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An experimental Lagrangian study based on particle tracking velocimetry has13

been completed in an incompressible turbulent round water jet freely spreading14

into water. The jet is seeded with tracers only through the nozzle: inhomogeneous15

seeding called nozzle seeding. The Lagrangian flow tagged by these tracers there-16

fore does not contain any contribution from particles entrained into the jet from17

the quiescent surrounding fluid. The mean velocity field of the nozzle seeded18

flow, 〈Uϕ〉, is found to be essentially indistinguishable from the global mean19

velocity field of the jet, 〈U〉, for the axial velocity while significant deviations are20

found for the radial velocity. This results in an effective compressibility of the21

nozzle seeded flow for which ∇ · 〈Uϕ〉 6= 0 even though the global background22

flow is fully incompressible. By using mass conservation and self-similarity, we23

quantitatively explain the modified radial velocity profile and analytically express24

the missing contribution associated to entrained fluid particles. By considering a25

classical advection-diffusion description, we explicitly connect turbulent diffusion26

of mass (through the turbulent diffusivity KT ) and momentum (through the27

turbulent viscosity νT ) to entrainment. This results in new practical relations28

to experimentally determine the non-uniform spatial profiles of KT and νT (and29

hence of the turbulent Prandtl number σT = νT/KT ) from simple measurements30

of the mean tracer concentration and axial velocity profiles. Overall, the proposed31

approach based on nozzle seeded flow gives new experimental and theoretical32

elements for a better comprehension of turbulent diffusion and entrainment in33

turbulent jets.34

Key words:35

1. Introduction36

Free shear flows, such as jets, wakes or mixing layers, are common flows in nature,37

industry and laboratory, with turbulence arising from mean velocity differences,38

† Email address for correspondence: thomas.basset@ens-lyon.fr
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Figure 1: (a) Laser-induced fluorescence of a turbulent round water jet
spreading into water (adapted from Van Dyke (1982), based on Dimotakis et al.
(1983)). Fluorescent dye is injected through the nozzle, thus white fluid comes
from the nozzle and black fluid from the ambient. We can observe that initially
quiescent fluid is entrained up to the turbulent core of the jet. (b) Schematic of
the jet with cylindrical coordinates (z, r, θ) and velocity components U , V and
W (two-dimensional projection of a three-dimensional jet). The turbulent core

of the jet is fed with entrained fluid.

i.e. from shearing (Pope 2000). The incompressible free round jet, which is the39

flow studied in this article, is a simple configuration generated by a high-speed40

fluid issuing from a small source (nozzle) into a large reservoir with quiescent41

fluid. The jet eventually grows into a flow which is statistically stationary, though42

inhomogeneous in space, with a turbulent core surrounded by a slow (almost at43

rest) non-turbulent flow. Parcels of fluid from the quiescent region are constantly44

crossing the turbulent/non-turbulent interface (TNTI) feeding the jet (Zhou &45

Vassilicos 2020; Cafiero & Vassilicos 2020), a process called entrainment (Corrsin46

& Kistler 1955; Philip & Marusic 2012). The overall dynamics within the core47

of the jet therefore results from both contributions: fluid parcels which have48

been injected through the nozzle together with fluid parcels which have been49

entrained from the ambient. It can be observed in figure 1(a) where fluid coming50

from the nozzle and fluid from the ambient are highly mixed. Figure 1(b) presents51

a schematic of the jet and entrainment process with the notations used in the52

following.53

The major relevance for many natural and industrial systems (volcanic erup-54
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tions, sprays, rocket exhaust, chemical injectors, etc.) together with remarkable55

properties of free round jets have motivated numerous theoretical and experi-56

mental studies of this flow over almost a century (Corrsin 1943; Hinze & Van57

Der Hegge Zijnen 1949; Corrsin & Uberoi 1950; Wygnanski & Fiedler 1969;58

Panchapakesan & Lumley 1993a; Hussein et al. 1994; Pope 2000; Schlichting &59

Gersten 2017). One of the most remarkable properties revealed by these studies60

is that, sufficiently far downstream from the nozzle (typically a few tens of nozzle61

diameters D), free round jets become self-similar with increasing downstream62

distance z from the nozzle: the spatial dependence of velocity statistics (including63

the mean and fluctuating axial and radial velocity profiles) can be simply rescaled64

and expressed in terms of a single spatial variable η = r/z, where r is the65

radial coordinate (note that due to axisymmetry, the statistics of free round jets66

are trivially independent of the circumferential coordinate θ). Interestingly, self-67

similarity does not only hold for the kinematic properties of the jet, but also for68

its mixing properties. For instance, if a passive scalar (temperature, dye, aerosol,69

etc.) is injected through the nozzle, the streamwise evolution of the concentration70

field also exhibits self-similarity with spatial profiles only dependent on the self-71

similar variable η = r/z (Dowling & Dimotakis 1990).72

Self-similarity has profound consequences, both on physical properties and on73

the development of reduced models for the jet. From the physical point of view,74

one of the most celebrated consequences of self-similarity in a free round jet75

(associated to the specific decay laws of that geometry) is for example that76

the turbulent Reynolds number Re in the self-similar region is independent of77

the distance to the nozzle (Pope 2000). On the modelling side, self-similarity78

combined to other relevant approximations (such as the turbulent boundary-79

layer equations) allows derivation of analytical solutions for the jet velocity and80

concentration profiles, in terms of effective turbulent transport coefficients such81

as the turbulent viscosity νT and the turbulent diffusivity KT (related by the82

turbulent Prandtl number σT = νT/KT ). These coefficients are crucial to model83

the turbulent mixing of passive scalars injected through the nozzle (Batchelor84

1957; Chua & Antonia 1990; Tong & Warhaft 1995; Pope 2000; Chang & Cowen85

2002). However, in spite of the relatively deep knowledge achieved today on86

free round jets, important questions still remain, even regarding such simple87

large-scale momentum and mass transport properties. In particular, the precise88

role of entrainment on the self-similar velocity and concentration profiles, on89

the momentum and mass transport coefficients and on their eventual spatial90

inhomogeneity is not yet elucidated.91

From the seminal study of entrainment by Morton et al. (1956), numerous92

studies have been realised to characterise it, from simulations (Mathew & Basu93

2002; Watanabe et al. 2016) to particle image velocimetry (Westerweel et al.94

2005, 2009; Mistry et al. 2016, 2019) and particle tracking velocimetry (Wolf95

et al. 2012). Nevertheless they have mainly focused on the dynamics of the96

TNTI and the mechanisms in its vicinity by which ambient parcels of fluid97

get trapped into the core of the jet, generally distinguishing the role of large-98

scale structures (engulfment) and small-scale eddy motions (nibbling) (Philip &99

Marusic 2012). At this point, we can also notice the works of Dopazo (1977)100

and Dopazo & O’Brien (1979) which “separate” the flow into turbulent and101

non-turbulent regions, leading to an analogous approach that our Lagrangian-102

based study presented in the following, but with a Eulerian point of view. We103

do not address here such, rather local, entrainment mechanisms, but rather104
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question, in a Lagrangian perspective (entrainment is innately Lagrangian), the105

impact of entrainment on the global Eulerian properties of the turbulent core106

of the jet. In other words, when describing the large-scale characteristics of107

the jet, such as the self-similar mean axial and radial velocity profiles and the108

turbulent viscosity and diffusivity, can we distinguish (and eventually separate)109

the contribution from fluid parcels which have been injected through the nozzle110

(which we shall call in the sequel nozzle seeded particles) and that from fluid111

parcels which have been entrained into the jet (which we shall call in the sequel112

entrained particles)? The question is far from rhetorical as in many practical113

situations nozzle seeded and entrained particles are physically distinct, though114

coupled. It is the case for instance of sprays, eruptions, chimneys, etc., where115

actual particles or parcels of fluid carrying a passive scalar (concentration field,116

temperature, etc.) of interest are injected solely through the nozzle although their117

subsequent spread is affected by their coupling with the parcels of fluid entrained118

from the ambient medium. How deep into the core of the jet do entrained119

particles influence the dynamics of nozzle seeded particles? How substantial120

is their influence on the effective transport coefficients? In particular, can we121

quantitatively measure and/or predict the influence of entrained particles on the122

dispersion of nozzle seeded particles? Is this influence homogeneous in space or123

does it impact differently the borders and the centre of the jet? Such are the124

questions we aim to address in the present article.125

In reference Eulerian measurements (such as hot-wire anemometry) carried out126

to characterise turbulence in jets, both contributions are naturally entangled as127

the sensor does not distinguish the origin (nozzle or ambient) of the fluid parcels128

it is probing. The distinction between nozzle seeded and entrained particles is129

intrinsically Lagrangian as it concerns specifically tagged particles according to130

the initial position of their trajectories. With this respect, this distinction can also131

be investigated with Eulerian measurement techniques based on particles, such132

as particle image velocimetry or laser Doppler velocimetry, if they are used with133

the Lagrangian conditioning presented at the end of the introduction, which is134

an inhomogeneous seeding situation. This inhomogeneous seeding differs from the135

usual homogeneous seeding required to access truly Eulerian fields. Effects of such136

an inhomogeneous seeding are known and generally classified, in studies aiming at137

exploring global jet properties (Hussein et al. 1994; Martins et al. 2021), as source138

of experimental bias. But, to the authors’ knowledge, no quantitative physical139

understanding have been proposed to describe this bias. This metrological aspect140

is an additional motivation to study the distinction between nozzle seeded and141

entrained particles.142

Beyond the fundamental or metrological aspect of disentangling the role of143

nozzle seeded and entrained particles on the overall jet dynamics, this distinction144

is also of relevance for applications such as particle-laden jets and the mixing of a145

passive scalar injected within the jet. In such situations, particles (or substances)146

come from the nozzle and get dispersed as they mix with entrained particles.147

Note that in particle-laden jets, the dynamics of the particles may be further148

complicated by their finite inertia (related to their finite size and/or density149

mismatch relative to the carrier flow). We do not address in the present work the150

role of inertia, and will only consider the case of Lagrangian (without inertia)151

tracers whose dynamics reflects that of fluid parcels. However, we will show in152

the conclusion that some general ideas of our study are still relevant for jets laden153

with inertial particles.154
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To achieve such a Lagrangian distinction, the present study focuses on the155

dynamics of tracer particles solely injected through the nozzle of the jet (nozzle156

seeding), which we compare to the known behaviour for the global Eulerian157

properties of the jet, which naturally includes both (nozzle seeded and entrained)158

contributions. Our study combines experimental measurements together with new159

theoretical formulations derived specifically for the sole contribution of the flow160

tagged by nozzle seeded particles, and accounting for mass conservation and self-161

similarity. By doing so, several remarkable findings are obtained:162

• First, we experimentally show that the mean axial velocity profile associated163

to nozzle seeded particles marginally differs from the global Eulerian profile.164

