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Abstract
In the task of predicting spatio-temporal fields in environmental sci-
ence using statistical methods, introducing statistical models inspired
by the physics of the underlying phenomena that are numerically ef-
ficient is of growing interest. Large space-time datasets call for new
numerical methods to efficiently process them. The Stochastic Par-
tial Differential Equation (SPDE) approach has proven to be effec-
tive for the estimation and the prediction in a spatial context. We
present here the advection-diffusion SPDE with first order derivative
in time which defines a large class of nonseparable spatio-temporal
models. A Gaussian Markov random field approximation of the so-
lution to the SPDE is built by discretizing the temporal derivative
with a finite difference method (implicit Euler) and by solving the
spatial SPDE with a finite element method (continuous Galerkin) at
each time step. The “Streamline Diffusion” stabilization technique is
introduced when the advection term dominates the diffusion. Compu-
tationally efficient methods are proposed to estimate the parameters
of the SPDE and to predict the spatio-temporal field by kriging, as
well as to perform conditional simulations. The approach is applied to
a solar radiation dataset. Its advantages and limitations are discussed.

Keywords: Spatio-temporal statistics; Stochastic Partial Differential
Equations; Advection-diffusion; Geostatistics; Solar radiation.
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2 The SPDE approach for spatio-temporal datasets with advection and diffusion

1 Introduction
Many areas of environmental science seek to predict a space-time variable of
interest from observations at scattered points in the space cross time domain
of study, e.g., among other possible applications, wind prediction (Lenzi and
Genton, 2020; Huang et al., 2022), precipitation forecasting (Sigrist et al.,
2011), urban air quality inference (Paciorek et al., 2009). Among modern
techniques proposing efficient methods for estimation and prediction in a
spatio-temporal framework, there is a distinction between two possible ways of
constructing and treating spatio-temporal models (Wikle and Hooten, 2010):
either one follows the traditional geostatistical paradigm, using joint space-
time covariance functions (see for example Cressie and Huang (1999), Gneiting
(2002), Stein (2005), as well as the recent reviews Porcu et al. (2021), Chen
et al. (2021)), or one uses dynamical models, including functional time series
of surfaces, see for example Wikle and Cressie (1999), Sigrist et al. (2012) and
Martínez-Hernández and Genton (2022).

While the theoretical aspects of spatio-temporal geostatistics are well de-
veloped (Cressie and Wikle, 2011), their implementation faces difficulties. The
geostatistical paradigm is computationally expensive for large spatio-temporal
datasets, due to the factorization of dense covariance matrices, whose com-
plexity scales with the cube of the number of observation. This well known
problem is often referred to as the “big n problem” (Banerjee et al., 2014).
Separable space-time covariance functions have often been used to take ad-
vantage of their computational convenience, even when they are not realistic
in describing the processes due to the absence of space-time interaction. In
most applications, separable models show poorer predictions than nonsepara-
ble models, see references above. Recent studies have focused on constructing
nonseparable models, which are physically more realistic, albeit computation-
ally more expensive, see Gneiting (2002), Porcu et al. (2006), Salvaña and
Genton (2021) and Bourotte et al. (2016), Allard et al. (2022) in a multivari-
ate context. nonseparable space-time covariance models can be constructed
from Fourier transforms of permissible spectral densities, mixtures of sepa-
rable models, and partial differential equations (PDEs) representing physical
laws (Carrizo-Vergara et al., 2022; Lindgren et al., 2022). They can be fully
symmetric or asymmetric, stationary or non-stationary, univariate or multi-
variate, in the Euclidean space or on the sphere. See Porcu et al. (2021) and
Chen et al. (2021) for recent comprehensive reviews.

In this paper, we follow the dynamic approach that makes use of physical
laws and study models which are defined through Stochastic Partial Differ-
ential Equations (SPDEs), where the stochasticity is obtained by adding a
random noise as a forcing term. The SPDE approach relies on the representa-
tion of a continuously indexed Gaussian Random Field (GRF) as a discretely
indexed random process, i.e. a Gaussian Markov Random Field (GMRF, see
Rue and Held (2005)). Passing from a GRF to a GMRF, the covariance
function and the dense covariance matrix are substituted respectively by a
neighborhood structure and a sparse precision matrix. Using GMRFs with
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sparse precision matrices implies computationally efficient numerical meth-
ods, especially for matrix factorization. The link between GRF and GMRFs
in the purely spatial case has been pioneered by Lindgren et al. (2011), who
proposed to construct a GMRF representation of the spatial Matérn field on
a triangulated mesh of the domain through the discretization of a diffusion
SPDE with a Finite Element Method (FEM). We refer to Bakka (2018) for
a simple explanation of FEM applied to the spatial SPDE and to Section 2.3
for a detailed generalization to spatio-temporal SPDE.

In the spatial framework, major mathematical and algorithmic advances
in the SPDE approach have been made (Fuglstad et al., 2015; Pereira and
Desassis, 2019; Pereira et al., 2022), making it possible to efficiently process
very large datasets, even in the presence of non-stationarities and varying local
anisotropies. The development of SPDE-based approaches to Gaussian pro-
cesses has led to several practical solutions, among which we find the R package
for approximate Bayesian inference R-INLA (Rue et al., 2009; Lindgren and
Rue, 2015) that uses SPDEs to sample from spatial and spatio-temporal
models.

When generalizing to the spatio-temporal framework, a direct space-time
formulation of the SPDE approach was first suggested in Lindgren et al.
(2011), without any precise detail on estimation and prediction. In Cameletti
et al. (2011), the SPDE approach was coupled with an AR(1) model in time,
leading to a separable space-time model. Nonseparable spatio-temporal mod-
els have been elaborated in Särkkä et al. (2013), Krainski et al. (2018b) and
Lindgren et al. (2020) as a spatio-temporal generalization of the diffusion-
Matérn model of Lindgren et al. (2011). In the approaches overviewed above,
the space-time processes are symmetrical in the sense that the spatio-temporal
covariance does not change when the sign of the space and/or time lag changes.
However, atmospheric and geophysical processes are often asymmetric due
to transport effects, such as air and water flows. Sigrist et al. (2015) built
non-symmetrical and nonseparable space-time Gaussian models as a solution
to an advection-diffusion SPDE with computationally efficient algorithms for
statistical estimation using fast Fourier transforms and Kalman filters. Liu
et al. (2020) extended this approach to spatially-varying advection-diffusion
and non-zero mean source-sink, leading to a space-time covariance which is
non-stationary in space. The applicability of this approach remains difficult
however, especially with scattered data, as it relies on the Fourier transform
of the data. Carrizo-Vergara et al. (2022) defined new spatio-temporal models
incorporating the physical processes linked to the studied phenomena (advec-
tion, diffusion, etc.), but the estimation of the parameters and the conditioning
to the observed data remained unaddressed.

In this work, we propose a new and efficient approach for dealing with
spatio-temporal SPDEs that includes both a diffusion and an advection term.
In contrast to Sigrist et al. (2015) and Liu et al. (2020), we make use of
the sparse formulation of the spatio-temporal field which is the approxi-
mate solution of the SPDE obtained by a combination of FEM and Finite
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Differences (FD). This sparse formulation allows fast algorithms for param-
eter estimation and spatio-temporal prediction. We also treat the case of
an advection-dominated SPDE, by introducing the Streamline Diffusion sta-
bilization term in the SPDE (Hughes and Brooks, 1981). To the best of
our knowledge, this work is the first statistical FEM/FD implementation of
spatio-temporal SPDEs with advection.

The paper is organized as follows: Section 2 first presents background ma-
terial on the spatio-temporal SPDE approach. The spatio-temporal advection-
diffusion model developed in this paper is presented, along with its discretiza-
tion. Moreover, the stabilization of advection-dominated SPDEs is introduced.
Section 3 explores fast and scalable estimation methods, kriging formula for
prediction and conditional simulations. Section 4 presents an application of
the proposed spatio-temporal SPDE approach to a solar radiation dataset.
Section 5 discusses the advantages and the limitations of the approach and
opens the way to further works.

2 The spatio-temporal advection-diffusion SPDE
and its discretization

2.1 Background
In the SPDE representation, GRFs on Rd are viewed as solutions to specific
stochastic partial differential equations (Whittle, 1954, 1963). In particular,
Gaussian Whittle-Matérn fields, analyzed in details in Lindgren et al. (2011)
and reviewed in Lindgren et al. (2022), are solutions to

(κ2 −∆)α/2X(s) = τW (·), (1)

with α > d/2 and τ > 0. ∆ =
∑d

i=1
∂2

∂s2i
is the Laplacian operator and W (·) is a

standard spatial Gaussian white noise, whose definition is briefly recalled:W (·)
is as a Generalized GRF such that E[W (A)] = 0 and Cov(W (A),W (B)) =
|A ∩ B| for any two Borelians of Rd, where |A| is the Lebesgue measure of
A over Rd. In principle, W (·) has no elementwise definition, but for an easier
reading, we will sometimes allow ourselves to write W (s).

