
1

Coordination-free Multi-domain NFV Orchestration
for Consistent VNF Forwarding Graph

Reconfiguration
Josué Castañeda Cisneros∗, Saul E. Pomares Hernández∗†, Julio César Pérez Sansalvador†‡

Lil M. Rodrı́guez Henrı́quez†‡, Sami Yangui∗§, Khalil Drira∗
∗LAAS-CNRS, Université de Toulouse, §INSA, F31400, Toulouse, France. † INAOE, 72840, Santa Marı́a

Tonantzintla,Puebla, Mexico. ‡ INAOE - Cátedra CONACyT, 72840, Santa Marı́a Tonantzintla,Puebla,
Mexico.{jcastane, yangui, drira}@laas.fr;{spomares, jcp.sansalvador, lmrodriguez}@inaoep.mx

Abstract—Multi-domain federations support shared network
services. Many orchestrators manage the service’s lifecycle. For
the shared VNF Forwarding Graph (VNF-FG) reconfiguration,
orchestrators update the graph’s logical information, ensuring
a consistent behavior for replicas. Only one work in the liter-
ature considers sharing the VNF-FG. However, it offers weak
consistency guarantees, without considering the VNF-FG’s non-
functional dependencies. In case of a conflict, while updating
the VNF-FG, the orchestrators solve consensus. However, this
adds latency, undermining the goal of Network Function Vir-
tualization. This paper introduces the first coordination-free
multi-domain orchestration algorithm for consistent shared VNF-
FG reconfiguration. Unlike the current state of the art, the
proposed algorithm skips the coordination phase, offers strong
eventual consistency, and supports non-functional dependencies.
We present two variants: the preventive, where transient incon-
sistent states are prevented; the corrective, where intermediary
inconsistent states, during the updating process, are tolerated.
We prove the correctness of our algorithm and evaluate it. The
variants, unlike the state of the art, reconfigure consistently the
shared VNF-FGs without solving consensus. They offer stronger
guarantees compared to the literature, like allowing orchestrators
to reject ongoing reconfigurations without a high impact on
performance.

Index Terms—Coordinated-Free Orchestration, Multi-domain
Orchestration, VNF Forwarding Graph (VNF-FG), Network
Function Virtualization (NFV), Virtual Network Functions (VNF)

I. INTRODUCTION

Multi-domain orchestration is the next step towards future
network services [1]. It promises stronger performance by
placing network services close to users, performing dynamic
and flexible on-demand service provisioning, and improving
resiliency for network services [2]. According to the Euro-
pean Telecommunications Standards Institute’s (ETSI) Net-
work Function Virtualization (NFV)1 standard, such network
services are managed by local orchestrators. They have limited
information, as they do not know the resources and topologies
used by other providers [3], [4]. This has a profound effect on
how services are provisioned, enabling service sharing. Indeed,
network services can be shared among multiple providers,
reducing the cost for providers. For such shared services, many
orchestrators handle the services’ lifecycle management. This

1https://www.etsi.org/technologies/nfv

joint management creates both internal and external dependen-
cies for network services. Internal dependencies are managed
by a single orchestrator under a unique administrative domain.
External dependencies are managed by many orchestrators
from different administrative domains. Thus, managing the
lifecycle of shared network services introduces new challenges
unforeseen in single-domain orchestration [5]. This happens as
no single orchestrator has global knowledge to provisioning
network services. For example, when an orchestrator recon-
figures a shared service’s VNF Forwarding Graph (VNF-
FG) in a multi-domain environment, the orchestrator has to
ensure that all orchestrators who also use the shared service
have the same information (i.e. the replicas of the VNF-FG
are consistent). According to the ETSI information model,
the reconfiguration of the VNF-FG means updating the data
structure for classification rules and rendered service paths [6].
If one VNF-FG replica has different values than others, there is
a risk of inconsistencies created by conflicting operations made
by different orchestrators. This is the problem of consistent
VNF-FG reconfiguration.

The problem of consistent VNF-FG reconfiguration involves
updating or extending a VNF-FG responding to new de-
mands [7]. Since the VNF-FG defines a logical order of exe-
cution for each dependency of a service [8], the orchestrator
can change the order of execution by updating connection
points or classifier rules [9]. To ensure the other orchestrators
apply the same updates, the orchestrator that changed the
VNF-FG sends messages to notify other orchestrators of the
changes. In an ideal scenario, the orchestrators’ VNF-FG
replicas always achieve a consistent state; however, since
there is no shared global reference between the orchestrator
replicas, it is possible to update concurrently a shared VNF-
FG with two conflicting updates. Moreover, since orchestrators
share services, external dependencies introduce non-functional
dependencies to prevent unwanted effects of reconfiguration.
For example, updating the connection point of a VNF-FG
can optimize the latency in a given administrative domain;
however, for replicas, it may not be the case, as these replicas
can be used by other services. In other words, orchestrators can
reject new changes from incoming replicas and decide only to
reconfigure if their non-functional dependencies are satisfied
after the reconfiguration. Thus, the combination of concurrent

2

reconfiguration, limited knowledge, and non-functional depen-
dencies introduces conflicts that must be fixed to achieve a
consistent state at the end of reconfiguration.

Current orchestration algorithms for the VNF-FG are fo-
cused mostly on the embedding problem without consider-
ing reconfiguration [10]–[12]. A couple of works consider
reconfiguration; but they only consider single-domain orches-
tration [7], [13]. To the best of our knowledge, there are
two works for reconfiguring shared VNF-FGs in multi-domain
federations [14], and [15]. Orchestrators in [14] and [15] can
execute a coordination phase to resolve inconsistencies due
to non-deterministic network conditions (e.g. delay, repeated
messages, orchestrators connect/disconnect). Traditionally, or-
chestrators choose either to select a single orchestrator to serve
as a referee or they solve consensus [16]. These two choices
reflect the two competing goals of distributed computation
in terms of performance and consistency, as presented in
the previous two works. For example, in [14], performance
(i.e. fast reconfiguration) is chosen over strong consistency by
ensuring eventual consistency among orchestrators [17]; while
in [15], stronger consistency guarantees are chosen by ensuring
causal consistency among orchestrators. However, both [14]
and [15] do not consider non-functional dependencies of such
shared VNF-FGs. This unrealistic reconfiguration limits the
benefits of multi-domain federations since the administrative
domains should be autonomous to share their VNF-FGs to
different providers without a limitation.

In this paper, we focus on the consistent VNF-FG re-
configuration under multi-domain environments, considering
non-functional dependencies among the VNF-FGs. Unlike in
our previous published work [15], in this paper we consider
concurrent reconfigurations and non-functional dependencies
without a coordination phase, which has not been explored
in the literature for VNF-FG reconfiguration in multi-domain
orchestration. Our major contributions are:
• The design of a coordination-free orchestration algo-

rithm for consistent VNF-FG reconfiguration under multi-
domain federations. Unlike current orchestration algo-
rithms, our proposed algorithm consistently reconfigures
the VNF-FG of a shared network service without a co-
ordination phase between the orchestrators. By skipping
the coordination phase, we open the door for dynamic
federations where orchestrators join and leave temporar-
ily.

• Additionally, our proposed algorithm supports non-
functional dependencies that have not been addressed
so far in the literature for VNF-FG reconfiguration
(Section IV-D). Unlike current orchestration solutions,
orchestrators can negate ongoing reconfigurations for
their VNF-FG replica. Thus, we consider a more general
consistent VNF-FG reconfiguration problem.

• The tailoring of two different variants of our proposed
algorithm to address various applications. We propose a
preventive variant that ensures no transient inconsistent
states happen (Section V-A). Additionally, we propose
a corrective variant that tolerates contingent inconsistent
states, as reconfigurations execute as soon as they arrive
(Section V-B).

• The formal proof of the correctness of both variants (Ap-
pendix C) and their evaluation (Section VI). We compare
them to the closest work found in the literature and
discuss the trade-offs in terms of cost and performance.

The rest of the paper is organized as follows: Section II
describes more in detail all the concepts used in the paper.
Section III details the works in the literature for VNF-
FG reconfiguration to position this work with respect to
the literature. Section IV details the problem of consistent
reconfiguration with non-functional dependencies. Section V
describes the idea to achieve coordination-free orchestration.
It also details more of the proposed variants and presents
the proof of correctness for both. Section VI presents the
evaluation and comparison of the two variants of our proposed
algorithm and the current VNF-FG reconfiguration algorithm.
Section VII concludes the paper.

II. BACKGROUND

In this section, we describe the required concepts used
in this paper. Firstly, we describe the concepts from the
ETSI’s NFV standard, such as the multi-domain orchestration.
Secondly, we describe three consistency models present in
distributed environments as in multi-domain orchestration. For
the rest of the paper, we use the ETSI NFV architecture and
terminology [3]. Table I shows all the abbreviations used in
the article, along with their definition.

A. Network Function Virtualization

NFV decouples network services from the underlying hard-
ware. Under NFV, network service providers replace physi-
cal network appliances with software-based Virtual Network
Functions (VNFs) [18]. By using such VNFs, the providers
create network services by chaining VNFs according to a
forwarding path with an execution order encoded in a VNF-
FG. The VNF-FG specifies a network topology connecting the
VNFs using virtual links through interfaces called connection
points and associated rules applicable to the traffic conveyed
over the topology [11], [19]. To achieve such deployment
of services under NFV, an orchestrator handles the lifecycle
management of services [14]. Each unique and central orches-
trator handles all these tasks [4]. With NFV federations, the
concept of multi-domain orchestration was proposed to extend
the limited resources of each participant in the federation while
remaining autonomous [2].

TABLE I
ABBREVIATIONS USED IN THE ARTICLE

Abbrevation Definition
ETSI European Telecommunications Standards Institute
NFV Network Function Virtualization
VNF Virtual Network Function
VNF-FG VNF Forwarding Graph
SEC Strong Eventual Consistency
CRDT Conflict-free Replicated Data Type
VNF-FGR VNF-FG Reconfiguration
CVNF-FGR Consistent VNF-FG Reconfiguration

CVNF-FGR-NF Consistent VNF-FG Reconfiguration with
Non-Functional Dependencies

3

Domain A Domain B

ENCST

Domain C

ManagerManager

DEC TRA
1 32

NFVO-04

WAN OP

AUD

ENC

MIX1

2

3

4

Domain D

NFVO-03

NFVO-02

NFVO-01

Legend

NFVO-C
NFVO-x Orchestrators

Translator

Mixer

Decoder

Streamer

1
ENC

3

AUD4Service 2

WAN Optimizer

Encoder

Shared VNFs

Auditer

Fig. 1. Example of composite services with shared VNF-FGs. Four admin-
istrative domain have composite services that use shared VNFs and their
replicas. This creates dependencies in the VNF-FGs.

A federation is a group of service providers who share
resources to support complex network services [20]. Each
provider manages an administrative domain [1]. This shar-
ing scheme reduces the cost for each provider. When a
service is shared by many orchestrators, they manage the
service’s lifecycle (e.g. placing, embedding, and reconfiguring
the service). This extends the traditional notion of a network
service [14]. Traditionally, network services were dedicated,
as they belonged to a single domain. Composite services are
created when two or more dependencies (i.e. their VNFs)
belong to different administrative domains. Another way to
think of such types of services is by their type of dependencies.
Dedicated services only have internal dependencies; composite
also has external dependencies. We consider all composite
network services to be shared among many orchestrators. An
example of composite services with shared VNF-FGs is shown
in Fig. 1. In that example, four administrative domains use
both dedicated and shared VNFs, creating composite services.
Thus, their VNF-FGs are also shared among the orchestrators
who use replicas of the VNFs.