Whereas the measured radial velocity profile of the flow tagged by nozzle seeded165

particles is found to be compressible (i.e. non-divergence free): the continuity166

equation, ensuring the zero-divergence of the global Eulerian velocity field, is only167

fulfilled if both, nozzle seeded and entrained particles, are considered together and168

not separately.169

• Second, this observation leads to the consideration of the tracer concentration170

field for the continuity equation. A simple relation between the axial and the171

radial mean velocity profiles of the nozzle seeded flow is found and, by comparison172

to its well-known counterpart for the global Eulerian description of the jet, allows173

clear identification of the contribution due to entrainment, up to the core of the174

jet.175

• Third, by describing the dispersion of nozzle seeded particles as a classical176

advection-diffusion process, we relate the turbulent diffusivity KT (η) (which is177

assumed space-dependent and self-similar) to the effective compressibility of178

the nozzle seeded flow previously mentioned, hence to the entrainment process.179

Based on this relation, we propose a novel approach to measure the spatial180

profile of KT (η), which is found to depend on the mean axial velocity and181

tracer concentration profiles. This approach can be extended to the estimate182

of the turbulent viscosity νT (η), which follows a similar relation and thus is183

also related to entrainment. Finally, combining these two quantities, we derive a184

simple expression of the turbulent Prandtl number σT (η) which is experimentally185

measured.186

In § 2, we present the experimental set-up and particle tracking methods used187

to characterise the dynamics of nozzle seeded particles. Sections 3 and 4 provide188

experimental and theoretical results for the mean axial and radial velocities of189

the flow associated to nozzle seeded particles. In § 5, results about turbulent190

transport coefficients based on advection-diffusion model are reported. Finally,191

main conclusions are summarised in § 6.192

2. Experimental methods193

2.1. Experimental set-up194

A water jet seeded with particles was studied in the Lagrangian Exploration195

Module (LEM) at the École Normale Supérieure de Lyon. The vertical water jet196

is injected with a pump connected to a reservoir into the LEM, a convex regular197

icosahedral (20-faced polyhedron) tank full of water. A schematic of the set-up is198

shown in figure 2. The jet is ejected upwards from a round nozzle with a diameter199

D = 4 mm. At the nozzle exit, the flow rate is Q ' 10−4 m3/s, generating an200

exit velocity UJ ' 7 m/s, and, in turn, a Reynolds number based on the nozzle201
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Figure 2: Schematic of the experimental set-up. The three high-speed cameras
are oriented orthogonal to the brown faces.

diameter ReD = UJD/ν ' 2.8× 104 with ν as the water kinematic viscosity. An202

overflow valve releases the excess water from the top of the tank at the same rate203

as injection from the nozzle. Experiments are performed at ambient temperature.204

The vertical position of the nozzle is chosen to observe a jet sufficiently far from205

the walls to discount momentum effects from the LEM onto the jet (Hussein206

et al. 1994), and thus a free jet is observed. The interrogation volume spans207

100 mm 6 z 6 180 mm (25 6 z/D 6 45) with the z axis along the jet axis and208

z = 0 the nozzle exit position. In this region, the jet is self-similar (self-similarity209

holds for z & 15D) and the centreline velocity is between 1 and 2 m/s.210

The particles, seeding the jet during injection, are neutrally buoyant spherical211

polystyrene tracers with a density ρp = 1060 kg/m3 and a diameter dp = 250 µm.212

The reservoir is seeded with a mass loading of 0.05% (reasonable seeding to213

observe a few hundreds of particles per frame) and an external stirrer maintains214

homogeneity of the particles. The quiescent water inside the LEM is not seeded,215

therefore tracked particles are, in principle, only those injected into the mea-216

surement volume through the nozzle. In practice, it is unavoidable that some217

few particles eventually end up being resuspended in the surrounding fluid and218

reentrained within the jet. This could be caused by several phenomena: the flow219

rate within the jet is growing with the axial distance due to entrainment and thus220

part of the core of the jet cannot flow out and remains in the LEM with some221

tracers; rarely, some particles can be detrained and reentrained later or, in the222

same way, drift out due to their slight inertia or finite size effect. The main effect223

is probably that, because between each movie we switch on and off the jet, while224

nearly all the injected particles are eliminated in the overflow, some particles225

stay in the LEM when the jet is switched off. The probed flow is therefore almost226

exclusively tagged by nozzle seeded particles with a minor residual contribution227

of entrained particles (residual homogeneous seeding). In the following, we will228

refer to this specific seeding as nozzle seeding. Additional measurements with a229

homogeneous seeding in the whole volume of the LEM (mass loading of 0.1%)230

without nozzle seeding are also realised and will be discussed too. The inlet231
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valve is open some seconds before the recording, in such a way that the jet is232

stationary but minimal particle recirculation occurs, assuring a limited pollution233

of the surrounding fluid with particles or any spurious background flow.234

Three high-speed cameras (Phantom V12, Vision Research) mounted with235

100 mm macro lenses (Zeiss Milvus) are used to track the particles. The interroga-236

tion volume is illuminated in a back-light configuration with three 30 cm square237

light-emitting diode panels oriented one opposite to each camera. The spatial238

resolution of each camera is 1280 × 800 pixels, creating a measurement volume239

of around 80 × 100 × 130 mm3. Hence one pixel corresponds to approximately240

0.1 mm. The three cameras are synchronised via TTL triggering at a frequency241

of 6 kHz for 8000 snapshots, resulting in a total record of nearly 1.3 s per run. A242

total of 50 runs are performed to ensure statistical convergence.243

2.2. Particle tracking and post-processing244

Lagrangian particle tracking requires three main steps to compute the tracks:245

particle detection, stereoscopic reconstruction and tracking. A brief description246

of the method is presented herein (the particle tracking source codes used for the247

present study are available on request).248

(i) Particle detection enables the measurement of positions of the centres249

of the particles in the camera images by using an ad hoc process based on250

classical methods of image analysis such as nonuniform illumination correction251

and centroid detection.252

(ii) Stereoscopic reconstruction aims at finding the particle coordinates in253

three-dimensional space by combining the two-dimensional views from the three254

cameras. To achieve this, an accurate calibration is required, allowing the con-255

nection of pixel coordinates to real world coordinates. A recent polynomial256

calibration developed in Machicoane et al. (2019) and the matching algorithm257

by Bourgoin & Huisman (2020) are used. The maximum tolerance of ray crossing258

for stereoscopic matching errors (due to experimental noise such as pixel locking259

and thermal noise of camera CMOS sensor) is set to 50 µm, i.e. one-fifth of the260

particle diameter.261

(iii) Tracking of the particles through time transforms the cloud of points into262

trajectories. This is obtained with a classical nearest neighbour approach to263

initialise tracks and coupled with a predictive tracking based on a linear fit over264

the five previous positions (Ouellette et al. 2006; Viggiano et al. 2021).265

Finally, the trajectories are smoothed by convolution with a Gaussian kernel266

and the velocities are computed by convolving tracks with a first-order derivative267

Gaussian kernel (Mordant et al. 2004). We stress that smoothing does not268

degrade the temporal resolution for the velocity estimates presented here as the269

sampling frequency of the cameras (6 kHz) oversamples the dissipation time scale270

τη between 0.3 and 0.8 ms (Viggiano et al. 2021). Smoothing improves the signal-271

to-noise ratio of velocity estimates, whose absolute accuracy is estimated (from272

small scale Lagrangian increments statistics (Viggiano et al. 2021)) of the order273

of 10−3 m/s. Considering that the typical axial velocity of the jet on the axis is274

1 m/s, this accuracy corresponds to a dynamical range of velocity resolution of275

about 3 orders of magnitude. The corresponding error bars in the mean velocity276

profiles discussed in this article are therefore of the order of the size of the points277

in the plots and will be omitted.278

The coordinate basis is adapted by coinciding the z axis with the jet axis and279

centring it in x and y directions. Positions and velocities are computed in adapted280
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Figure 3: A sample of tracks: 14 182 tracks longer than or equal to 50 frames
(one colour per trajectory, one film considered). The majority of the particles

come from the nozzle, a few of them come from the tank.