The covariance function of the Gaussian Whittle-Matérn field solution to
Equation (1) is the well known Matérn covariance function

Cov(h) = σ2CM
ν (κ∥h∥) = σ2

2ν−1Γ(ν)
(κ∥h∥)ν Kν (κ∥h∥) , (2)

with smoothness parameter ν = α− d/2 > 0, scale parameter κ and variance
σ2 = τ2(4π)−d/2Γ(ν)Γ(ν + d/2)−1κ−2ν . Kν is the modified 2nd order Bessel
function and h = s − s′ is the spatial lag between two locations s and s′ in
Rd. In particular, when ν = 1/2, we get the exponential covariance function
and when ν → +∞, after proper renormalization, (2) tends to the Gaussian
covariance function.
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In Lindgren et al. (2011), the smoothness parameter ν considered in the
Matérn covariance function corresponds to integer values of α. When non-
integer values of α are introduced in the modeling, the SPDE is said to be
fractional. Recent reviews of results and applications of the fractional SPDE
approach are available in Xiong et al. (2022); Bolin and Kirchner (2020);
Roques et al. (2022), but this case will not be treated further in this work.

When generalizing to spatio-temporal processes X(s, t), we consider the
framework proposed in Carrizo-Vergara et al. (2022) for extending the SPDE
approach to a wide class of linear spatio-temporal SPDEs. Let us denote
ξ ∈ Rd a spatial frequency and ω ∈ R a temporal frequency. The space-
time white noise with unit variance, denoted W (s, t), is characterized by its
spectral measure dµW (ξ, ω) = (2π)−(d+1)d ξ dω. New spatio-temporal models
were obtained from known PDEs describing physical processes, such as diffu-
sion, advection, and oscillations with stochastic forcing terms. In particular,
Carrizo-Vergara et al. (2022) provides sufficient conditions to the existence
and uniqueness of stationary solutions to[

∂β

∂tβ
+ Lg

]
X(s, t) =WS(s)⊗WT (t), (3)

with β > 0. In (3), the spatial operator Lg is defined using the spatial Fourier
transform on Rd, denoted FS ,

Lg(·) = F−1
S (gFS(·)),

where g : Rd → C is a sufficiently regular and Hermitian-symmetric function
called the symbol function of the operator Lg. The temporal operator ∂β

∂tβ
is

∂β

∂tβ
(·) = F−1

T ((iω)βFT (·)),

where FT is the temporal Fourier transform on R and where we have used the
symbol function over R

ω 7→ (iω)β = |ω|βei sgn(ω)βπ/2.

The spatio-temporal symbol function of the operator involved in (3) is thus

(ξ, ω) 7→ (iω)β+g(ξ) = |ω|β cos
(
βπ

2

)
+gR(ξ)+i

(
sgn(ω)|ω|β sin

(
βπ

2

)
+ gI(ξ)

)
where gR and gI are the real and imaginary part of the spatial symbol func-
tion g(ξ). If |gR| is inferiorly bounded by the inverse of a strictly positive
polynomial and gR cos

(
βπ
2

)
≥ 0, Theorem 1 and Proposition 3 in Carrizo-

Vergara et al. (2022) state that (3) admits a unique stationary solution for
every arbitrary gI function .
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2.2 The spatio-temporal advection-diffusion SPDE
The advection-diffusion equation is a Partial Differential Equation (PDE)
that describes physical phenomena where particles, energy, or other physical
quantities evolve inside a physical system due to two processes: diffusion and
advection. Advection represents the mass transport due to the average velocity
of all particles, and diffusion represents the mass transport due to the in-
stantaneously varying velocity of individual particles. The advection-diffusion
SPDE studied in this work writes[

∂

∂t
+

1

c
(κ2 −∇ ·H∇)α +

1

c
γ ·∇

]
X(s, t) =

τ√
c
Z(s, t), (4)

where
• the operator ∇ · H∇ is a diffusion term that can incorporate anisotropy

in the matrix H. When the field is isotropic, i.e. when H = λ I, this term
reduces to the Laplacian operator λ∆;

• the operator γ ·∇ models the advection, γ ∈ Rd being a velocity vector;
• α ≥ 0 relates to the smoothness of X(·, t), κ2 > 0 accounts for damping and
c is a positive time-scale parameter;

• τ ≥ 0 is a standard deviation factor and Z is a stochastic forcing term.
From now on, we will assume a Gaussian distribution for Z.

This equation was mentioned in Lindgren et al. (2011), Carrizo-Vergara
et al. (2022) and Lindgren et al. (2020), and was analyzed using spectral
approaches in Sigrist et al. (2015) and Liu et al. (2020). The stochastic forcing
term Z(s, t) is assumed separable with

Z(s, t) =WT (t)⊗ ZS(s),

where ZS is a spatial Generalized GRF and WT is a temporal white noise. ZS

is often chosen to be a spatial white noise, denoted WS in this case. To ensure
a sufficient regularity for Z, ZS can alternatively be a colored noise, such as
for example the solution to the spatial Whittle-Matérn SPDE (Lindgren et al.,
2011)

(κ2 −∇ ·H∇)αS/2ZS(s) =WS(s), (5)
where WS is a Gaussian white noise. Notice that the parameter κ2 in the
forcing term has been set identical to that in the diffusion term in the left-
hand-side of (4) to ensure that the spatial marginalization of the process is a
Matérn field, as detailed below.

When α > 0,X(s, t) is a stationary nonseparable spatio-temporal field with
covariance function Cov(h, u), with (h, u) ∈ Rd ×R. The advection-diffusion
equation (4) is a particular first order evolution model as in Equation (3) with
β = 1. Its spatial symbol function

g(ξ) =
1

c

[
(κ2 + ξ⊤ H ξ)α + iγ⊤ ξ

]
,
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verifies the sufficient condition for existence and uniqueness of a stationary
solution recalled at the end of Section 2.1. We define the spatial trace of X
as the spatial random field X(·, t) at any t ∈ R. Carrizo-Vergara et al. (2022)
showed that the advection term does not affect the spatial trace of the solution.
For some specific values of the parameters, the spatial trace of the solution to
(4) is a Matérn field, as detailed in Proposition 1. In the following |H| denotes
the determinant of the square matrix H.

Proposition 1 Let Z(s, t) be a spatio-temporal noise colored in space with ZS(s)
satisfying (5), and let αtot = α+αS . If αtot > d/2, the spatial trace of the stationary
solution X(s, t) of the SPDE (4) is the Gaussian Matérn field with covariance

Cov(h, 0) =
τ2Γ(αtot − d/2)

2Γ(αtot)(4π)d/2κ2(αtot−d/2)|H|1/2
CM
αtot−d/2

(
κ
∥∥∥H−1/2 h

∥∥∥) . (6)

where h = s− s′ is the spatial lag and CM
αtot−d/2(·) is the unit variance and scale

Matérn covariance function defined in (2) with smoothness parameter equal to ν =
αtot − d/2.

Proposition 1 is adapted from Proposition 1 in Lindgren et al. (2020). A
proof is reported in Appendix A. The model reduces to a separable one in a
particular case stated in the corollary below.

Corollary 2 Let the coefficients of the SPDE (4) be such that α = 0 and γ = 0; the
spatial operator applied to the spatio-temporal field X(s, t) is then the constant value
c−1. Let Z(s, t) be a spatio-temporal noise colored in space, with ZS(s) satisfying (5).
If αS > d/2, the stationary solution of the SPDE is a separable spatio-temporal field
with covariance

Cov(h, u) =
τ2Γ(αS − d/2)

2Γ(αS)(4π)d/2κ2(αS−d/2)|H|1/2
CM
αS−d/2

(
κ
∥∥∥H−1/2 h

∥∥∥) exp{−cu},
with smoothness parameter equal to ν = αS − d/2.

2.3 Discretization
The advection-diffusion SPDE in (4) is discretized in time and space, using
Finite Differences (FD) and a Finite Element Method (FEM), respectively.
The temporal domain [1, T ] is discretized in NT regular time steps of length
T/NT . Since implicit solvers are usually less sensitive to numerical instability
than explicit solvers, the implicit Euler scheme is chosen for the temporal
discretization. This choice implies stability, hence convergence towards the
stationary solution. The FEM method for the spatial discretization is the
continuous Galerkin method with Neumann Boundary Conditions as detailed
in Lindgren et al. (2011).

