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Abstract

Probability intervals provide an intuitive, power-
ful and unifying setting for encoding and reasoning
with imprecise beliefs. This paper addresses the
problem of updating uncertain information speci-
fied in the form of probability intervals with new
uncertain inputs also expressed as probability in-
tervals. We place ourselves in the framework of
Jeffrey’s rule of conditioning and propose exten-
sions of this conditioning for the interval-based set-
ting. More precisely, we first extend Jeffrey’s rule
to credal sets then propose extensions of Jeffrey’s
rule to three common conditioning rules for prob-
ability intervals (robust, Dempster and geometric
conditionings). While the first extension is based
on conditioning the extreme points of the credal
sets induced by the probability intervals, the other
methods directly revise the interval bounds of the
distributions to be updated. Finally, the paper dis-
cusses related issues and relates the proposed meth-
ods with respect to the state-of-the-art.

1 Introduction
Probability intervals are compact, intuitive and convenient
means for representing imprecise probabilities. The the-
ory of imprecise probabilities [Levi, 1980; Walley, 1991]
is a unifying uncertainty theory particularly suited for en-
coding and reasoning with imprecise or ill-known informa-
tion. It is used to reason with multiple expert information
[Nau, 2002], perform sensitivity analysis [Bock et al., 2014],
make decisions with partial information [Antonucci et al.,
2007], etc. Imprecise probabilities are often associated with
a robust Bayesian interpretation [Berger et al., 1994] assum-
ing that the probability measure representing the actual be-
liefs exists and it is unique but it is unknown due to lack
of knowledge. Imprecise probabilities are specified in the
form of sets of probability measures, credal sets [Levi, 1980;
Walley, 1991] or using other representations such as interval-
based probabilities [de Campos et al., 1994], probabilistic
logic programs [Lukasiewicz, 2001], belief functions, etc.
As for updating probability intervals, it should be noted that
there are several conditionings depending on the associated

interpretation of probability intervals [Moral and De Cam-
pos, 1991]. In this paper, we limit ourselves to the three most
common types of conditioning that are the robust Bayesian
conditioning [Moral and De Campos, 1991], Dempster con-
ditioning [Shafer, 1976] and the geometric one [Suppes and
Zanotti, 1977].
Given an initial belief set, one may learn new information
which can be in the form of a hard evidence or in the form
of uncertain or soft evidence (e.g. unreliable observation).
The focus of the paper is updating1 a set of probability in-
tervals with new information also expressed by probability
intervals. In the classical point-wise probabilistic setting, Jef-
frey’s rule [Jeffrey, 1965] generalizes the standard probabilis-
tic conditioning to the case where the inputs are uncertain.
This conditioning rule has been studied in many uncertainty
settings (for instance, see [Dubois and Prade, 1997] for the
possibilistic setting and [Smets, 1993; Tang and Zheng, 2006;
Ma et al., 2011] for Dempster-Shafer theory).
We place ourselves in the framework of Jeffrey’s rule where
the new information is pervaded with uncertainty and this
latter bears on a partition of the set of possible worlds. We
therefore take for granted the principles underlying Jeffrey’s
rule and we do not focus on the foundations and justifications
of such principles. The focus is on extending Jeffrey’s rule
for updating probability intervals with uncertain inputs. The
main contributions of the paper are :

1. Extending Jeffrey’s rule of conditioning to update a prior
credal set with a new uncertain and imprecise input also
in the form of a credal set ;

2. Casting Jeffrey’s rule principles (success and probability
kinematics) in the probability intervals setting and show
that the proposed rules capture such principles ;

3. Proposing Jeffrey’s rule counterparts for two alternative
conditionings (Dempster and geometric) of probability
intervals.

1In this paper, we use interchangeably the terms update, revision
and conditioning even if some authors associate different meanings
to these belief change processes. See [Dubois and Prade, 1994] for
a survey of belief revision and updating rules.