cylindrical coordinates. A visualisation of tracks is shown in figure 3. It can be281

noted that most trajectories come from the nozzle (where they are injected) and282

very few come from the outside and correspond to particles entrained into the283

jet (visible in figure 3 as radial trajectories towards the jet). The full data set284

is comprised of 3.5× 106 trajectories longer than or equal to 4 frames with a285

mean length of 29 frames, which corresponds to 1.0× 108 particle positions and286

velocities obtained from 50 independent runs. This amount of statistics ensures287

sufficient convergence, in spite of the strong axial and radial spatial conditioning288

we will use (axisymmetry of the configuration allows to average statistics over the289

circumferential component). As a consequence, all points of the velocity profiles290

for the nozzle seeding experiments we will present result from averages taken over291

several 103 or 104 points.292

A more complete description of the hydraulic and optical set-ups as well as293

Lagrangian particle tracking and post-processing methods is given in Viggiano294

et al. (2021) which focuses on Lagrangian statistics in the same flow.295

3. Mean velocity field296

We define the axial velocity U(z, r, θ, t) with z the axial coordinate, r the radial297

one, θ the circumferential one and t the time. We also define the radial velocity298

V (z, r, θ, t) and the circumferential velocity W (z, r, θ, t). The z axis is the jet299

axis and z = 0 is the nozzle exit position (see figure 1b). The Eulerian statistics300

(i.e. time averaged statistics) of these quantities (mean fields, Reynolds stresses,301

etc.) are well-known through classical Eulerian metrology, such as hot-wire or302

laser-Doppler anemometry (Wygnanski & Fiedler 1969; Panchapakesan & Lumley303

1993a; Hussein et al. 1994; Pope 2000; Lipari & Stansby 2011). Time average is304
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denoted 〈·〉 and time averaged quantities are referred as mean quantities (the305

studied jet is in stationary state).306

In the present study, we focus on the mean axial velocity field 〈U〉(z, r)307

(independent of θ because of axisymmetry) and the mean radial velocity field308

〈V 〉(z, r) which is smaller than 〈U〉 by one order of magnitude. The mean309

circumferential velocity 〈W 〉 is zero (experimentally it was found to be four orders310

of magnitude smaller than 〈U〉) because we are considering a non-swirling jet.311

We will also investigate in the next section the mean concentration field 〈ϕ〉(z, r)312

of nozzle seeded particles as they spread.313

We shall distinguish in the sequel the Eulerian fields of the global jet, 〈U〉 and314

〈V 〉 (which would be measured with a homogeneous seeding), and the fields of315

the flow solely tagged by nozzle seeded particles, which we denote 〈Uϕ〉 and 〈Vϕ〉316

(other related quantities would also be differentiated from those of the global jet317

with the subscript ϕ).318

In practice, these fields are retrieved from the aforementioned Lagrangian319

experiments, based on nozzle seeded particle trajectories. We consider all particles320

for all films and all time steps, and bin the measurement volume to compute321

the mean axial or radial velocity of all particles inside each bin. The resulting322

fields can be compared to the mean fields from Eulerian measurements. Since the323

flow is only tagged with nozzle seeded particles, we eventually expect to observe324

differences between the retrieved velocity field and the Eulerian velocity field of325

the global jet: 〈U〉 6= 〈Uϕ〉 and 〈V 〉 6= 〈Vϕ〉.326

In the two following subsections, dedicated respectively to the mean axial and327

radial velocity, we first recall the classical known properties of the mean Eulerian328

velocity field (compiled in Pope (2000) and Lipari & Stansby (2011)), then we329

compare them with those Lagrangian-based measurements.330

3.1. Mean axial velocity331

We first recall known properties of the mean axial velocity in the self-similar332

region far from the nozzle (approximately for z & 15D with D the nozzle333

diameter). We consider the mean centreline velocity U0(z) = 〈U〉(z, r = 0), and334

its half-width r1/2(z) such that 〈U〉(z, r = r1/2(z)) = U0(z)/2. Self-similarity335

enables characterisation of the mean axial velocity by these three relations:336

U0(z) =
BUJD

z − z0
, (3.1)337

with UJ the jet axial velocity at the nozzle, z0 a virtual origin, and B a dimen-338

sionless constant (typical values are z0 ' 4D and B ' 5.8 according to Pope339

(2000) and Lipari & Stansby (2011));340

r1/2(z) = S(z − z0), (3.2)341

with S a dimensionless constant (typical value is S ' 0.094 according to Pope342

(2000) and Lipari & Stansby (2011));343

f(η) =
〈U〉(z, r)
U0(z)

, (3.3)344

which is the radial profile in its self-similar form with the dimensionless self-345

similar coordinate η = r/(z − z0).346

The self-similar mean axial velocity profile f must satisfy some constraints: by347
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Figure 4: Characterisation of the mean axial velocity field 〈Uϕ〉 based on
trajectories with a nozzle seeding. (a) Radial profiles of the mean axial velocity
〈Uϕ〉 (crosses: experimental points, solid lines: Gaussian fit). (b) Mean centreline
velocity U0ϕ(z) (crosses: experimental points, solid line: fit (3.1)). (c) Half-width
r1/2ϕ(z) (crosses: experimental points, solid line: fit (3.2)). (d) Self-similar

profiles fϕ(η) (3.3) (crosses: experimental points, solid line: fit (3.5)).

definition f(0) = 1, while f ′(0) = 0 because f is even and smooth (the prime348

notation represents the derivative with respect to the self-similar variable η).349

It is also expected to decrease towards 0 as η increases (i.e. downstream and/or350

outwards the jet). However, no exact analytical expression is known for f . Because351

the jet and other free shear flows are slender flows, i.e. they do not extend far352

in the lateral direction and mainly extends in the axial direction, the averaged353

turbulent boundary-layer equations are the usual theoretical framework for the jet354

(Schlichting & Gersten 2017). Using these equations as an approximation for the355

jet dynamics and assuming a constant (uniform) turbulent viscosity (Pope 2000;356

Schlichting & Gersten 2017) (it will be further discussed in § 5 and appendix B),357

an approximate analytical expression can be calculated for f leading to a squared358

Lorentzian function:359

f(η) ' (1 +Aη2)−2, (3.4)360

with A = (
√

2 − 1)/S2. Experimentally, the squared Lorentzian profile is found361

to reasonably hold near the jet centreline (η . 0.15), but to deviate from the362

measured profile at larger η. This indicates that an accurate description of the363

self-similar mean profile must account for the non-uniformity of the turbulent364

viscosity, which requires to be experimentally determined. It is empirically found365

that an improved global fit of f is obtained using a Gaussian function (So &366

Hwang 1986):367

f(η) ' e−Aη
2

, (3.5)368

with A = log(2)/S2.369

The estimate of the mean field 〈Uϕ〉 (based on experimental trajectories with a370

nozzle seeding) is performed in cylindrical coordinates (z, r, θ) and then averaged371

over θ (due to axisymmetry) leading to statistics in the two-dimensional space372

(r, z). In practice, we bin space in r and z every 0.5 mm and compute the mean373

axial velocity of the particles inside each bin. For the self-similar profiles, we374

bin in η by steps of 0.01. Figure 4 shows the radial profiles of the mean axial375

velocity 〈Uϕ〉(z, r) at different downstream positions z, the axial evolution of376

the mean centreline velocity U0ϕ(z) and of the half-width r1/2ϕ(z), and the self-377

similar profile fϕ(η) measured in our experiment when probing solely nozzle378

seeded particles.379

When comparing the nozzle seeded particle measurements with the classical380

Eulerian relations given by (3.1), (3.2) and (3.3), we observe an excellent agree-381

ment. In particular self-similarity is very well satisfied, with a Gaussian self-382
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similar profile fϕ and fitting parameters Bϕ = 5.3 and Sϕ = 0.105 (Aϕ = 63),383

which are consistent with those classically determined for the global Eulerian384

jet dynamics (Pope 2000; Lipari & Stansby 2011). The value of Sϕ is found385

slightly larger than the values reported in Eulerian measurements which usually386

span between 0.09 and 0.10 (Lipari & Stansby 2011), suggesting that the nozzle387

seeded particle profile is slightly wider than the actual Eulerian profile. Despite388

this small difference, we will consider in the sequel that f ' fϕ.389

This first observation suggests that the axial dynamics of nozzle seeded particles390

accurately represents the global axial Eulerian dynamics, even if entrained parti-391

cles are not probed. It will be further qualitatively discussed in the next subsection392

and quantitatively justified in section 5. We will see in the next subsection that,393

on the contrary, entrained particles play a crucial role on the mean radial velocity394

profile.395

3.2. Mean radial velocity - An incompressibility paradox396

We now perform the same study for the mean radial velocity. As previously done397

with the mean axial velocity 〈U〉, we can define a self-similar profile for the mean398

radial velocity 〈V 〉:399

g(η) =
〈V 〉(z, r)
U0(z)

. (3.6)400

Interestingly in an incompressible jet, 〈U〉 and 〈V 〉 are linked through the conti-401

nuity equation402

∇ · 〈U〉 = 0, (3.7)403

where 〈U〉 = 〈U〉ez + 〈V 〉er. Combining equation (3.1) and definitions (3.3)404

and (3.6), the continuity equation (3.7) can be rewritten as (Pope 2000)405

η(ηf(η))′ = (ηg(η))′, (3.8)406

which can be integrated to obtain the following general relation between the407

self-similar mean radial and axial profiles for the global Eulerian dynamics of an408

incompressible free round jet:409

g(η) = ηf(η)− 1

η

∫ η

0

xf(x) dx. (3.9)410

Knowing that f(0) = 1 and f ′(0) = 0, we deduce that g(0) = 0, g′(0) = 1/2 and411

g′′(0) = 0. Using the empirical Gaussian approximation (3.5) for f , equation (3.9)412

gives the following approximated expression for g:413

g(η) ' ηe−Aη
2

− 1− e−Aη2

2Aη
. (3.10)414

Figure 5 presents the experimental mean radial velocity profile gϕ(η) for the415

nozzle seeding case (obtained as for the axial velocity, binning z in steps of416

0.5 mm and η in steps of 0.02), which is compared to the self-similar profile417

g(η) (3.10) expected for 〈V 〉 from the previous incompressibility considerations418

for the global Eulerian profile. It can be observed that, though the measured419

profiles of gϕ do hold self-similarity, they strongly deviate from the expected self-420

similar incompressible profile for the global jet g. More specifically, three points421

can be highlighted: (i) the amplitude of the measured maximums of gϕ is twice422

that of the expected incompressible profile g, (ii) the measured profiles cross zero423
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Figure 5: Self-similar profiles gϕ(η) (3.6) for a nozzle seeding (crosses:
experimental points, solid line: fit (3.10) with Aϕ = 63 previously found for

fϕ(η)).

