

0/(RvdWEvdW) ≈
∆/EvdW.

The first one characterizes the strength of the coupling, the second the de-
viation from resonance. We will see that two constraints exist on the useful
domain for these parameters.

Criterion 1: Our treatment is based on the assumption that the reso-
nance described by the coupling to the bound state |φ0〉 is isolated. This as-
sumption only makes sense if the displacement ∆ of the considered bound
state is small enough not to bring it to the neighborhood of other bound
states. Now, this state is generally the last or the penultimate bound state
of the closed channel and we have seen in chapter IV that the energy gap
between the last two bound states varies between 40 and 200 EvdW (this
structure is recalled in figure 4). For security, we will take as a suitable
range of variation of ∆

∆

EvdW
. 100. (31)

Beyond this value, it is possible that another bound state, not taken into
account in the model, is closer to the threshold E = 0 of the open channel
and our model would then lose its relevance. One can check that the values
of sres ≈ ∆/EvdW given in table 1 satisfy this inequality.

Criterion 2. Using the estimate (22) of the energy ∆, the value (8) of the
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Figure 4. Criterion 1. Energies of the last bound states in a van der Waals
potential (see chapter 4). If we use the last bound state of the closed channel to
induce the Fano–Feshbach resonance, the model used in this chapter only makes
sense if we limit the displacement ∆ to less than ∼ 100EvdW.

scattering length can be written:

a

RvdW
∼ ∆

Ẽcl

. (32)

We recall that our model aims at describing a resonance of the scattering
length, thus values of a higher than the typical valueRvdW. We must there-
fore restrict the amplitude of variation of |Ẽcl| to the interval

|Ẽcl| . ∆. (33)

Beyond this range, plotted in Figure 1, the values found for a would be
anomalously low and probably not significant compared to the typical
background scattering length.

Acceptable zone

Ẽf

a

RvdW

a = RvdW

a = −RvdW

−∆ +∆

Figure 5. Criterion 2. Validity domain |Ef | . ∆ imposed by the condition
|a| & RvdW [cf. (33)].

2 Broad vs. narrow resonances

2-1 Side a > 0 and energy of the bound state

We focus in this paragraph on the case of positive scattering lengths,
i.e. Ẽcl < 0. Our starting point will be the scattering amplitude (5), which
we rewrite after taking the limit at small k: g(k) → g0, δEcl(k) → ∆, as
suggested by the comparison with the result of Landau & Lifshitz (1975)
made in the previous paragraph:

f(k) ≈ g2
0

Ẽcl − E − ikg2
0

, E =
~2k2

2mr
. (34)

Note that this expression does not result from a systematic expansion of
f(k) to order 2 in k since it would then be necessary to include also correc-
tions to g0 and ∆:

g(k) = g0

(
1 + νk2 + . . .

)
, δEcl(k) = ∆

(
1 + ν′k2 + . . .

)
(35)

with ν, ν′ ∼ R2
vdW. However, we will be able to identify the main elements

with this simplified version, the additional corrections related to the varia-
tions of g(k) and δEcl(k) being of the same nature as those induced by the
effective range term in the single-channel case.

The (approximate) energies of the bound states are obtained by looking
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for the poles of this scattering amplitude. We put k = iκ and look for the
solutions with κ real positive, so that the wave function eikr/r = e−κr/r
is physically acceptable (i.e. normalizable). We have to solve the second
degree equation in κ:

~2κ2

2mr
+ g2

0κ+ Ẽcl = 0. (36)

Let’s introduce the dimensionless quantity X = κRvdW which allows to
rewrite this equation in the form:

X2 +

(
∆

EvdW

)
X +

(
Ẽcl

EvdW

)
= 0, (37)

where we assumed that (22) is exact to simplify the notations. The energy
of the bound state is written as a function of X :

Ebound

EvdW
= −κ2R2

vdW = −X2. (38)

Recall that we are interested in seeing how the parameter κ goes from the
value 0 at resonance to the "typical" value ∼ 1/RvdW : we are therefore
interested in the values of the unknown X between 0 and 1.

The equation (37) has a positive (unique) solution if and only if Ẽcl < 0:

2X = − ∆

EvdW
+

√(
∆

EvdW

)2

− 4
Ẽcl

EvdW
, (39)

whose variations we will now discuss. First of all, let us notice that in
the immediate vicinity of the resonance, that is to say for Ẽcl small, this
solution reads [cf. (8)]

4|Ẽcl| �
∆2

EvdW
: X ≈ − Ẽcl

∆
⇔ κ ≈ 1

a
. (40)

We recover the result

Ebound ≈ −
~2

2mra2
, (41)

i.e. the universal law relating the scattering length and the energy of the
last bound state when it is close to the dissociation limit.

To go further, we will distinguish the two cases of a broad resonance
(∆� EvdW) and a narrow resonance (∆� EvdW).

Ẽcl

−∆

−EvdW

Ebound

Figure 6. Continuous curve: variation of the energy of the bound state with l̃ie
deduced from (38-39), for a large resonance (∆ = 20EvdW). The approximation
Elie = −~2/2mra

2, plotted in dotted lines, is valid over the whole accessible range
of Ẽcl, i.e. for a varying between RvdW and +∞.

Broad resonance ∆ � EvdW. In this case, the expansion (40) can be ex-
tended to the whole relevant energy range of |Ẽcl|, between 0 and ∆. When
|Ẽcl| reaches the value ∆, we have X ∼ 1 and thus κ ∼ 1/RvdW. The uni-
versal regime (41) thus extends to all values of the scattering length a, from
RvdW to +∞ (cf. figure 6).