Because services are shared by many orchestrators, they
can also be used by different services. Thus, we consider that
orchestrator replicas may negate ongoing reconfigurations due
to non-functional dependencies. Such reconfigurations could
affect non-functional requirements of another shared network
service. In this work, we generalize non-functional require-
ments as either being accepted or not; thus, tolerate different
requirements (e.g. response time, availability, throughput).
An orchestrator rejects a reconfiguration if this will affect
dependencies after applying the changes. For example, when
a replica of a VNF-FG receives an instruction to update
connection points and classification rules, the orchestrator will
verify the following: Firstly, that the functional requirements
are met after applying the reconfiguration. Secondly, measure
non-functional requirements, such as response time. One way
this can be achieved is by creating a new VNF-FG by
considering the changes in connection points and classifying
rules. Finally, it will connect the new VNF-FG and monitor
the changes. If both the traffic flow and the considered metrics
are within a predefined threshold, the update will be done on
the original VNF-FG instance. Moreover, since orchestrators
can update the VNF-FGs at any time, these new changes can
affect ongoing VNF-FG updates, disrupting the whole service.

To ensure proper service functioning, the consistency between
all the replicas needs to be ensured, as those replicas can also
be external dependencies of other services.

B. Consistency models

Consistency is a desired property in distributed multi-
domain orchestration [5]. Next, we present a brief description
of the concepts related to this topic. Firstly, we introduce
sequential consistency and discuss its drawbacks. Secondly,
we describe eventual consistency as the alternative to such
drawbacks, highlighting the limitations of this consistency
model. Finally, we introduce strong eventual consistency,
which circumvents the trade-off between consistency guaran-
tees and performance.

Distributed systems need to ensure consistency because of
concurrent operations on shared data, such property is desired
in multi-domain orchestration [5]. Sequential consistency was
proposed to make the illusion of having the semantics of
a single-system image system. Under sequential consistency,
there is a single execution that follows a specific order.
However, in reality, distributed systems, like multi-domain
federations, run on top of multiple autonomous nodes, without
global knowledge. Since these nodes communicate over a
faulty network, non-deterministic conditions bring conflicts
when nodes try to modify the state of a node concurrently.
To prevent inconsistencies, solving consensus was proposed.

Consensus is the convergence to a common value among
all participants [21]. It achieves sequential consistency for
distributed systems. However, the high complexity of imple-
menting consensus [22] and its low performance [23] make
it a bottleneck for distributed systems. To improve perfor-
mance on non-critical applications, eventual consistency was
proposed [17]. Informally, eventual consistency guarantees that
if no additional updates are made to a given data, all reads to
that item will eventually return the last updated value [24].
Eventual consistency is stated in Definition 1 [25].
Definition 1 (Eventual Consistency)
Eventual delivery: An update delivered at some replica i is
eventually delivered to all replicas: ∀i, j : f ∈ ci =⇒ ♦f ∈
cj , where f is an update, ♦ is a random and finite amount of
time, and ci, cj are replicas of the same node c.
Convergence: Replicas that have delivered the same updates
eventually reach an equivalent state: ∀i, j : ci = cj =⇒
♦si ≡ sj , where ♦ is a random and finite amount of time, si
is the state of the ith replica.
Termination: All method executions terminate.

Under eventual consistency, all participants eventually con-
verge; however, it does not provide single-system image
semantics, as it does not specify which value is eventually
chosen and the convergence time is unknown [17]. Under
eventual consistency, replicas can execute an operation with-
out synchronizing a priori with other replicas, making data
available at any given moment. Despite the consensus being
moved off critical paths of applications, reconciliation is still
complex to achieve [26]. Thus, Strong Eventual Consistency
was proposed. We take the formal definition of Strong Even-
tual Consistency by [25].

4

Fig. 2. Taxonomy with representative works for the VNF Forwarding Graph.
Each branch solves a different problem for the VNF-FG. The closest work to
ours is positioned in the colored/italicized path below.

Definition 2 (Strong Eventual Consistency (SEC))
An object is strongly eventually consistent if it is Eventually
Consistent and:
Strong Convergence: Replicas that have delivered the same
updates have equivalent state: ∀i, j : ci = cj =⇒ si ≡ sj .

To achieve SEC, Conflict-Free Replicated Data Types
(CRDTs) (e.g., those data types in which operations commute)
can ensure that there are no conflicts, hence, no need for
consensus-based concurrency control [25]. Currently, there is
a portfolio of CRDTs for counters, registers, sets, and graphs
that act as a building stone for more complex algorithms [26].

III. RELATED WORK

Multiple works in the literature studied the management for
lifecycle tasks of the VNF-FG (e.g. embedding, reconfiguring,
and composing), the major focus being the embedding [27].
However, these tasks address different requirements and needs.
The embedding problem asks how does the orchestrator selects
the virtual network instances and their connection links [27].
The reconfiguration problem asks how to best update the VNF-
FG (e.g. extending it, changing the order of the VNFs) while
ensuring properties of the service, such as availability [11]. We
focus on the reconfiguration problem, since composing and
embedding only consider static deployment of the VNF-FGs.
Moreover, the reconfiguration can also include the embedding
and composing, if the orchestrator extends the VNF-FG.

We classify reconfiguration works as either single or multi-
domain, each one having sub-categories if they are static
or dynamic. We describe each category using representative
works of each one. Fig. 2 shows a taxonomy of representative
works for the VNF-FG’s lifecycle management. Our work is
positioned in the colored lower branch along with the ETSI
standard.

A. Single domain static deployment

The first category of works in the single domain considers
a unique orchestrator where the VNF-FGs stay static. The
primary goal of these works is to optimize metrics (e.g.
latency [28], revenue [29], and energy [30]) while deploying
the VNF-FG. Since optimizing the placement is NP-Hard,
the authors propose heuristics to solve the problem in larger

instances. However, these works rely on a single global orches-
trator having full knowledge of the underlying domain, such as
topology or network policies. They also assume a fixed and
static federation. Both strong assumptions for multi-domain
federations limit the applicability of works in this category.

B. Single domain dynamic deployment
The second category of works tries to remedy the limits

of the first category by allowing online changes in the VNF-
FG embedding algorithms. These works consider a new VNF
placement [7], extending the VNF-FG [13], and bi-directional
chaining [31]. In the first two works, the orchestrator ex-
tends a VNF-FG by adding VNFs and links to respond to
new demands. The authors propose an eigendecomposition
algorithm [7] and a Steiner Tree-based algorithm [13] to
solve the optimal extended embedding problem. The bi-
directional chaining supports adding optional VNFs instances
for deployed services [31]. While these works reconfigure the
VNF-FG, they do not consider the problem of inconsistency
when multiple orchestrators concurrently try to update the
VNF-FG. In case of a change in service usage, the central
orchestrator computes the new place to instantiate a VNF or
it can update the VNF-FG by changing the VNFs’ execution
order. Consistency in the VNF-FG management here is not an
issue, as the global orchestrator has all the required knowledge.
Thus, the orchestrators synchronize the updates according to
the global orchestrator. Despite this ease of consistency, these
works do not scale well for multi-domain federations, as the
fundamental assumption of complete knowledge is costly to
implement. Additionally, providers prefer to keep their key
information private [4].

C. Multi-domain works
The third category uses a decentralized approach, where

multiple orchestrators jointly manage network services. For
the third category, a deep reinforcement learning technique
was proposed to learn the dynamic behavior of the feder-
ation [10]. This avoids recalculating from scratch the new
placement of VNFs. Another work includes the migration of
existing VNFs using an adaptive centralized and decentral-
ized orchestration algorithm to reallocate VNF-FGs [11]. The
last work considered in the third category considers a close
and competitive environment where orchestrators hide their
infrastructure from others [12]. The earlier works focus on the
embedding problem, not on the VNF-FG reconfiguration prob-
lem. The two works that consider VNF-FG reconfiguration
are the ETSI NFV standard [14] and our previous published
work [15]. The ETSI NFV standard proposes a reconfiguration
algorithm where the orchestrators coordinate through grants,
checking the network service consistency. In our published
work, coordination is enforced with causal consistency. This
is achieved by making the orchestrators wait until they receive
the appropriate reconfiguration instruction, while tracking the
causal information with vector clocks.

D. Synthesis
The closest works to the reconfiguration problem we address

in this paper are the ETSI proposed algorithm [14] and our

5

TABLE II
NOTATION

Variable Meaning
O = {o1, o2, . . .} The set of orchestrators
G = {g1, g2, . . .} The set of VNF-FGs each numbered.
cg Classifier rule of VNF-FG g.
xg Rendered service path of VNF-FG g.
ma Matching attribute, that belongs to a classifier rule.
p Connection point of a rendered service path.
δ The dependency relation
∆ A VNF-FG Reconfiguration operation
Lθ Pending operations for the the orchestrator θ
hθg The heap of accepted values for VNF-FG g from θ
♦ A random and finite amount of time
si State of the ith replica
.id The identifier of a given entity, such as a VNF-FG
lθg The list of negated values for VNF-FG g from θ
ε The initial value for a data structure.
φ(xi) The state of the i-th VNF-FG x replica
ro Reply to update coming from orchestrator o
ko Orchestrator identifier
k∗o Highest identifier in the federation
xi the i-th replica of a VNF-FG x
C(xi) Causal history of the i-th replica of a VNF-FG x
<d The delivery order for reconfigurations
τ The top operation

published work [15]. The former is considered the baseline
for VNF-FG reconfiguration for ETSI-aligned VNF-based
network services. The latter was designed to handle causal
changes when VNF-FGs have shared external dependencies.
In addition, our previous published work focused on non-
concurrent reconfigurations, unlike the standard that allows
them by design. In both works, in case of conflicts because
of concurrent updates, the orchestrators must resolve con-
flicts/inconsistencies by solving consensus; thus, sacrificing
performance over consistency. This means that the closest
works execute a coordination phase to prevent inconsistencies.
Moreover, they do not consider non-functional dependencies
that might negate ongoing reconfigurations.

In this paper, we propose the first coordination-free or-
chestration algorithm to achieve consistent reconfiguration of
the VNF-FG in a multi-domain federation. Our proposed
orchestration algorithm, unlike the previous works, considers
the consistency reconfiguration of a VNF-FG by updating
either the connection points or classification rules. Also, we
consider the non-functional dependencies inherent in sharing
network services in distributed multi-domains.

IV. CONSISTENT VNF FORWARDING GRAPH
RECONFIGURATION IN MULTI-DOMAIN ENVIRONMENTS

In this section, we introduce first the reconfiguration of
VNF-FGs. Then, we describe the consistent reconfiguration
where many orchestrators managed shared services and their
VNF-FGs. Finally, we introduce a generalized version of
the consistent VNF-FG reconfiguration, where non-functional
dependencies can negate ongoing reconfigurations. Table II
shows the notation.

A. High-level description

Before introducing the formal notation used in the paper
we describe briefly the high-level scenario of the entities

Fig. 3. Relations between the entities of the distributed multi-domain
orchestration system model with services and VNF-FGs.

considered in the paper. Figure 3 show these entities and their
relations. Federations are composed of many domains that
share services managed by different orchestrators. Services can
be of type composite and dedicated. The latter has only in-
ternal dependencies (e.g. VNFs) the former have also external
services as dependencies. Dependencies can be both functional
and non-functional. Moreover, each of these dependencies is
connected with other VNFs or services, as specified in the
VNF-FG associated with the service. The VNF-FG contains
a list of matching attributes and connection points that detail
how the dependencies are connected and how network traffic
needs to be processed.

Since services are shared, orchestrators need to handle the
service’s replicas, and by extension, the service’s VNF-FG.
Thus, reconfiguring a VNF-FG for shared services means that
the replicas (and their dependencies) need to agree on the new
value for both the matching attributes and connection points.