The solution in two dimensions is now detailed. The solution in three di-
mensions involve geometrical technicalities, but is otherwise very similar. Let
Ω ⊂ R2 be a compact and connected domain of R2. Ω is meshed using a
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triangulation T with NS vertices {s1, . . . , sNS
} ⊂ Ω. Let h := maxTr∈T hTr,

where hTr is the diameter of the triangle Tr ∈ T . A first order finite element
representation Xh of the solution to the spatial SPDE is a linear combination
Xh =

∑NS

i=1 xiψi of piecewise linear basis functions {ψi}NS
i=1, each ψi being

equal to 1 at the vertex si and 0 at all the other vertices. The weights {xi}NS
i=1

define uniquely the values of the field at the vertices, while the values in the
interior of the triangles are determined by linear interpolation. The continu-
ous Galerkin solution is then obtained by finding the weights that fulfill the
weak formulation of Equation (4) for test functions belonging to the space V
spanned by {ψi}NS

i=1.

Proposition 3 Let X(s, t) be the spatio-temporal process solution to Equation (4)
with α ∈ {0, 1} and spatio-temporal white noise, i.e. Z(s, t) = W (s, t) = WT (t) ⊗
WS(s). Let T be a triangulation of Ω and {ψi}NS

i=1 be the piecewise linear basis
functions defined over T . Let us define the mass matrix M = [Mij ]

NS
i,j=1, the stiffness

matrix G = [Gij ]
NS
i,j=1, the advection matrix B = [Bij ]

NS
i,j=1 and the matrix K =

[Kij ]
NS
i,j=1 as follows:

Mij =

∫
Ω
ψi(s)ψj(s) d s ,

Gij =

∫
Ω
H∇ψi(s) · ∇ψj(s) d s ,

Bij =

∫
Ω
γ ·∇ψi(s)ψj(s) d s ,

Kij = (κ2Mij +Gij)
α.

Then, at each time step, the continuous Galerkin finite element solution vector
xt+dt = {xt+dt,i}NS

i=1 satisfies(
M+

dt

c
(K+B)

)
xt+dt = Mxt +

τ
√
dt√
c

M1/2 zt+dt, (7)

where zt+dt ∼ N (0, INS
), M1/2 is any matrix such that M1/2 M1/2 = M and

dt = T/NT . When the noise on the right-hand side is colored in space, i.e. Z(s, t) =
WT (t)⊗ ZS(s), the discretization reads(

M+
dt

c
(K+B)

)
xt+dt = Mxt +

τ
√
dt√
c

ML⊤
S zt+dt,

where LS is the Cholesky decomposition of Q−1
S , the covariance matrix of the dis-

cretized solution ZS of the spatial SPDE (5), obtained with the continuous Galerkin
FEM (Lindgren et al., 2011).

Proof The proof is available in Appendix B. □

Remark that the elements of the matrices M, G, B and K are non-zero
only for pairs of basis functions which share common triangles. This implies
that the matrix (M+dt

c (K+B)) is sparse and that Equation (7) can be solved
by Cholesky decomposition in an efficient way.
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2.4 Stabilization of advection-dominated SPDE
When the advection term is too strong with respect to the diffusion term,
advection-domination occurs. In the framework outlined above, when α = 1,
the non-symmetric matrix

[
M+dt

c (K+B)
]

becomes ill-conditioned, which
induces oscillations and unstable solutions for the continuous Galerkin ap-
proximation. Specifically, the advection-domination occurs when the Péclet
number Peh = ∥γ∥h

2λ > 1, where λ is the coefficient of the isotropic Lapla-
cian operator (see for example Mekuria and Rao (2016) or Quarteroni (2008,
Chapter 5)).

One possible solution is to decrease the diameter h, i.e., to refine the trian-
gulation, until the advection no longer dominates on the element-level, with
Peh < 1. However, in many cases this is not a feasible solution because it
would increase the number of vertices beyond computation limits. Another so-
lution, adopted here, is to introduce a stabilization term. Many stabilization
approaches are possible, some being more accurate than others (Quarteroni,
2008, Chapter 5). In our case, we opt for the Streamline Diffusion (SD) stabi-
lization approach (Hughes and Brooks, 1981), considered as a good trade-off
between accuracy and computational complexity. Essentially, the SD approach
consists in stabilizing the advection by introducing an artificial diffusion term
along the advection direction. A detailed presentation of the stabilization ap-
proach is reported in Appendix C. The following proposition presents the
stabilized solution to (4).

Proposition 4 Assume the same hypotheses as in Proposition 3 with α = 1. The
solution to Equation (4) in presence of Streamline Diffusion stabilization is(

M+
dt

c
(K+B+S)

)
xt+dt = Mxt +

τ̃
√
dt√
c

M1/2 zt+dt, (8)

where S = [Sij ]
NS
i,j=1 is the matrix of the Streamline Diffusion stabilization operator

S, such that

Sij = S(ψi, ψj) = h∥γ∥−1
∫
Ω
(γ ·∇ψi)(γ ·∇ψj) d s ,

and τ̃ = τ
(
|H+h∥γ∥−1 γ γ⊤|

)−1/4
(|H|)1/4. When the noise on the right-hand side

of Equation (4) is colored in space, the discretization becomes(
M+

dt

c
(K+B+S)

)
xt+dt = Mxt +

τ̃
√
dt√
c

ML⊤
S zt+dt,

where LS is as in Proposition 3.

The proof of the discretized equation follows the same reasoning as that of
Proposition 3 with the addition of the matrix S. The Streamline Diffusion ap-
proach can be seen as a perturbation of the original SPDE (Bank et al., 1990).
Indeed, by making the classical hypothesis of Neumann boundary condition
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on Ω and by using the Green’s first identity, we get∫
Ω

(γ ·∇x)(γ ·∇v) d s = −
∫
Ω

∇ · (γ γ⊤)∇xv d s .

As a consequence, the original SPDE (4) can be rewritten with an additional
diffusion term as[

∂

∂t
+

1

c

[
κ2 −∇ ·

(
H+h∥γ∥−1

γ γ⊤
)
∇+ γ ·∇

]]
X(s, t) =

τ√
c
Z(s, t). (9)

The term (h∥γ∥−1
γ γ⊤) acts as an anisotropic “diffusion” matrix that is

added to the anisotropy (or identity) matrix H of the original diffusion. This
extra diffusion stabilizes the advection directed along the direction γ. By fol-
lowing the proof of Proposition 1, we find that the marginal variance of the
spatial field X(·, t) of Equation (9) is equal to

σ2 =
τ2Γ(αtot − d/2)

Γ(αtot)2(4π)d/2κ2(αtot−d/2)|H+h∥γ∥−1
γ γ⊤|1/2

.

For the variance to be equal to the variance in Proposition 1, τ must be
replaced by τ̃ = τ

(
|H+h∥γ∥−1

γ γ⊤|
)1/4

(|H|)−1/4.

2.5 Spatio-temporal Gaussian Markov Random Field
approximation

Proposition 5 In presence of an advection-dominated flow and a spatio-temporal
white noise on the right-hand side of Equation (4), the discretized vector xt+dt on
the mesh T at each time step is the solution of the following equation:

x1 ∼ N (0,Σ),

xt+dt = Dxt +Ezt+dt, (10)

where

D =

(
M+

dt

c
(K+B+S)

)−1

M,

E =
τ̃
√
dt√
c

(
M+

dt

c
(K+B+S)

)−1

M1/2, (11)

and zt+dt ∼ N (0, INS
) is independent of x1, . . . ,xt+dt. In presence of a spatio-

temporal noise colored in space on the right-hand side of Equation (4), the matrix E
reads

E =
τ̃
√
dt√
c

(
M+

dt

c
(K+B+S)

)−1

ML⊤
S ,

where LS is defined in Proposition 3.
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Proof Starting from Equation (8), which represents the numerical scheme for the
advection-diffusion spatio-temporal SPDE with stabilization, it is straightforward to
obtain (10). □

When the SPDE is not advection-dominated, which implies that no sta-
bilization term is needed, Equation (11) is replaced by the similar equation
where the matrix S is deleted and τ̃ is replaced by τ .

The covariance matrix Σ can be taken to be equal to any admissible pos-
itive definite matrix. The speed of convergence to the stationary solution of
the equation depends on the proximity of the covariance of the spatial trace
X(·, t) to Σ. When the hypotheses of Proposition 1 are satisfied, an efficient
option is to choose Σ as the Matérn covariance of Equation (6).

To obtain fast inference and prediction computations, the precision matrix
of the spatio-temporal discretized solution x1:NT

= [x1, . . . ,xNT
]⊤ must be

sparse. For this reason M is replaced by the diagonal matrix M̃, where M̃ii =
⟨ψi, 1⟩ (Lindgren et al., 2011). This technique is called mass lumping and is
common practice in FEM (Quarteroni, 2008, Chapter 5). From now on, we
always use the diagonal matrix M̃, but for ease of reading, it will still be
denoted M.