2 Preliminaries
2.1 Probability Intervals
Let us in the following denote by Ω={ω1,..,ωn} the set of
elementary possible states and denote by ωi∈Ω a given state.
Sets of states φ, ψ⊆Ω are called events. An interval-based
probability distribution (IPD for short) is defined as follows:
Definition 1 (Interval-based probability distribution). Let Ω
be the set of possible states. An interval-based probability
distribution P is a function that maps every state ωi∈Ω to a
closed interval P (ωi)=[li, ui]⊆[0, 1].

In an IPD P , every state ωi∈Ω is associated with a prob-
ability interval P (ωi)=[li, ui] where li (resp. ui) denotes the
lower (resp. upper) bound of the probability of ωi. In the fol-
lowing, P (ωi) (resp. P (ωi)) denotes the upper (resp. lower)
bound of P (ωi).

In order to be reachable and not empty, the bounds should
satisfy the following constraints:∑

ωi∈Ω

li ≤ 1 ≤
∑
ωi∈Ω

ui

∀ωi ∈ Ω, li +
∑

ωj 6=i∈Ω

uj ≥ 1 and ui +
∑

ωj 6=i∈Ω

lj ≤ 1

We call a model or a member of IPD P any point-wise
(or single-valued) probability distribution p s.t. ∀ωi∈Ω,
p(ωi)∈P (ωi)=[li,ui]. Accordingly, the semantics associated
with an IPD is the set of its models, namely all probabil-
ity measures that comply with the probability intervals. A
credal set K on Ω compactly encoded by an IPD P denotes
the closed convex set of point-wise probability distributions
p that are models of P . Namely,

K = {p | li ≤ p(ωi) ≤ ui, ∀ωi ∈ Ω} (1)

A commonly used way to encode a credal set K is the
vertex-based representation. This is done by specifying a fi-
nite set of standard probability distributions representing the
extreme points of K. An extreme point (also called vertex)
p of a credal set K is a probability distribution such that it
is impossible to find two different probability distributions
p1∈K and p2∈K such that p=α*p1+(1-α)*p2 with α∈]0, 1[.
Enumerating the set of extreme points ext(P ) underlying an
IPD P requires solving a linear program [de Campos et al.,
1994]. An IPD P can be completely represented by the ex-
treme points of the credal set K underlying P .

Reasoning with interval probabilities can either be done at
the semantic level using the credal set induced by probability
intervals or directly manipulating intervals and using interval
arithmetics. Reasoning using a credal set K underlying an
IPD P comes down to exploring all the models of that credal
set2. For instance, marginalizing a credal set K(X,Y ) over
two subsets of variables X and Y is done as follows:

K(X) = {
∑
Y

p(X,Y ) : p ∈ K(X,Y )} (2)

2Alternative approaches consist for instance in selecting the most
informative model (in the sense of information entropy for example)
of K to draw inferences as it is done in [Lukasiewicz, 2001].

For credal sets, the most common form of conditioning on an
event φ⊆Ω is defined as follows :

K(ωi|φ) = {p(ωi|φ) : p ∈ K and p(φ) > 0} (3)
This is often referred to as cautious or robust Bayesian con-
ditioning (see [Moral and De Campos, 1991] for other forms
of conditioning probability intervals).
For computational reasons, reasoning on K is done on
ext(K) which provides an equivalent representation. Indeed,
inference on a credal set K is equivalent to inference on its
extreme points [Walley, 1991; de Campos et al., 1994]. For
instance, marginalizing a credal set K(X,Y ) over two sub-
sets of variables X and Y is done as follows :

K(X) = CH({p(X) : p ∈ ext(K(X,Y )}), (4)
where CH stands for the convex hull operator. Conditioning
of Equation 3 comes down to :
K(ωi|φ) = CH({p(ωi|φ) : p ∈ ext(K) and p(φ) > 0}). (5)

In the following, we briefly recall Jeffrey’s rule in the stan-
dard probabilistic setting.

