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Comments on an article by Fomin, Fulton, Li, and Poon

Paul-Emile Paradan∗

November 13, 2023

Abstract

We withdraw this note because our calculation of the A(3, 3) example, which ini-
tially contradicted one of the results of a 2005 paper by Fomin-Fulton-Li-Poon [1],
was incorrect.

In the second version of the prepublication arXiv:2303.11653, we explain how the
description of the coneA(p, q) obtained by Fomin-Fulton-Li-Poon refines that obtained
using the O’Shea-Sjamaar theorem.
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1 Introduction

Let p ≥ q ≥ 1 and n = p + q. We consider the map π : Herm(n) → Mp,q(C) that
associates to an Hermitian matrix X ∈ Herm(n) its off-diagonal block π(X) ∈ Mp,q(C).
The spectrum of an Hermitian n×n matrix X is denoted by λ(X) = (λ1 ≥ · · · ≥ λn) and
the singular spectrum of a matrix Y ∈ Mp,q(C) is denoted by s(Y ) = (s1 ≥ · · · ≥ sq ≥ 0).
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The main purpose of this note is the description of the cone

A(p, q) =
{
(λ(X), s(π(X))), X ∈ Herm(n)

}
.

In [5, 1], the authors state that an element (λ, s) belongs to A(p, q) if and only if

(1)
∑

i∈I

λi −
∑

j∈Jo

λj ≥ 2
∑

k∈K

sk

holds for all triple (I, J,K) of subsets of [q] = {1, · · · , q} that belongs to
⋃

r≤q LR
q
r. Here

LRq
r denotes the list of triples of cardinal r defined inductively by Horn [2], and we have

denoted Jo = {n+ 1− ℓ, ℓ ∈ J}.

The purpose of this note is to explain why the inequalities of the type (1) are not
sufficient to describe A(p, q).

In the next section, we will see that a direct application of the O’Shea-Sjamaar Theorem
[6] shows that A(p, q) is described by the following inequalities:

(2)
∑

i∈I

λi −
∑

j∈Jo

λj ≥ 2
∑

k∈K∩[q]

sk − 2
∑

k∈Ko∩[q]

sk

where the triplets (I, J,K) belongs to
⋃

r<n LR
n
r . Using the main result of [7], we can

show (see [8]) that we can restrict this system by considering uniquely triplets (I, J,K)
satisfying the following conditions :

• I, J,K are of cardinal r ≤ q,

• I ∩ Jo = ∅,

• K = K+ ∪ (K−)
o where K+,K− are disjoint subsets of [q].

In the example A(3, 3) that we detail in Section 3, we find two inequalities of the type
(2) which are independent of those of the type (1):

λ1 + λ3 + λ4 − λ2 − λ5 − λ6 ≥ 2(s1 − s2 − s3)

λ1 + λ2 + λ5 − λ3 − λ4 − λ6 ≥ 2(s1 − s2 − s3).(3)

The independence of the last two inequalities is ensured by the example s0 = (1, 0, 0) and
λ0 = (1, 1, 1, 1,−1,−1). The element (λ0, s0) does not verify the inequality (3), and then
(λ0, s0) /∈ A(3, 3), whereas it verifies all the inequalities of the type (1).
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2 An application of the O’Shea-Sjamaar Theorem

We work with the reductive real Lie groups G := U(p, q) and G̃ := GLn(C). Let us denote
by ι : G → G̃ the canonical embedding.

The subgroup K̃ := U(n) is a maximal compact subgroup of G̃. Let p̃ := Herm(n) ⊂
gln(C) be the subspace of Hermitian matrices.

The subgroup K := K̃ ∩ U(p, q) ≃ U(p) × U(q) is a maximal compact sugroup of G,
and the subspace p := p̃ ∩ g admits a natural identification with Mp,q(C):

X ∈ Mp,q(C) 7−→

(
0 X
X∗ 0

)
∈ p.

2.1 Complexification and antiholomorphic involution

The complexification of the group G is GC := GLn(C). We consider the antiholomorphic
involution σ on GC defined by σ(g) = Ip,q(g

∗)−1Ip,q, where Ip,q = Diag(Ip,−Iq). The
subgroup G is the fixed point set of σ.

The complexification of the group G̃ is G̃C := GLn(C) × GLn(C). The inclusion
G̃ →֒ G̃C is given by the map g 7→ (g, ḡ). We consider the antiholomorphic involution σ̃
on G̃C defined by σ̃(g1, g2) = (g2, g1). The subgroup G̃ corresponds to the fixed point set
of σ̃.