Proposition 6 Let x1:NT
= [x1, . . . ,xNT

]⊤ be the vector containing all spatial
solutions until time step NT of Equation (10). The global precision matrix Q of the
vector x1:NT

of size (NSNT , NSNT ) reads

Q =



Σ−1 +D⊤ F−1 D −D⊤ F−1 0 . . . 0

−F−1 D F−1 +D⊤ F−1 D −D⊤ F−1 . . .
...

...
. . . . . . . . . 0

...
. . . −F−1 D F−1 +D⊤ F−1 D −D⊤ F−1

0 . . . 0 −F−1 D F−1


,

(12)
where F = EE⊤.

Proof The proof is available in Appendix D. □

3 Estimation, prediction and simulation
This section presents an efficient implementation for parameter estimation
and spatio-temporal prediction within the spatio-temporal SPDE framework
described in Section 2. We consider the advection-diffusion SPDE (4) with
d = 2, α = 1, H = I (isotropic diffusion) and colored noise in space with
αS = 2. Similar computations can be generalized to other values of αS such
that αS/2 is integer or to anisotropic diffusion.

The spatio-temporal domain Ω × [1, T ] is discretized in space with a tri-
angulation T with NS nodes and discretized in time by means of NT regular
time steps. This space-time discretization is denoted T ′ = T ×{T/NT , . . . , T}.
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At each time step t = 1, . . . , NT there are nt observations scattered in the
spatial domain Ω. There is thus a total of n =

∑NT

t=1 nt spatio-temporal data
collected in the vector y1:NT

= [y1, . . . ,yNT
]⊤.

We consider a statistical model with fixed and random effects. The fixed
effect is a regression on a set of covariates and the random effect is modeled
as the FEM discretization of a random field described by the SPDE (4) with
the addition of random noise:

y1:NT
= η b+A⊤ x1:NT

+σ0 ε, (13)

where b is the vector of q fixed effects and η is a (n, q) matrix of covariates
with [η]jk = ηk(sj , tj), j = 1 . . . , n and k = 1, . . . , q. The matrix A is the
(NSNT , n) projection matrix between the points in T ′ and the data, and ε
is a standard Gaussian random vector with independent components. When
the observation locations do not change during the time window, AA⊤ is a
(NSNT , NSNT ) block-diagonal matrix with all (NS , NS) equal blocks.

3.1 Estimation of the parameters
The parameters of the SPDE are estimated using Maximum Likelihood. We
collect the parameters of the SPDE in the vector θ⊤ = (κ, γx, γy, c, τ), while
all the parameters of the statistical model are collected in ψ⊤ = (θ⊤,b⊤, σ0).
Following (13), y1:NT

is a Gaussian vector with expectation η b and covariance
matrix

Σy1:NT
= A⊤ Q−1(θ)A+σ2

0 In,

where Q(θ) is a precision matrix of size (NSNT , NSNT ) depending on the pa-
rameters θ. For ease of notation, we use Q instead of Q(θ). The log-likelihood
is equal to

L(ψ) = −n
2
log(2π)− 1

2
log|Σy1:NT

(ψ)|− 1

2
(y1:NT

−η b)⊤ Σ−1
y1:NT

(y1:NT
−η b).

(14)
We use the Broyden, Fletcher, Goldfarb, and Shanno optimization al-

gorithm (Nocedal and Wright, 2006), that makes use of the second-order
derivative of the objective function. The gradients of the log-likelihood function
(14) with respect to the different parameters included in ψ are approximately
computed with FD. We now propose a computationally efficient formulation
of each term of the log-likelihood (14).

Proposition 7 In the framework outlined above, we have

log|Σy1:NT
| = n log σ20 − log|Q|+ log|Q+σ−2

0 AA⊤|. (15)



The SPDE approach for spatio-temporal datasets with advection and diffusion 13

Proof To compute log|Σy1:NT
|, let us consider the augmented matrix

Σc =

(
Q−1 Q−1 A

A⊤ Q−1 Σy1:NT

)
. (16)

Hence,

Qc = Σ−1
c =

(
Q+σ−2

0 AA⊤ −σ−2
0 A

−σ−2
0 A⊤ σ−2

0 In

)
. (17)

Using block formulas, we have

log|Σc| = − log|Qc| = − log|Q|+ n log σ20 ,

and

log|Σc| = log|Σy1:NT
|+ log|Q−1 −Q−1 AΣ−1

y1:NT
A⊤ Q−1|

= log|Σy1:NT
| − log|Q+σ−2

0 AA⊤|,

where the last equality is a consequence of the Woodbury identity. This leads to the
result. □

Proposition 8 The term log|Q| in Equation (15) can be computed with the
computationally efficient formula

log|Q| = log|Σ−1|+ (NT − 1) log|F−1|, (18)

with
F−1 =

c

τ̃2dt
(M+

dt

c
(K+B+S))⊤ M−1(M+

dt

c
(K+B+S)).

When the noise is colored in space, M−1 must be replaced by M−1 QS M−1, where
QS is the precision matrix of the discretized spatial noise ZS defined in Proposition 3.

Note that |F−1| is now the determinant of a (NS , NS) sparse, symmet-
ric and positive definite matrix. The computation of its determinant can be
obtained by Cholesky decomposition of F−1.

Proof Following Powell (2011), let NN = [Ni j]
N
i,j=1 be an (nN, nN) matrix, which

is partitioned into N blocks, each of size (n, n). Then the determinant of NN is

|NN | =
N∏

k=1

|α(N−k)
kk |,

where the α(k) are defined by

α
(0)
ij = Nij

α
(k+1)
ij = α

(k)
ij − α

(k)
i,N−k(α

(k)
N−k,N−k)

−1α
(k)
N−k,j , k ≥ 1.

Q is a block-matrix organized as NN . Hence, the formula for |Q| is

|Q| = |Σ−1||F−1|N−1. (19)

Applying the logarithm, we obtain Equation (18). □
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The term log|Q+σ−2
0 AA⊤| requires a detailed analysis. The term

σ−2
0 AA⊤ is an (NSNT , NSNT ) diagonal block matrix, whose (NS , NS) blocks

are sparse. The computation of log|Q+σ−2
0 AA⊤| is not as straightforward

as in the case of log|Q|, because there is no way of reducing the computation
to purely spatial matrices. Depending on the size NSNT , we can either ap-
ply a Cholesky decomposition of the (NSNT , NSNT ) matrix (Q+σ−2

0 AA⊤)
or the matrix-free approach proposed in Pereira et al. (2022). For the sake
of completeness, the approach is briefly sketched. The logarithm function
is first approximated by a Chebyschev polynomial P (·), then the Hutchin-
son’s estimator (Hutchinson, 1990) is used to obtain a stochastic estimate of
tr[P (|Q+σ−2

0 AA⊤|)]. The method is detailed in Algorithm 5 in Pereira et al.
(2022).

Concerning the computation of the quadratic term of the log-likelihood,
we can work with the more convenient expression obtained thanks to the
Woodbury formula

Σ−1
y1:NT

= σ−2
0 In −σ−4

0 A⊤(Q+σ−2
0 AA⊤)−1 A .

Hence

(y1:NT
−η b)⊤ Σ−1

y1:NT
(y1:NT

−η b) = σ−2
0 (y1:NT

−η b)⊤ In(y1:NT
−η b)

− σ−4
0 (y1:NT

−η b)⊤ A⊤(Q+σ−2
0 AA⊤)−1 A(y1:NT

−η b).

The second term can be computed either by Cholesky decomposition or using
the Conjugate Gradient (CG) method. This latter method solves Nv = w
with respect to v and computes vsol = w⊤ v, with N = (Q+σ−2

0 AA⊤) and
w = A(y1:NT

−η b). In this case, it is useful to find a good preconditioner
for the matrix (Q+σ−2

0 AA⊤) to ensure fast convergence of the CG method.
We found that a temporal block Gauss-Seidel preconditioner (Young, 1971,
Chapter 3) was a good choice in this case. A detailed presentation of the CG
method is available in Pereira et al. (2022).

3.2 Prediction by Kriging
Under a Gaussian assumption, optimal prediction is the conditional expecta-
tion, also known in the geostatistics literature as kriging. We detail here two
prediction settings: space-time interpolation and temporal extrapolation.

In the space-time interpolation setting, the spatio-temporal vector x1:NT

is predicted on the entire spatial mesh during the time window [1, T ], i.e. on
T ′, using the data y1:NT

defined in Equation (13). The kriging predictor is
directly read from Equation (17):

x⋆
1:NT

= E(x1:NT
| y1:NT

) = σ−2
0 (Q+σ−2

0 AA⊤)−1 A(y1:NT
−ηb̂). (20)
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The computation of (20) requires the inversion of (Q+σ−2
0 AA⊤), as de-

tailed in Section 3.1. The conditional variance, also called kriging variance,
is

Var(x1:NT
|y1:NT

) = (Q+σ−2
0 AA⊤)−1.