2.2 Jeffrey’s Rule of Conditioning
Jeffrey’s rule [Jeffrey, 1965] extends the classical probabilis-
tic conditioning to the case where the new information is un-
certain. It allows to update an initial probability distribution
p into a posterior one p′ given the uncertainty bearing on a
set of mutually exclusive and exhaustive events λ={λ1,..,λn}
(namely, λ is a partition of Ω). In this setting, the new input is
in the form (λi, αi), i=1..n where αi denotes the new proba-
bility of λi. Jeffrey’s rule lies on the two following principles:
Success principle (P1).

∀λi ∈ λ, p′(λi) = αi (6)
After the update operation, the posterior probability of each
event λi must be equal to αi as required in the new inputs.
The uncertain inputs are seen as constraints or an effect once
the new information is fully accepted.
Probability kinematics principle (P2).

∀λi ∈ λ,∀φ ⊆ Ω, p(φ|λi) = p′(φ|λi). (7)
This principle aims to ensure a kind of minimal change by
ensuring that the posterior distribution p′ should not change
the conditional probability degrees of any event φ given the
uncertain events λi. Jeffrey’s rule assumes that in spite of the
disagreement about the events λi in the prior distribution p
and the posterior one p′, the conditional probability of any
event φ⊆Ω given any uncertain event λi should remain the
same in the original and the revised distributions.

Given a probability distribution p encoding the initial be-
liefs and new inputs in the form (λi, αi) for i=1..n, the up-
dated probability degree of any event φ⊆Ω is obtained as fol-
lows:

p′(φ) =
∑
λi

αi ∗
p(φ ∩ λi)
p(λi)

. (8)

The posterior distribution p′ obtained using Jeffrey’s rule al-
ways exists and it is unique [Chan and Darwiche, 2005]. Note
that in Jeffrey’s rule, the events λi should be somewhat pos-
sible in the prior distribution (namely, ∀λi∈λ, p(λi)>0).



Candidate Estimate

C1 [0.24, 0.30]
C2 [0.22, 0.26]
C3 [0.14, 0.17]
C4 [0.30, 0,36]

(a)

Wing Estimate

Left [0.49, 0.53]
Right [0.47, 0.51]

(b)

Table 1: Example of probability intervals encoding initial informa-
tion (a) and new uncertain inputs (b).

3 Motivating Example
To illustrate and motivate the interest in expressing and updat-
ing uncertain information in the form of probability intervals,
let us take the example of the polls generally carried out in the
elections and suppose that they are about presidential elec-
tions that are going to take place in a given country. Suppose
for simplicity that there are only four candidates (denotedC1,
C2, C3 and C4) and that in this country the political polariza-
tion is Left wing and Right wing. Assume now that a first poll
of voter preferences for the four candidates on a small sample
yielded the following results in Table 1 (a) (the estimates are
in the form of probability intervals to account for the margin
of error).

Assume now that a second poll on a much larger sample
and where the question is no longer Which candidate are you
going to vote for? but Do you prefer a left wing candidate
or a right wing one? To simplify, we assume that candidates
C1 and C2 are classified in the left wing and the other two in
the right wing. Also, the estimates (see Table 1 (b)) are given
in the form of probability intervals to take into account the
margin of error.
It fully makes sense in this case to update the initial distri-
bution (results of the first poll) with new information (results
of the second poll) as this latter is more confident since it
is carried out on a much larger sample. It is important to
note that the initial information to update is an interval-based
probability distribution P and the new input uncertain is also
an interval-based probability distribution Pnew over a parti-
tion of the set of candidates. This update task is fully in the
spirit of Jeffrey’s rule (the new inputs are uncertain informa-
tion bearing on a partition of Ω and the aim is to give priority
to the new inputs). In this example, the task is not a sim-
ple belief merging but aims at giving priority to new inputs
as in belief revision tasks. This is exactly in line with Jef-
frey’s rule in the standard probabilistic setting. But this lat-
ter handles only point-wise probability distributions and not
interval-based ones. There is to the best of our knowledge no
counterparts to Jeffrey’s rule in the interval-based setting.