The embedding ι : G →֒ G̃ admits a complexification ιC : GC →֒ G̃C defined by
ιC(g) = (g, σ(g)): notice that ιC ◦ σ = σ̃ ◦ ιC.

The groups U = U(n) and Ũ = U(n) × U(n) are respectively maximal compact
sugroups of GC and G̃C. The embedding ιC : U →֒ Ũ is defined by ιC(k) = (k, Ip,qk̄Ip,q).

The fixed point subgroups of the involutions are Uσ = K and Ũ σ̃ = K̃.
At the level of Lie algebra, we have a morphism ιC : gln(C) →֒ gln(C)× gln(C) defined

by ιC(X) = (X,σ(X)) where σ(X) = −Ip,qX
∗Ip,q.

2.2 Orthogonal projection

We use on gln(C) × gln(C) the euclidean norm ‖(X,Y )‖2 = Tr(XX∗) + Tr(Y Y ∗). The
subspace orthogonal to the image of ιC is {(X,−σ(X)),X ∈ gln(C)}. Hence the orthogonal
projection

π : gln(C)× gln(C) −→ gln(C),

is defined by the relations π(X,Y ) = 1
2(X + σ(Y )). Note that π commutes with the

involutions : π ◦ σ̃ = σ ◦ π.
We restrict the projection π to different subspaces:

• the projection π : g̃ −→ g is defined by π(X) = 1
2(X + σ(X)).

• the projection π : p̃ = Herm(n) → p ≃ Mp,q(C) is defined so thatX =

(
⋆ π(X)

π(X)∗ ⋆

)
.
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• the projection π : ũ → u is defined by π(X,Y ) = 1
2(X + Ip,qY Ip,q).

The involution σ̃ defines on ũ = u(n)×u(n) an orthogonal decomposition ũ = ũσ̃⊕ ũ−σ̃

where V ∈ ũ±σ̃ if σ̃(V ) = ±V . In the same way, we have an orthogonal decomposition
u = uσ ⊕ u−σ.

The map X 7→ iX defines two isomorphisms p̃ ≃ ũ−σ̃ and p ≃ u−σ that fit into the
following commutative diagram

(4)

p̃ p

ũ−σ̃ u−σ.

π

π

2.3 O’Shea-Sjamaar’s Theorem

If A ∈ u(n), the corresponding adjoint orbit OA = {gAg−1, g ∈ U(n)} is entirely deter-
mined by the spectrum λ(iA) of the Hermitian matrix iA.

Recall that K ≃ U(p) × U(q) acts canonically p ≃ Mp,q(C). For any Y ∈ p, the orbit
VY := {kY k−1, k ∈ K} is entirely determined by the singular spectrum s(Y ).

We start with some basic facts.

Lemma 2.1 Let X,X ′ ∈ u(n).

1. OX ×OX′

⋂
ũ−σ̃ 6= ∅ if and only if OX = OX′ .

2. Let (Z,−Z̄) ∈ OX ×OX
⋂

ũ−σ̃. Then OX ×OX
⋂

ũ−σ̃ is equal to the orbit

K̃ · (Z,−Z̄) := {(gZg−1,−gZg−1), g ∈ U(n)}.

3. When Y ∈ u(n)−σ, the intersection OY ∩ u(n)−σ is equal to the orbit VY .

Proof : (A,B) ∈ ũ−σ̃ if and only if B = −A. Suppose that OX × OX′ contains an
element (A,−A) ∈ ũ−σ̃. Then λ(iX) = λ(iA) and λ(iX ′) = λ(iA). Since λ(iA) = λ(iA)
we obtain λ(iX) = λ(iX ′), and then OX = OX′ .

Let λ(iX) = (λ1 ≥ · · · ≥ λn). The orbit OX contains the diagonal matrix ∆ =
1
iDiag(λ1, · · · , λn), and the product OX × OX contains (∆,∆) = (∆,−∆) ∈ ũ−σ̃. The
first point is proved and the two other points are classical (see [6], Example 2.9). ✷

We can now state the application of the O’Shea-Sjamaar Theorem that interest us.

Theorem 2.2 Let X ∈ u(n) and Y ∈ u(n)−σ. The following statements are equivalent:

1. OY ⊂ π
(
OX ×OX

)
.

2. OY ∩ u−σ ⊂ π
(
OX ×OX

⋂
ũ−σ̃

)
.
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3. (λ(iX), s(iY )) ∈ A(p, q).

4. 2OY ⊂ OX +OX .

Proof : The equivalence 1. ⇔ 2. is the consequence of the O’Shea-Sjamaar Theorem
(see [6], Section 3).