The computation of the diagonal of an inverse matrix is not straightfor-
ward when only the Cholesky decomposition of the matrix is available. Among
the existing methods there is the Takahashi recursive algorithm described in
Takahashi et al. (1973) and Erisman and Tinney (1975). Another way of com-
puting the kriging variance is through conditional simulations, as detailed in
Section 3.3.

In the temporal extrapolation setting, the vector xNT+1 is predicted at
time step (NT + 1) on T using all the data available until time T , i.e. from
y1:NT

. Following Equation (10), we have

xNT+1 = DxNT
+EzNT+1, (21)

where zNT+1 is a standardized Gaussian vector. The kriging predictor x⋆
NT+1

is

x⋆
NT+1 = E(xNT+1 | y1:NT

) = DE(xNT
| y1:NT

) = Dx⋆
NT
, (22)

where x⋆
NT

is extracted from x⋆
1:NT

. The same procedure can be iterated to
predict x at further time steps.

3.3 Conditional simulations
To perform a conditional simulation, we use the conditional kriging paradigm
presented below. This approach relies on the fact that kriging predictors and
kriging residuals are uncorrelated (independent under Gaussian assumption,
see Chilès and Delfiner (2012, Chapter 7)). First, a non-conditional simulation
x
(NC)
1:NT

is performed on the spatio-temporal grid T ′. From this simulation,
kriging residuals

r1:NT
= E

(
x1:NT

| A⊤ x
(NC)
1:NT

)
− x

(NC)
1:NT

are computed over the entire spatio-temporal grid T ′. The conditional expec-
tation is computed using the method presented in the previous section. In a
second step, these independently generated residuals are added to the usual
kriging of the data to get the conditional simulation

x
(C)
1:NT

= x∗
1:NT

+ r1:NT
.

Conditional simulations at further time steps are obtained by iteratively
computing x

(C)
NT+k using the propagation equation (21) with k ≥ 1. Multi-

ple independent realizations of conditional simulations can then be used to
compute approximate conditional variances.



16 The SPDE approach for spatio-temporal datasets with advection and diffusion

3.4 Simulation study
We report here some results regarding the estimation of the parameters θ⊤ =
(κ, γx, γy, c, τ) for a spatio-temporal model simulated with the SPDE (4). We
set H = I, α = 1 and αS = 2. The spatial domain is the [0, 30]2 square with a
grid triangulation of NS = 900 spatial points. The time window is [1, 10] with
unit NT = 10 time steps. The nS = 100 observations are randomly located
into the spatial domain and their position do not change during the NT time
steps (hence n = 1000). Since the size of both the dataset and the spatio-
temporal mesh is reasonable, we report only the estimations computed with
the Cholesky decomposition.

As initial values we used estimated values obtained from the spatial and
temporal traces of the process. Specifically, the initial value for κ is the es-
timated scale parameter of a Matérn covariance function with smoothness
parameter ν = α+ αS − 1 = 2 considering independent temporal repetitions,
the initial value for c is deduced from the estimated parameter of nS inde-
pendent repetitions of AR(1) processes of length NT and τ2 is computed from
Equation (6) with σ2 being the empirical variance computed on the data. Fi-
nally, the initial value for γ is the null vector. The results are reported in
Table 1. They show that all parameters are accurately estimated. In almost
all cases, the true value of the parameter is within the mean ± 2 standard
deviations interval.

κ κ̂ γx γ̂x γy γ̂y c ĉ τ τ̂ average time (s)

0.5 0.610 (0.047) 2 2.354 (0.515) 2 2.325 (0.421) 1 1.037 (0.218) 1 1.072 (0.040) 194

0.7 0.695 (0.067) 1 1.056 (0.659) -1 -1.134 (0.631) 2 2.090 (0.352) 0.5 0.503 (0.022) 172

Table 1 Mean (and standard deviation) of ML estimates θ̂
⊤

= (κ̂, γ̂x, γ̂y , ĉ, τ̂) over 50
simulations for two different subsets of advection-diffusion model parameters

4 Application to a solar radiation dataset
The approach detailed in the previous sections is now applied to a solar ra-
diation dataset for which experts agree on the presence of advection due to
Western prevailing winds transporting clouds from one side of the domain to
the other. The HOPE campaign (Macke et al., 2017) recorded Global Hor-
izontal Irradiance (GHI) (also called SSI, Surface Solar Irradiance) over a
10 × 16 km2 region in West Germany near the city of Jülich from the 2nd
of April, to the second of July, 2013. The sensors were located at 99 stations
located as pictured in Figure 1 and GHI was recorded every 15 seconds. A
detailed description of the campaign can be found in Macke et al. (2017).

The dataset was cleaned for outlying values and non-operating sensors,
and the temporal resolution was reduced from 15 seconds to 1 minute. Figure
2 (left panel) shows GHI as a function of time (in minute, during a full day –
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Figure 1 Stations over the spatial domain

Figure 2 GHI G and Clear Sky Index Kc for 4 different stations on the 28th of May 2013

the 28th of May 2013) at 4 different stations. These stations, represented in
color in Figure 1, are located at the border of the domain, far from each other.
The GHI starts close to 0, increases after sunrise, peaks at midday and tends
to 0 at sunset. The maximal theoretical amount of irradiance reaching the
sensor follows an ideal concave curve. The divergence between the measured
irradiance and the optimal curve can be slight or important, depending on the
presence of clouds. One can see on this example that the evolution among the
4 stations is similar, with variations accounting for spatio-temporal variations
of the clouds.

A first preprocessing was made in order to stationarize the phenomenon.
Oumbe et al. (2014) showed that the solar irradiance at ground level, GHI
(denoted G for short from now on), computed by a radiative transfer model
can be approximated by the product of the irradiance under clear atmosphere
(called Clear Sky GHI, or Gc) and a modification factor due to cloud properties
and ground albedo only (Clear Sky Index, or Kc, Beyer et al. (1996)):

G ≃ GcKc. (23)

The error made using this approximation depends mostly on the solar zenith
angle, the ground albedo and the cloud optical depth. In most cases, the max-
imum errors (95th percentile) on global and direct surface irradiances are less
than 15 Wm−2 and less than 2 to 5 % in relative value, as recommended
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Figure 3 Histogram of Kc over 20 time steps

by the World Meteorological Organization for high-quality measurements of
the solar irradiance (Oumbe et al., 2014). Practically, it means that a model
for fast calculation of surface solar irradiance may be separated into two dis-
tinct and independent models: i) a deterministic model for G, under clear-sky
conditions, as computed according to Gschwind et al. (2019), considered as
known in this study; ii) a model for Kc which accounts for cloud influence on
the downwelling radiation and is expected to change in time and space. Kc is
modeled as a random spatio-temporal process and will be the subject of our
analysis. Figure 2 (right panel) shows the variable Kc corresponding to the
variable G shown on the left panel. In general, Kc lies between 0 and 1, but
in rare occasions, values above 1 can be observed. This phenomenon is called
overshooting (Schade et al., 2007) and is due to light reflection by surrounding
clouds.

A time window of 20 minutes around 4 p.m. on the 28th of May 2013 is
extracted with observations every minute at the 73 stations with well recorded
values. Parameters are estimated on this 20-minute window using the method
described in Section 3.1. The spatio-temporal grid contains NT = 20 one-
minute time steps, from t = 1 to t = 20 and NS = 900 spatial mesh points.

4.1 Estimation and prediction
Six different models are fitted to the data and used for prediction: 3 models
with advection (called “adv-diff”) and 3 models without advection (called
“diff”) obtained by setting γ = 0. Both groups contain the three following
sub-models: (i) a model with diffusion included only in the stochastic forcing
term, with a Matérn spatial trace with ν = 1; (ii) a nonseparable model
whose spatial trace has no known closed form expression for the covariance
function; (iii) a nonseparable model with a Matérn spatial trace with ν = 2. In
the general model of Equation (4) they correspond respectively to (α, αS) =
(0, 2), (1, 0), (1, 2). The parameters of the SPDE are estimated for each model
separately. The results are reported in Table 2.