4 Updating Credal Sets with Uncertain Inputs
Before addressing updating probability intervals with uncer-
tain inputs, let us first focus on updating credal sets with un-
certain inputs using Jeffrey’s rule. The idea is to use Jeffrey’s
rule to update every distribution p from the prior credal set
K with every distribution pnew from the new input credal set
Knew. In order to apply Jeffrey’s rule on any prior distribu-
tion p from K, we assume that ∀p∈K, ∀λi∈λ, p(λi)>0.

This section answers two fundamental questions: i) does up-
dating a credal set with another credal result in a credal set
and ii) can this update be done by manipulating only the ver-
tices of the credal sets as in the case of conditioning with hard
evidence. The following are the first main results of this paper
(proofs are provided as supplementary material):
Proposition 1. Let K be the closed convex set to update. Let
pnew be a single probability distribution over the partition λ
and encoding the new information. Let K ′ be such that

K ′ = {p′ : p′ = p⊕ pnew; p ∈ K}.

Then K ′ is a convex credal set.
In Proposition 1, p⊕pnew denotes conditioning a point-

wise probability distribution p with new inputs encoded in
the form of a probability distribution pnew over a partition of
Ω using Jeffrey’s rule. This result states that using Jeffrey’s
rule to update each member of a convex credal set K with
the same input distribution pnew results in a convex credal set
K ′. Hence, we generalize the result that conditioning a credal
set with a hard evidence gives a convex credal set.
Proposition 2. Let K be the closed convex set to update and
let p∈K be a single probability distribution. Let Knew be a
credal set over the partition λ and encoding the new informa-
tion at hand. Let K ′ be such that

K ′ = {p′ : p′ = p⊕ pnew; pnew ∈ Knew}.

Then K ′ is a convex credal set.
Proposition 2 states that updating using Jeffrey’s rule a sin-

gle probability distribution p over Ω with each member of
credal set Knew over a partition λ of Ω results in a convex
credal set. Let us now generalize to the case where both K
and Knew are arbitrary convex sets.
Proposition 3. Let K be the closed convex set to update and
Knew be a closed convex set over the partition λ on Ω encod-
ing the new information. Let

K ′ = {p′ : p′ = p⊕ pnew; p ∈ K and pnew ∈ Knew}.

Then K ′ is a convex credal set.
Proposition 3 states that using Jeffrey’s rule to update each

member of a prior credal set K with each member of credal
set Knew results in a convex credal set K ′.

The following proposition states that the extreme points of
the updated credal set K ′ correspond to the updated set of
extreme points of K with the new input using Jeffrey’s rule.
Proposition 4. Let K be the closed convex set to update and
let ext(K) be its set of extreme points. Let pnew be a single
probability distribution over the partition λ and encoding the
new information. Let K ′ be the updated credal set following
Proposition 1. Then

ext(K ′) = {p′ : p′ = p⊕ pnew; p ∈ ext(K)}

is the set of extreme points of K ′.
Lemma 1. Let K be the closed convex set to update and let
ext(K) be its set of extreme points. Let pnew be a single
probability distribution over the partition λ and encoding the



new information. Let K ′ be the updated credal set following
Proposition 1. Then

K ′ = CH({p′ : p′ = p⊕ pnew; p ∈ ext(K)}).

In fact, given that from Proposition 1K ′ is convex (namely,
it contains every convex combination of its extreme points)
and the fact that CH(ext(K ′)) is by definition equal to all
the convex combinations of the finite set ext(K ′) computed
following Proposition 4 then K ′ can be recovered using only
such extreme points.

Proposition 5 and Lemma 2 generalize conditioning credal
sets based on extreme points to the case where the new input
is also a credal set.