B. VNF Forwarding Graph reconfiguration

A network service under NFV has associated a VNF-FG that
defines the logical order of the traffic flow between the VNFs
that belong to a service [8]. To achieve this logical order, the
VNF-FG has a rendered service path and classifying rules [32].
In an ideal scenario, the service is static; however, because of
inherent and dynamic conditions of the environment, such as
the number of users, random failures, and extra features, the
providers reconfigure services along with their VNF-FGs.

The reconfiguration of a VNF-FG involves changing the
list of connection points and matching attributes [33]. This
change can be done by updating the values either via changing
a connection point or matching attribute and adding/removing
more elements to the lists.

Let g be a VNF-FG that belongs to the set of the federation’s
VNF-FGs G. Each g has a pair of classifier rules cg and
rendered service path xg . The classifier rule cg has a list of
matching attributes [ma1,ma2, . . . ,mau]. And the rendered
service path xg has a list of connection points [p1, p2, . . . , pv].
The function φ computes the state of the VNF-FG g as defined
in Equation 1.

6

φ(g) = (cg, xg) = ([ma1, . . . ,mau], [p1, . . . , pv]) (1)

Each matching attribute ma ∈ cg has the protocol, IP, and
ports to be visited by incoming traffic. The connection points
p ∈ xg have both input and egress points. A reconfiguration
of the VNF-FG changes multiple values by either a matching
attribute or connection points. It is also possible to delete or
add classifier rules and rendered service paths; but, we let this
feature for future work. We formally define the reconfiguration
operation ∆ between a pair of VNF-FGs g, g′ in Equation 2.

∆ : g → g′ = ∃p ∈ xg, p′ ∈ xg′ , p.id = p′.id | φ(p) 6= φ(p′)

∃ma ∈ cg,ma′ ∈ cg′ ,ma.id = ma′.id

| φ(ma) 6= φ(ma′).
(2)

We name the problem of reconfiguration for a VNF-FG
as VNF-FGR. For a dedicated service, the reconfiguration is
trivial as the service’s orchestrator manages all the resources
and resolves conflicts easily. However, for shared services,
the chief interest is that all affected orchestrator replicas have
the same view after a reconfiguration. This is the goal of the
consistent VNF Forwarding reconfiguration problem.

C. Consistent VNF Forwarding Graph reconfiguration

When the orchestrator changes a copy of a shared VNF-
FG g ∈ G by updating the order of a connection point in
the rendering service path, it will apply to all other copies
of the VNF-FG managed by different orchestrators, (e.g.
∀g′ ∈ G|g.id = g′.id). We formalize the consistent VNF-FG
reconfiguration on Equation 3.

∆(g) : ∀g′ ∈ G|g.id = g′.id =⇒ φ(g) = �φ(g). (3)

where φ(g) is the state of the VNF-FG g and � is a random
and finite amount of time. An inconsistency occurs if, after a
VNF-FG reconfiguration ∆ on a shared service g, the state
of a replica of g′ do does not match. We call the consistent
VNF-FG reconfiguration problem CVNF-FGR.

After a consistent reconfiguration of the VNF-FG, Equa-
tion 3 holds true. We illustrate a consistent reconfiguration of
a VNF-FG for a content delivery shared service containing
a decoder VNF. The service has been replicated in a multi-
domain federation with three different providers that have
three different orchestrators o1, o2, o3. Because of a surge in
service usage, the orchestrators must reconfigure the shared
service along with its VNF-FG. We illustrate this in Fig. 4
(A) by changing the connection point of the shared decoder
VNF represented by value a (e.g. changing the input point).
In Step 1, all the VNF-FG replicas start in the same state o. In
Step 2, the second orchestrator o2 updates its VNF-FG replica
with value a and sends a notification to other orchestrators. In
Steps 3 and 4, the other orchestrators receive the notification
and also update their VNF-FG replicas. At the end of the
reconfiguration, all the replicas have the same value a. This
is an example of a consistent VNF-FG reconfiguration.

Fig. 4. Two examples of VNF-FG reconfiguration. (A) All replicas of the
shared service’s VNF-FG have the same value. This is an example of an
consistent reconfiguration. (B) All replicas of the shared service’s VNF-FG
have different values. This is an example of an inconsistent reconfiguration.

In ideal conditions, consistency can be achieved by sending
the notification to all affected replicas. But, non-deterministic
network conditions, such as a random latency, can lead to
an inconsistent reconfiguration. Such reconfiguration brings
partial or total failures, violating the Service Level Agree-
ments. We extend the example from Fig. 4 (A) to show an
inconsistent VNF-FG reconfiguration. In this new example,
concurrent updates can be done. We illustrate this in Fig. 4
(B). In Step 1, all orchestrators start with an initial value o. In
Step 2, the second orchestrator o2 updates its VNF-FG replica
with value a and sends a notification to the other orchestrators.
In Step 3, the third orchestrator receives the notification and
updates its replica. In Step 4, the third orchestrator o3 updates
again the replica, based on the previous update, to a new
value p (e.g. updating a different input point) and sends a
notification to all the others. Two concurrent tasks execute in
Step 5. Firstly, the first orchestrator o1 receives the second
update from o3 with value p and updates its VNF-FG replica.
Secondly, the second orchestrator o2 also updates the replica
with value p. In the Step 6, the o1 receives the second update
from o2 with value a. Since the orchestrators have local
knowledge of their administrative domain only, it updates its
replica. In the end, VNF-FG replicas have different values.
This is an example of inconsistent VNF-FG reconfiguration.
Moreover, non-functional dependencies can make the VNF-
FG reconfiguration more challenging. This problem is called
the VNF-FG consistent reconfiguration with non-functional
dependencies problem.

D. Consistent VNF Forwarding Graph Reconfiguration with
Non-Functional Dependencies

Network services are shared with multiple orchestrators via
replicas. These replicas can also be used as external dependen-
cies for other services. To prevent violation of Service Level
Agreements, such as increasing latency, exposing security
flaws, or degrading the QoS, the orchestrator verifies if the
reconfiguration proposed by an external orchestrator replica
will affect the service’s non-functional requirements. If it is
the case, the orchestrator will not accept the reconfiguration.
To stay consistent, all orchestrators need to consider the nega-
tion by non-functional dependencies. We name this problem
the Consistent VNF-FG Reconfiguration with Non-Functional
Dependencies (CVNF-FGR-NF).

7

We illustrate an example of an inconsistent reconfiguration
extending the same example for reconfiguration presented in
Fig. 4 (A) but where the orchestrators can refuse a reconfigura-
tion. This is shown in Fig. 5. In this scenario, four orchestrators
(o1, o2, o3, o4) from different administrative domains manage
two shared encoders g1, g2 and shared decoders g3, g4. The
first orchestrator o1 manages the encoder g1, the second
orchestrator o2 manages the encoder g2, and so on. At the
beginning, all shared encoders and decoders start with initial
values represented by o, and ∗ as shown in the bottom of
Fig. 5 (box A). Additionally, the encoders and decoders are
related since decoder configuration depends of the encoder
configuration, as shown in the bottom of Fig. 5 (box B).
This means, that in order to reconfigure a decoder, both
orchestrators that manage g1, and g2, respectively, have to
accept the changes. The reconfiguration is as follows: In
Step 1, both the third and fourth orchestrators change the
value of their respective shared decoders g3, g4 with different
values a, p, respectively. Step 2 shows how the first and
second orchestrators update their shared encoders. The first
orchestrator o1 verifies the proposed reconfiguration. After
accepting the reconfiguration, change the value of the encoder
g1 to a new value y, as shown in the second Step of Fig. 5.
The second orchestrator o2 does the same and updates the
encoder value to y, as shown in the second Step of Fig. 5.
In Step 3 there are three concurrent tasks. Firstly, the first
orchestrator o1 gets the notification from the fourth o4 to
reconfigure the VNF-FG. The first orchestrator does not accept
the reconfiguration, keeps the value y, and sends a negative
reply to o4. Secondly, the second orchestrator o2 gets the
same notification from the fourth o4. Since it accepts this
most recent update, the orchestrator updates the value of the
dependency to x; then, it replies positively to o4. Thirdly, the
concurrent task is the positive reply from o1 to o3, which
updates the first of the two required answers, as shown in the
third Step of Fig. 5. In Step 4, both o3 and o4 get a positive
reply from one of their dependencies. The third orchestrator
o3 receives a positive reply from o2, and updates the first of
two required answers; while, o4 from o2, also updating the
second answer. Since the third orchestrator o3 received both
positive replies from its dependencies, it will notify the fourth
orchestrator o4 to change the value of the VNF-FG replica.
In Step 5, two concurrent events happen as messages arrive at
the fourth orchestrator o4. Firstly, the instruction to update the
value of the VNF-FG replica arrives from o3. Secondly, the
negative reply from o1 arrives. Thus, the fourth orchestrator
o4 can choose between doing the reconfiguration or remaining
in the initial state. Here, a non-deterministic output creates an
inconsistency. The first choice is that the fourth orchestrator
updates the value of the VNF-FG replica to a; however, the
dependencies have different values, as shown in the bottom of
Fig. 5 (second row of box C). The other choice is to remain in
the initial state; but the replicas have different values, as shown
in the bottom of Fig. 5 (first row of box C). Moreover, because
orchestrators can share the decoder among other orchestrators
with limited knowledge, conflicts will arise as the replicas
diverge further and further each concurrent reconfiguration.
This is an example of an inconsistent reconfiguration with

Fig. 5. VNF-FG reconfiguration with non-functional dependencies. Replicas
of the shared service’s VNF-FG and their dependencies have different values.
The fourth orchestrator o4 cannot determine what will be the VNF-FG
value for the concurrent values. This is an example of an inconsistent
reconfiguration.

non-functional dependencies.
The CVNF-FGR problem (Subsection IV-C) is a particular

case of the CVNF-FGR-NF where orchestrators always accept
the reconfiguration proposed by replicas coming from other
orchestrators. Furthermore, the CVNF-FGR-NF is divided into
two classes according to the wanted behavior in terms of
consistency. If a reconfiguration applied always is valid by
all orchestrators, then the problem does not support fault-
tolerance (i.e. critical applications). We call this the preventive
problem. If reconfigurations can be undone, we consider the
problem supports fault-tolerance. We call this the corrective
problem.

V. COORDINATION-FREE ORCHESTRATION ALGORITHM
FOR MULTI-DOMAIN ENVIRONMENTS

In the CVNF-FGR-NF problem, the goal is that all VNF-FG
replicas and their dependencies have the same values. How-
ever, non-deterministic network conditions (e.g. out-of-order
delivery of messages) and concurrent updates from different
orchestrators can have unwanted effects while reconfiguring
the VNF-FG. Moreover, dependencies can negate the updates,
amplifying the negative effects of the previous conditions.
Next, we introduce the dependency relation δ.

The binary dependency relation δ takes as input two dif-
ferent VNF-FGs (g ∈ G, g′ ∈ G′) (i.e. is not possible to
have a dependency with itself). As the VNF-FGs have replicas
they must have the same values, thus if the relation δ(g, g′)
holds, this implies that every element in G has a dependency
with every other element in G′ (i.e. ∃δ(g, g′), g ∈ G, g′ ∈
G′ =⇒ δ(G,G′). If δ is a bi-directional relationship, then it
also implies that all elements in G′ have a dependency relation
(i.e. δ(G′, G)). This means whenever a reconfiguration takes
place, the orchestrator who does the update has to notify other
orchestrators who manage a VNF-FG in the super-set G∪G′.
When reconfiguring VNF-FGs with a dependency relation,
orchestrators can have different values for the VNF-FG. To
prevent inconsistencies, a conflict resolution mechanism is
required.