Narrow resonance ∆ � EvdW. In this case, the expansion (40) ceases to
be valid for

|Ẽcl| ∼
∆2

EvdW
⇔ a

RvdW
∼ EvdW

∆
� 1, (42)

and then we switch to another non-universal regime:

∆2

EvdW
� |Ẽcl| . ∆ : X ≈

√
|Ẽcl|/EvdW ⇔ ~κ ≈

√
2mr|Ẽcl|,

(43)
where we have taken into account the restriction (33) on Ẽcl. This gives for
the energy of the bound state (cf. figure 7):

Ebound = −~2κ2

2mr
≈ Ẽcl. (44)
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Ẽcl

−∆ − ∆2

EvdW

−∆

Ebound

Figure 7. Continuous curve: Energy of the bound state deduced from (38-39) for a
narrow resonance (∆ = 0.1 EvdW). The approximation Ebound = −~2/2mra

2,
plotted in dotted lines, is valid only over a small range around the resonance:
|Ẽcl| < ∆2/EvdW. Over the rest of the range accessible for |Ẽcl, the energy of
the bound state varies approximately linearly, as predicted in (44) and plotted in
dashed lines.

The state is much less bound than one would expect if the universal
prediction ~2/2mra

2 applied. In fact, the energy of the bound state found
in (44) is equal to that of the closed channel state. In this regime, the predic-
tions are very different from the single-channel result and the bound state
is essentially concentrated in the closed channel, as we show below.

2-2 The population of the closed channel

We continue our study of the bound state to focus now on its composition:
how are the probability amplitudes distributed between open and closed
channel? We go back to the two-component spinor which defines this state:(

open
closed

)
=

(
|ψ〉
|φ〉

)
= α

(
Ĝ0(E) Ŵ |φ0〉

|φ0〉

)
(45)

The α coefficient is unimportant here, since it is simply used to normal-
ize the global state. Instead, we are interested in the weight of the closed

channel:
Πcl

Πop + Πcl
=

1

1 + 〈φ0|Ŵ Ĝ2
0(E)Ŵ |φ0〉

, (46)

with E = −~2κ2/2mr.

The computation of the matrix element in the denominator of (46) is
carried out in a similar way to what we did in the previous chapter. By
inserting a closure relation on the q moments and expressing 〈φ0|Ŵ |q〉 as
a function of g(q), we arrive at

〈φ0|Ŵ Ĝ2
0(E)Ŵ |φ0〉 =

8mr

π~2

∫
q2 g2(q)

(q2 + κ2)2
dq. (47)

The above integral is divergent in q = 0 if we take κ = 0. For small and
non-zero κ, it is convergent and dominated by small values of q. So we can
take in this integral g(q) ≈ g(0) ≡ g0 to arrive at:

〈φ0|Ŵ Ĝ2
0(E)Ŵ |φ0〉 =

2mrg
2
0

~2κ
=

1

X

∆

EvdW
, (48)

and therefore:

Πcl

Πop + Πcl
=

X
∆

EvdW
+X

=

√
1 + u − 1√
1 + u + 1

, u = −4
ẼclEvdW

∆2
> 0. (49)

Two examples of variation for ∆/EvdW = 0.1 (narrow resonance) and
∆/EvdW = 20 (broad resonance) are plotted in figure 8.

Let’s take up the distinction between broad and narrow resonance es-
tablished in the previous paragraph:

• For a large resonance, ∆/EvdW � 1, this population of the closed
channel remains small over the whole range |Ẽcl| . ∆. The resonance
is thus dominated by the open channel.

• For a narrow resonance, ∆/EvdW � 1, the open channel population
is dominant only in the immediate vicinity of the resonance, |Ẽcl| .
2∆2/EvdW. The closed channel becomes dominant when |Ẽcl| exceeds
this value, i.e. when we leave the universal regime for the variation of
the energy of the bound state [cf. (42)].
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−1 −0.8 −0.6 −0.4 −0.2 0
0

0.5

1

Ẽcl/∆
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Figure 8. Variation of the relative population of the closed channel for the bound
state found when Ẽcl < 0 [cf. (49)].

The conclusion of this study is that there is a one-to-one correspondence
between the fact that a resonance is entirely dominated by the open chan-
nel and the fact that it is broad in the sense of ∆ � EvdW. In practice,
it is often easier to test the first criterion, i.e. to determine the dominant
channel, as explained by Chin, Grimm, et al. (2010).

2-3 Side a < 0 and shape of the resonance

Let us now look at the a < 0 side of the resonance, for which no bound
state is expected. This case corresponds to the situation where the "renor-
malized" energy Ẽcl of the |φ0〉 state is above the open channel threshold.
The question we wish to answer concerns the variations with E of the col-
lision cross-section σ(E). Is it a decreasing function of E as in the case
of a single channel, zero-energy resonance, or does it exhibit a peak for
an energy E∗ close to Ẽcl? The answer to this question depends again on
whether the resonance is broad or narrow.

Our starting point is the scattering amplitude (34) from which we de-
duce the cross-section (for polarized bosons):

σ(E) = 8π|f(E)|2 =
8πg4

0

(E − Ẽcl)2 + (2mrg4
0/~2)E

. (50)

0 0.2 0.4 0.6 0.8 1
0

E/EvdW

σ(E)

Figure 9. The scattering cross-section for of a narrow resonance (∆ = 0.5EvdW).
For a small detuning Ẽcl (here Ẽcl = 0.1EvdW for the blue curve), the scattering
cross-section is maximal at zero incident energy. For a larger detuning (Ẽcl =
0.5EvdW for the red curve), the cross-section presents a maximum for a non-zero
incident energy E∗, close to Ẽcl.

The denominator is a quadratic function of E and is minimum in

E∗ = Ẽcl −
∆2

2EvdW
, (51)

a point that corresponds to a maximum of the cross-section.

Let’s go back to our distinction between broad and narrow resonances.

• For a broad resonance, ∆� EvdW and for the physically relevant do-
main |Ẽcl| . ∆, the maximum is reached for negative energy. This
means that in the region E ≥ 0, the scattering cross-section σ(E) is
maximal in 0 and is a decreasing function of E. Again, this corre-
sponds to the universal regime expected for a single-channel problem
when a bound state is about to appear.

• For a narrow resonance, ∆ � EvdW, two cases are possible, as illus-
trated in figure 9:

• In the domain very close to the resonance, 0 < Ẽcl < ∆2/2EvdW,
we recover the universal behavior, with a cross-section which de-
creases when the collision energy E increases.
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• Outside this domain, for ∆2/2EvdW < Ẽcl . ∆, the minimum
E∗ is located in the part E > 0, more precisely in a point close to
Ẽcl. The cross-section thus has a resonant behavior in E∗ ≈ Ẽcl.
This behavior is very different from the universal regime and is
reminiscent of a shape resonance.