The log-likelihoods of the models that include advection are within a
range of variations of 10 log-likelihood units and are between 34 to 80
units larger than those with diffusion only. As a point of comparison, if
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all spatio-temporal dependencies were ignored, the BIC penalization for the
advection parameters would be 2 ln(1460) ≃ 14.5. These results indicate
strong evidence in favor of models with advection, but no significant differ-
ences among them. The parameters vary substantially from one model to
the other, but it must be remembered that, when considered independently,
their physical interpretation is model dependent. Some combinations are in-
terpretable however. For example, following Proposition 1, the overall variance
is equal to (8π)−1τ2κ−2 (or (8π)−1τ2κ−2|I+h∥γ∥−1

γ γ⊤|−1/2 in the stabi-
lized case) when αtot = α + αS = 2 and it is equal to (16π)−1τ2κ−4 (or
(16π)−1τ2κ−4|I+h∥γ∥−1

γ γ⊤|−1/2) when αtot = 3. Accordingly, the esti-
mated standard deviations for models (1), (3), (4) and (6) are equal to 0.160,
0.119, 0.174 and 0.199 respectively, with the experimental standard deviation
being equal to 0.184. For the same models, the practical ranges computed as√
8ν/κ (Lindgren et al., 2011) are equal to 1.915, 3.079, 2.281 and 4.255 re-

spectively. Notice that among pairs of models that differ by the presence or
absence of advection, the estimated range is larger for those without advection
in an attempt to account for the larger correlation distance due to transport.

Model α αS log-likelihood κ̂ γ̂x γ̂y ĉ τ̂ σ̂0 b̂

(1) adv-diff 0 2 2587 1.477 9.642 -5.382 11.659 2.254 0.052 0.570
(2) adv-diff 1 0 2577 0.237 4.718 -0.928 9.315 0.458 0.045 0.598
(3) adv-diff 1 2 2579 1.299 17.325 -8.442 41.017 3.072 0.058 0.574
(4) diff 0 2 2507 1.240 0 0 12.558 1.081 0.059 0.569
(5) diff 1 0 2545 0.246 0 0 6.594 0.436 0.047 0.577
(6) diff 1 2 2512 0.940 0 0 34.607 1.248 0.064 0.580

Table 2 Estimated parameters and log-likelihood for 6 different models from all data on
a 20-minute window

We then perform prediction with two different validation settings contain-
ing 80% of conditioning data and 20% of validation data. In the first case
(called “Uniform”) the validation locations are uniformly randomly selected.
In the second case (called “South-East”) the validation locations are located
downwind (i.e. South-East) with respect to the estimated advection direction.
See Figure 4 for a representation of the validation settings.

Recall that a time window containing 20 time-steps, from T = 1 to T = 20,
has been selected. For each validation setting and from T = 11 to T = 20,
three prediction configurations using conditioning data from time (T −9) to T
are computed and compared to the real values, allowing us to compute a Root
Mean Square Error (RMSE) validation score. First, the kriging is performed
spatially only (hereafter referred to as “S” kriging). Second, a temporal ex-
trapolation is computed at the conditioning locations at time horizons (T +1),
(T + 2) and (T + 3) (“T1”, “T2”, “T3” kriging). Third, the spatio-temporal
prediction is computed at the validation locations at time horizons (T + 1),
(T + 2) and (T + 3) (“ST1”, “ST2”, “ST3” kriging). We thus have a total of
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Figure 4 Validation settings: Uniform (left) and South-East (right)

Figure 5 Predictions of Kc at (T +1), (T +2) and (T +3) with model (3) (“adv-diff” with
α = 1 and αS = 2). The black contoured dots are the conditioning locations and the white
contoured dots are the validation locations for the Uniform setting

6 models × 2 validation settings × 3 prediction configurations. RMSEs are
averaged over the 10 repetitions. Results are shown in Table 3.

For all tested validation settings and prediction configurations, the mod-
els with advection show better RMSE scores than models without advection.
This result is a confirmation of the results already observed on log-likelihoods.
Models with advection have similar prediction scores in the prediction con-
figurations S and T, model (1) having slightly better performances in the
configuration S. In the T and ST configurations, models (2) and (3) have in
general quite similar RMSEs, except in the South-East setting with ST con-
figuration where model (2) is clearly the best model. In this case, prediction is
made in a space-time domain lying downstream with respect to the advection.
It is thus expected that the model best representing the underlying physics
should lead to the best prediction performances.

An example of prediction maps on T at time horizons (T +1), (T +2) and
(T+3) is reported in Figure 5, along with the observed values (black contoured
dots). The white contoured dots are the locations used for validation in the
Uniform setting.
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Uniform

Model α αS S (min,max)

(1) adv-diff 0 2 0.088 (0.052,0.127)
(2) adv-diff 1 0 0.103 (0.064,0.142)
(3) adv-diff 1 2 0.102 (0.062,0.134)
(4) diff 0 2 0.119 (0.074,0.140)
(5) diff 1 0 0.094 (0.060,0.131)
(6) diff 1 2 0.110 (0.066,0.132)

Model α αS T1 (min,max) T2 (min,max) T3 (min,max)

(1) adv-diff 0 2 0.095 (0.067,0.120) 0.146 (0.111,0.186) 0.181 (0.131,0.236)
(2) adv-diff 1 0 0.071 (0.046,0.090) 0.093 (0.054,0.124) 0.102 (0.060,0.143)
(3) adv-diff 1 2 0.072 (0.046,0.093) 0.095 (0.054,0.127) 0.104 (0.055,0.144)
(4) diff 0 2 0.094 (0.058,0.123) 0.137 (0.091,0.181) 0.166 (0.102,0.231)
(5) diff 1 0 0.079 (0.058,0.098) 0.108 (0.082,0.135) 0.124 (0.099,0.158)
(6) diff 1 2 0.083 (0.054,0.108) 0.110 (0.077,0.149) 0.125 (0.085,0.180)

Model α αS ST1 (min,max) ST2 (min,max) ST3 (min,max)

(1) adv-diff 0 2 0.105 (0.067,0.144) 0.147 (0.106,0.193) 0.179 (0.140,0.231)
(2) adv-diff 1 0 0.091 (0.052,0.131) 0.103 (0.062,0.161) 0.110 (0.071,0.165)
(3) adv-diff 1 2 0.085 (0.050,0.127) 0.094 (0.058,0.142) 0.100 (0.061,0.157)
(4) diff 0 2 0.123 (0.072,0.186) 0.150 (0.081,0.237) 0.170 (0.116,0.257)
(5) diff 1 0 0.104 (0.070,0.153) 0.122 (0.095,0.181) 0.131 (0.095,0.187)
(6) diff 1 2 0.108 (0.073,0.153) 0.126 (0.085,0.188) 0.134 (0.082,0.199)

South-East

Model α αS S (min,max)

(1) adv-diff 0 2 0.103 (0.051,0.138)
(2) adv-diff 1 0 0.105 (0.045,0.158)
(3) adv-diff 1 2 0.109 (0.054,0.149)
(4) diff 0 2 0.134 (0.092,0.181)
(5) diff 1 0 0.136 (0.067,0.187)
(6) diff 1 2 0.140 (0.085,0.192)

Model α αS T1 (min,max) T2 (min,max) T3 (min,max)

(1) adv-diff 0 2 0.095 (0.065,0.122) 0.142 (0.106,0.185) 0.172 (0.121,0.228)
(2) adv-diff 1 0 0.074 (0.045,0.099) 0.097 (0.065,0.128) 0.109 (0.069,0.148)
(3) adv-diff 1 2 0.074 (0.049,0.097) 0.096 (0.062,0.122) 0.106 (0.061,0.139)
(4) diff 0 2 0.090 (0.063,0.116) 0.128 (0.097,0.167) 0.154 (0.113,0.209)
(5) diff 1 0 0.081 (0.057,0.105) 0.111 (0.090,0.147) 0.128 (0.100,0.169)
(6) diff 1 2 0.084 (0.056,0.109) 0.109 (0.086,0.152) 0.123 (0.091,0.176)

Model α αS ST1 (min,max) ST2 (min,max) ST3 (min,max)

(1) adv-diff 0 2 0.102 (0.081,0.121) 0.158 (0.130,0.180) 0.210 (0.160,0.241)
(2) adv-diff 1 0 0.079 (0.044,0.119) 0.075 (0.039,0.127) 0.070 (0.038,0.132)
(3) adv-diff 1 2 0.090 (0.052,0.121) 0.099 (0.056,0.149) 0.109 (0.057,0.172)
(4) diff 0 2 0.128 (0.092,0.157) 0.165 (0.112,0.195) 0.199 (0.116,0.236)
(5) diff 1 0 0.107 (0.050,0.201) 0.100 (0.042,0.223) 0.094 (0.0380,0.217)
(6) diff 1 2 0.114 (0.060,0.204) 0.111 (0.058,0.229) 0.108 (0.059,0.223)

Table 3 Averaged RMSE computed at 10 successive time steps for 6 different models, 2
validation settings (Uniform and South-East) and 3 prediction configurations (S, T and
ST); see text for details. In each case, the best score among the models is in bold font

4.2 Conditional simulations
Figure 6 shows 100 conditional simulations of Kc computed at time T = 11
and horizons (T + 1), (T + 2), . . . , (T + 6) with the advection-diffusion model
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Figure 6 Real Kc, mean of conditional simulations of Kc and ±2σ envelope at time hori-
zons T, (T +1), (T +2), . . . , (T +6). Left: orange station with Uniform setting. Right: green
station with South-East setting

(3). Two validation stations have been selected: one in the “Uniform” setting,
in the North-West part of the domain (the orange star in the left panel of
Figure 4) and one in the “South-East” setting (the green star in the right panel
of Figure 4). Given that there is an advection from NW to SE, it is therefore
expected that the advection-diffusion model should be able to transport the
information. The mean of the 100 simulations and the envelopes corresponding
to twice the pointwise standard deviation have also been represented, along
with the true values. As expected, most of the conditional simulations lie
within the envelopes in both cases and at all time horizons. The remarkable
result is that the variance of the conditional simulations at the green station
is smaller than that at the orange one at every time step, especially when the
time horizon increases. This is due to the advection term in model (3), able
to propagate information from North-West to South-East.