Traditionally, in distributed systems, conflict resolution is
done by consensus among all orchestrators to achieve Se-

8

quential Consistency (see Section II-B). The problem is that
consensus has a lackluster performance that hinders the ap-
plicability of such solutions. Even worse, NFV is expected
to have low latency (e.g. milliseconds) for network services.
One way to circumvent this low performance is to relax
the consistency model such as with the Strong Eventual
Consistency (see Section II-B). Such a consistency model
achieves the ideal trade-off between consistency, availability,
and partitioning. Consistent free replicated data types (CRDTs)
can offer such a stronger consistency model.

We consider CRDTs (see Section II-B) as an automatic
conflict resolution mechanism. The idea is to design an or-
chestration algorithm using data structures that support SEC
to avoid the coordination phase ensuring consistency. For
the proposed algorithm, whenever an orchestrator executes a
reconfiguration, it will change either the matching attribute
and/or the connection points, as specified by the ETSI’s NFV
standard information model [6]. This means changing the data
structure that holds all the required information for them. For
example, to change the matching attribute, the orchestrator
will set a new value for the protocol recognized, the source
and destination addresses, and ports. For different paradigms
during conflict management, we now describe briefly the two
variants of our algorithm.

The first variant prevents inconsistencies by applying up-
dates only when all replicas and dependencies have asserted
an updated proposal. This means that an orchestrator that
manages a VNF-FG g ∈ G with a dependency g′ ∈ G′

sends a reply to all other orchestrators in the set G ∪ G′.
Whenever an orchestrator that manages a dependency of the
VNF-FG g receives the proposal, it will reply either positively
or negatively. The change is not applied until all answers are
received. If any is negative, the reply will be discarded. The
second variant is more permissive, as it allows updates to take
place at the moment the notification arrives. Similar to the
first variant, under this corrective variant, the orchestrator that
updates the VNF-FG g ∈ G must send to all orchestrators
that manage a VNF-FG in the set G ∪ G′. However, the
receiving orchestrator will only notify a negative answer to
the others. When an orchestrator receives a negative answer,
it must make the required changes to be in the most promising,
consistent state. Both variants of our proposed algorithm
achieve SEC. Next, we describe the two variants to achieve
the Consistent Dependent VNF-FG Reconfiguration and we
prove they achieve SEC.

A. Preventive Variant

The preventive algorithm reconfigures a VFN-FG only when
all affected orchestrators have accepted the changes ensuring
that the VNF-FG and their non-functional dependencies are
consistent for all replicas. We name the preventive variant as
CF-P. Algorithms 1, 2, and 3 describe in detail the CF-P
variant. When an orchestrator tries to update a VNF-FG it
first executes Algorithm 1.

For Algorithm 1, first, the orchestrator applies the recon-
figuration to a copy of the VNF-FG g (line 1). Then, the
orchestrator increases the counter for the reconfiguration to

Algorithm 1 update vnffg
1: update vnfforwarding graph copy()
2: create unique identifier for reconfiguration()
3: get list of orchestrators to send message()
4: create empty list to store answers()
5: initialize list with positive value()
6: add new list to pending operations()
7: create message to notify update()
8: send message to all affected orchestrators()

uniquely identify it (line 2). After, it computes the set of
orchestrators who manage replicas of the VNF-FG (line 3).
Next, the orchestrator creates a list to store the replicas’ replies
(lines 4, 5). Finally, it appends the reconfiguration to a list of
pending operations and sends the instruction to reconfigure to
other orchestrators (lines 6-8). When an orchestrator receives
a notification, it will execute Algorithm 2.

For Algorithm 2 the orchestrator first will compute the set of
orchestrators that have replicas of the VNF-FG (line 1). Then,
it creates a temporary answer that will change depending if the
change will be accepted or not (line 2). If the orchestrator has
not previously received a reply to this reconfiguration, it will
create a new empty list and add it to its pending operations
(line 3). After, the orchestrator checks the feasibility of the
reconfiguration (i.e. the replica and its dependencies satisfy
non-functional properties); if valid, the orchestrator will mark
the reconfiguration as accepted (line 6); otherwise, as false
(lines 12, 13). If the orchestrator accepted the reconfiguration
and the counter of the new operation is greater than the current
one, the orchestrator applies the changes and it updates the
counter of the VNF-FG (lines 8, 9). Finally, the orchestrator
creates a message and sends the reply to all affected orches-
trators (lines 15, 16). When an orchestrator receives a reply,
it will execute Algorithm 3.

For Algorithm 3 the orchestrator first stores the reply in the
list for the VNF-FG reconfiguration (line 1). If all entries are
positive, the orchestrator will apply the update (lines 3, 4).

Algorithm 2 receive notification update message
1: get list of orchestrators to send reply()
2: create answer and set as false()
3: if first create list and append to pending operations()
4: if check feasibility(∆) then
5: mark entry as positive()
6: update answer to positive reply()
7: if all entries are positive and greater counter then
8: reconfigure the vnffg()
9: update the counter with new one()

10: end if
11: else
12: mark entry as negative in list()
13: add entry as negative in list()
14: end if
15: create message to notify update()
16: send message to all affected orchestrators()

9

Algorithm 3 receive reply message
1: mark entry with answer()
2: if all entries of list are positive and counter is greater

then
3: reconfigure the vnffg()
4: update the counter with new one()
5: end if

Consider the same reconfiguration of a shared VNF-FG as
in Section IV-D where four orchestrators o1, o2, o3, o4 manage
two encoders g1, g2 and two decoders g3, g4, respectively. The
first orchestrator o1 manages g1, the second orchestrator o1

manages g2, and so on. Fig. 6 shows the execution for the
reconfiguration to ensure all replicas are consistent by having
the same values. For ease of readability, the images only
show a single value that changes whenever a reconfiguration
happens; however, in reality our algorithm considers the whole
data structure of the VNF-FG according to the information
model [6]. In Step 1, the third and fourth orchestrators try to
update concurrently the VNF-FG. The third orchestrator o3

proposes a new value a for his VNF-FG; while, the fourth
orchestrator o4 updates his to p, respectively. Both store them
in their lists and send the proposal to all affected orchestrators
(in this example all the others). In Step 2 three concurrent
tasks execute. Firstly, the first orchestrator o1 receives the
proposal from o3. After validating this proposal it stores it
in a list of pending reconfigurations as shown in the right side
of Fig. 6, where a question symbol is stored in the entries
for g1 and g3, respectively. After, o1 sends notification to all
affected orchestrators. Secondly, similarly to o1, the second
orchestrator o2 accepts, stores, and sends notifications for
value a. Thirdly, o4 receives the proposal from o3 and also
does the three operations as before. In Step 3 four concurrent
operations execute, we will focus only on the first two as
the two others also apply the same three operations. For the
first task, the first orchestrator o1 receives the proposal from
o4. The orchestrator verifies if the reconfiguration is valid;
however, it decides not to accept it. The first orchestrator o1

then adds the proposal as negative, as shown in the right
side of Fig. 6. All subsequent notifications of proposal for
value p will be automatically negated. For the second task,
the second orchestrator o2 validates the proposal for value
p. Steps 4 and 5 shows how more notification arrive to the
orchestrators. We focus on the notification from o1 to o4.
Since all values are already validated by replicas, the fourth
orchestrator finally can reconfigure its VNF-FG replica. This
is shown on Fig. 6 by the change of color and value of the
g4 decoder. Eventually all notification and proposals arrive
with Steps 6-8. At the end of reconfiguration, all VNF-FG
replicas have the same values. Comparing Figures 5 and 6 it
can be seen how the preventive variant achieves a consistent
reconfiguration despite non-functional dependencies. A more
in-depth description of the preventive algorithm is detailed in
the Appendix A in Algorithms 7, 8, 9. The correctness proof
is detailed in Appendix C Section C-A.

B. Corrective Variant

The corrective algorithm reconfigures a VFN-FG when a
notification arrives without waiting and does not send a noti-
fication to other orchestrators. Only when a dependency does
not accept a reconfiguration due to violating non-functional
requirements, the orchestrator will send a negative notification
to the others. Whenever an orchestrator receives a negative
notification, it will reconfigure the VNF-FG to a provisional
state after merging with the notification. We name the correc-
tive variant as CF-C. Algorithms 4, 5, and 6 describe in detail
the CF-C variant.

When the orchestrator reconfigures a VNF-FG it starts by
executing Algorithm 4. First, the orchestrator updates the
VNF-FG directly (line 1). Then, it increases the counter to
uniquely identify the operation (line 2). After, the orchestrator
computes the list of orchestrators that have replicas of the
VNF-FG (line 3). Next, it adds the reconfiguration to the heap
of accepted reconfigurations (line 4). Finally, the orchestrator
creates a message and sends it to the list of orchestrators
(lines 5, 6). When an orchestrator receives this message, it
executes Algorithm 5.

For Algorithm 5, the orchestrator first checks if the reconfig-
uration already is stored in the list of negated reconfigurations;
if not it continues (line 1). After, the orchestrator checks if
the reconfiguration is feasible (i.e. replicas and dependencies’
non-functional properties are satisfied after reconfiguration). If
it is valid, the orchestrator checks if both counters are greater
than the current ones, if they are the VNF-FG is reconfigured
and the top counter is updated (lines 4, 5). Otherwise, it is
added to the heap in the correct place by using the counters
as identifiers (line 7). If the reconfiguration is not accepted,
the orchestrator computes the list of affected orchestrators,
adds the reconfiguration to the list of rejected operations,
creates a negative reply message, and sends it to all affected
orchestrators (lines 9-12). When an orchestrator receives the
negative reply, it executes Algorithm 6.

For Algorithm 6, the orchestrator removes the operation
from the heap (this could be the top or any other position),

p

a

o1

1 2 3 4 5 6 7 8

o2

o3

o4
a

a

a

a

a a

a

g1 g2 g3

1
p

a

p

a

1

p

a

p

a
22

2 2

2 2

3 3

3 3

33

3

4

4

5

5

5

6

6

6

4 6

7

5

7

7

8

8

4

g4

Dependencies

depend(g4, {g1,g2})

depend(g3, {g1,g2})

Replicas

g1

Encoders

** g2 oo

Decoders

g3 g4

Fig. 6. VNF-FG reconfiguration with our proposed preventive variant. At the
end of the reconfiguration, replicas of the shared service’s VNF-FG have the
same value. Unlike Fig. 5, this is an example of a consistent reconfiguration
with non-functional dependencies.

10

adds the reconfiguration to the list of negated operations, re-
orders the heap, and applies the reconfigurations starting from
the initial consistent state (lines 1-4).