To conclude, let us mention an important point in connection with the
commonly used formula:

a = abg

(
1− B1

B −B0

)
= abg −

abg B1 δµ

Ẽcl

, (52)

which leads us to identify abg B1 δµwith our parameter g2
0 . From the initial

formula, it is tempting to say that a resonance will be large if B1 is large
(typically several Gauss). But the above study shows that the important
parameter is notB1, but the product abgB1 δµ, which is proportional to our
parameter ∆. If abg is abnormally low, the field B1 can be large although
the Fano–Feshbach resonance has all the characteristics of a narrow reso-
nance. This situation is encountered for the isotope 7 of lithium (boson)
prepared in its lowest magnetic state. As shown in the table 1, this atomic
species exhibits a resonance for B0 = 737 G; the corresponding B1 field
is 192 G, which is considerable (Khaykovich, Schreck, et al. 2002). But the
scattering length abg = −1.3 nm is relatively small so that this resonance
cannot be considered as large (sres ≈ ∆/EvdW ≈ 1).

3 Quantitative approaches

The model we developed above assumed that the atoms did not interact in
the open channel. This allowed us to conduct the calculations in a quasi-
analytical manner and to derive the essential notions of universality and
resonance width. In order to go further, it is of course necessary to enrich
the description of the collision and first of all to take into account the in-
teraction in the open channel. This leads, in the absence of coupling with
the closed channel, to the background scattering length abg. In a second
step, it is also necessary to go beyond the isolated resonance approxima-
tion, which consisted in keeping only the state |φ0〉 in the closed channel.

3-1 The standard "isolated resonance" approach

This approach is described in several articles and books. In the context
of cold atom physics, let us indicate for example Moerdijk, Verhaar, et al.
(1995), Goral, Koehler, et al. (2004), and recently Naidon & Pricoupenko
(2019). One can also consult the detailed and complete treatment of Pethick
& Smith (2008b) and Cohen-Tannoudji & Guéry-Odelin (2011).

When one simply aims at taking into account the interaction in the open
channel, the equations that served as a starting point for our simple model
are barely modified. We keep the description of the collisional steady state
in the form of the spinor:(

open
closed

)
=

(
|ψ〉
|φ〉

)
with |φ〉 = α|φ0〉, (53)

with a closed channel still reduced to the state |φ0〉. The eigenvalue equa-
tion for this spinor is written:(

Ĥ0 + V̂
)
|ψ〉+ Ŵ |φ〉 = E |ψ〉 (54)

Ŵ |ψ〉+ Ecl|φ〉 = E |φ〉. (55)

The method of solving remains formally unchanged, even though we no
longer have analytical expressions for the different elements involved.

Let us take a positive energy E = ~2k2/2mr. For Ŵ = 0, the solution
of (54) is a scattering state of the open channel |ψop

k 〉, leading to the scat-
tering length abg when k → 0. For Ŵ 6= 0, the formal resolution of (54) is
performed using the Green operator of the open channel:

Ĝop(E) =
1

E − (Ĥ0 + V̂ ) + i0+

. (56)

The general solution of (54) is written

|ψk〉 = |ψop
k 〉+ Ĝop(E)Ŵ |φ〉 (57)

This result reported in (55) allows to formally determine the value of the
coefficient α:

α =
〈φ0|Ŵ |ψop

k 〉
E − Ecl − 〈φ0|Ŵ Ĝop(E) Ŵ |φ0〉

. (58)
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The combination of (57) and (58) then gives

|ψk〉 = |ψop
k 〉+ Ĝop(E) T̂ (E)|ψop

k 〉 (59)

with

T̂ (E) =
Ŵ |φ0〉〈φ̂0|Ŵ

E − Ecl − 〈φ0|Ŵ Ĝop(E) Ŵ |φ0〉
. (60)

The relation (59) has the same structure as the Lippmann–Schwinger
equation obtained in chapter 2 for a single-channel scattering problem, ex-
pressing the scattering state |ψk〉 in terms of the incident plane wave |k〉
and the transition operator T̂ :

|ψk〉 = |k〉+ Ĝ0(E) T̂ (E)|k〉. (61)

We have thus formally reduced our two-channel problem to a single-
channel problem with the transposition

|k〉 → |ψop
k 〉, Ĝ0 → Ĝop. (62)

We deduce that the transition amplitude f(k,k′) is proportional to
〈ψouv

k′ |T̂ (E)|ψouv
k 〉, which generalizes the result of chapter 2: f(k,k′) ∝

〈k′|T̂ (E)|k〉.
Let us examine what happens when we take the limit E → 0 of (59):

• The first term |ψop
k 〉 will show in its asymptotic part a behavior in r −

abg, corresponding to the scattering length abg.

• The second term of (59) is resonant when the denominator of the op-
erator T (E) cancels. Let us write the limit E → 0 of this denominator
as

lim
E→0

[
E − Ecl − 〈φ0|Ŵ Ĝop(E) Ŵ |φ0〉

]
= −Ecl + ∆ (63)

with the real coefficient

∆ = −〈φ0|Ŵ Ĝop(0) Ŵ |φ0〉 =
1

(2π)3

∫ ∣∣∣〈φ0|Ŵ |ψop
k 〉
∣∣∣2

~2k2/2mr
d3k (64)

which generalizes (9). As in our simplified model, the imaginary part
of this denominator shows the term proportional to k required by the
optical theorem and which tends to 0 when k → 0.

electronic
ground state

-2 -1 0 1 2
f = 2

-1 0 1
f = 1

A

Figure 10. Hyperfine structure of the electronic ground state of an alkali atom
with nuclear spin 3/2. The value of the quantum number mf for each state is
given.

This leads to the following expression for the scattering length:

a = abg −
C

Ẽcl

with Ẽcl = Ecl −∆ (65)

where the coefficient C (which generalizes g2
0 and which we will not ex-

plain here) involves the matrix elements of the operator Ŵ .