Proposition 5. Let K be the closed convex set to update and
Knew be a closed convex set over the partition λ encoding
the new information. Then

ext(K ′) ⊆ {p′ : p′ = p⊕ pnew;

p ∈ ext(K), pnew ∈ ext(Knew)}

This means that an extreme point of K ′ is necessarily a
combination using Jeffrey’s rule of an extreme point of K
with an extreme point of Knew as illustrated in Example 1.
But it is not true that every combination of p⊕pnew such that
p∈ext(K) and pnew∈ext(Knew) is an extreme point of K ′.
This is due to the union operation of convex sets. Indeed, in
the case where the union of convex sets is convex, the extreme
points of the resulting convex set (here ext(K ′)) is included
in the union of sets of extreme points of the starting sets.
Lemma 2. Let K be the closed convex set to update and let
ext(K) be its set of extreme points. Let pnew be a single
probability distribution over the partition λ over Ω and en-
coding the new information. Let K ′ be the updated credal set
following Proposition 3. Then

K′ = CH({p′ : p′ = p⊕pnew; pnew ∈ ext(Knew), p ∈ ext(K)})

Up to now, we showed that updating a credal set K with
another uncertain input in the form of a credal set Knew over
a partition of Ω results in a credal set K ′ and amounts to
updating the extreme points of K with those of Knew using
Jeffrey’s rule. Let us now use such findings to update prior
probability intervals P with new uncertain inputs also in the
form of probability intervals Pnew.

5 Updating Probability Intervals with
Uncertain Inputs

Let us first place Jeffrey’s conditioning rule principles in the
context of probability intervals then provide update methods
complying with such principles.
Let P be the IPD encoding the prior beliefs. Let Pnew be the
IPD encoding the new information in hand. Pnew is of the
form ((λ1, [l1, u1]),..,(λn, [ln, un])). This notation means that
Pnew(λi)=[li, ui]. As in Jeffrey’s rule, the set λ={λ1,..,λn}
is a partition of Ω and we assume that the events λi are some-
what possible in the prior beliefs P (namely, we assume that
∀λi∈λ, P (λi)>0). The properties to satisfy stated in terms
of interval-based probabilities are:

• Success principle (IP1) : It ensures that in the updated
IPD P’, the new information is fully accepted. Namely,

∀λi∈λ, P ′(λi)=Pnew(λi).

This principle enforces posterior intervals to be equal to
the input intervals Pnew(λi).
• Probability Kinematics principle (IP2) : The objec-

tive here is to ensure that the intervals of P are modified
as little as possible to accept the new information while
respecting the probability kinematics principle in order
to avoid affecting non relevant information.

∀λi ∈ λ, ∀φ ⊆ Ω, P (φ|λi) = P ′(φ|λi)

Obviously, in the case of IPDs where lower bounds coincide
with upper bounds (namely, if the initial belief set consists
in a point-wise distribution over Ω and the new inputs are a
point-wise distribution over the partition λ, the principles IP1
and IP2 collapse to P1 and P2 of Jeffrey’s rule of Section 2.2.
The success principle IP1 may be questionable but it may
be a desired property in some applications such as in [Skulj,
2006]. In order to keep in Jeffrey’s rule line, we just rephrase
P1 in the context of probability intervals.
Now given an IPD P encoding the current information and
new information Pnew, there are basically two possible ways
to update P with Pnew: a credal-set based method applying
at the semantic level and an interval-based one manipulating
directly the bounds of the IPDs. In this paper, we rely on
the former for robust conditioning while the latter is used for
Dempster and geometric conditionings.

5.1 Updating Probability Intervals via Robust
Conditioning on the Underlying Credal Sets

Our objective here is to update a belief set consisting of a
prior IPD P with new inputs Pnew also provided in the form
of an IPD over a partition λ of Ω. The belief update here
consists in updating the credal set K underlying P (contain-
ing all the models of P ) by the credal set Knew underlying
Pnew using Jeffrey’s rule. Indeed, one direct way to update a
set of probability measures is to apply Jeffrey’s rule on each
member of the set where the new input is a single probability
measure over the partition λ of Ω.
Following Lemma 2, we can define the update operation us-
ing only the extreme points of K and Knew, namely update
each p∈ext(K) with each pnew∈ext(Knew) using Jeffrey’s
rule then recover the credal set K ′ using the convex hull op-
erator. Once K ′ computed, the IPD P ′ is computed as lower
and upper bounds from K ′. Hence, the credal-based update
method is defined as follows:
Definition 2. Let P be IPD to update and Pnew be the new
input IPD over a partition λ of Ω. Let K ′ be the updated
credal set computed according to Lemma 2 on K and Knew

underlying respectively P and Pnew. P ′ is an IPD on Ω such
that ∀ωi∈Ω,

P ′(ωi) = [infp′∈ext(K′)(p
′(ωi)), supp′∈ext(K′)(p

′(ωi))].