Figure 6: Self-similar profiles g(η) for a homogeneous seeding in the whole
volume of the LEM without nozzle seeding (crosses: experimental points, solid

line: fit (3.10) with A = 79).

at a much higher value of η, and (iii) the slope at the origin (η = 0) of the424

measured self-similar profile is 1 instead of 1/2.425

Overall, contrary to the mean axial velocity profile which is essentially indistin-426

guishable between the nozzle seeding case and the global Eulerian field (fϕ ' f),427

the mean radial velocity profile is strongly affected by the nozzle seeding up428

to the core of the jet (gϕ 6= g). Since the radial and axial velocity profiles are429

classically linked by simple incompressibility considerations (as just discussed),430

and considering that the jet under investigation does operate in incompressible431

conditions, this discrepancy may appear at first sight as a paradox.432

In order to rule out any possible experimental error at the origin of the433

major difference observed between the measured profile with a nozzle seeding434

gϕ and the expected global incompressible profile g, we performed experiments435

with an actual homogeneous seeding in the whole volume of the tank. The436

measured radial profile g(η), shown in figure 6, accurately matches the expected437

incompressible profile (3.10). Some discrepancy can be observed for η & 0.2,438

which can be attributed to the fact that f is less well fitted by a Gaussian439

function as it decreases towards zero. Moreover, with this homogeneous seeding,440

we find S = 0.094 which is a usual value for S (Lipari & Stansby 2011).441

This therefore confirms that when homogeneous seeding is used, global mean442

radial and axial velocity profiles f and g are correctly retrieved by the particle443

tracking measurements and found to be consistently related by the incompress-444

ibility constraint leading to (3.9). While for nozzle seeding, fϕ ' f but gϕ truly445
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deviates from g and appears to not comply with the incompressibility constrain.446

As a matter of fact, such an impact on the seeding properties on the retrieved ve-447

locity profiles is well known from experimentalists using particle-based metrology448

(as stated in the introduction with particle image velocimetry or laser Doppler449

velocimetry). Martins et al. (2021) for instance report similar observations for450

particle image velocimetry in an annular jet: axial velocity profiles are almost451

indistinguishable between the two seedings while radial velocity profiles strongly452

deviate. Such deviation is usually addressed simply in terms of an experimental453

bias to be mitigated, but no quantitative physical explanation has been proposed.454

Section 4 presents a simple theoretical explanation (based on mass conservation455

and self-similarity properties of the jet) of this apparent paradox. The proposed456

theory quantitatively describes the experimental observations through an effective457

compressibility of the velocity field associated to nozzle seeded particles. The458

physical origin of this effective compressibility relies on the role played by en-459

trained particles, not accounted for when only nozzle seeded particles are tracked.460

Before presenting these theoretical developments, we briefly discuss the qual-461

itative reasons of why nozzle seeding (compared to homogeneous seeding) may462

strongly impact the radial profile g and not the axial profile f . The source of463

momentum in the jet is the nozzle injection, which provides primarily axial464

momentum. Entrained particles, which are captured in the jet by the inward465

transverse pressure gradient, are on the contrary the main source of radial466

momentum. As they penetrate into the jet, entrained fluid parcels eventually467

acquire an axial momentum, transferred from the nozzle seeded fluid parcels,468

which in turn lose axial momentum, which results in the streamwise decay of the469

jet. In the final steady state both the nozzle and entrained fluid parcels eventually470

equilibrate to the same axial velocity, with almost indistinguishable profiles.471

On the contrary the radial velocity is expected to behave radically differently472

for nozzle and entrained particles. Indeed, particles entrained from outside to473

inside the jet acquire a negative radial velocity to reach the core of the jet and474

therefore contribute negatively to the global radial velocity profile g. As they do475

so, mass and momentum conservation require fluid parcels from the core of the476

jet to move outwards, with a positive radial contribution to g. Therefore, when477

a homogeneous seeding is considered, the combination of these two contributions478

(outward spreading and inward entrainment) eventually leads to the global radial479

profile g (see figure 6), where spreading dominates in the centre (g(η) > 0 for480

η < 0.13) and entrainment dominates on the sides (g(η) < 0 for η > 0.13). When481

only nozzle seeded particles are tagged, the inward contribution of entrained482

particles is not accounted in gϕ. As a consequence, an overall hindering of the483

negative radial contribution associated to those particles is expected, leading to484

a higher and mostly positive profile for gϕ, which therefore considerably deviates485

from the global radial profile g as experimentally measured (see figure 5).486

We present in the next section a simple theoretical and quantitative justification487

for the deviation between g and gϕ, based on mass conservation and self-similarity,488

explaining the apparent compressibility of gϕ and explicitly giving the associated489

contribution of entrainment on the global incompressible radial velocity profile g.490

4. Effective compressibility of nozzle seeded profiles and entrainment491

We qualitatively explained the differences between g and gϕ by the absence of the492

contribution due to entrained particles in gϕ. We also pointed that, considering493
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(a) (b)

Figure 7: Characterisation of the mean concentration field 〈ϕ〉. (a) Centreline
concentration ϕ0(z) (crosses: experimental points, solid line: fit in 1/(z − z0)).
ϕ0 is the sum of the concentrations from all films at all time steps, which

explains the high values of ϕ0, but only the relative evolution along z is relevant.
(b) Self-similar profiles Φ(η) (4.2) (crosses: experimental points, dashed line:

fϕ(η) previously measured). The profiles of Φ(η) are wider than those of fϕ(η).

that f ' fϕ and that g as expressed in equation (3.10) comes directly from494

incompressibility considerations, the discrepancy between gϕ and g implies that495

the measured mean velocity field 〈Uϕ〉 associated to nozzle seeded particles496

behaves as compressible, i.e. ∇ · 〈Uϕ〉 6= 0. This is at first sight in contradiction497

with the experimental conditions as the free jet under investigation is actually498

incompressible. The apparent compressibility of the flow tagged solely by nozzle499

seeded particles is actually a simple consequence of the inhomogeneous seeding500

(as presented in figure 6, with a homogeneous seeding in the whole experimental501

volume, the retrieved velocity profiles do comply with incompressibility). In this502

section, we rationalise this effective compressibility, giving an explicit relation503

between g and gϕ which emphasises the contribution of entrained particles.504

4.1. Nozzle seeding model505

To account for effective compressibility and compute gϕ, we propose to generalise506

the classical approach relating mean radial and axial velocity profiles through507

incompressibility, in order to account for the inhomogeneity of the concentration508

field (itself due to the inhomogeneous seeding).509

We denote ϕ(z, r, θ, t) the instantaneous concentration field of nozzle seeded510

tracers. As we did for the mean axial and radial velocities, we consider the mean511

concentration field 〈ϕ〉(z, r). The continuity equation for the mean concentration512

field 〈ϕ〉 and the mean velocity field 〈Uϕ〉 imposes that513

∇ · (〈ϕ〉〈Uϕ〉) = 0. (4.1)514

Note that, because by definition Uϕ is exactly the advection velocity of the515

nozzle seeded tracers (not including any eventually unknown random velocity516

perturbation, Uϕ is not a Eulerian field), the continuity equation as written517

above for the mean (concentration and velocity) fields is exact, as there is518

no additional diffusion term associated to the transport of the tracers by the519

unperturbed advection velocity Uϕ. Note also that for a homogeneous seeding520

(i.e. 〈ϕ〉 independent of all spatial coordinates), equation (4.1) naturally reduces521

to the classical incompressible relation∇·〈Uϕ〉 = 0, which however does not hold522

when 〈ϕ〉 is inhomogeneous, as for the case of nozzle seeded tracers investigated523

here.524

To solve equation (4.1), we first characterise the mean concentration field525

〈ϕ〉(z, r). Figure 7 shows the main properties of 〈ϕ〉: the mean centreline con-526
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centration ϕ0(z) evolves as 1/(z − z0) and we can define a self-similar profile527

Φ(η) =
〈ϕ〉(z, r)
ϕ0(z)

, (4.2)528

with ϕ0(z) ∝ 1/(z − z0). The fact that 〈ϕ〉 evolves as 〈U〉 can be justified by529

the behaviour of a conserved passive scalar in a jet. Actually, it is known that,530

because the boundary-layer equations for the mean axial velocity 〈U〉 and a scalar531

field 〈ϕ〉 are similar, a conserved passive scalar scales with z in the same way as532

the mean axial velocity does, and the self-similar profile is similar, usually wider533