From this point on, the discussion of resonance width, possible bound
state, etc. is similar to what we described earlier from our simplified
model.

3-2 Coupled-channel modeling

In order to obtain an accurate modeling of a Fano–Feshbach resonance, it
is necessary to go beyond the "isolated resonance" approach. For this, one
must take into account in a quantitative way the degree of freedom asso-
ciated with the closed channel, or rather with the closed channels because
there are generally several potential curves which come into play in a col-
lision.

Let us take the example of a bosonic alkali metal atom like lithium 7,
sodium, potassium 39 or 41, or rubidium 87. All these atoms have an elec-
tronic ground state with orbital angular momentum l = 0 and an electron
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spin s = 1/2. Their nucleus has a spin i = 3/2. The hyperfine coupling be-
tween the magnetic moment of the external electron and that of the nucleus
is written (A/4) s·i, whereA depends on the atomic species. This coupling
splits the electronic ground state into two hyperfine sublevels separated by
A, of total angular momentum f = 1 and f = 2 (figure 10). In the follow-
ing we will focus on the influence of this spin degree of freedom (electronic
and nuclear) on the collision dynamics.

When the two atoms (marked by the index α = 1, 2) are far apart, their
interaction can be neglected. In the presence of a magnetic field B oriented
along the z axis, the spin Hamiltonian is∑

α=1,2

−Asα · iα + (γesz,α − γniz,α)B, (66)

to which we must add the kinetic energy Hamiltonian for the two atoms.
A spin eigenstate of the pair of atoms is thus characterized by the four
quantum numbers: f1,mf1 , f2,mf2 .

When the atoms are close, the dominant term is their mutual interac-
tion. The van der Waals interaction, which has been studied in previous
chapters, does not involve spin and we will not discuss it again here. The
dominant interaction results from the exchange of electrons (see chapter I)
and it depends on the total electronic spin S of the atom pair, with the sin-
glet VS(r) and triplet VT (r) potentials associated respectively with S = 0
and S = 1. The dominant term of the Hamiltonian can then be written:

1

4
[VS(r) + 3VT (r)] + s1 · s2 [VT (r)− VS(r)] . (67)

The short-range eigenstates are therefore characterized by the quantum
numbers S, I, F,MF .

We find that there is one quantity that is conserved for any distance
between the two atoms: the projection of the total spin on the z axis. It
is characterized by the quantum number MF = mf1 + mf2 . For the other
spin degrees of freedom, there is a continuous rotation of the eigenbasis
as the atoms approach each other. This point is illustrated in figure 11
that we extracted from Moerdijk, Verhaar, et al. (1995). It focuses on the
interaction between two sodium atoms, but would be unchanged (apart
from a recalibration of the axes) for the other species mentioned above.

Figure 11. Interaction potentials for the five coupled channels in a collision be-
tween two alkali atoms prepared in a state such that MF = mf1 + mf2 = −2.
The numerical data are for a pair of sodium atoms. Figure extracted from Moerdijk,
Verhaar, et al. (1995).

This figure shows the channels to be considered for a collision between
two atoms prepared in the |f = 1,mf = −1〉 state. From what we have just
seen, the only quantum number that will be conserved during the collision
is MF = mf1 +mf2 = −2. This means that all the channels corresponding
to this same value of MF can be coupled together and we need to identify
them.

When the atoms are far apart, there are five possible states with this
value of MF :

• The one we have taken as the input state of the collision, is noted
|f1mf1 , f2mf2〉 = |1 − 1, 1,−1〉 in figure 11.

• The state obtained by taking one atom in |f = 1,mf = −1〉 and the
other in |f = 2,mf = −1〉, and symmetrizing the result. This state
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is noted |{1 − 1, 2 − 1}+〉 in figure 11. It has an energy A above the
incident state, and will therefore correspond to a closed channel.

• The state obtained by taking one atom in |f = 1,mf = 0〉 and the other
in |f = 2,mf = −2〉, and by symmetrizing the result. This state also
has an energy A above the incident state.

• The state obtained by taking an atom in |f = 2,mf = 0〉 and the other
in |f = 2,mf = −2〉, and by symmetrizing the result. This state has an
energy 2A above the incident state.

• The state obtained by taking the two atoms in |f = 2,mf = −1〉. This
state has an energy 2A above the incident state.

In the end, we find one open channel and four closed channels, two with
energy A and two with energy 2A. When the atoms come closer together,
we see in figure 11 that the spin states of these five states mix to form four
states in the triplet channel and one state in the singlet channel. The nota-
tion in figure 11 for these states is |(SI)FmF 〉.

To treat this problem, one must therefore (i) choose a working basis,
which can for example be the |(SI)FmF 〉 basis, (ii) write the Hamiltonian
at any point r in this basis, which will be represented by a 5 × 5 matrix,
(iii) solve the five coupled Schrödinger equations to extract the scattering
state corresponding to a given energy [see for example Moerdijk, Verhaar,
et al. (1995), Mies & Raoult (2000), and Chin, Grimm, et al. (2010)]. This
method, which proves to be very accurate (see § 4-1), relies of course on a
good knowledge of the interaction potentials.

3-3 The coupling Ŵ

We discussed in the previous paragraph the nature of the different coupled
channels, which allows us to give now some additional elements on the
coupling Ŵ introduced in the discussion of our simple model. So far, we
have indicated without further precision that Ŵ had a non-zero matrix
element between the open channel and the state |φ0〉 of the closed channel.

The precise definition of the open channel requires to specify the basis
of the spin space on which we choose to write the Hamiltonian (step (i)

at the end of the previous paragraph). One can for example prefer the
decoupled basis |f1mf1 , f2mf2〉. In these conditions, the coupling Ŵ will
be deduced from the expression (67): it will involve the matrix elements
of ~s1 · ~s2, with a prefactor proportional to VT (r) − VS(r). With this choice,
W (r) is very large in the entire inner region of the potential well, where
the difference between VS and VT is maximum. This approach is perfectly
legitimate, but it can lead to large matrix elements of Ŵ , which can make
the isolated resonance approximation problematic.