Example 1. Let us assume in this example that the current
beliefs about a given problem over two binary variables A
and B are given by the IPD P (AB). In Table 2, we have



the marginal distribution of A (namely, P (A)), the one of B
(namely, P (B)) and the conditional distribution of A given
B (namely, P (A|B)).

A B P (AB)

a1 b1 [.50, .70]
a2 b1 [.05, .25]
a1 b2 [.10, .10]
a2 b2 [.15, .15]

A P (A)

a1 [.60, .80]
a2 [.20, .40]

B P (B)

b1 [.75, .75]
b2 [.25, .25]

A B P (A|B)

a1 b1 [.67, .93]
a2 b1 [.07, .33]
a1 b2 [.40, .40]
a2 b2 [.60, .60]

Table 2: Example of an initial IPD P and the underlying marginal
and conditional distributions.

Assume now that we have new uncertain inputs given in
probability distribution Pnew(B) as follows:

B Pnew(B)

b1 [.7, .8]
b2 [.2, .3]

In order to update P to absorb Pnew using Defini-
tion 2, we update K with Knew using Lemma 2. Note
that K has two extreme points p1=(.70, .05, .1, .15) and
p2=(.50, .25, .1, .15) and Knew has also two extreme points,
namely pnew1=(.7, .3) and pnew2=(.8, .2).

p1 will be updated into p′1=(.65, .05, .12, .18) and
p′′1=(.75, .05, .08, .12) and p2 will be updated into
p′2=(.47, .23, .12, .18) and p′′2=(.53, .27, .08, .12). Hence
K ′=CH({p′1, p′′1 , p′2, p′′2}).

The updated distribution is given in P ′ of Table 3.

A B P ′(AB)

a1 b1 [.47, .75]
a2 b1 [.05, .27]
a1 b2 [.08, .12]
a2 b2 [.12, .18]

A P ′(A)

a1 [.59, .83]
a2 [.17, .41]

B P ′(B)

b1 [.7, .8]
b2 [.2, .3]

A B P ′(A|B)

a1 b1 [.67, .93]
a2 b1 [.07, .33]
a1 b2 [.40, .40]
a2 b2 [.60, .60]

Table 3: Updated beliefs of the distribution given in Table 2.

Table 2 and 3 show that the new input beliefs Pnew(B)
are fully accepted in the posterior IPD P ′ (see the
marginal distribution P ′(B) computed from the updated dis-
tribution P ′(AB)). Moreover, one can also check that
P (A|B)=P ′(A|B) ∀ai∈DA, ∀bi∈DB .

It is obvious that in case the IPDs P and Pnew underlying
credal sets K and Knew each consisting of only one single
probability distribution then updating P with Pnew following
Definition 2 is equivalent to updating using Jeffrey’s rule.

Lemma 3. If ∀ω∈Ω, P (ω)=P (ω) and ∀λi∈λ,
Pnew(λi)=Pnew(λi) then the posterior distribution P ′

computed following Definition 2 amounts to using Jeffrey’s

rule to update the unique point-wise distribution p∈K
underlying P with pnew∈Knew underlying Pnew.

In the general case, Proposition 6 states that updating using
Definition 2 ensures that principles IP1 and IP2 are satisfied.
Proposition 6. Let P be IPD to update. Let the new infor-
mation be the IPD Pnew over the partition λ of Ω. Let P ′

be the posterior IPD computed from P and Pnew following
Definition 2. Then P ′ satisfies IP1 and IP2.