(see Pope (2000)). For the present concentration field, the profiles of Φ are wider534

than those of f , this difference of width and also the shape of Φ will be discussed535

in the next section.536

From equation (4.1) and definition (4.2), we infer that self-similar profiles of537

mean concentration, radial and axial velocity of nozzle seeded particles must538

satisfy the following relation:539

Φ(η)[(ηgϕ(η))′ − η(ηfϕ(η))′] + η[gϕ(η)Φ′(η)− fϕ(η)(ηΦ(η))′] = 0, (4.3)540

which simplifies to541

gϕ(η) = ηfϕ(η). (4.4)542

The details of this calculation are given in appendix A. It can be noticed that543

this result does not depend on the exact shape of Φ: only the dependence of ϕ0(z)544

in 1/(z − z0) and the self-similarity of Φ(η) are required.545

Interestingly, the solution for the effectively compressible fields in the case of the546

nozzle seeding turns out to be somehow simpler than the global incompressible547

case, as it does not carry the additional term548

ζ(η) = −1

η

∫ η

0

xf(x) dx. (4.5)549

Going back to equation (3.9) and considering f = fϕ, we can see that the global550

mean radial velocity profile (accounting for both nozzle seeded and entrained551

particles) can be written as the sum of the profile of the nozzle seeded particles552

alone and this ζ term:553

g = gϕ + ζ. (4.6)554

The ζ contribution can therefore be interpreted as the effect of entrained particles555

on the global mean radial velocity profile of the jet. Its negative sign naturally556

reflects the inward flux of particles due to entrainment. Therefore, we will refer557

to ζ as the entrainment term.558

4.2. Experimental validation559

A first interesting property of equation (4.4) is that as fϕ(0) = 1 by definition,560

then g′ϕ(0) = 1. This is agreement with the experimental slope of 1 observed in561

figure 5 for gϕ(η) at η = 0. Considering a Gaussian function for fϕ, which was562

found in previous section to reasonably matches the experimental measurements,563

we have the expression564

gϕ(η) ' ηe−Aη
2

. (4.7)565

Figure 8 compares this expression to the experimental profiles for gϕ, showing a566

much better agreement than the usual expression tested in figure 5 for the global567



16 T. Basset and others

Figure 8: Self-similar profiles gϕ(η) for a nozzle seeding (crosses: experimental
points, solid line: fit (4.7) with Aϕ = 63 previously found for fϕ(η)). This is the

same figure as figure 5 but with the new fit (4.7).

(a) (b)

Figure 9: Characterisation of the mean velocity field for an air jet seeded trough
the nozzle with neutrally buoyant soap bubbles. Self-similar profiles for mean

(a) axial and (b) radial velocities (crosses: experimental points, solid lines:
fits (3.5) and (4.7) with Aϕ = 42).

profile g, with not only the expected slope at the origin, but also a reasonable568

overall shape, at least up to η . 0.2. The main noticeable difference concerns569

the negative part of the experimental gϕ for the largest values of η, while the570

prediction given by equation (4.7) remains positive. This negative part reflects571

the presence of an inward radial velocity in the outer regions of the jet. This572

is very likely to be attributed to the presence of few remaining particles in the573

ambient fluid (not injected at the nozzle) been entrained into the core of the jet.574

As a consequence, if some entrained particles are indeed tagged, it is expected that575

the radial profile measured is not exactly gϕ but also carries some contribution due576

to the negative entrainment term ζ. These few entrained particles with negative577

radial velocity may also explain the slight overestimation of the maximum of the578

radial velocity profile prediction compared to the experimental data. Despite this579

bias, experimental data globally supports the validity of relation (4.7) and hence580

of (4.4).581

The validity of these relations is also tested on a separate data set from an582

independent experiment, using similar methods at the Université Grenoble Alpes583

with a self-similar round free air jet seeded with neutrally buoyant millimetric584

soap bubbles inflated with helium (D = 2.25 cm, UJ ' 25 m/s, ReD ' 3.7× 104,585

dp = 2.5 mm). The advantage of this set-up is that the jet blows in a very586

large room, and that helium filled soap bubbles have a finite life time, so that587
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Figure 10: Schematic of the nozzle seeding case with 〈Uϕ〉 = 〈U〉 + 〈Ud〉. The
colour scale represents the tracer concentration 〈ϕ〉. A first set of streamlines
(dashed lines) is used to represent the mean trajectories of the fluid parcels

with the associated velocity field 〈U〉. A second set of streamlines (solid lines)
represents the mean trajectories of the tracers coming from the nozzle with the
associated velocity field 〈Uϕ〉. Excepted on the axis of the jet, the streamlines
of the tracers differ from the jet streamlines due to the inhomogeneous nozzle

seeding. It results that 〈U〉 and 〈Uϕ〉 have the same axial component but
different radial components. This difference can be related to a transverse

diffusive flow 〈Ud〉, as represented in the inset.

experiments can be run with the warranty that no spurious particles remain in588

the ambient fluid surrounding the jet. Mean axial and radial velocity profiles for589

this experiment are represented in figure 9. The statistical convergence of this590

new data set is not as accurate as for the water experiment and the accessible591

measurement volume does not allow to explore values of η above 0.3. However, it592

can still be seen that no negative values of gϕ are measured and that the maximum593

of the experimental profile matches very well the predicted in that case where594

entrained particles have been totally avoided. The slight difference in the profiles595

between the air and water experiments (for instance the maximum of gϕ in air is596

a bit larger than in water) are related to a slightly different value of the fitting597

parameter Aϕ of the Gaussian fit for the mean axial velocity profile fϕ, which598

could be linked to different geometries of the setup or to the total absence of599

entrained particles in the air jet.600

5. Link with turbulent diffusion601

Classical mean field approaches to describe the spreading of substances or parti-602

cles in turbulent flows usually rely on advection-diffusion modelling for the mean603

concentration profile. In such approaches the mean transport of the spreading604

particles is considered to result from two contributions: the advection by the605

mean velocity 〈U〉 of the surrounding turbulence and a diffusive velocity 〈Ud〉606

modelling the mean field effect of unresolved small scale fluctuations. In such607
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a framework, the mean velocity field of the transported substance 〈Uϕ〉 can608

therefore be written as 〈Uϕ〉 = 〈U〉 + 〈Ud〉. This is schematically represented609

in figure 10. In the previous section, we showed that the difference between the610

global mean velocity field 〈U〉 and the actual mean velocity field 〈Uϕ〉 of nozzle611

seeded particles is related to the entrainment mechanism through the entrainment612

term ζ via mass conservation: ζ ensures the incompressibility of the global field613

(including both, the entrained and nozzle seeded particles), while the nozzle614

seeded particle velocity 〈Uϕ〉 is effectively compressible. The equivalence of these615

two approaches (advection/diffusion and global flow/entrainment) to describe616

the spreading of nozzle seeded particles suggests that the diffusive contribution617

in the former shall therefore be itself related to the entrainment contribution in618

the latter.619

The aim here is to link these two fields, 〈U〉 and 〈Uϕ〉, through the mean620

concentration field of particles 〈ϕ〉 as previously presented in figure 7, with an621

advection-diffusion model, in order to explicitly connect turbulent diffusion and622

entrainment.623

5.1. Advection-diffusion equation with turbulent diffusivity KT624

We consider that the tracers are, on one hand, advected by the mean flow, and625

on the other hand, spread by turbulence. Modelling this turbulent process as626

diffusive, we write627

∇ · (〈ϕ〉〈U〉 −KT∇〈ϕ〉) = 0, (5.1)628

with KT the turbulent diffusivity. Equation (5.1) is the same as equation (4.1)629

with the relation between 〈U〉 and 〈Uϕ〉630

〈Uϕ〉 = 〈U〉 −KT

∇〈ϕ〉
〈ϕ〉

, (5.2)631

where 〈Ud〉 = −KT

∇〈ϕ〉
〈ϕ〉

represents the aforementioned diffusive contribution.632

With previous definitions for the self-similar mean axial and radial velocity633

fields and mean concentration profile, and considering the decay law for the634

centreline velocity from (3.1) (U0(z) = BUJD/(z − z0)), equation (5.2) leads to635

these two expressions for the self-similar mean axial and radial velocity profiles636

of the spreading particles:637

fϕ(η) = f(η) +
KT (η)

BUJD

[
1 + η

Φ′(η)

Φ(η)

]
, (5.3)638

gϕ(η) = g(η)− KT (η)

BUJD

Φ′(η)

Φ(η)
, (5.4)639

640

where the first term in the right-hand side of both expressions accounts for641

advection and the second for diffusion. At this stage these two equations (5.3)642

and (5.4) are nothing but mathematical expressions reflecting the a priori ad-643

vection/diffusion decomposition of the particle velocity in (5.2). To be physically644

relevant, they have to be consistent with the experimental observations and the645

results of the mass conservation presented in previous sections for f , g, fϕ and646

gϕ.647

First, our experiments show that f ' fϕ. To be consistent with (5.3), this648

requires the second term of this relation to be negligible compared to f . Ex-649
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perimental measurements of the turbulent diffusivity KT and of the self-similar650

mean concentration field Φ (presented in the following) confirm the validity of651

this approximation (this term has the same order of magnitude than g, thus it is652

more than one order of magnitude smaller than f).653

Second, to be consistent with (4.6), equation (5.4) implies that654

KT (η) = −BUJD
Φ(η)

Φ′(η)