Another approach, put forward in particular by Naidon & Pricoupenko
(2019), consists in using a rotating basis for the spin, which diagonalizes at
any point r the interaction Hamiltonian. By construction, the non-diagonal
elements between channels vanish. But Ŵ is still not zero: one has to take
into account the rotation of the basis vectors with r. Naidon & Pricoupenko
(2019) develop this analysis and show that Ŵ is then no longer local (mul-
tiplication by a function of r), but also involves the operator d

dr . With this
choice, Ŵ takes on important values in the "transition zone" defined in
chapter 4. These are the r distances where the exchange potential becomes
comparable to the van der Waals interaction; indeed the latter, indepen-
dent of the spin, always admits the decoupled states |f1mf1 , f2mf2〉 as its
proper basis whereas the exchange interaction favors the |(SI)FmF 〉 basis.
Naidon & Pricoupenko (2019) show that this choice corresponds to a bet-
ter controlled approximation, which leads them to modify the commonly
accepted expression for the energy shift ∆ [their equation (49)].

3-4 Resonances assisted by an oscillating field

In all of the above, we have assumed that the coupling Ŵ was imposed
by the choice of the atomic species. The external magnetic field controlled
the relative position of the closed channel with respect to the open channel,
but the coupling itself depended only on the shape of the wave functions
of the incident state and the bound state |φ0〉.

It is possible to enrich the possibilities offered by Fano–Feshbach reso-
nances by using an electromagnetic field, optical or microwave, to couple
the incident open channel to any closed channel, not necessarily close in
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Figure 12. Principle of a one-photon optical Fano–Feshbach resonance. A light
beam couples in a quasi-resonant way the input channel, a scattering state of the
electronic ground level to a bound state of an electronically excited level.

energy. The tunability provided by the magnetic field B is replaced by the
choice of the frequency of the oscillating field. The coupling W becomes
proportional to the amplitude of this field and can be adjusted at will.

The first proposal in this sense was made by Fedichev, Kagan, et al.
(1996) and implemented by Theis, Thalhammer, et al. (2004). These are
optical Fano–Feshbach resonances where the input channel, which has two
atoms in the electronic ground state, is coupled to a closed channel which
has one atom in an excited electronic state and the other in the ground
state (figure 12). A variant, explored by Thalhammer, Theis, et al. (2005),
consists in using a two-photon (stimulated Raman) transition, to find a
closed channel with two atoms in their ground state (figure 13).

The experiments of Theis, Thalhammer, et al. (2004) and Thalhammer,
Theis, et al. (2005) confirmed the theoretical predictions concerning the
modification of the scattering length. But they also highlighted an intrin-
sic limitation of this method, related to the heating due to the randomness
of the spontaneous emission of photons. More precisely, in the energy de-
nominator involved in the expression of the scattering amplitude, deduced
for example from the expression of the matrix T̂ (E) given in (60), it is nec-
essary to add an imaginary term iΓe, corresponding to the natural width of
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Figure 13. Principle of a two-photon optical Fano–Feshbach resonance. A pair of
light beams couples in a quasi-resonant way the input channel, a scattering state
of the electronic ground level, to a bound state of the electronic ground level, via a
virtual transition to an excited electronic state.

the electronic excited state. This imaginary term gives an imaginary part
to the scattering length, i.e. a loss term (which can be considerable in prac-
tice) when injected in the Gross–Pitaevskii equation. One can consult Bohn
& Julienne (1999) for a detailed treatment of this heating mechanism.

Another approach has been proposed by Papoular, Shlyapnikov, et al.
(2010) and is shown in figure 14 [see also Kaufman, Anderson, et al. (2009)
and Tscherbul, Calarco, et al. (2010)]. It consists in using a microwave cou-
pling between the open and closed channels. Then, there is no passage
through an excited state and thus no additional heating. The important
point to note in this case is that the wavelength of the microwave field used
is very large compared to the range of the interaction potentials between
atoms. We can therefore consider that W (r) is independent of r. How-
ever, we have shown in § 3-1 that the desired modification of the scattering
length involves the matrix elements

〈φ0|Ŵ |ψop
k 〉 ≈W 〈φ0|ψop

k 〉. (68)

It is therefore necessary that the two states |φ0〉 and |ψop
k 〉 have a non-zero

overlap, and in particular that they are not orthogonal. Since they are
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Figure 14. Microwave assisted Fano–Feshbach resonance, obtained by a coupling
between the two hyperfine sublevels of the electronic ground state.

each eigenstates of a Hamiltonian p̂2/2mr + Vα(r), this means that the two
Hamiltonians in question must be "significantly different" from each other.
For alkali metal atoms, this condition can be fulfilled all the better if the
triplet and singlet scattering lengths are far apart and if the two channels
involved have significantly different weights on these singlet and triplet
branchs.

4 Some recent experiments

Since their initial observation for atomic gases by Inouye, Andrews, et al.
(1998), Fano–Feshbach resonances have played a considerable role in quan-
tum fluid physics. It is not our intention here to review these very many
experimental studies, or even to cite them. We refer interested readers to
the review article of Chin, Grimm, et al. (2010) which gave, at least at the
time of its publication, a complete state-of-the-art of experimental knowl-
edge in this field. In the following paragraphs, we will limit ourselves
to give (without concern for completeness) three recent remarkable exam-
ples. As these experiments use different protocols, this part will give us
the opportunity to discuss three diagnostic techniques for the presence of

niveau
fondamental

f = 2

mf =-2
mf =-1
mf =0
mf =1
mf =2

f = 1

mf =-1
mf =0
mf =1

461.7 MHz

Figure 15. Position of the hyperfine levels of the electronic ground state of a 39K
atom in the presence of a magnetic field. The experiment of Chapurin, Xie, et al.
(2019) is conducted with atoms prepared in the |f = 1,mf = −1〉 state.

a resonance: bound state spectroscopy, thermalization kinetics of a trapped
gas and atom losses.