5.2 Alternatives to Robust Conditioning
Robust conditioning of probability intervals based on updat-
ing at the credal set level suffers from some drawbacks. For
instance, it manipulates extreme points of credal sets under-
lying the IPDs while the number of such extreme points for
an IPD with n states can be up to n! [Wallner, 2007]. More
over, it requires that the events λi must be somewhat pos-
sible in the prior beliefs (namely, ∀λi∈λ, P (λi)>0) which
may be seen as a strong constraint. The alternative then is
to update directly the bounds of the intervals of the IPD to
accommodate the input Pnew and use conditionings that do
not require such strong assumptions. For instance, Dempster
conditioning [Shafer, 1976] directly manipulates the bounds
of the prior IPD P to condition on a new evidence ψ⊆Ω and
it is defined as long as P (ψ)>0. It is defined as follows:

P (φ||ψ) =
P (φ ∩ ψ)

P (ψ)
(9)

The lower bound can be easily obtained by duality (namely,
P (φ||ψ)=1-P (φC ||ψ)=1-P (φC∩ψ)

P (ψ)
. Here φC denotes the

complement of φ in Ω. Proposition 7 extends Jeffrey’s rule
to probability intervals using Dempster conditioning.
Proposition 7. Let P be the IPD to update. Let the new in-
formation be the IPD Pnew on a partition λ of Ω. Let P ′

be the posterior IPD computed from P and Pnew as follows:
∀φ⊆Ω,

P ′(φ) = [1−
∑
λi

P (φC ||λi)∗Pnew(λi),
∑
λi

P (φ||λi)∗Pnew(λi)]

Then P ′ satisfies principles IP1-IP2.
Another common definition of conditioning of probability

intervals is the one of geometric conditioning [Suppes and
Zanotti, 1977] defined as follows:

P (φ|Gψ) =
P (φ ∩ ψ)

P (ψ)
(10)

The upper bound is obtained by duality
P (φ|Gψ)=1− P (φC |Gψ)=1-P (φC∩ψ)

P (ψ)
.

Proposition 8. Let P be the IPD to update. Let the new input
be the IPD Pnew on a partition λ of Ω. Let P ′ be the posterior
IPD computed from P and Pnew as follows: ∀φ⊆Ω,

P ′(φ) = [
∑
λi

P (φ|Gλi)∗Pnew(λi), 1−
∑
λi

P (φC |Gλi)∗Pnew(λi)]

Then P ′ satisfies principles IP1-IP2.
It is easy to check that in case where ∀ω∈Ω, P (ω)=P (ω)

and ∀λi∈λ, Pnew(λi)=Pnew(λi) then updating following
Propositions 7 and 8 collapses to updating using Jeffrey’s rule
in the standard setting (see Equation 8).



6 Related Work and Discussions

Jeffrey’s rule generalizes the standard probabilistic condition-
ing to the case where the inputs are uncertain. This condition-
ing rule has been studied in many uncertainty settings such as
possibility theory [Dubois and Prade, 1997] and Dempster-
Shafer theory [Smets, 1993; Ma et al., 2011]. In [Benferhat
et al., 2010], it is claimed that this rule can successfully re-
cover most of belief revision rules such as natural and drastic
belief revision. In [Skulj, 2006], the author use Jeffrey’s rule
to update a single probability distribution in order to obtain
the desired neighborhood of events of interest expressed only
in terms of interval probabilities. In [Yue and Liu, 2008],
the authors dealt with updating imprecise knowledge in the
framework of probabilistic logic programming. This work
is mostly dealing with revising probabilistic logic programs
and the proposed extension coincides with Jeffrey’s rule and
Bayesian conditioning only when the updated probabilistic
logic program induces a single probability distribution. In
[Marchetti and Antonucci, 2018], the authors propose a fam-
ily of generalized adjustment operators tailored to update
convex sets of probability measures with inconsistent piece
of evidence. In case where the imprecise knowledge is com-
pactly encoded by means of belief graphical models called
credal networks [Cozman, 2000], there is only one work [da
Rocha et al., 2008] dealing with updating a credal network
with soft evidence. Note that the new information here is
not a set of probability intervals but consists in likelihood ra-
tios that can be cast into a single point-wise probability dis-
tribution. The authors in [Ma and Liu, 2011] deal with belief
merging and focus on the influence of the strengths of inputs.
The unique operator complying with the proposed postulates
was proved to be a merging operator.
Updating sets of probability measures is not a new topic
[Grove and Halpern, 1998; Levi, 1980; Walley, 1991; Tabia,
2018]. However, most of this work update sets of proba-
bility measures with hard evidence while the focus of the
current work is updating sets of probability measures with
new inputs both expressed by means of probability inter-
vals. There are essentially two types of generalizations of
Jeffrey’s rule in the literature. The first one concerns rather
generalizations or counterparts of this conditioning rule in
some uncertainty theories such as belief functions [Smets,
1993] or possibility theory [Dubois and Prade, 1997] (note
that such settings do not generalize the one of probabil-
ity intervals and credal sets.). The second type of gen-
eralizations concerns rather the relaxation of the require-
ments of Jeffrey’s rule. For example, in [Smets, 1993] it
is no longer necessary that the new inputs be a partition
of the set of possible states. Moreover, in [Smets, 1993;
Wagner, 1992] the authors deal with the generalization of the
conditionings (including Dempster and the geometric ones)
of belief functions where both the prior information and new
inputs are encoded by means of basic probability assignments
over 2Ω (the powerset of Ω).
Regarding iterative revision, it is well-known that Jef-
frey’s rule is not commutative (since the new inputs are
fully accepted, then updating first with (λi,[li, ui]) then
with (λi,[l′i, u