1

η

∫ η

0

xf(x) dx. (5.5)655

Thus the turbulent diffusivity KT (η) is a self-similar quantity dependent on space656

and expression (5.5) gives a practical relation to estimate it from the knowledge657

of simple mean field quantities (namely mean concentration and mean axial658

velocity profiles) which are easily measurable. This contrasts both with classical659

simplistic approaches assuming a constant turbulent diffusivity and with the usual660

fundamental definition of turbulent diffusivity, based on the cross-correlation661

between velocity and concentration fluctuations (Pope 2000).662

KT (η) as given by relation (5.5) is a dimensional quantity (with units m2/s).663

Similarly to all other self-similar quantities characterising the jet, and as it is done664

for turbulent viscosity, a dimensionless turbulent diffusivity K̂T can be defined:665

K̂T (η) = KT (η)/(U0(z)r1/2(z)) = − 1

S

Φ(η)

Φ′(η)

1

η

∫ η

0

xf(x) dx, (5.6)666

which can ultimately be rewritten as667

K̂T (η) =
ζ(η)

Sχ(η)
, (5.7)668

where ζ(η) = −1

η

∫ η

0

xf(x) dx has already been defined in (4.5) and shown to669

be associated to entrainment, χ(η) = Φ′(η)/Φ(η) characterises the persistent670

inhomogeneity of the seeding and can be interpreted as a compressibility factor671

associated to the flow of nozzle seeded particles, and S = tan(δ) ' δ with δ the672

semi opening angle of the jet cone based on r1/2.673

Overall, relation (5.7) synthesises the connection between the a priori advec-674

tion/diffusion mathematical decomposition of particle velocity and the physical675

considerations of mass conservation developed in previous sections by connecting676

the turbulent diffusivity KT to (i) entrainment (via ζ), (ii) apparent compress-677

ibility of the dispersing phase (via χ), and (iii) global spreading of the jet (via678

S). Note that a conceptually similar connection between effective diffusivity and679

effective compressibility has been proposed in the context of mixing in linear flows680

(Raynal et al. 2018).681

5.2. Turbulent diffusivity and turbulent viscosity682

The turbulent diffusivity KT and the turbulent viscosity νT are both effec-683

tive transport coefficients defined in the framework of a mean field description684

(transport of mass for the first and of momentum for the second). They model685

the average contribution of small scale turbulence via cross-correlation terms of686

fluctuating quantities (〈uϕ′〉 for KT and 〈uv〉 for νT , with fluctuating quantities687

u = U − 〈U〉, v = V − 〈V 〉 and ϕ′ = ϕ − 〈ϕ〉 (Pope 2000)). This formal688

analogy between KT and νT , together with the importance of νT for practical689

numerical modelling strategies (such as RANS approaches) and the simplicity of690
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the relations established in the previous subsection allowing the estimation of KT691

from simple measurements of mean field quantities, motivate us to further extend692

previous considerations (connecting turbulent diffusivity to entrainment and mass693

conservation) in order to revisit formal links between turbulent diffusivity and694

turbulent viscosity.695

The relation between KT and νT is commonly written in terms of the turbulent696

Prandtl number, σT = νT/KT , which compares the efficiency of momentum and697

mass transport. Several studies have investigated the turbulent Prandtl number698

by studying for instance the turbulent transport of conserved passive scalars such699

as temperature (Corrsin & Uberoi 1950; Chevray & Tutu 1978; Chua & Antonia700

1990; Ezzamel et al. 2015) or concentration of chemical species (Papanicolaou &701

List 1988; Dowling & Dimotakis 1990; Panchapakesan & Lumley 1993b; Lemoine702

et al. 1996; Chang & Cowen 2002), leading to values of σT of the order of703

unity (experimental values around 0.7 are usually reported). However, there is704

no consensus about how σT exactly depends on space and none of these studies705

explicitly address the question of a possible formal connection with simple mean706

field quantities.707

5.2.1. Uniform σT708

In the case where σT is assumed to be uniform (independent of space), it can be709

shown from the turbulent boundary-layer equations (see Schlichting & Gersten710

(2017)) that711

Φ(η) = f(η)σT or equivalently σT =
logΦ

log f
. (5.8)712

This relation combined with the expression of KT (5.6) leads to the following713

expression for the turbulent viscosity:714

ν̂T (η) = − 1

S

f(η)

f ′(η)

1

η

∫ η

0

xf(x) dx. (5.9)715

As for KT , νT can be inferred by simply measuring the profile f of mean axial716

velocity and is analytically connected to the entrainment term ζ.717

If we consider for instance a squared Lorentzian approximation (3.4) for f ,718

expression (5.9) simplifies to a constant value:719

ν̂LorentzT =
S

8(
√

2− 1)
. (5.10)720

This is expected, as the squared Lorentzian profile for f is known to be the721

exact solution of the turbulent boundary-layer equations for a constant turbulent722

viscosity (Pope 2000) (what is experimentally reasonable for η . 0.15). Besides,723

the relation found in equation (5.10) between ν̂T and S coincides with the clas-724

sical result when solving the boundary-layer equations for a constant turbulent725

viscosity.726

Expression (5.9) is however more general and remains valid beyond the constant727

turbulent viscosity approximation (it still requires the turbulent Prandtl number728

to be constant though). In particular, if the Gaussian approximation (3.5) is729

considered for f(η) (which is empirically known to better match the experimental730

self-similar profiles), the following space-dependent profile is retrieved for the731
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turbulent viscosity:732

ν̂Gauss
T (η) =

S

4 log(2)

1− e−Aη2

Aη2
. (5.11)733

This result is not new, and has been previously derived by So & Hwang (1986)734

who propose a generalisation of the solution of the turbulent boundary-layer equa-735

tions for a non-uniform turbulent viscosity. By considering different experimental736

functions used to fit f , they argue that the Gaussian function is the best one to737

fit experimental profiles of f and they analytically determine the expression for738

ν̂T for a Gaussian function, which is exactly the same as equation (5.11).739

At this point, we have therefore shown that formula (5.8) (valid in the case of a740

uniform turbulent Prandtl number σT ) allows us to extend the connection estab-741

lished in the previous subsection, between turbulent diffusivity and entrainment,742

to turbulent viscosity with relation (5.9). Besides, this quite general relation is743

found in agreement with previous derivations, based on boundary-layer equations,744

for squared Lorentzian and Gaussian mean axial velocity profile. Next subsection745

generalises formula (5.8) to the case of non-uniform σT .746

5.2.2. Generalisation to non-uniform σT747

In appendix B, we show that the general equations (5.6) and (5.9) for K̂T (η)748

and ν̂T (η), respectively, relating the self-similar profiles of turbulent diffusivity749

and turbulent viscosity to the self-similar profiles of mean concentration Φ, mean750

axial velocity f and entrainment term ζ are actually the general solutions of the751

boundary-layer equations.752

Furthermore, we also conclude that these two relations remain valid even if the753

turbulent Prandtl number σT (η) is not constant, and we show that754

σT (η) =
Φ′(η)

Φ(η)

f(η)

f ′(η)
, (5.12)755

generalisation of formula (5.8).756

Altogether, beyond the conceptual interest of relating effective transport coef-757

ficients in the jet to the entrainment process, relations (5.6), (5.9) and (5.12) are758

of great practical interest as they allow determination of the spatial profiles of759

turbulent diffusivity, turbulent viscosity and turbulent Prandtl number from the760

simple measurements of the mean axial velocity profile and the mean concentra-761

tion profile without requiring the measurement of second-order correlations.762

In the next subsection, we apply these relations to experimental measurements.763

5.3. Experimental determination of KT , νT and σT764

According to equations (5.6), (5.9) and (5.12), K̂T , ν̂T and σT can be experi-765

mentally determined from the sole knowledge of the profiles of f and Φ (besides,766

only f is required to determine ν̂T ). As these relations include the derivatives of767

f and Φ, instead of using the raw experimental profiles, it is useful to consider768

functional fits of these, which can be more easily manipulated.769

• As already discussed, and as it can be observed in figure 4(d), f is reasonably770

fitted by a Gaussian function. However, for a better accuracy, we use the fitting771

function f(η) = e−aη
2

(1 + c2η
2 + c4η

4) introduced by Hussein et al. (1994) to fit772

their experimental measurement of f(η) (they also use similar functions to fit the773

Reynolds stresses). This Gaussian function corrected by a polynomial, although774
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Figure 11: Self-similar profiles Φ(η) (crosses: experimental points, solid lines:
fit (5.13) and Gaussian fit with AΦ = 39). This is the same figure as figure 7(b)

but with the new fit (5.13).