4-1 Precision measurements on potassium 39

Chapurin, Xie, et al. (2019) recently conducted an experiment on
potassium-39, the purpose of which was to test some aspects of three-body
physics. A key part of their analysis involved two-body interactions in a
39K gas (bosons) in the presence of a magnetic field of about 30 Gauss. In
this experiment, atoms are prepared in the |f = 1,mf = −1〉 state, i.e. the
higher energy state of the f = 1 hyperfine sublevel.

Starting from about 105 atoms confined in an optical trap at a tempera-
ture of 300 nK, the magnetic field is swept through the value correspond-
ing to the Fano–Feshbach resonance, which allows to adiabatically transfer
an important fraction of the atoms to an assembly of dimers in the state
|φ0〉 (Köhler, Góral, et al. 2006). The non-transferred atoms are eliminated
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Figure 16. Blue squares: radio-frequency spectrum of dissociation of 39K dimers
for a magnetic field of 33.9575 (3) G. The origin of the x-axis is shifted by
446.834413 MHz. The black points are obtained for a gas of atoms and allow
to calibrate the experiment. Figure extracted from Supplemental Material of
Chapurin, Xie, et al. (2019).

thanks to a light pulse which pushes them out of the trap.

The main tool is radio-frequency (rf) spectroscopy which consists in
making one of the atoms of the dimer switch to the |f = 2,mf = 0〉
state, then counting the atoms thus transferred according to the frequency
of the rf. A typical example is shown in figure 16. We can see the spectrum
recorded for the dimer gas (in blue) and the equivalent signal for an atomic
gas. A precise modeling of the shift between the two curves allows to de-
duce the binding energy for this value of the field, Ebound/h = 12.274 kHz.

This experiment is repeated for different values of the magnetic field
around the Fano–Feshbach resonance, producing the data in figure 17. The
magnetic field interval corresponds to a variation of the scattering length a
between 16 nm and +∞ (RvdW = 3.3 nm for 39K).

For this curve, the (weak) correction of the dimer energy related to the
confinement potential has been taken into account. The fit with a theoreti-
cal model taking into account the five coupled channels for this s-wave res-
onance (see § 3) is excellent and leads to the determination of the position
of the resonance with an unprecedented accuracy: B0 = 33.5820 (14) G.

Figure 17. Measurement of the binding energy of the 39K dimer in the vicinity of
the Fano–Feshbach resonance. The universal prediction is plotted with a red dotted
line. The black curve is the prediction from a numerical calculation including 5
coupled spin channels. The red dashed curve is a refined version of the universal
prediction. Figure extracted from Chapurin, Xie, et al. (2019).

This precision allowed Chapurin, Xie, et al. (2019) to improve very signifi-
cantly the modeling of singlet and triplet potentials for a pair of 39K atoms.

We can see in this figure that only the central part of the resonance is
well described by the universal model although a ≥ 5RvdW on the ex-
plored range. This proves that this resonance does not fall into the cate-
gory of broad resonances. More precisely, Chapurin, Xie, et al. (2019) re-
lated their data to the sres parameter of Chin, Grimm, et al. 2010 (identical
to our ∆/EvdW parameter introduced above) to find sres ≈ 2.6. It is thus an
"intermediate" resonance, located at the border between broad and narrow
resonances.

Note that in order to describe the resonance with this degree of accu-
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racy, modeling by the usual formula (52) is not sufficient and a second pole
must be included, i.e. a 5-parameter modeling.

4-2 Orbital resonances for ytterbium 173

For alkali metal species, each atom carries an electron spin 1/2. The in-
teraction between two atoms in their electronic ground state depends on
the exchange symmetry of the electronic wave function. An orbital wave
function which is symmetric [resp. antisymmetric] by exchange of the two
electrons is associated with an antisymmetric [resp. symmetric] spin state,
i.e. the singlet state S = 0 [resp. triplet S = 1]. The different scattering
channels contain varying parts of the singlet and triplet potentials, and the
coupling between these channels gives rise to the resonances discussed so
far.

A class of atoms that plays an important role in cold gas physics con-
cerns atoms with two peripheral electrons, such as strontium or ytterbium.
For an atom prepared in its ground state g, the orbital angular momentum
L of the two electrons is zero as well as their spin angular momentum S, so
that the total angular momentum J is also zero. The S = 0 value prevents
the possibility of setting up a Fano–Feshbach resonance of the same type
as for the alkali metal atoms, at least when the atoms are all prepared in
their electronic ground state. Even though these atoms may have a nuclear
spin I , the interaction potential between atoms will not depend on the spin
state of the nuclei4 and the collision can be considered as "single-channel".

A way around this impossibility was proposed by Zhang, Cheng, et
al. (2015), and then realized experimentally a few months later by Höfer,
Riegger, et al. (2015) and Pagano, Mancini, et al. (2015). Zhang, Cheng, et
al. (2015) suggested to take advantage of very long-lived excited electronic
states, in particular the 3P0 state; it is a state

• of orbital angular momentum L = 1 (hence the notation "P");

• of electronic spin S = 1 (triplet state, hence the notation "3"), thus

4This invariance with respect to nuclear spin leads to a SU(N) symmetry for the interac-
tion potential, N = 2I + 1 being the number of nuclear spin states.

different from the spin S = 0 of the ground state (this difference con-
tributes to the very long lifetime);

• of total angular momentum (orbital+spin) J = 0, which reinforces the
stability of this state because it cannot de-excite to the ground state by
a one-photon transition, a transition J = 0 → J = 0 being forbidden
by the selection rules of light-matter interaction.

For 173Yb, the lifetime of the 3P0 state is of the order of 20 s, which is ex-
tremely long on the atomic scale.

The idea put forward by Zhang, Cheng, et al. (2015) is to consider a pair
of atoms, one in the ground state 1S0, the other in the 3P0. They consider
the fermionic isotope 173Yb which has a nuclear spin I = 5/2; in the pres-
ence of an external magnetic field, this results in each of the two electronic
levels considered, 1S0 and 3P0, being split into six states corresponding to
mI = − 5

2 ,− 3
2 , . . . ,+

5
2 . Since we are dealing with nuclear magnetism, the

splittings are very small (factor∼ 10−3 compared to electronic magnetism),
but this is sufficient to create the necessary control parameter.