5 Conclusion
The spatio-temporal SPDE approach based on advection-diffusion equations
proposed in this work combines elements of physics, numerical analysis and
statistics. It can be seen as a first step toward physics informed geostatis-
tics, which introduces physical dynamics into a statistical model, accounting
for possible hidden structures governing the evolution of the spatio-temporal
phenomenon. The different terms of the SPDE (advection, diffusion) directly
influence the spatio-temporal dependencies of the process, by controlling its
variability in space and time. Compared to spatio-temporal models built on
covariance functions such as the Gneiting class (Gneiting, 2002), we gain in in-
terpretability since the parameters of the model can be linked to the physical
coefficients of SPDEs.

We showed that it is possible to build an accurate space-time approx-
imations of the process driven by the advection-diffusion SPDE using a
combination of FEM in space and implicit Euler scheme in time. It leads to
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sparse structured linear systems. We obtained promising results for the es-
timation and for the prediction of processes both in terms of precision and
speed. When the size of the dataset is moderate, direct matrix implementation
is possible. We showed how matrix-free methods can be implemented in order
to obtain scalable computations even for very large datasets. The application
to the solar radiation dataset demonstrated that the nonseparable advection-
diffusion model exhibited the best prediction performances on a phenomenon
that is certainly governed by advection and diffusion processes.

Further work is necessary to better assess the prediction accuracy and the
computational complexity. Applications to larger and more complex datasets,
in particular using the matrix-free approach, will be considered. Comparison
to models expressing the advection in a Lagrangian framework (Ailliot et al.,
2011; Benoit et al., 2018; Salvaña and Genton, 2021) should also be performed.
A frequentist maximum likelihood was implemented. As a follow-up work, it
would be interesting to implement this space-time model as part of a Bayesian
hierarchical construction, possibly within the INLA/SPDE framework (Rue
et al., 2009; Krainski et al., 2018a).

One of the main advantages of the SPDE formulation is that it is easy to
generalize to non-stationary settings. Non-stationary fields can be defined by
letting the parameters (κ(s, t), γ(s, t)) be space-time-dependent. This general-
ization implies only minimal changes to the method used in the stationary case
concerning the simulation, but needs more work for estimation and prediction,
since the maximum likelihood approach becomes much more expensive. We
can also incorporate models of spatially varying anisotropy by modifying the
general operator ∇ ·H(s, t)∇X(s, t) with a non-stationary anisotropic matrix
H(s, t). The introduction of non-stationarities could allow to better describe
phenomena where local variations are clearly present. The generalization of
the approaches by Fuglstad et al. (2015) and Pereira et al. (2022) will be
investigated and generalized to the spatio-temporal framework.

Another interesting consequence of defining the models through local
stochastic partial differential equations is that the SPDEs still make sense
when Rd is replaced by a space that is only locally flat. We can define
non-stationary Gaussian fields on manifolds, and still obtain a GMRF repre-
sentation. Important improvements were obtained in the spatial case (Pereira
et al., 2022). The generalization to space-time processes could be explored
further.

Possible generalization to spatio-temporal SPDEs with a fractional expo-
nent in the diffusion term could also be considered. A development of the
methods proposed by Bolin and Kirchner (2020) and Vabishchevich (2015)
should be explored.
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Appendix A Proof of Proposition 1
Proof The covariance function of the spatial trace between X(s, t) and X(s′, t) for a
spatial lag h = s− s′ does not depend on the imaginary part of the spatial symbol
function (Carrizo-Vergara et al., 2022), hence it can be written as

Cov(h, 0) =

∫
Rd

∫
R

exp(ih ξ)S(ξ, ω) dω d ξ

=

∫
Rd

exp(ih ξ)

[∫
R

S(ξ, ω) dω

]
d ξ

=

∫
Rd

exp(ih ξ)SS(ξ) d ξ , (A1)

where S(ξ, ω) is the spectral density defined as

S(ξ, ω) =
τ2

(2π)(d+1)
[
ω2 + c−2(κ2 + ξ⊤ H ξ)2α

]
c(κ2 + ξ⊤ H ξ)αS

.

Integrating over ω, we obtain the spatial spectral density

SS(ξ) =
τ2

(2π)dc(κ2 + ξ⊤ H ξ)αS

∫
R

1

2π
[
ω2 + c−2(κ2 + ξ⊤ H ξ)2α

] dω
=

τ2

(2π)dc(κ2 + ξ⊤ H ξ)αS

1

2 [c−2(κ2 + ξH ξ)2α]
1/2

=
τ2

2(2π)d(κ2 + ξ⊤ H ξ)αtot
. (A2)

Using the change of variable ξ = κH−1/2 w and plugging Equation (A2) into (A1),
we obtain

Cov(h, 0) =
τ2

2

∫
Rd

eih ξ

(2π)d(κ2 + ξ⊤ H ξ)αtot
d ξ

=
τ2

2

∫
Rd

eihκH−1/2 w|κH−1/2|
(2π)d(κ2 + κ2 w⊤ w)αtot

dw

=
τ2

2κ2(αtot−d/2)|H|1/2

∫
Rd

eihκH−1/2 w

(2π)d(1 +w⊤ w)αtot
dw

=
τ2Γ(αtot − d/2)

2Γ(αtot)(4π)d/2κ2(αtot−d/2)|H|1/2
CM
αtot−d/2

(
κ
∥∥∥H−1/2 h

∥∥∥) .
The last result comes from the computation of

∫
Rd(1 +w⊤ w)−αtot dw with polar

coordinates. □

Appendix B Discretization of spatio-temporal
advection-diffusion SPDE

We detail here the discretization scheme of the advection-diffusion spatio-
temporal SPDE (4). For the sake of a clearer exposition, we set H = I, α = 1
and we consider a spatio-temporal white noise Z(s, t) = W (s, t). The proof
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for the general case follows exactly the same lines as the proof below. The
considered SPDE is[

∂

∂t
+

1

c
(κ2 −∆) +

1

c
γ ·∇

]
X(s, t) =

τ√
c
W (s, t). (B3)

For the discretization of the temporal derivative in Equation (B3), we opt
for the implicit Euler scheme, which considers the differential equation

∂X

∂t
= f(t,X),

with initial value X(t0) = X0, where both the function f and the initial data
t0 and X0 are known; the function X depends on the real variable t and
is unknown. The method produces a sequence X0, X1, X2, . . ., such that Xk

approximates X(t0 + kdt), where dt is the time step size. The approximation
reads

Xk+1 = Xk + dtf(tk+1, Xk+1).

In the specific case of Equation (B3), the implicit Euler discretization step
reads

X(s, t+dt)−X(s, t)+dt

[
1

c
(κ2 −∆) +

1

c
γ ·∇

]
X(s, t+dt) =

√
dtτ√
c
WS,t+dt(s),

(B4)
where WS,t+dt(s) is a spatial white noise obtained by integrating out the tem-
poral white noise. For ease of notation, we denote x = X(s, t+dt) the unknown
variable, defined with respect to xt = X(s, t).

At each time step of the temporal discretization, a spatial Finite Element
Method method is applied. In our case, we use the continuous Galerkin with
Neumann boundary condition. The weak form of Equation (B4) is∫

Ω

xv d s+
dt

c

(∫
Ω

κ2xv d s−
∫
Ω

∆xv d s+

∫
Ω

γ ·∇xv d s
)

=

∫
Ω

xtv d s+

√
dtτ√
c

∫
Ω

vW (s) d s , ∀v ∈ V,

where V is the space of the solutions.
By applying Green’s first identity, i.e., by writing

∫
Ω
∆xv d s = −

∫
Ω
∇x ·

∇v d s+
∫
∂Ω
v ·(∇x·n̂)dσ, with n̂ being the normal vector on the boundary, and

by simplifying the second term thanks to the Neumann boundary condition,
we obtain∫

Ω

xv d s+
dt

c

(∫
Ω

κ2xv d s+

∫
Ω

∇x · ∇v d s+
∫
Ω

γ ·∇xv d s
)

︸ ︷︷ ︸
A(x,v)
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=

∫
Ω

xtv d s︸ ︷︷ ︸
C(xt,v)

+

√
dtτ√
c

∫
Ω

vW (s) d s︸ ︷︷ ︸
E(v)

, ∀v ∈ V.