The equivalence 1. ⇔ 4. is a direct consequence of the definition of the projection

π : ũ → u. Since π(A,B) = 1
2 (A+ Ip,qBIp,q), we see that π

(
OX ×OX

)
= 1

2

(
OX +OX

)
.

The equivalence 2. ⇔ 3. follows from the commutative diagram (4): the inclusion

OY ∩ u−σ ⊂ π
(
OX ×OX

⋂
ũ−σ̃

)
is equivalent to

U(p)× U(q) · (iY ) ⊂ π
(
U(n) · (iX)

)
.

and by definition the last inclusion is equivalent to 3.. ✷

2.4 Horn inequalities

Let us denote by R
n
+ the set of weakly decreasing n-tuples of real numbers. To each

a ∈ R
n
+, we associate the orbit Oa := {X ∈ Herm(n), λ(X) = a}. We consider the Horn

cone
Horn(n) :=

{
(x, y, z) ∈ (Rn

+)
3, Oz ⊂ Ox +Oy

}
.

Denote the set of cardinality r-subsets I = {i1 < i2 < · · · < ir} of [n] := {1, . . . , n} by
Pn
r . To each I ∈ Pn

r we associate a weakly decreasing sequence of non-negative integers
µ(I) = (µr ≥ · · · ≥ µ1) where µa = ia − a for a ∈ [r].

Definition 2.3 Let 1 ≤ r < n. LRn
r refers to the set of triplet (I, J,K) ∈ (Pn

r )
3 such that

(µ(I), µ(J), µ(K)) ∈ Horn(r).

The following theorem was conjectured by Horn [2] and proved by a combination of
the works of Klyachko [3] and Knutson-Tao [4]. If x = (x1, . . . , xn) ∈ R

n and I ⊂ [n], we
define |x |I =

∑
i∈I xi and |x | =

∑n
i=1 xi.

Theorem 2.4 The triplet (x, y, z) ∈ (Rn
+)

3 belongs to Horn(n) if and only if the following
conditions holds:

• |x|+ |y| = |z|,

• |x|I + |y|J ≥ |z|K , for any r < n and any (I, J,K) ∈ LRn
r .
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2.5 Inequalities determining A(p, q)

Let us denote by R
q
++ the set of weakly decreasing q-tuples of non-negative real numbers.

Let Y ∈ p and let s(Y ) = (s1, · · · , sq) ∈ R
q
++ be its singular spectrum. For s ∈ R

q
++, we

define the K-orbit Vs := {Y ∈ p, s(Y ) = s}. A standard result asserts that Vs contains
the matrix

(5) Y (s) :=




0 0 M(s)
0 0 0

M(s)∗ 0 0


 with M(s) =




0 · · · s1
...

...
...

sq · · · 0




The spectrum of Y (s) is equal to ν(s) := (s1, · · · , sq, 0, · · · , 0,−sq, · · · ,−s1) ∈ R
n
+.

Hence we see that the K-orbit Vs is contained in Oν(s) := {X ∈ Herm(n), λ(X) = ν(s)}.
If λ = (λ1, · · · , λn), we denote by λ∗ the vector (−λn, · · · ,−λ1): we see that λ(−X) =

λ(X)∗ for any X ∈ Herm(n).
Using the equivalence 3. ⇔ 4. of Theorem 2.2, we obtain the following equivalent

statements:

• (λ, s) ∈ A(p, q)

• ∃(X,Y ) ∈ Oλ × Vs such that Y = π(X)

• ∃(X,Y ) ∈ Oλ × Vs, 2OY/i ⊂ OX/i +O
X/i

• ∃(X,Y ) ∈ Oλ × Vs, 2OY ⊂ OX +O
−X

• 2Oν(s) ⊂ Oλ +Oλ∗ ,

• (λ, λ∗, 2ν(s)) ∈ Horn(n).

Thanks to Theorem 2.4, we can conclude with the following description of A(p, q).

Theorem 2.5 An element (λ, s) ∈ R
n
+ × R

q
++ belongs to A(p, q) if and only if

(⋆)I,J,K |λ|I − |λ|Jo ≥ 2|s|K∩[q] − 2|s|Ko∩[q]

for any r < n and any (I, J,K) ∈ LRn
r .

Remark 2.6 In the formulation of the previous theorem we have used that |λ∗|J = −|λ|Jo

and |ν(s)|K = |s|K∩[q] − |s|Ko∩[q].