Consider the same reconfiguration of a shared VNF-FG
as in Section IV-D where four orchestrators o1, o2, o3, o4

manage two shared encoders g1, g2 and two shared decoders
g3, g4, respectively. The first orchestrator o1 manages g1, the
second orchestrator o1 manages g2, and so on. Fig. 7 shows
the execution for the reconfiguration to ensure all VNF-FG
replicas are consistent by having the same values. For ease of
readability, the images only show a single value that changes
whenever a reconfiguration happens; however, in reality, our
algorithm considers the whole data structure of the VNF-FG
according to the information model [6]. In Step 1, the third
and fourth orchestrators update concurrently the VNF-FG. The
third orchestrator o3 updates its VNF-FG with a new value
a; while the fourth orchestrator o4 with p, respectively. Both
add the value to their heap and then send the proposal to the
affected orchestrators. In Step 2, two concurrent tasks execute.
Firstly, the first orchestrator o1 receives the proposal from o3.
After validating this proposal, it applies the reconfiguration to
VNF-FG g1 and adds the state to the heap. This is shown
on the right side of Fig. 7. Secondly, similarly to o1, the
second orchestrator o2 accepts, reconfigures, and saves the
state. In Step 3 three concurrent tasks execute. Firstly, the
proposal from o4 arrives to o1. The orchestrator verifies if
the reconfiguration is valid; however, it decides not to accept
it. The first orchestrator o1 adds it to the list of negative
proposals and notifies all the affected orchestrators (in this
example, all the others). Secondly, the proposal from o4 arrives
to o2; unlike o1, o2 accepts the proposal and reconfigures the
VNF-FG g2 to match the state of value p. This is shown in
Fig. 7 where the top now is p; unlike in the previous Step
2. Thirdly, the proposal from o3 arrives at o4 who accepts
it. However, because his reconfiguration takes precedence, it
will not apply the reconfiguration. In Steps 4 and 5, the rest
of the notifications arrive. Whenever an orchestrator receives
a negative reply, it reconfigures again to another state. The
value in the heap is removed and added to the list of negated
proposals. This is shown in the fourth and fifth steps in Fig. 7.
At the end of reconfiguration, all VNF-FG replicas have the
same values. Comparing Figures 5 and 7 it can be seen how the
preventive variant achieves a consistent reconfiguration despite
non-functional dependencies. A more in-depth description of
the preventive algorithm is detailed in the Appendix B in
Algorithms 10, 11, 12. The correctness proof is detailed in
Appendix C in Section C-B.

Algorithm 4 update vnffg
1: apply reconfiguration to vnffg()
2: increase the vnffg counter()
3: get list of orchestrators to send notification()
4: add reconfiguration entry to heap()
5: create update notification message()
6: send notification to all affected orchestrators()

Algorithm 5 receive notification update()
1: pass if entry is negated()
2: if check feasbility(∆) then
3: if counter greater equal greater identifier then
4: apply the reconfiguration to the vnffg()
5: increase the counter for the vnffg()
6: end if
7: add entry to heap()
8: else
9: get list of affected orchestrators()

10: add reconfiguration to list of rejected operations()
11: create negative reply message()
12: send negative reply to affected orchestrators()
13: end if

VI. EXPERIMENTS AND RESULTS

We implemented our proposed algorithm to measure perfor-
mance, costs, and trade-offs of each variant of our proposed
algorithm. The following sections comprise the distributed
setup (Section VI-A), metrics evaluation (Section VI-B), ex-
periments (Section VI-C), and discussions (Section VI-D).

A. Distributed Federation setup

We deploy the federation in a public cloud provider in-
frastructure to achieve a good trade-off between cost and
availability, as private providers are not representative of multi-
domain federations due to their limited availability. We tested
our two variants using Azure’s cloud infrastructure. We chose
multiple domains from the cloud provider from the following
locations: North Europe, West US, South Korea, East US, and
the UK. The goal is to cover a large geographical space that
covers more than two continents. Each domain communicates

Algorithm 6 receive reply message
1: remove operation from heap()
2: add reconfiguration to list of rejected operations()
3: compute new update after the new order from heap()
4: apply new update from consistent state()

1

D0

D1

D2

D3

1
D0

2

D1

3

D1

4 52 3 5

o1

a

p
p

a

o

a

oo

o

4

o2

o3

o4

a

o

P

p

a

o

D3

a

o P

D2

a

o P

D2

a

o P

a

o

a

o

D0

P

D1

p

a

o

D3

a

a a

a

a a

ap

p

DependenciesReplicas

g1

Encoders

** g2 dep(g4,{g1,g2})dep(g3,{g1,g2}
oo

Decoders

g3 g4

o

Fig. 7. VNF-FG reconfiguration with our proposed corrective variant. At the
end of the reconfiguration, replicas of the shared service’s VNF-FG have the
same value. Unlike Fig. 5, this is an example of a consistent reconfiguration
with non-functional dependencies.

11

over the Internet, such that average latency is representative
of real conditions, while the orchestrators communicate. For
each domain, we instantiated a virtual machine to host the
orchestrator software. All virtual machines have the same
configuration: 2 CPUs, 30GB of hard drive, 4GB of RAM, and
Ubuntu 18.04-LTS. These resources were sufficient to deploy
an orchestrator, and each service was created by running pro-
cesses in the virtual machine. Nowadays, many open-source
orchestrators follow the ETSI standard; but none implement
the required interfaces to support a federation. Thus, we
implemented a multi-domain orchestrator in Python following
the ETSI standard [6]. Each domain has its policies, topology,
and manages a single orchestrator. We defined the policies in
a JSON file that contained all the required information to set
up the experiment, such as the orchestrators, location, number
of VNFs, types of VNFs, required information for VNF-based
network services and their associated VNF-FGs. This descrip-
tor was generated using random seeds. The topology is also
specified in the experiment descriptor and states how services
are connected. Connections are achieved either by internal or
external dependencies. The way services are related and built
depends on random seeds, also included in the JSON file.
Finally, the workload is defined in another file that contains all
the concurrent changes. Thus, the workload changes according
to the experiment’s parameters. More details about the Python
libraries used, the topology of services, the random seeds, the
VNF-FGs, and the environment used for testing can be found
in the source code 2.

We measure the performance of the proposed algorithms
under different scenarios. Thus, we consider different pa-
rameters for each experiment, as shown in Table III. The
combination of these parameters creates different scenarios,
each one of different complexity. For example, an ideal
scenario would have zero delay (i.e. Max D=0), accept all
reconfigurations (i.e. Pb N=0), and non-concurrent reconfig-
urations (i.e. Nm R=0). A worse scenario, compared to the
ideal, would have greater delay (i.e. Max D=100ms), negate
some reconfigurations (i.e. Pb N=20), and have concurrent
reconfigurations (i.e. Nm R=1200).

B. Algorithms and metrics to evaluate

We consider our proposed algorithm with two variants
and the current ETSI standard orchestration algorithm for
consistent VNF-FG reconfiguration. Next, we include a brief
description of each one.

• The preventive variant of our proposed algorithm (CF-P).
It tries to prevent temporary inconsistent periods between
reconfigurations by waiting until all affected orchestrators
either accept or negate.

• The corrective variant of our proposed algorithm (CF-
C). It allows for a temporary inconsistent period while
minimizing messages sent by keeping the current valid
state, and in case of negation, rolling back reconfigura-
tions until they achieved a correct state.

2https://doi.org/10.5281/zenodo.5336614

• The ETSI standard algorithm (NCF-E). It allows for
reconfiguration to be done using eventual consistency by
applying updates the moment they arrive.

Next, we describe each metric. The overall goal is to be
able to compare the algorithms and evaluate the trade-offs of
each to select the appropriate one for a given scenario.
• Total reconfiguration time. This metric measures the time

in milliseconds taken for the VNF-FG reconfiguration for
each algorithm. A lower value is preferred.

• Number of reconfigurations. This metric measures the
number of times a particular VNF-FG is reconfigured.
Some algorithms allow a certain period of inconsistency,
thus this metric measures the extra cost associated with
more flexibility in terms of quick reconfigurations. A
lower value is preferred.

• Latency per operation. This metric measures the time
difference in milliseconds between the proposal for a
VNF-FG reconfiguration and its actual reconfiguration.
A high value means lower performance, thus, a lower
value is preferred.

• Inconsistencies. Measures the number of updates that are
different for each replica. A lower value is preferred since
inconsistencies directly translate to cost for providers and
lower performance for users.

• Overhead per messages. Measures the data each orches-
trator sends to other replicas and dependencies when
executing an algorithm. A lower value is preferred. This
metric is associated with a cost for CRDT-based algo-
rithms.

C. Experiments
We consider all combinations of parameters for the exper-

iments. Each combination is evaluated thirty times and we
take the average values for each metric previously described.
Because of length limitations for the paper, we only show
relevant results to compare the three algorithms using only
the concurrent scenarios, as they are more representative of
the algorithms’ behavior. The two variables controlled for
the experiments were a probability of negation and network
delay. We chose the probability to negate in four scenarios
(i.e. 0%, 5-10%, 20-40%, and 80%). A negation of 0%
means the replicas and dependencies always accept changes.
A negation of 5-10%, that replicas almost always accept
changes. Higher values introduce more complexity for the
algorithms considered, since they have to ensure no incon-
sistencies happen. Thus, these probability values characterize
the environments in which the algorithms could be used;
for low probabilities, the providers have sufficient resources
to apply changes, therefore accepting the reconfigurations.
Higher probability negations mean there is a lack of resources
for providers to reconfigure. The network delay also was
changed to evaluate different scenarios. However, because
of the limitations of the paper, we only show the results
of delays with delays of 100 and 1000ms. The rest of the
Figures, as well as the data processing done, can be found
in the repository3. We evaluated the different algorithms for

3https://doi.org/10.5281/zenodo.6534249

12

TABLE III
PARAMETERS CONSIDERED FOR THE EXPERIMENTATION. EACH PARAMETER CONFIGURATION CREATES DIFFERENT TEST SCENARIOS FROM THE IDEAL

TO THE WORST CASE.

Parameter Range Explanation

Maximum Delay (Max D) [1, 10, . . . , 100000] ms
This evaluates the performance of the algorithms under low and high
non-deterministic conditions. Intuitively, the greater the delay; the
worst the performance.

Number of Reconfigurations (Nm R) 0, 150, 300, . . . , 1800
Allows to check the performance as a function of the number of
reconfigurations. Intuitively, algorithms get the worst performance
with a higher number of reconfigurations.

Type of Reconfigurations (T R) Concurrent Concurrent updates allows for reconfiguration to happen at any time.

Probability to Negate (Pb N) 0 - 5 - 10 - 20 - 40 - 80 %
Signals how the algorithms behave when the reconfigurations
are negated by other orchestrators due to violating non-functional
requirements.

Number of repetitions per experiment 30 Each combination of parameters was evaluated thirty times to reduce bias.

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

In
co

ns
is

te
nc

ie
s

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

In
co

ns
is

te
nc

ie
s

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Fig. 8. Inconsistencies per number of reconfigurations, lower is better. Both
variants prevent inconsistencies for any type of scenario; thus, negation and
delay factors do not have an impact on the variants. The standard does not
prevent inconsistencies.

each metric considered. The proposed preventive variant is
represented with a green axis/diamond for delays for 100
and 1000ms, respectively. The proposed corrective variant is
represented with a blue right/left triangle for 100 and 1000ms,
respectively. Finally, the standard algorithm is represented with
an orange up/down triangle for 100 and 1000ms, respectively.
For all results we draw a confidence interval at 95% using the
Seaborn python library using a bootstrapping algorithm, as
detailed in the data process repository. We present the results
in Figures 8, 9, 10, 12, 11, 13. Next, we discussed the results
from our experiments.

D. Results

The first column of Table IV shows the related work and
the proposed variants. All the works focus on the VNF-FG
reconfiguration, as shown in the second column. We evaluated
our proposed algorithm compared to the ETSI standard [14]
as it is the only relevant work aside from ours that considers
shared VNF-FGs, as shown in the third column (shared

VNF-FG) of Table IV; the other works [7], [13] do not.
Both of our proposed variants, unlike the standard [14],
support non-functional dependencies that can negate ongoing
reconfigurations, as shown in the fourth column of Table IV.
The corrective variant allows extra reconfigurations, unlike
the preventive variant, as shown in the fifth column. Unlike
the standard that has inconsistencies, the variants of our
proposed algorithm reconfigure the replicas of the VNF-
FGs without inconsistencies, as shown in the sixth column of
Table IV. Thus, our variants support a more general case of the
VNF-FG reconfiguration. However, supporting non-functional
dependencies without a coordination phase has a cost. Next,
we detail the results and discuss these costs.