′
i]) will be different from updating first with

(λi,[l′i, u
′
i]) followed by updating with ((λi,[li, ui])).

Among the questions still open, there is that of the unique-
ness of the proposed extensions (the paper only answers the
question of the existence of extensions) as well as their op-
timality in terms of minimizing the belief change. As men-
tioned earlier, the objective of probability kinematics princi-
ple is to ensure some kind of minimal change. In the standard
probabilistic setting, Jeffrey’s rule was shown to provide the
optimal solution in the sense of a distance measure between
a prior distribution p and the posterior one p′ [Chan and Dar-
wiche, 2005]. One can directly extend such a distance mea-
sure to credal sets as follows :

Proposition 9. Let K and K ′ be two credal sets over the
same states space Ω. Let

D(K,K ′) = max( max
p∈ext(K)

∆(p,K ′), max
p′∈ext(K′)

∆(p′,K)),

where 
∆(p,K′) = min

p′∈ext(K′)
d(p, p′)

d(p, p′) = ln max
ω∈Ω

p′(ω)
p(ω)

− ln min
ω∈Ω

p′(ω)
p(ω)

.

Then D is a distance measure.

The distance measure D combines Hausdorff distance
(measuring distances between sets) with a distance for point-
wise probability distributions specifically designed to bound
belief change yielded by Jeffrey’s rule in the standard prob-
abilistic stetting [Chan and Darwiche, 2005]. Then there re-
mains to show that updating a prior credal set K with new in-
puts in the form of credal set Knew following Lemma 2 guar-
antees that the posterior credal set K ′ is optimal in the sense
of distance D(K,K ′) of Proposition 9. These two questions
of optimality and uniqueness of the solution are part of the
avenues for future work.
Another important open question concerns certain strong re-
quirements of Jeffrey’s conditioning in particular that the new
information relates only to a partition of the set of possible
states and the one requiring that the events λi∈λ be somewhat
possible in the prior beliefs. We have proposed to use Demp-
ster conditioning for this purpose but there are other tracks
and other conditionings that address this problem such as the
conditioning based on adjustment [Marchetti and Antonucci,
2018]. This latter is supposed to absorb even new inconsis-
tent inputs (for instance in case of updating the probabilities
of an event λi which could be impossible in the prior belief
set in the case where P (λi)=0). In addition to these open
questions, other avenues of future work will concern com-
putational complexity and study of extensions of Jeffrey’s
rule with Pearl method of virtual evidence [Pearl, 1988] in
the context of imprecise belief graphical models [Cozman,
2000]. Another avenue will be extending Jeffrey’s rule to the
case where the probabilistic beliefs are compactly encoded by
probabilistic constraints as in conditional logic programs.
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