Remark 2.7 As we have said in the introduction, we can restrict the system of inequalities
in Theorem 2.5 by considering uniquely triplets (I, J,K) ∈ LRn

r with r ≤ q (see [8]).

6



3 Examples

3.1 Computation of A(2, 2)

The set LR4
1 corresponds to the set of triplets (i, j, k) of elements of [4] such that i+ j =

k + 1: the corresponding (non-trivial) inequalities are

λ1 − λ4 ≥ 2s1, λ2 − λ4 ≥ 2s2, λ1 − λ3 ≥ 2s2.

The set LR4
2 corresponds to the set of triplets (I = {i1 < i2}, J = {j1 < j2},K =

{k1 < k2}) of subsets of [4] satisfying Horn’s conditions:

1. i1 + i2 + j1 + j2 = k1 + k2 + 3,

2. i1 + j1 ≤ k1 + 1, i1 + j2 ≤ k2 + 1, i2 + j1 ≤ k2 + 1.

Here the inequality (⋆)I,J,K is non trivial only in one case: when I = J = K = {1, 2} we
obtain λ1 + λ2 − λ3 − λ4 ≥ 2(s1 + s2).

We summarize our computations as follows.

Proposition 3.1 An element (λ, s) ∈ R
4
+ × R

2
++ belongs to A(2, 2) if and only if the

following conditions holds

• λ1 − λ4 ≥ 2s1, λ2 − λ4 ≥ 2s2, λ1 − λ3 ≥ 2s2.

• λ1 + λ2 − λ3 − λ4 ≥ 2(s1 + s2).

3.2 Computation of A(3, 3)

The non-trivial inequalities associated to LR6
1 are

λ1 − λ6 ≥ 2s1 λ1 − λ5 ≥ 2s2

λ2 − λ6 ≥ 2s2 λ1 − λ4 ≥ 2s3(6)

λ2 − λ5 ≥ 2s3 λ3 − λ6 ≥ 2s3.

The non-trivial inequalities associated to LR6
2 are

λ1 + λ2 − λ5 − λ6 ≥ 2(s1 + s2)

λ1 + λ2 − λ4 − λ6 ≥ 2(s1 + s3)

λ1 + λ3 − λ5 − λ6 ≥ 2(s1 + s3)

λ1 + λ2 − λ4 − λ5 ≥ 2(s2 + s3)(7)

λ1 + λ3 − λ4 − λ6 ≥ 2(s2 + s3)

λ2 + λ3 − λ5 − λ6 ≥ 2(s2 + s3).
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Note that the inequality λ1 + λ4 − λ5 − λ6 ≥ 2(s2 + s3) is not valid, even if it looks
like the previous ones, since the triplet ({1, 4}, {1, 2}, {2, 3}) does not belongs to LR6

2.

The non-trivial inequalities associated to LR6
3 are

λ1 + λ3 + λ4 − λ2 − λ5 − λ6 ≥ 2(s1 − s2 − s3)

λ1 + λ2 + λ5 − λ3 − λ4 − λ6 ≥ 2(s1 − s2 − s3)(8)

λ1 + λ2 + λ3 − λ4 − λ5 − λ6 ≥ 2(s1 + s2 + s3).

In the case of LR6
3, the trivial inequalities are those induced by inequalities ob-

tained with LR6
1 and LR6

2. For example, the inequalities corresponding to the triplets
({1, 2, 5}, {2, 3, 4}, {2, 3, 6}) and ({1, 2, 4}, {1, 2, 3}, {1, 2, 4}) of LR6

2 are respectively

λ1 + λ2 − λ3 − λ4 ≥ 2(−s1 + s2 + s3) and λ1 + λ2 − λ5 − λ6 ≥ 2(s1 + s2 − s3).

The former is induced by λ1 − λ4 ≥ 2s3 obtained with LR6
1 and λ2 − λ3 ≥ 0 ≥ s2 − s1

while the latter is induced by λ1+λ2−λ5−λ6 ≥ 2(s1+s2) obtained with LR6
2 and s3 ≥ 0.

Proposition 3.2 An element (λ, s) ∈ R
6
+ × R

3
++ belongs to A(3, 3) if and only if the

inequalities listed in (6), (7) and (8) are satisfied.

Remark 3.3 The cone A(3, 3) ⊂ R
6 × R

3 corresponds to the intersection of the Horn
cone Horn(6) ⊂ R

18 with the subspace {(λ, λ∗, 2ν(s)), (λ, s) ∈ R
6 ×R

3}. It is striking that
A(3, 3) is determined by 23 inequalities while Horn(6) is described with a minimal list of
536 inequalities.
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