Fig. 8 shows the number of inconsistencies per reconfig-
urations. These inconsistencies happen because the replicas
or dependencies have different values. The standard has the
worst performance, as the number of inconsistencies increases
with more concurrent reconfigurations. Unlike the standard,
the corrective and preventive variants do not have incon-

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

10

20

30

40

50

60

70

80

Av
er

ag
e

la
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

10

20

30

40

50

60

70

80

Av
er

ag
e

la
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Fig. 9. Latency per reconfiguration operation, lower is better. Both the
corrective and standard algorithms are instantaneous, while the preventive
variant must wait. For 1800 concurrent reconfigurations the average latency
per operation is 1 minute for preventive variant.

13

TABLE IV
SOLUTIONS FOR THE VNF-FG RECONFIGURATION WITH DIFFERENT FUNCTIONALITIES. OUR PROPOSED VARIANTS OFFER ALL FUNCTIONALITIES

Work VNF-FG
Reconfiguration

Shared
VNF-FG

On-going
negations

Non-Functional
dependencies

Extra
Reconfigurations Inconsistencies

VNF-FG Extension[7,13] Yes No No No No N/A
ETSI Standard [14] Yes Yes N/A No No > 0
Preventive Variant (CF-P) Yes Yes Yes Yes No 0
Corrective Variant (CF-C) Yes Yes Yes Yes Yes 0

sistencies. This behavior follows our theoretical results (see
Appendix C), where inconsistencies are prevented by enforc-
ing strong eventual consistency. Moreover, since the standard
does not consider negation of ongoing reconfigurations, as
shown in Table IV, negation has no effect on it. Fig. 8
shows that results are equal irrespective of the probability
of negation. This is explained by the fact that both variants
enforce strong eventual consistency, and replicas converge to
a consistent state irrespective of the number of negations and
delay; for the standard, since it does not support on-going
negations, the results were also the same when we measured
the inconsistencies of the algorithms for different probabilities
to negate.

Fig. 9 shows the latency per reconfiguration operation (i.e.
the time needed to wait before reconfiguring a VNF-FG). The
preventive variant behaves worse than the standard and the
corrective variant which applies the reconfiguration when it
receives the reconfiguration instruction. With 1800 concurrent
reconfigurations and 0% negation probability, the average
latency per operation is about 1 minute for the preventive
algorithm. However, when the negation probability increases
(e.g. 20-40%), the latency reduces. This behavior is consistent
with the way the preventive algorithm executes. If one entry

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

M
es

sa
ge

s
se

nt

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

M
es

sa
ge

s
se

nt

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Fig. 10. Messages sent by the algorithms in different scenarios, lower is
better. The corrective algorithm is more sensitive to parameters. For scenarios
where negation and delay are low, it behaves like the standard algorithm.
Otherwise, it behaves like the preventive variant as the gap widens between
1 to 100ms.

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0.0

0.5

1.0

1.5

2.0

O
ve

rh
ea

d
pe

r M
es

sa
ge

 (K
B

)

1e7 Negation 0%

Corrective_100
Standard_100
Preventive_100

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0.0

0.5

1.0

1.5

2.0

O
ve

rh
ea

d
pe

r M
es

sa
ge

 (K
B

)

1e7 Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100

Fig. 11. Overhead per messages, lower is better. Delay and negation seem
to not impact the preventive and the standard algorithms. For the corrective
variant, negation has the greatest impact since more data is sent every time a
negation happens.

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

A
dd

ed
 re

co
nf

ig
ur

at
io

ns

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

A
dd

ed
 re

co
nf

ig
ur

at
io

ns

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Fig. 12. Extra reconfigurations done by each algorithm, lower is better. The
preventive variant has zero extra reconfigurations. The corrective is sensitive to
the negation probability factor, as shown by the results from ideal conditions
(0% negation) compared to more negations.

14

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

1

2

3

4

5

To
ta

l r
ec

on
fig

ur
at

io
n

tim
e

(s
)

Negation 0%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 5 - 10%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

0

1

2

3

4

5

To
ta

l r
ec

on
fig

ur
at

io
n

tim
e

(s
)

Negation 20 - 40%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

Reconfigurations

Negation 80%

Corrective_100
Standard_100
Preventive_100
Corrective_1000
Standard_1000
Preventive_1000

Fig. 13. Reconfiguration time for the VNF Forwarding Graph, lower is better.
Negation and delay have a greater impact on preventive variants and the
standard algorithm. With a higher probability of negations (e.g. 80%), the
preventive is faster as a single element is required to abort the reconfiguration.

in the table is false (because either a dependency or replica
did not accept the changes), the preventive algorithm can
abort the reconfiguration without waiting for the rest of the
answers. Thus, when orchestrators negate more updates, the
latency for the preventive is reduced. Moreover, one minute
of latency per operation might seem a high number compared
to the corrective and standard; however, this latency is lower
compared to the latency per transaction of consensus solutions
(e.g. 10 minutes per transaction [34]). The behavior presented
in Fig. 9 is representative for all the parameters’ combinations.

Fig. 10 shows the messages sent to resolve conflicts between
the orchestrators. The preventive variant gets the worst perfor-
mance of all. The corrective algorithm sits in the middle of
the preventive and standard algorithms. However, with a high
number of negations (i.e. = 20%), the corrective algorithm
behaves like the preventive, as seen in how the corrective
trend line moves towards the preventive one. In the worst-
case scenario (i.e. 100% negation probability), the corrective
variant will send the same number of messages. Delay has a
slight impact on the number of messages sent. It widens the
interval; however, behavior is still the same.

Fig. 11 shows the overhead per message exchanged between
the orchestrators. Similar to the number of messages sent, the
preventive variant gets the worst performance of the other
variants. However, the negation probability seems to have a
lesser impact on the corrective algorithm. It only doubles the
amount of data sent, as shown with negations between 40%
and 80%.

Fig. 12 shows the number of extra reconfigurations per algo-
rithm. Here, the clear winner is the preventive variant getting
zero extra reconfigurations, while the corrective variant be-
haves worst. The corrective variant is sensitive to the negation
probability. For example, if all reconfigurations are accepted,

the corrective variant does not have extra reconfigurations.
However, with a greater probability to negate, the corrective
algorithm must reconfigure more services, as shown in the
number of reconfigurations done with 5-10% (e.g. 1000) and
20-40% (e.g. 3000).

Fig. 13 shows the average reconfiguration time for the
VNF-FGs. Negation probability has greater impact than delay.
With no negation, the corrective variant achieves the fastest
reconfigurations; while the preventive variant takes more time.
This is because the preventive variant sends more messages
than the corrective in this case. With more negations, the
preventive variant has achieved a faster reconfiguration time;
while the standard algorithm takes more time. This is because,
as previously mentioned, it only takes a single negated entry
into the list of changes for the preventive variant to abort the
reconfiguration. With higher negation probabilities (80%), the
standard has the slowest reconfiguration.

E. Discussion

Delay does not seem to be of a great impact compared to
the negation probability. Graphically this can be seen when
two lines overlap, which happens for most Figures. However,
in certain scenarios, it has some impact, such as in the number
of inconsistencies for the standard algorithm. Moreover, with
more concurrent reconfigurations, the variance increases for
all metrics. Yet, for some, such as inconsistencies and added
reconfigurations for the corrective variant, it has a greater
impact.

Based on these results, we provide a better scope on which
applications fit better the proposed variants. For resource-
constrained federations, where consistency is a priority, ex-
tra reconfigurations are expensive, memory is limited, and
latency is not a problem, service providers should select
the preventive variant over the corrective, such as an IoT
Virtualized network [35]. Service providers would use the
corrective variant in more specialized environments where
speed is required, memory is plenty, reconfiguration (in terms
of resource consumption) is cheap, sending messages is costly,
and the probability to negate reconfigurations is low, such as
with NFV satellite networks [36]. Moreover, the corrective
variant does not require knowing in advance the number of
orchestrators in the federation, thus, it is possible to use it
in open federations where new orchestrators can join and
leave temporally. These results match with the theoretical ones,
which showed the applicability of both variants. Since we
measure the behavior of both variants, implementing VNF-
based services as processes suffices to describe the scope
for each variant. Yet, we leave for future work a more in-
depth experiment, where we consider more locations for the
federation, covering all continents and places with high traffic
density, and state of the art VNF implementations for a more
precise performance evaluation.

VII. CONCLUSION

In this paper, we propose a coordination-free VNF-
Forwarding Graph (VNF-FG) reconfiguration algorithm for
network function virtualization in a multi-domain federation.

15

Algorithm 7 Update VNF-FG g, via ∆, with counter χg .
The VNF-FG g is managed by an orchestrator θ with pending
operation list Lθ.

1: g ← ∆(g)
2: c∆g ← χg + 1
3: Og ← (∀o ∈ O, g′ ∈ G; ‖ o ∼ g′, g.id = g′.id) ∪ (∀o ∈
O, g′′ ∈ G | o ∼ g′′, δ(g, g′′))

4: l∆g ← [0 | ∀o ∈ Og]
5: l∆g [θ, c∆g]← True
6: Lθ ← Lθ ∪ l∆g

This work addresses the noticed limitations in the relevant lit-
erature. Indeed, when the existing reconfiguration approaches
require a coordination phase for conflict resolution, our pro-
posed algorithm achieves consistent reconfiguration without
this coordination step. Moreover, unlike the current state of the
art, our algorithm supports non-functional dependencies which
could negate and roll back reconfigurations. Thus, we extend
the problem of consistent VNF-FG reconfiguration. To support
these non-functional dependencies, we present two variants of
our proposed algorithm to target different applications. For
critical and resource-constrained applications, where doing
extra reconfigurations is undesired, we propose a preventive
variant. For less stringent applications, we likewise propose a
corrective variant. We formally prove both variants reconfigure
consistently VNF-FG replicas without coordination. Since
supporting non-functional dependencies has an associated cost
in terms of delay and message/memory overhead, we evaluate
the performance of both variants compared to the state of
the art VNF-FG reconfiguration algorithm. The preventive
variant is stable and its performance is similar with different
parameters. The corrective variant is sensitive to parameters.
With low delays, it offers performance similar to the standard
but without the coordination phase and more functionalities.
With higher delays (>100ms), it behaves like the preventive.
For future work, we would like to explore ways to reduce the
costs in terms of latency and extra reconfigurations. Also, we
will explore more data structure that allows support of more
operations for the VNF-FG. Despite the overhead costs, our
proposed algorithm, unlike the state of the art, works on a
consistent VNF-FG reconfiguration problem.

APPENDIX A
PREVENTIVE ALGORITHM: FORMAL SPECIFICATION

The formal specification of Algorithms 1, 2, and 3 is
detailed in this Appendix using Algorithms 7, 8, and 9,
respectively. All algorithms follow the notation presented in
Table II.

APPENDIX B
CORRECTIVE ALGORITHM: FORMAL SPECIFICATION

The formal specification of Algorithms 4, 5, and 6 is
detailed in this Appendix using Algorithms 10, 11, and 12,
respectively. All algorithms follow the notation presented in
Table II.

APPENDIX C
PROOF OF CORRECTNESS FOR THE TWO VARIANTS OF THE

ALGORITHM

We now prove the correctness of both variants of our
proposed algorithm. To do so, we need to show the replicas of

Algorithm 8 Receive notification update message σ =
{ϑ, g′.id,∆, c∆g′}. The message contains the sender of the mes-
sage ϑ, the identifier g′.id of a VNF-FG g , the reconfiguration
operation ∆, the counter of the reconfiguration operation c∆g′ .
for VNF-FG g, with counter χg and managed by orchestrator
θ, with pending operation list Lθ.