Among the multiple possible pairs for the nuclear spins of the two
atoms, one selects a pair denoted (m↓I ,m

↑
I) ≡ (↓, ↑) (one choosesm↓I 6= m↑I ).

The important point is that the Landé factors gg and ge of the two states 1S0

and 3P0 are not equal. Therefore, the two states

|g ↑; e ↓〉 and |g ↓; e ↑〉 (69)

do not have the same energy: the energy difference reads5 µnB (ge −
gg)(m

↓
I − m↑I), where µn is the nuclear magneton. This energy difference

can be varied by changing the applied magnetic field. We will suppose in
what follows that the first of these two states is the one of lower energy.

We now take into account the fact that the atoms are fermions and we
focus on an s-wave collision, i.e. a spatial wave function symmetric in the
exchange of the positions of the two atoms. This is possible because the
atoms are not in the same internal state: the global antisymmetric character
of the state of the two atoms can be ensured by these internal variables.

5The energy difference for 173Yb is h × 113 Hz for B = 1 Gauss and m↓I −m
↑
I = 1. The

origin of the difference between gg and ge lies in a slight hyperfine coupling between the 3P0

and 3P1 states.
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More precisely, we pose

|ψ〉 =
1√
2

(|g ↑; e ↓〉 − |e ↓; g ↑〉) (70)

which corresponds to the nuclear + electronic state of the open channel
(low energy), and

|φ〉 =
1√
2

(|g ↓; e ↑〉 − |e ↑; g ↓〉) (71)

which corresponds to the closed channel (high energy).

Like the singlet and triplet potentials for one-electron atoms, the inter-
action potential between the two atoms depends on the symmetric or anti-
symmetric nature of the orbital electronic state. The electronic and nuclear
parts of the two eigenstates of interest here are

|±〉 =
1

2
(|ge〉 ± |eg〉)⊗ (| ↑↓〉 ∓ | ↓↑〉) , (72)

each characterized by a scattering length, a±, for s-wave collisions.

Let us consider a collision between low-energy atoms initially prepared
in the |ψ〉 state written in (70). This state |ψ〉 is a linear combination of the
two |±〉 states:

|ψ〉 =
1√
2

(|+〉+ |−〉) (73)

and is therefore not an eigenstate of the interaction Hamiltonian. During
the collision, it is coupled to the closed channel state |φ〉. After the collision,
the atoms emerge in |ψ〉 but the accumulated phase shift depends on the
coupling with |φ〉.

For a resonance to occur due to this coupling, there must be in the
closed channel a bound state of energy close to the dissociation limit of
the open channel. This is indeed the case for the |+〉 channel which is asso-
ciated with a large and positive scattering length (Scazza, Hofrichter, et al.
2014; Cappellini, Mancini, et al. 2014; Cappellini, Mancini, et al. 2015). The
bound state has a binding energy of h× 32 kHz.

We present in figure 18 data extracted from Höfer, Riegger, et al. (2015);
they show the variation with the magnetic field B of the thermaliza-
tion time of an equilibrated mixture of 60,000 atoms in the pair of states

Figure 18. Orbital resonance for 173Yb. Thermalization rates in a |g ↑, |e ↓〉
mixture (blue and red dots) and |g ↑, |g ↓〉 (green dots). The red [resp. blue]
points correspond to m↑I = −m↓I = 1

2 [resp. 5
2 ]. The B field has been resized by

a factor of 5 for the red points to show the universality of the result. Figure taken
from Höfer, Riegger, et al. (2015).

|g ↑〉, |e ↓〉, and for comparison a mixture |g ↑〉, |g ↓〉. This mixture is con-
fined in an anisotropic dipole trap and one measures the time needed for
an excess of energy along one axis of the trap to be distributed along the 3
axes, as expected for the equipartition of the energy. This time is inversely
proportional to the effective section of elastic collision, thus to the square
of the scattering length. We can see that this time varies by two orders of
magnitude around the resonance for the mixture |g ↑〉, |e ↓〉 while it is in-
dependent of B for the mixture |g ↑〉, |g ↓〉. Such resonances can open new
perspectives in the realization of topological superfluids (Cornish 2015).

4-3 The case of lanthanides Er and Dy

Lanthanide atoms such as erbium or dysprosium have very different char-
acteristics from other atoms commonly used in quantum gas experiments
such as the alkali metals or alkaline earths. The orbital angular momen-
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Figure 19. Number of 168Er atoms having "survived" in a light trap after a du-
ration of 400 ms in the presence of a B magnetic field. Each narrow peak indicates
an increased loss due to a Fano–Feshbach resonance. Figure taken from Frisch,
Mark, et al. (2014).

tum of the electrons in the electronic ground state is not zero. Added to
the spin angular momentum, this leads to very large magnetic moments:
10µB for dysprosium, thus magnetic dipole-dipole interactions 100 times
larger than for alkali metal atoms. The interactions between lanthanide
atoms show a marked anisotropy, on the one hand because of these mag-
netic dipoles and on the other hand because of the van der Waals inter-
actions, which acquire a significant anisotropic part (of the order of 10%
of the isotropic part) coming from the orbital angular momentum of the
electrons

For lanthanide atoms of angular momentum J in their electronic
ground state, there are (J + 1)2 non-degenerate potential curves leading
to (J + 1)2 independent scattering lengths, to be compared with the two
singlet and triplet channels of the alkali metal atoms. This leads to a very
large number of possibilities for Feshbach resonances in a given magnetic
field range; this number is further increased by the fact that the Zeeman
shift of the different states for a given field is much larger than for the al-
kali metal atoms, due to the large magnetic moment.