Figure 12: Self-similar profile K̂T (η) based on two fits of Φ (solid lines: median
values, coloured zones limited by dashed lines: 70% of the measured values).

less practical, is closer to the experimental points and leads to a more accurate775

estimate, in particular, of the derivative f ′(η) which appears in the formula (5.9)776

for the turbulent viscosity. The polynomial correction has a minor impact on the777

estimate of the integral entrainment term ζ.778

• As it can be observed in figure 11, the concentration profile Φ(η) is broader779

than a Gaussian function for small values of η (typically η < 0.1) and steeper780

than a Gaussian function for large values of η. We empirically find that a better781

function to fit Φ(η) is782

Φ(η) =
erf((η + a)/b)− erf((η − a)/b)

2 erf(a/b)
, (5.13)783

(green line in figure 11, to be compared to the Gaussian fit in light blue), where784

erf(x) = 2/
√
π
∫ x
0
e−t

2

dt is the error function and a and b the parameters of the785

fit (here a = 0.126 and b = 0.102).786

5.3.1. Determination of KT787

Based on these fits for f and Φ, we compute the experimental profiles of K̂T (η)788

from (5.6), which are shown in figure 12. Profiles are obtained for measurements789

at different streamwise distances from the nozzle between z = 100 mm and790

z = 180 mm. The solid line is the median value for all z positions along the791

axis, and the coloured zone between the two dashed lines comprises 70% of792
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the measured values. The profile of K̂T based on a Gaussian fit of Φ is also793

represented for comparison, showing that small differences between the two fitting794

functions for Φ lead to large differences for estimate of K̂T . A good determination795

of the profile of K̂T (η) therefore requires an accurate measurement of Φ(η).796

Figure 12 indicates that the sensitivity to the fit is particularly crucial near797

the centreline. This can be rationalised from (5.6), from which it can be shown798

that K̂T (0) = −1/(2SΦ′′(0)): the centreline value of K̂T (η) is related to the799

curvature at the origin of Φ(η). This explains the underestimate of K̂T (0) from the800

Gaussian fit, which is narrower than the error function fit (5.13). It also explains801

the higher variability of the estimate of K̂T from the error function fit near the802

centreline when data from all axial distances z are considered. Indeed, figure 11803

shows that although very good, self-similarity is not perfect within the accessible804

range of distance from nozzle (z/D 6 45). In particular, a mild variation of805

the curvature at the origin of Φ(η) measured at different downstream distances806

z can be seen. This sensitivity to small deviations from self-similarity becomes807

however marginal away from the centreline. Overall, and in spite imperfect self-808

similarity effects near the centreline (what can be expected to be improved in809

future studies exploring distances beyond z/D > 45), figure 12 shows that a810

reasonable profile of K̂T can indeed be retrieved from (5.6) only requiring the811

determination of mean concentration and axial velocity profiles. Few of such812

measurements of radial inhomogeneity of turbulent diffusivity are available in the813

literature, mainly due to the complexity of requiring simultaneous measurements814

of velocity and scalar fluctuations, as classical estimates are based on velocity-815

scalar cross-correlations. The profile of K̂T in figure 12 is in good agreement with816

such previous measurements in round free jets (Chua & Antonia 1990; Lemoine817

et al. 1996; Chang & Cowen 2002).818

5.3.2. Determination of νT819

Similarly to K̂T , the turbulent viscosity ν̂T can be estimated from (5.9) knowing820

the mean axial velocity profile f . Figure 13(a) shows the retrieved profile of the821

turbulent viscosity. As for the turbulent diffusivity, estimates of ν̂T are obtained822

at various downstream locations z. The solid line represents the median value for823

all z locations, and the coloured zone within the dashed lines comprises 70% of824

all measurements. The observed trend, with a relatively constant value near the825

centreline and an outward decay as η increases, is in good qualitative agreement826

with previous measurements based on the cross-correlation of mean axial and827

radial velocity fluctuations as presented in Pope (2000). The centreline value828

retrieved for ν̂T here, of the order of 0.3, is also in good agreement with the829

values reported in these previous studies.830

Interestingly, going back to the original definition of the turbulent diffusivity831

based on the cross-correlation of mean axial and radial velocity fluctuations:832

ν̂T (η) = −(〈uv〉/U2
0 )(η)

Sf ′(η)
, (5.14)833

the previous estimate of ν̂T (η) can in turn be used to estimate the self-similar834

profile of (〈uv〉/U2
0 )(η). This is shown in figure 13(b), together with the direct835

measurements of this quantity from the experimental measurements. It can be836

seen in this figure that, although self-similarity is not perfectly reached yet within837
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(a)

(b) (c)

Figure 13: (a) Self-similar profile ν̂T (η) based on relation (5.9) (solid line:
median value, coloured zone limited by dashed lines: 70% of the measured

values). Self-similar profile of (b) (〈uv〉/U2
0 )(η) and (c) (〈uv〉/max(〈uv〉))(η)

(crosses and solid lines: experimental points, dashed line: fit based on the
relation (5.9) for ν̂T , dotted line: fit from Hussein et al. (1994)).

the range of accessible streamwise distances, the profile of 〈uv〉/U2
0 for the farthest838

axial distance (corresponding to z/D ' 45) approaches the profile predicted839

by (5.9). Concerning the fact that self-similarity of 〈uv〉/U2
0 is imperfect, it840

is actually known that when normalised by U2
0 (as classically done) Reynolds841

stress reach self-similarity further downstream (typically beyond z/D > 70 (Ball842

et al. 2012)) compared to mean velocity fields (Weisgraber & Liepmann 1998;843

Lipari & Stansby 2011; Khashehchi et al. 2013). Figure 13(b) shows the profile of844

〈uv〉/U2
0 fitted by Hussein et al. (1994) for their measurements at a streamwise845

distance of the order of z/D ' 70, which is found in good agreement with the846

trend towards self-similarity of our measurements and with our prediction for847

the self-similar Reynolds stress (note that their measurements stops at η ' 0.2,848

hence their proposed fit is not relevant beyond this radial position). Following849

the seminal works of Townsend (1976) and George (1989), Dairay et al. (2015);850

Breda & Buxton (2018); Cafiero & Vassilicos (2019) have shown that, for jets851

and wakes, self-similarity for the Reynolds stresses may be retrieved better and852

at earlier streamwise distances when normalised by the local maximum of 〈uv〉,853

instead of U2
0 . For the presently studied jet, such a normalisation gives indeed854

a better self-similar collapse within the limited range of streamwise distances855

z/D (see figure 13c). Using this more accurate alternative normalisation in the856

context of the formalism developed in the present work is left for future studies.857

We note that for practical application of the theory developed in this article to858

experimentally determine the turbulent viscosity from relation (5.9), the classical859

normalisation (based on U2
0 ) remains however of real pragmatic interest as it860
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Figure 14: Self-similar profile σT (η) (solid line: median value, coloured zone
limited by dashed lines: 70% of the measured values).

only involves measuring low order statistics (mean centreline velocity U0 and861

mean axial velocity profile f) not requiring to resolve fluctuating velocities u and862

v.863

5.3.3. Determination of σT864

To finish, we propose here an estimate of the radial profile of the turbulent Prandtl865

number σT . In a situation where σT = νT/KT would be uniform (independent866

of η), according to relation (5.8) if f is assumed Gaussian (neglecting the afore-867

mentioned polynomial correction), then Φ should also be Gaussian, and the ratio868

of the half-widths AΦ and A for Φ and f , respectively, directly gives an estimate869

of σT (Corrsin & Uberoi 1950; Panchapakesan & Lumley 1993b; Ezzamel et al.870

2015). Using such a Gaussian approximation (light blue fit in figure 11), we obtain871

σT = AΦ/A = 0.62, which is in good agreement with the usual experimental872

values around 0.7 (Pope 2000).873

However, the deviation of the concentration profile Φ(η), while f(η) is quasi-874

Gaussian, suggests that σT may not be considered as uniform. In this case, the875

profile of σT (η) can be estimated with the generalised relation (5.12), from the876

simple knowledge of Φ and f . The corresponding profile of σT is presented in877

figure 14. It is actually found to be dependent on η, increasing between 0.4 near878

the centreline to an asymptotic value close to 0.8 as larger radial distances are879

considered, with an average value of the order of 0.6.880

The trend of σT with η in previous works is not fully conclusive: Chevray &881

Tutu (1978) and Chua & Antonia (1990) observe a slight increase of σT with η,882

while Chang & Cowen (2002) report nearly flat then decreasing profile. Direct883

numerical simulations by Lubbers et al. (2001) show a mild increase of σT with884

η while those by van Reeuwijk et al. (2016) show a slight increase then decrease.885

The lack of consensus regarding the radial dependency of σT may be related to886

the sensitivity of σT determination to experimental and numerical details. The887

broader-than-Gaussian concentration profile Φ can for instance be interpreted888

as a possible effect of the finite size of the particle injection point (at the jet889

nozzle in the present study), while studies investigating the turbulent diffusion890

of a passive scalar as temperature (Chevray & Tutu 1978; Chua & Antonia 1990;891

Tong & Warhaft 1995), may consider injection points closer to a point source,892

what seems to lead to Gaussian scalar profiles, hence consistent with a relatively893

uniform profile of σT .894

With this respect, while all studies are consistent regarding the order of mag-895
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nitude of σT and in particular regarding the fact that σT < 1 (i.e. scalar spreads896

at a slower rate than momentum), the details of any eventual non-uniformity897

of σT and whether this is an intrinsic property of the jet or a consequence of898

experimental/numerical protocols remain to be further clarified. In this perspec-899

tive, the relations established in the present study, allowing the estimation of900

turbulent diffusivity, viscosity and Prandtl number from simple measurement of901

mean concentration and velocity profiles are particularly interesting for future902

systematic investigations.903

6. Conclusion904

Measurements of velocity fields were realised in a free round jet based on La-905

grangian tracer trajectories. By using a specific nozzle seeding (where only fluid906

particles emanating from the nozzle are tagged and not those been entrained into907

the jet from the surrounding fluid at rest), the self-similar mean velocity profiles908

were found to differ from those of the global jet (accounting for both, nozzle909

seeded and entrained fluid particles), in particular for the radial velocity. More910

precisely, (i) the nozzle seeded profiles still preserve the self-similar property of911

the jet, (ii) the self-similar mean axial velocity profile is not significantly altered912

by the nozzle seeding compared to the global profile, (iii) while the self-similar913

mean radial velocity profile strongly deviates from the usual profile of the global914

jet.915

By revisiting the classical considerations – connecting global mean axial and916

radial velocity profiles through the incompressibility of the self-similar jet – in917

more general terms of mass conservation, we were able to quantitatively explain918

the modified self-similar profile. The difference between the global profile and the919

nozzle seeded profile allows us to specifically identify the contribution associated920

to the flux of entrained particles to the global mean radial velocity, via a simple921

entrainment term ζ (4.5) solely dependent on the self-similar mean axial velocity922

profile. This entrained contribution can in turn be interpreted as an effective923

compressibility for the flow tagged by the nozzle seeded particles. Interestingly,924

the influence of entrained particles on the mean radial velocity profile is found to925

be significant up to the core of the jet.926

We have then connected this global contribution of entrainment to the classical927

turbulent advection-diffusion description of the jet. Under the hypothesis of self-928

similarity, this allowed us to analytically relate turbulent diffusion (of mass and929

momentum) to the previously identified entrainment term ζ. This results in930

simple analytical relations (5.6), (5.9) and (5.12) for the turbulent diffusivity931