1: Og ← (∀o ∈ O, g′ ∈ G; ‖ o ∼ g′, g.id = g′.id) ∪ (∀o ∈
O, g′′ ∈ G | o ∼ g′′, δ(g, g′′))

2: ω ← False
3: if (g′.id,∆) 6∈ L then
4: l∆g′ ← [0 | ∀o ∈ Og′]
5: Lθ ← Lθ ∪ l∆g′
6: end if
7: if checkFeasibility(δ) then
8: l∆g′ [θ, c

∆
g]← True

9: l∆g′ [ϑ, c
∆
g]← True

10: ω ← True
11: if ∀i ∈ l∆g′ = True & c∆g > χg then
12: l∆g′ [θ, c

∆
g]← True

13: g ← ∆(g)
14: χg ← c∆g
15: end if
16: else
17: l∆g′ [θ, c

∆
g]← False

18: l∆g′ [ϑ, c
∆
g]← False

19: end if
20: ς = {θ, ϑ, g.id,∆, ω, c∆g }
21: ∀o ∈ Og, send(o, ς)

Algorithm 9 Receive reply message ς = {ϑ, g′.id,∆, ω, c∆g′}
for VNF-FG g, with counter χg . The message ς contains
the sender ϑ, the identifier g′.id of the VNF-FG g, the
reconfiguration operation ∆, the result of the operation ω,
and the counter c∆g′ for the reconfiguration operation ∆ of
the replica g′ for VNF-FG g.

1: l∆g′ [ϑ, c
∆
g]← ω

2: if ∀i ∈ l∆g′ = True & c∆g > χg then
3: l∆g′ [θ, c

∆
g]← True

4: g ← ∆(g)
5: χg ← c∆g
6: end if

Algorithm 10 Update VNF-FG g, via ∆, with counter χg .
The VNF-FG g is managed by an orchestrator θ with a heap
hθg for the VNF-FG g

1: g ← ∆(g)
2: χg ← χg + 1
3: Og ← (∀o ∈ O, g′ ∈ G; ‖ o ∼ g′, g.id = g′.id) ∪ (∀o ∈
O, g′′ ∈ G | o ∼ g′′, δ(g, g′′))

4: hθg.insert({θ,∆, χg})
5: σ = {θ, g.id,∆, χg}
6: ∀o ∈ Og, send(o, σ)

16

Algorithm 11 Receive notification update message σ =
{ϑ, g′.id,∆, c∆g′} for VNF-FG g from orchestrator θ, with
counter χg in orchestrator i with a negation list lig . The
message σ contains the sender ϑ, the identifier g′.id of the
VNF-FG g, the reconfiguration ∆, and the counter c∆g′ for the
reconfiguration for the replica of g. Both orchestrators θ and
i have associated counter kθ and ki, respectively

1: if {ϑ,∆, c∆g′} ∈ lig then
2: pass
3: end if
4: if checkFeasbility(∆) then
5: if c∆g′ > χg or c∆g′ = χg and kθ > ki then
6: g ← ∆(g)
7: χg ← c∆g′
8: end if
9: hig.insert({θ,∆, c∆g′})

10: else
11: Og′ ← (∀o ∈ O, g′′ ∈ G; ‖ o ∼ g′′, g′.uid = g′′.iud) ∪

(∀o ∈ O, g′′′ ∈ G | o ∼ g′′′, δ(g′, g′′′))
12: lig.append({ϑ,∆, c∆g′})
13: ς = {θ, g.uid,∆, False, c∆g }
14: ∀o ∈ Og′ , send(o, ς)
15: end if

Algorithm 12 Receive reply message ς =
{ϑ, g′.id,∆, False, c∆g′} for VNF-FG g, with counter
χg in orchestrator i. The message ς contains the sender
ϑ, the identifier g′.id for VNF-FG g, the reconfiguration
operation ∆, the negative answer, and the counter c∆g′ for the
reconfiguration for the replica of g. The orchestrator has a
negation list lig , and heap hig .

1: hig.remove(ϑ,∆)
2: lig.append({ϑ,∆, c∆g′})
3: ∆′ ← ϕg.top()
4: g ← ∆′(g)

the VNF-FG converge eventually and both variants satisfy SEC
(see Definition 2 from Section II-B). Recall the replicas of
each VNF-FG for the two variants of our proposed algorithm
are a distributed system. Thus, first we need to state the two
conditions required for replicas of a distributed system to
converge. Shapiro et. al. defined these two conditions [26].
Definition 3 describes them.
Definition 3 (Eventual convergence conditions)
Two replicas xi, xj of a VNF-FG eventually converge if the
following conditions are met:
• Safety: ∀i, j : C(xi) = C(xj) implies that the abstract

states of i and j are equivalent.
• Liveness: ∀i, j : ∆ ∈ C(xi) implies that eventually, ∆ ∈
C(xj).

where ∆ is an reconfiguration operation and C(xi) the
causal history of a VNF-FG replica xi (see Section II).

For both variants, we consider the following assumptions:
1) Eventual and reliable delivery. Messages have an arbi-

trary but finite delay. They can be sent multiple times

but never lost.
2) Orchestrators can return to the federation after failure.

When an orchestrator leaves, the network is left parti-
tioned.

3) All replicas begin with an initial consistent state for all
replicas, ε. This is reflected with a special symbol in the
top of all heaps. Such initial state is created during the
deployment of the VNF-FG.

We need to prove that despite these non-deterministic net-
work conditions, replicas still converge.

A. Proof of preventive variant

We prove that the preventive variant of the algorithm con-
verges by showing it satisfies the properties of an operational-
based Consistent Replicated-Free Data Type (CRDT).
Theorem 1 (Convergence of the CF-P)
The CF-P converges as an operation-based CRDT.

To prove Theorem 1 we need to show the CF-P satisfies the
safety and liveness convergence properties for an operation-
based CRDT. Liveness, for an operation-based CRDT, is sat-
isfied if reliable broadcast channel guarantees that all updates
are delivered at every replica, in a delivery order <d specified
by the data type [26]. Safety, for an operation-based CRDT,
is guaranteed when concurrent operations satisfy the property
of commutativity stated by Definition 4 [25]:
Definition 4 (Commutativity)
VNF-FG updates (∆,xi) and (∆′,xj) commute, if and only
if for any reachable replicate state φ, where both xi, xj
are enabled, replica xi remains enabled in state φ ◦ xj
(respectably φ ◦ xi), and φ ◦ xi ◦ xj ≡ φ ◦ xj ◦ xi, where
◦ is the symbol for function composition.

where (i 6= j), which means replicas have the same state
despite the order of reconfiguration operations. We now prove
that the preventive variant satisfies a delivery order <d for all
replicas and updates are commutative by proving Lemmas 1, 2.
Lemma 1 (CF-P liveness)
The CF-P satisfies the delivery order <d.

To prove Lemma 1, we consider the case of restricting
sequential updates until one is accepted. In this scenario, is
not possible to update the same VNF-FG until the previous
update has not been accepted. This means that the orchestrator
has received all positives answers (Algorithm 2 Line 9). Since
no sequential updates take place and Assumption 1 (i.e. we
have an eventual/reliable delivery), all updates follow a single
delivery order which satisfies the liveness property. For a more
permissive scenario, where sequential updates can take place
despite previous ones not being accepted, the system can
converge in strange ways. For example, a given update can
be accepted by all orchestrators, but not its previous update;
such behavior is undesired. To prevent this and the effects of
repeated messages, a delivery order <d needs to be enforced
by replicas. Such delivery is enforced by our algorithm by
considering the value of other replicas stored in the list of
affected orchestrators along with their replies (either accept or
decline Algorithm 3 Lines 2-4). Such delivery order prevents

17

accepting out-of-order updates from the same orchestrator.
Thus, for both scenarios, all replicas execute updates according
to a delivery order <d. Consequently, Lemma 1 is true. Thus,
our proposed preventive variant, CF-P, satisfies the liveness
property. Next, we show the CF-P satisfies the safety property.
Lemma 2 (CF-P safety)
Concurrent operations under CF-P satisfy commutativity (Def-
inition 4).

To prove Lemma 2 recall the state φ of a replica xi is
encoded in its history C. For the preventive algorithm, the
history C is the list of pending operations l. After an VNF-
FG update operation ∆, the state of the replica is updated as
C(∆(xi)) = C(xi) ∪ {∆} (Algorithm 3 Line 3, Algorithm 2
Line 10). We need to show replies for a reconfiguration
operation ∆ commute.

Assume without loss of generality that a replica xi
has causal history for each affected orchestrator C(xi) =
{ro} | ∀o ∈ O (Algorithm 1 Line 6). There exists two
replies ro, ro′ from reconfiguration operations ∆ coming from
affected orchestrators o, o′; such operations are proposed to
replica xi. We need to evaluate two cases: (i) ro = True,
ro′ = True, and (ii) ro = True, ro′ = False (conversely
ro = False, ro′ = True). For the first case, the output
of the algorithm (i.e. accepting the reconfiguration or not) is
independent of the arrival of ro and ro′ , such that C(xi)∪ro ≡
C(xi)∪ ro′ (Algorithm 3 Line 2). Thus, for the first case, the
replies ro, ro′ commute as the output depends on the other
replies.

For the second case, where there’s a negative reply r∗ =
False, our proposed algorithm only applies an update if all
replies are positive; thus, accepting the reconfiguration or not
depends only on the negative replies. Therefore, if one reply
is negative, the output is unaffected by the negative reply’s
order of delivery (i.e. they commute). Thus, since Lemma 2
holds, the preventive variant ensures the safety property.

Since the preventive variant CF-P satisfies Lemmas 1 and
2 it converges and supports SEC which is what we wanted to
prove.

B. Proof of corrective variant
We prove the corrective variant also converges by showing

it satisfies the properties of a state-based CRDT.
Theorem 2 (Convergence of the CF-C)
The CF-C converges as an state-based CRDT.

To prove Theorem 2 we need to show the CF-C satisfies the
safety and liveness convergence properties for a state-based
CRDT. For this type of CRDTs, the safety and liveness are
encoded in the three following properties of Definition 5 [25]:
Definition 5 (Convergence properties state-based CRDTs)

1) The payload must be a join-semilattice (safety).
2) The updates are monotonic (liveness).
3) The merge operation among such objects computes the

Least Upper Bound (LUB) (safety).

We need to show that the corrective variant of our proposed
algorithm supports the properties of Definition 5 by proving
Lemmas 3, 4, and 5.