To locate these Feshbach resonances, a frequently used technique is to
measure the rate of atomic losses in a trapped cloud as a function of the
applied magnetic field. In the vicinity of a resonance, the probability of
finding a pair of atoms close to each other is strongly increased and two-

Figure 20. Normalized distribution of the gap between two successive 164Dy res-
onances. The blue points correspond to measurements and the grey points to the
result of a coupled-channel calculation. The dashed curve gives the expected re-
sult for a regular Hamiltonian, the dotted one the result for a chaotic Hamiltonian
(Wigner-Dyson law). We see that the resonances "repel" each other, but not as
much as expected by the Wigner-Dyson law. Figure extracted from Maier, Kadau,
et al. (2015).

or three-body loss processes are therefore favored. A two-body loss cor-
responds to the flip of an electron spin during the collision, the released
Zeeman energy being converted into kinetic energy. A three-body process
leads to the formation of a strongly bound dimer, the third body carrying
away the energy released by this formation.

We show in figure 19 an example of result obtained by Frisch, Mark,
et al. (2014) for a gas of 168Er atoms at a temperature of 330 nK. There are
190 resonances in a magnetic field interval of 70 Gauss. This number is
considerable: one would find on average less than one resonance on an
interval of this width for alkali metal atoms.

Frisch, Mark, et al. (2014) and Maier, Kadau, et al. (2015) have taken
advantage of this large number of resonances, obtained for both erbium
and dysprosium, to perform a statistical analysis. They studied in partic-
ular the distribution of the gaps between two consecutive resonances, an
example of which is shown in figure 20. It can be seen that the successive
resonances "repel" each other, i.e. the probability of finding two resonances
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Figure 21. Top: scattering length estimated by a coupled-channel calculation for
168Er. Bottom: spectrum of weakly bound states. A Fano–Feshbach resonance
occurs each time a bound state crosses the zero energy and disappears in the con-
tinuum. Figure extracted from Maier, Kadau, et al. (2015).

with a small separation is smaller than if these resonances were randomly
distributed.

The distribution of the positions of the resonances of 168Er as the mag-
netic field is varied is directly related to the spectrum of the bound states
of the Hamiltonian of the problem, for a given magnetic field. This point
is illustrated in figure 21, where the energies of the bound states, shown
here for 168Er, have been obtained by a coupled-channel calculation. Now
the spectrum of the Hamiltonian, more precisely the distribution P (s) of
the interval s between successive eigenvalues, gives information about the
nature of the underlying motion. If this motion is regular, a collection of
decoupled harmonic oscillators for example, the distribution P (s) will be
a Poisson distribution. If this motion is chaotic and the Hamiltonian is
described by a real symmetric random matrix, we expect a Wigner-Dyson
distribution ∝ s e−πs

2/4.

We can see in figure 20 that the repulsion of the positions of the Fano–
Feshbach resonances, if it is indeed present, is not as strong as the one ex-
pected for the Wigner-Dyson law. This result, confirmed by the numerical
calculation, indicates that the Hamiltonian is neither completely regular

nor completely chaotic in this range of magnetic field6.

6The Brody parameter allows one to characterize the deviation of the measured dis-
tribution with respect to Poisson and Wigner–Dyson distributions. For a magnetic field
∼ 30 Gauss, the value of this parameter deduced from the coupled-channel calculation is
∼ 0.5 for 164Dy or 168Er.
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Appendix: bound state for our resonance model

As for the study of scattering states in the previous chapter, our starting
point for the search of possible bound states will be the first of the two
eigenvalue equations (2-3) :

(E − Ĥ0)|ψ〉 = Ŵ |φ〉. (74)

Its solution is written thanks to the resolvent operator Ĝ0 (without free
term since we consider E < 0):

|ψ〉 = Ĝ0(E) Ŵ |φ〉. (75)

It is now a question of finding the energy (or energies?) E for which
this equation is compatible with the second eigenvalue equation (3):

(E − Ecl)|φ〉 = Ŵ |ψ〉. (76)

To do this, recall that |φ〉 = α|φ0〉 and project (76) onto |φ0〉:

(E − Ecl)α = 〈φ0|Ŵ |ψ〉 = α〈φ0|Ŵ Ĝ0(E) Ŵ |φ0〉 (77)

hence the equation to determine E:

E − 〈φ0|Ŵ Ĝ0(E) Ŵ |φ0〉 = Ecl. (78)

To make this equation more explicit, let us take the result obtained in
the previous chapter for the matrix element involved in the left-hand side
of this equation:

〈φ0|Ŵ Ĝ0(E) Ŵ |φ0〉 =
1

(2π)3

∫ |〈φ0|Ŵ |q〉|2
E − ε(q) + i0+

d3q, (79)

After angular integral and replacement of E by −~2κ2/2mr, we obtain

〈φ0|Ŵ Ĝ0(E) Ŵ |φ0〉 = − 2

π

∫
q2 g2(q)

q2 + κ2
dq

= −∆ +
2κ2

π

∫
g2(q)

q2 + κ2
dq (80)

which, using Ẽcl ≡ Ecl −∆ finally leads to

~2

2mr

[
κ2 +

4mr

π~2

∫ +∞

0

κ2 g2(q)

q2 + κ2
dq

]
= −Ẽcl. (81)

The left-hand side of this equation is obviously positive and is moreover
an increasing function of κ, with values ranging from 0 to +∞. To have
a (unique) solution to this equation, it is necessary and sufficient that the
right-hand side is also positive, i.e. Ẽcl < 0. According to (8), this corre-
sponds to the regime a > 0.

We see on (81) that the choice Ẽcl = 0 leads to the solution κ = 0. Let
us now check that for Ẽcl sufficiently small, so a sufficiently large, we find
the universal law (13). For that, let us notice first that when κ → 0, the
integral appearing in the left member of (81) diverges in q = 0. For κ small
but not zero, this integral is therefore dominated by small values of q. We
can replace g(q) by g0 ≡ g(0) to find:

κ→ 0 :

∫ +∞

0

g2(q)

q2 + κ2
dq ≈ g2

0

∫ +∞

0

1

q2 + κ2
dq =

πg2
0

2κ
. (82)

When κ→ 0, this term becomes dominant in the [. . .] of (81), which simpli-
fies to

κg2
0 ≈ −Ẽcl (83)

or by using (8) :

κ ≈ 1

a
⇒ Ebound ≈ −

~2

2mra2
. (84)

This is the expected result: for a > 0 and in the small |Ẽcl| regime, the
energy of the bound state is related to the scattering length by the universal
relation (13).
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