KT , the turbulent viscosity νT and the turbulent Prandtl number σT allowing932

experimental determination of the non-uniform spatial profiles of these quantities933

from the simple measurement of the mean scalar (concentration) profile and the934

mean axial velocity profile. Interestingly, these relations can be used even if the935

mean concentration and velocity profiles are measured independently as, contrary936

to classical determinations of turbulent diffusivity based on cross-correlations of937

velocity and scalar fluctuations, the present relations only require the knowledge938

of each mean field separately, without requiring to simultaneously measure both939

fluctuating quantities. Therefore, beyond the fundamental interest of explicitly940

connecting the entrainment process to turbulent diffusion properties of self-941

similar jets, these relations can be of real practical interest to experimentally942

determine the associated diffusion coefficients, including their eventual spatial943
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non-uniformity. In particular, they could help a simple systematic investigation944

of the non-uniformity of the turbulent Prandtl number for which, while most945

studies (including the present work) converge to the fact that it is lower than946

unity (meaning that passive scalar spreads slower than momentum), its eventual947

spatial dependency remains to be clarified.948

We would like to stress that the approach of the present study, based on a949

specific inhomogeneous seeding of the flow, intimately connects Lagrangian and950

Eulerian descriptions of the jet. It shows indeed how tagging particles with a951

prescribed initial position from which all the Lagrangian trajectories originate952

affects the corresponding Eulerian fields, which in particular may exhibit an953

apparent compressibility, even if the global background flow is incompressible.954

The combination of such a Lagrangian tagging, with first principles such as955

mass conservation, and in the present case with prescribed properties such as956

self-similarity, allowed us to gain new insight on the role of entrainment on the957

mean spreading of the jet, eventually connecting turbulent diffusion properties to958

the aforementioned effective compressibility. In an experimental perspective, our959

study develops and completes works on experimental bias due to inhomogeneous960

seeding, such as the work by Martins et al. (2021) for particle image velocimetry,961

by presenting a quantitative explanation of this bias for a turbulent round jet.962

It can also be noted that our study can be extended to the case of inertial963

particles. In spite of their inertial nature, such particles, if inhomogeneously964

seeded (as in particle-laden jet flows), will inevitably lead to similar apparent965

compressibility effects of the velocity field of the particles. Indeed the continuity966

equation ∇·(〈ϕ〉〈Uϕ〉) = 0 also applies to inertial particles (although with967

different 〈ϕ〉 and 〈Uϕ〉 than those of tracers). Such inhomogeneous seeding968

compressibility effect will interplay with inertially driven effective compressibility969

effects, such as the well-known preferential concentration phenomenon (Mon-970

chaux et al. 2012). With this respect, although only the case of tracers has been971

considered here, the present study is still relevant to the case of inertial particles972

as it reveals a generic process at play in all sorts of particle-laden flows. However,973

the diffusive model becomes questionable for inertial particles and should be974

adapted.975

In future studies, the present inhomogeneous seeding approach could be ex-976

tended to address higher order turbulent statistics in self-similar jets. For in-977

stance, investigating the Eulerian structure functions of the nozzle seeded flow978

compared to those of the global jet could help disentangling the roles of internal979

and external intermittency in self-similar jets (Gauding et al. 2021). In a more980

Lagrangian perspective, having access to longer trajectories (especially through981

numerical simulations) would enable one to study separately the temporal dy-982

namics of the nozzle seeded particles (from the nozzle to the core of the jet) and983

of the entrained particles (from outside to inside the jet). It would give access984

to a Lagrangian understanding of entrainment through the whole space, and not985

only close to the TNTI. Finally, the approach could also be easily extended to986

other free shear and/or self-similar flows, such as plane jets, wakes, mixing layers,987

homogeneous shear flows, grid turbulence, etc. It may for instance help testing988

hypothesis recently proposed regarding the uniformity of eddy viscosity for non-989

equilibrium scalings in such flows (Cafiero et al. 2020).990
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Appendix A. Resolution of the nozzle seeding model1000

We need to solve the continuity equation:1001

∇ · (〈ϕ〉〈Uϕ〉) = 〈ϕ〉∇ · 〈Uϕ〉+ 〈Uϕ〉 · ∇〈ϕ〉 = 0. (A 1)1002

With the definitions of U0(z), ϕ0(z), fϕ(η), gϕ(η) and Φ(η) given in the main1003

article, we can show that1004

〈ϕ〉∇ · 〈Uϕ〉 =
U0(z)ϕ0(z)

r
Φ(η)[(ηgϕ(η))′ − η(ηfϕ(η))′], (A 2)1005

which leads to the usual incompressible solution, and1006

〈Uϕ〉 · ∇〈ϕ〉 =
U0(z)ϕ0(z)

r
η[gϕ(η)Φ′(η)− fϕ(η)(ηΦ(η))′]. (A 3)1007

Thus we get equation (4.3) given in the main article:1008

Φ(η)[(ηgϕ(η))′ − η(ηfϕ(η))′] + η[gϕ(η)Φ′(η)− fϕ(η)(ηΦ(η))′] = 0. (A 4)1009

Equation (A 4) can be rewritten as1010

Φ(η)gϕ(η) + η(Φ(η)gϕ(η))′ − η2(Φ(η)fϕ(η))′ − 2ηΦ(η)fϕ(η) = 0, (A 5)1011

then1012

(ηΦ(η)gϕ(η))′ − (η2Φ(η)fϕ(η))′ = 0. (A 6)1013

We integrate equation (A 6) and simplify by ηΦ(η) (by considering η = 0, the1014

constant of integration is zero):1015

gϕ(η) = ηfϕ(η). (A 7)1016

Appendix B. Turbulent quantities from boundary-layer equations1017

In a turbulent free round jet, the mean axial and radial velocity fields, respectively1018

〈U〉 and 〈V 〉, are determined with the turbulent boundary-layer equations:1019

• the continuity equation:1020

∂〈U〉
∂z

+
1

r

∂(r〈V 〉)
∂r

= 0, (B 1)1021

• and the Navier-Stokes equation:1022

〈U〉∂〈U〉
∂z

+ 〈V 〉∂〈U〉
∂r

=
1

r

∂

∂r

(
rνT

∂〈U〉
∂r

)
. (B 2)1023

We use the Reynolds decomposition: U = 〈U〉 + u and V = 〈V 〉 + v, and also1024

the gradient closure model 〈uv〉 = −νT
∂U

∂r
(see Pope (2000) or Schlichting &1025
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Gersten (2017) for the determination of these equations). Equation (B 2) is the1026

most simplified writing of the Navier-Stokes equation, and neglects in particular1027

terms in 〈u2〉, 〈v2〉 and 〈w2〉. Hussein et al. (1994) experimentally discuss these1028

approximations, and show that it leads to a slight underestimating of 〈uv〉 and1029

νT .1030

Three quantities are unknown: 〈U〉, 〈V 〉 and νT , with only two equations. Thus1031

we can not solve the system but we can write one quantity as a function of one1032

other, especially we can determine νT as a function of 〈U〉, or, with the relations1033

introduced in the main article, ν̂T as a function of f . We show in the main article1034

than the continuity equation (B 1) leads to a relation between f and g:1035

g(η) = ηf(η)− 1

η

∫ η

0

xf(x) dx. (B 3)1036

Equation (B 2) can be rewritten with f and g:1037

−η[f(η)(ηf(η))′ − g(η)f ′(η)] = S(ην̂T (η)f ′(η))′. (B 4)1038

We remove g with equation (B 3), and the left-hand side term is1039

−
[
ηf2(η) + f ′(η)

∫ η

0

xf(x) dx

]
, (B 5)1040

which can be rewritten as1041

−
[
f(η)

∫ η

0

xf(x) dx

]′
. (B 6)1042

Thus integration of equation (B 4) gives1043

ν̂T (η) = − 1

S

f(η)

f ′(η)

1

η

∫ η

0

xf(x) dx. (B 7)1044

In the same way, the momentum equation for a conserved passive scalar is1045

〈U〉∂〈ϕ〉
∂z

+ 〈V 〉∂〈ϕ〉
∂r

=
1

r

∂

∂r

(
rKT

∂〈ϕ〉
∂r

)
. (B 8)1046

A similar solving leads to1047

K̂T (η) = − 1

S

Φ(η)

Φ′(η)

1

η

∫ η

0

xf(x) dx. (B 9)1048

Thus νT and KT are determined with independent calculations, and the general1049

formula of σT is1050

σT (η) =
νT (η)

KT (η)
=
Φ′(η)

Φ(η)

f(η)

f ′(η)
. (B 10)1051
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