Lemma 3
The CF-C payload is a join-semilattice. (Property 1 of Defi-
nition 5)

We show how Lemma 3 holds. By definition, the data
structure we consider for accepted reconfigurations is a heap
ordered by a partial < operator, in other words a join-
semilattice. Next, we show how the CF-C satisfies the third
condition of Definition 5.
Lemma 4
The CF-C merge operation always computes the Least Upper
Bound. (Property 3 of Definition 5)

We describe how Lemma 4 holds. Each orchestrator o in
the federation has associated a unique identifier ko in a total
order. Each replica xi has associated a VNF-FG g with a heap
hig for contingent reconfigurations, and a list lig to keep track
of invalid reconfigurations. We need to evaluate three cases
when merging two heaps hig , hjg from replicas xi, xj for the
same VNF-FG g: (i) When the top of a heap is the initial
state (i.e τ(hig) = ε, τ(hjg) 6= ε), (ii) when the top of a heap
has a greater reconfiguration number than another heap (i.e.
τ(hig) > τ(hjg) , (iii) when the top of both heaps has the same
reconfiguration number (i.e. τ(hig) = τ(hjg)). For the first case
(i), since ε is the identity value, the merge operation computes
the LUB between the two heaps (Algorithm 4 Line 4). For
the second case (ii), the heap operator < will take the union
and re-order both heaps based on the number associated to
all reconfiguration operations f , on top it will be the greatest
number such that τ(hig ∪ hjg) = τ(hig), τ(hig) > τ(hjg) other-
wise τ(hjg); thus, for the second case the operator < computes
the LUB (Algorithm 5 Line 8). Finally, for the third case
(iii), if two updates have the same number (i.e. two operations
are concurrent) the winner of such reconfiguration operation
will be the one with the highest orchestrator identifier k∗o
(Algorithm 5 Line 5). Since this identifier is totally ordered,
the merge operation always computes the LUB. Therefore,
Lemma 4 holds. Next, we show how the CF-C satisfies the
second condition of Definition 5.
Lemma 5
The CF-C updates are monotonic. (Property 2 of Definition 5)

We show how Lemma 5 holds considering both data struc-
tures of the CF-C variant. First, consider the case of a notifica-
tion with a heap with a single value aside the initial ε value (i.e.
|hjg| = 1) and no negated elements (i.e. |ljg| = 0). Whenever
a new update (either positive or negative) arrives to replica
xi, it could either: (i) be accepted and added to the heap hig
according to the < operator (Algorithm 4 Line 4, Algorithm 5
Line 9) or (ii) if it is not accepted, it is added to the negative
list lig (Algorithm 5 Line 12, Algorithm 6 Line 2). Both options
update the data structures; moreover, recall the causal history
C(xi) encodes the state of replica φ(xi). Particularly, for the
corrective algorithm C(xi) = C(hig) ∪ C(lig)); thus, for this
first case, the update is monotonic as it always increases the
state after each reconfiguration.

Now consider the general case, where a notification arrives
with a heap with more than one element (i.e. |hjg| > 0), and
a list of negated elements (i.e. |ljg| > 0). Since the corrective

18

variant of the algorithm computes the union of both negated
elements after the update takes place, the state of such list
increases containing more information about negated elements
such that C(lig) = C(lig) ∪ C(ljg) which is monotonic. For
the heaps, if all values are accepted, then the heap will also
increase the state, although ordered differently according to
the < operator as C(hig) = C(hig) ∪ C(hjg). However, if any
element e of a heap belongs to the union of negated lists
(e ∈ lig ∪ ljg), this element is extracted from the heaps and
added to the list such that after a merge lig = lig ∪ ljg ∪ e
(Algorithm 6), where e is the newest element. Thus, the state
updates monotonically showing Lemma 5 holds true.

Since the corrective variant CF-C satisfies Lemmas 3, 4,
and 5, the state-based CF-C converges and supports SEC
which is what we wanted to prove.

ACKNOWLEDGMENT

The research presented in this paper is supported by the
Mexican Council for Science and Technology CONACYT
(Grant 708000).

REFERENCES

[1] K. Katsalis, N. Nikaein, and A. Edmonds, “Multi-Domain
Orchestration for NFV: Challenges and Research Directions,” in
2016 15th International Conference on Ubiquitous Computing and
Communications and 2016 International Symposium on Cyberspace
and Security (IUCC-CSS). IEEE, dec 2016, pp. 189–195. [Online].
Available: http://ieeexplore.ieee.org/document/7828601/

[2] R. V. Rosa, M. A. Silva Santos, and C. E. Rothenberg, “Md2-nfv: The
case for multi-domain distributed network functions virtualization,” in
2015 International Conference and Workshops on Networked Systems
(NetSys), 2015, pp. 1–5.

[3] ETSI, NFVISG, “ETSI GS NFV 003 V1.4.1 Network Functions Virtu-
alisation (NFV); Terminology for Main Concepts in NFV,” 2018.

[4] N. F. Saraiva de Sousa, D. A. Lachos Perez, R. V. Rosa, M. A. Santos,
and C. Esteve Rothenberg, “Network Service Orchestration: A survey,”
Computer Communications, vol. 142-143, no. May, pp. 69–94, jun 2019.
[Online]. Available: https://doi.org/10.1016/j.comcom.2019.04.008

[5] L. M. Vaquero, F. Cuadrado, Y. Elkhatib, J. Bernal-Bernabe, S. N.
Srirama, and M. F. Zhani, “Research challenges in nextgen service
orchestration,” Future Generation Computer Systems, vol. 90, pp. 20–38,
2019.

[6] ETSI, NFVISG, “GS NFV-SOL 004 V2. 3.1 Network Functions Virtu-
alisation (NFV) release 2; Protocols and Data Models; NFV descriptors
based on YANG Specification,” 2019.

[7] O. Houidi, O. Soualah, W. Louati, and D. Zeghlache, “Dynamic
VNF Forwarding Graph Extension Algorithms,” IEEE Transactions on
Network and Service Management, vol. 17, no. 3, pp. 1389–1402,
sep 2020. [Online]. Available: https://ieeexplore.ieee.org/document/
9079891/

[8] ETSI, NFVISG, “ETSI GS NFV 002 V1.1.1 Network Functions Virtu-
alisation (NFV); Architectural Framework,” 2013.

[9] ——, “ETSI GS NFV-IFA 010 V3.4.1 Network Functions Virtualisation
(NFV) Release 3; Management and Orchestration; Functional require-
ments specification,” 2020.

[10] P. T. Anh Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “Evolutionary
Actor-Multi-Critic Model for VNF-FG Embedding,” in 2020 IEEE 17th
Annual Consumer Communications Networking Conference (CCNC), jan
2020, pp. 1–6.

[11] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio,
“Single and Multi-Domain Adaptive Allocation Algorithms for VNF
Forwarding Graph Embedding,” IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 98–112, 2019.

[12] P. T. A. Quang, A. Bradai, K. D. Singh, and Y. Hadjadj-
Aoul, “Multi-domain non-cooperative VNF-FG embedding: A deep
reinforcement learning approach,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, apr 2019, pp. 886–891. [Online]. Available:
https://ieeexplore.ieee.org/document/8845184/

[13] S. Khebbache, M. Hadji, and D. Zeghlache, “Dynamic Placement of
Extended Service Function Chains: Steiner-based Approximation Algo-
rithms,” in 2018 IEEE 43rd Conference on Local Computer Networks
(LCN), oct 2018, pp. 307–310.

[14] ETSI, NFVISG, “ETSI GR NFV-IFA 028 V3.1.1 Release 3; Manage-
ment and Orchestration; Report on Architecture Options to Support
Multiple Administrative Domains,” 2018.

[15] J. C. Cisneros, S. Yangui, S. E. Pomares Hernández, J. C. P. Sansalvador,
L. M. R. Henrı́quez, and K. Drira, “Towards Consistent VNF Forwarding
Graph Reconfiguration in Multi-domain Environments,” in 2021 IEEE
14th International Conference on Cloud Computing (CLOUD), 2021,
pp. 355–366.

[16] K. Samdanis, A. Prasad, M. Chen, and K. Hwang, “Enabling 5G
Verticals and Services through Network Softwarization and Slicing,”
IEEE Communications Standards Magazine, vol. 2, no. 1, pp. 20–21,
2018.

[17] P. Bailis and A. Ghodsi, “Eventual Consistency Today: Limitations,
Extensions, and Beyond,” Queue, vol. 11, no. 3, pp. 20–32, mar 2013.
[Online]. Available: https://doi.org/10.1145/2460276.2462076https://dl.
acm.org/doi/10.1145/2460276.2462076

[18] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[19] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, “VNF-FG
design and VNF placement for 5G mobile networks,” Science China
Information Sciences, vol. 60, no. 4, p. 40302, 2017. [Online].
Available: https://doi.org/10.1007/s11432-016-9031-x

[20] J. Baranda Hortiguela, J. Mangues-Bafalluy, R. Martinez, L. Vettori,
K. Antevski, C. J. Bernardos, and X. Li, “Realizing the Network Service
Federation Vision: Enabling Automated Multidomain Orchestration of
Network Services,” IEEE Vehicular Technology Magazine, vol. 15, no. 2,
pp. 48–57, 2020.

[21] Wei Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus
problems in multi-agent coordination,” in Proceedings of the 2005,
American Control Conference, 2005., jun 2005, pp. 1859–1864 vol. 3.

[22] H. Howard and R. Mortier, “Paxos vs Raft: Have we reached consensus
on distributed consensus?” Proceedings of the 7th Workshop on Prin-
ciples and Practice of Consistency for Distributed Data, PaPoC 2020,
pp. 8–10, 2020.

[23] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Distributed
Consensus Protocols for Blockchain Networks,” IEEE Communications
Surveys Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[24] W. Vogels, “Eventually Consistent: Building Reliable Distributed
Systems at a Worldwide Scale Demands Trade-Offs?Between
Consistency and Availability.” Queue, vol. 6, no. 6, pp. 14–19,
oct 2008. [Online]. Available: https://doi.org/10.1145/1466443.1466448

[25] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
Free Replicated Data Types,” in Stabilization, Safety, and Security of
Distributed Systems, X. Défago, F. Petit, and V. Villain, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386–400.

[26] ——, “A comprehensive study of Convergent and Commutative
Replicated Data Types,” Europe, 2011. [Online]. Available: http:
//hal.archives-ouvertes.fr/inria-00555588/

[27] G. Zheng, A. Tsiopoulos, and V. Friderikos, “Dynamic VNF Chains
Placement for Mobile IoT Applications,” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, dec 2019, pp.
1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9014166/

[28] C. Kim, Y. Oh, and J. Lee, “Latency-based graph selection manager for
end-to-end network service on heterogeneous infrastructures,” in 2018
International Conference on Information Networking (ICOIN). IEEE,
jan 2018, pp. 534–539. [Online]. Available: https://ieeexplore.ieee.org/
document/8343176/

[29] M. Zeng, W. Fang, and Z. Zhu, “Orchestrating Tree-Type VNF Forward-
ing Graphs in Inter-DC Elastic Optical Networks,” Journal of Lightwave
Technology, vol. 34, no. 14, pp. 3330–3341, jul 2016.

[30] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “A Green VNF-
FG Embedding Algorithm,” in 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft). IEEE, jun 2018, pp. 141–149.
[Online]. Available: https://ieeexplore.ieee.org/document/8460013/

[31] B. Spinnewyn, S. Latré, and J. F. Botero, “Delay-constrained
NFV orchestration for heterogeneous cloud networks,” Computer
Networks, vol. 180, p. 107420, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128620311099

[32] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “NFV Resource
Allocation: a Systematic Review and Taxonomy of VNF Forwarding
Graph Embedding,” Computer Networks, vol. 185, no. July 2020,

19

p. 107726, 2021. [Online]. Available: https://doi.org/10.1016/j.comnet.
2020.107726

[33] ETSI, NFVISG, “GS NFV-MAN 001 V1. 1.1 Network Function Virtu-
alisation (NFV); Management and Orchestration,” 2014.

[34] Y. Hao, Y. Li, X. Dong, L. Fang, and P. Chen, “Performance
Analysis of Consensus Algorithm in Private Blockchain,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, jun 2018, pp. 280–285.
[Online]. Available: https://ieeexplore.ieee.org/document/8500557/

[35] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas, B. Nour,
and Y. Wang, “A Survey of Network Virtualization Techniques
for Internet of Things Using SDN and NFV,” ACM Computing
Surveys, vol. 53, no. 2, pp. 1–40, mar 2021. [Online]. Available:
https://doi.org/10.1145/3379444https://dl.acm.org/doi/10.1145/3379444

[36] G. Gardikis, S. Costicoglou, H. Koumaras, C. Sakkas, A. Kourtis,
F. Arnal, L. M. Contreras, P. A. Gutierrez, and M. Guta, “NFV
applicability and use cases in satellite networks,” in 2016 European
Conference on Networks and Communications (EuCNC). IEEE,
jun 2016, pp. 47–51. [Online]. Available: http://ieeexplore.ieee.org/
document/7561002/