Let Vh be the space of finite element solutions spanned by the basis
functions {ψi}NS

i=1. The generalized Galerkin method allows us to find an
approximated solution xh ∈ Vh ⊂ V to the SPDE, such that

A(xh, vh) = C(xt,h, vh) + E(vh) ∀vh ∈ Vh.

The functions xh, xt,h and vh are linear combinations of the basis functions,
with

xh =

NS∑
i=1

xh,iψi; xt,h =

NS∑
i=1

xt,h,iψi; vh =

NS∑
i=1

vh,iψi,

Because of the linearity in the first argument of A(·, ·) and C(·, ·), we get

NS∑
i=1

A(ψi, vh)xh,i =

NS∑
i=1

C(ψi, vh)xt,h,i + E(vh), ∀vh ∈ Vh, (B5)

where

A(ψi, vh) = M(ψi, vh) +
dt

c
(K(ψi, vh) + B(ψi, vh))

C(ψi, vh) = M(ψi, vh),

with K(ψi, vh) = κ2M(ψi, vh) + G(ψi, vh). Here, M and G are the mass and
stiffness operators, respectively M(v, w) =

∫
Ω
vw d s and G(v, w) =

∫
Ω
∇v ·

∇w d s. B is the advection operator, i.e., B(v, w) =
∫
Ω
γ ·∇vw d s. Finally, E is

the operator of the form E(v) =
√
dtτ√
c

∫
Ω
vW (s) d s.

Since any vh can be written as a linear combination of basis functions, the
formulation (B5) is equivalent to

NS∑
i=1

A(ψi, ψj)xh,i =

NS∑
i=1

C(ψi, ψj)xt,h,i + E(ψj), ∀j (B6)

We define M = [Mij ]
NS
i,j=1 = [M(ψi, ψj)]

NS
i,j=1, G = [Gij ]

NS
i,j=1 =

[G(ψi, ψj)]
NS
i,j=1, B = [Bij ]

NS
i,j=1 = [B(ψi, ψj)]

NS
i,j=1 the mass, stiffness and

advection matrices, respectively.
When the diffusion term includes an anisotropy matrix H, i.e., when ∆ is

replaced by ∇·H∇, the stiffness operator becomes G(v, w) =
∫
Ω
H∇v ·∇w d s,

and the stiffness matrix changes consequently.
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E(ψj) is a Gaussian random variable with expectation 0 and covariance
equal to

Cov(E(ψi), E(ψj)) =
dtτ2

c
Cov

(∫
Ω

ψiW (s) d s ,

∫
Ω

ψjW (s) d s

)
=
dtτ2

c

∫
Ω

ψiψj d s =
dtτ2

c
Mij .

If zt+dt is a (NS)-Gaussian vector such that zt+dt ∼ N (0, INS
), xt+dt is

the vector containing the values {xh,i}NS
i=1 and xt is the vector containing the

values {xt,h,i}NS
i=1, then the sparse linear system corresponding to Equation

(B6) reads

Mxt+dt +
dt

c
(K+B)xt+dt = Mxt +

√
dtτ√
c

M1/2 zt+dt, (B7)

where K = κ2 M+G and M1/2 is any matrix such that M1/2 M1/2 = M.
When the spatial noise is colored, i.e. zS = ZS(s), the right-hand side

operator ES(v) becomes

ES(zS , v) =
√
dtτ√
c

∫
Ω

zSv d s

and it satisfies

ES(zS,h, vh) =
NS∑
i=1

M(ψi, vh)zS,h,i.

Hence,

NS∑
i=1

A(ψi, ψj)xh,i =

NS∑
i=1

C(ψi, ψj)xt,h,i +

NS∑
i=1

M(ψi, ψj)zS,h,i, ∀j,

where zS,h has precision matrix equal to QS . The sparse linear system thus
reads

Mxt+dt +
dt

c
(K+B)xt+dt = Mxt +

√
dtτ√
c

ML⊤
S zt+dt, (B8)

where LS is the Cholesky decomposition of Q−1
S .

Appendix C Advection-dominated SPDE
The stabilization of advection-dominated SPDEs is made through the in-
troduction of a stabilization term for eliminating, or at least reducing, the
numerical oscillations produced by the Galerkin method when the mesh is not
fine enough. This term must vanish as h→ 0 to ensure consistency.
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In the simplified case of a one-dimensional PDE with diffusion and
advection terms

−∇ · λ∇u+ γ · ∇u = f,

a way of stabilizing the advection operator γ · ∇ is to replace the diffusion
coefficient λ with λ̃ = λ(1 + ϕ(Peh)), where Peh is the Péclet number defined
in Section 2.4 and limh→0 ϕ(Peh) = 0. A clear explanation of this method is
detailed in Quarteroni (2008, Chapter 5). The method is called upwind (U)
in the simplified case where ϕ(Peh) = Peh. The idea behind the stabilization
method is to add an artificial diffusion term equal to ∇ · λϕ(Peh)∇u that
depends on the size of the discretization mesh h and on the Péclet number. In
this way, the equation with the additional stabilization term reads

−∇ · λ(1 + ϕ(Peh))∇u+ γ · ∇u = f

and it is no more advection-dominated since its Péclet number P̃eh is now
equal to

P̃eh =
Peh

1 + ϕ(Peh)
and always satisfies P̃eh < 1.

The extension of the 1D upwind stabilization model to dimension d =
2 is obtained by adding to the bilinear form A defined in Appendix B the
stabilization term SU such that

SU (uh, vh) = Qh

∫
Ω

∇uh · ∇vh d s , Q > 0. (C9)

This stabilization term can be considered as an additional artificial dif-
fusion equal to Qh∆X(s, t) in SPDE (4). This diffusion is not only on the
direction of the transport, where we aim to reduce the oscillations, but also on
the orthogonal direction, where there is no problem of convergence. For this
reason, we use a different stabilization method, called Streamline Diffusion
method (SD) (Hughes and Brooks, 1981), that considers only an artificial dif-
fusion along the advection direction by adding in the left-hand side of SPDE
(4) the term

SSD(uh, vh) =
h

|γ|

∫
Ω

(γ ·∇uh)(γ ·∇vh) d s . (C10)

It is worth emphasizing that in both the stabilization terms (C9) and
(C10) the scaling coefficient h has been introduced to recover consistency.
Both methods are only weakly consistent and provide an error that is O(h) if
finite elements are used (first order convergent). In our work, we opt for the
Streamline Diffusion method and define S = SSD for ease of notation.

Appendix D Global precision matrix
We present here the proof of Proposition 6. Let us denote x1:NT

=
[x1, . . . ,xNT

]⊤ the vector containing all spatial solutions until time step NT .
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Then,
x1:NT

= R

(
x1

z2:NT

)
,

with z2:NT
= [z2, . . . , zNT

]⊤ and

R =



INS
0 0 0 . . . 0

D E 0 0 . . . 0

D2 DE E 0 . . . 0
... . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
... . . . . . . D2 D E


.

R has a block structure which allows easy computation of its inverse

R−1 =



INS
0 0 0 . . . 0

−E−1 D E−1 0 0 . . . 0

0 −E−1 D E−1 0 . . . 0
... . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0

0 . . . . . . 0 −E−1 D E−1


.

The precision matrix of x1:NT
is thus

Q = R−1⊤


Σ−1 0 . . . 0
0 INS

. . . 0
... . . . . . . ...
0 0 . . . INS

R−1 .

By denoting F = EE⊤, the global precision matrix reads

Q =



Σ−1 +D⊤ F−1 D −D⊤ F−1 0 . . . 0

−F−1 D F−1 +D⊤ F−1 D −D⊤ F−1 . . . ...
... . . . . . . . . . 0
... . . . −F−1 D F−1 +D⊤ F−1 D −D⊤ F−1

0 . . . 0 −F−1 D F−1


.
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By replacing the values of D and F and by defining J =
[
M+dt

c (K+B)
]
,

we obtain

Q =
c

τ2dt



Σ−1 +QS −QS M−1 J 0 . . . 0

−J⊤ M−1 QS J⊤ M−1 QS M−1 J+QS −QS M−1 J
. . . ...

... . . . . . . . . . 0

... . . . −J⊤ M−1 QS J⊤ M−1 QS M−1 J+QS −QS M−1 J

0 . . . 0 −J⊤ M−1 QS J⊤ M−1 QS M−1 J


.
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