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Abstract. Absorbing boundary conditions are important when one simulates the propa-
gation of waves on a bounded numerical domain without creating artificial reflections. In this
paper, we consider various hyperbolic-dispersive equations modeling water wave propagation. A
typical example is the Korteweg-de Vries equation

(1) ut + uux + εuxxx = 0, ∀x ∈ R, ∀t > 0.

In the case of linearized equations, some progress was recently done for one dimensional scalar
dispersive equations by using discrete transparent boundary conditions. However a generaliza-
tion of this approach to multi-dimensional setting is not obvious. In this paper, we consider
the alternative perfectly matched layer (PML) approach for the linearized Korteweg-de Vries
equation:

(2) ut + U ux + εuxxx = 0 ∀x ∈ R, ∀t > 0,

where U ∈ R denotes a reference speed. We first propose a direct perfectly matched layer
approach and study the stability of the modified system. These equations are not always stable,
the main obstruction being the classical condition vg(k)vφ(k) ≥ 0 found in the literature on
PML [3] that we recover in our analysis. Then, we introduce a hyperbolic system with a source
term that is an approximation of the Korteweg-de Vries equations. In this case, the complete
PML equations are not, again, completely stable. However, a version of the PML equations
for this system derived without the source term is found to be stable and can absorb outgoing
waves although it may creates reflections as it is not perfectly matched. Finally, we consider
the BBM-Boussinesq system that models bi-directional waves at the surface of an inviscid fluid
layer. The dispersive properties for a subclass of physically relevant models are better suited for
PML techniques since the condition vg(k)vφ(k) ≥ 0 is always satisfied. We show that the PML
equations are always stable in this case. We illustrate numerically the absorbing and stability
properties of these PML models and provide also KdV type simulation by choosing properly
initial data.
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1 Introduction

The paper focuses on a particular numerical issue which appears when hyperbolic-dispersive
equations for wave propagation are solved numerically. Generally, the physical space, where the
phenomenon takes place, has to be limited in order to study in detail some regions of interest,
and artificial boundary conditions must be imposed. Mathematically, the equations are set on
an infinite space, and it is a hard problem to provide suitable boundary conditions which lead
to a well-posed initial-boundary problem approximating the initial problem.

Usually hyperbolic-dispersive equations are used to describe wave propagation in shore zones.
A typical example is the one-dimensional Korteweg-de Vries (KdV) equation

(3) ut + uux + εuxxx = 0, ∀x ∈ R, ∀t > 0.

One can consider other dispersive models either the Benjamin-Bona-Mahoney (BBM) equation,
the Boussinesq system, or different types of fully-nonlinear Boussinesq-like approximations like
the Green-Naghdi equations. A detailed review of most important models that appear in the
literature for the description of water waves can be found in [42].

The dispersive nature of water wave propagation is included in these models through high
order derivatives terms which correspond to non-hydrostatic pressure effects. The discretization
of these terms induces several numerical issues like the optimization of numerical time consump-
tion, a robust numerical treatment of shoreline, a construction of well-balancing algorithms for
steady states and a choice of appropriate artificial boundary conditions. Here we focus on the
latter issue. All models mentioned above are, mathematically, set in an infinite space. We are
searching for suitable boundary conditions such that the solution computed with these boundary
conditions coincides on the bounded domain with the restriction of the solution to the whole
space problem.

There are different ways to handle the problem of artificial boundary conditions. The nu-
merical domain can be bounded by introducing absorbing/transparent conditions, for example.
Absorbing boundary conditions were initially developed by Engquist and Majda for acoustic
waves [22] and then generalised by different authors to various fluid models (see e.g. [38], [37]).
We also mention multidimensional absorbing boundary conditions for the linear water waves
model proposed for example in [39], [18]. When dispersion relation for the linear problem is
considered, one fruitful approach is to use exact transparent boundary conditions (TBCs). The
construction of TBCs can be carried out by using Laplace transform in time and impose bound-
ary conditions so as to obtain finite energy solutions. The inversion of those conditions, however,
yields nonlocal in time boundary conditions. An efficient strategy to approximate numerically
non local terms then needs to be proposed. However, another strategy allows to obtain directly
discrete transparent boundary conditions (DTBCs) by using Z-transform instead of Laplace
transform. Exact transparent boundary conditions both continuous and discrete were derived
and implemented for the linearized KdV equation in [9], and for linearized BBM equation in
[10], the bi-directional dispersive wave propagation for the linearized Green-Naghdi model were
considered in [41]. The generalization of this approach to the case of two-dimensional problem
was proposed in [8] for the transport equation. However, the design of DTBCs for the linear dis-
persive two-dimensional waves models such as the KdV, the BBM or the Green-Naghdi equations
is hardly extended to real situations.

Another common strategy to tackle numerical boundaries is a technique called Perfectly
matched layers (PMLs). They have been introduced in [7] for electromagnetic waves and ex-
tended, since then, to other wave propagation problems. The method consists in surrounding
the computational domain by a layer which absorbs outgoing waves. Mathematically, there are
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different ways to present PMLs. One of them consists in considering PDE in the frequency
domain and using appropriate complex frequency-dependent change of variables aimed to en-
sure the exponential decay of the solution in space. PML techniques are efficient and easy to
implement for a large class of problems. Moreover, their use requires no auxiliary knowledge
(e.g. the fundamental solution) but only the PDE itself. However, it is well known that one can
observe instabilities when classical Cartesian PMLs are used. For example, when electromagnetic
or elastic waves propagation is considered, the dispersive or anisotropic character of media may
lead to instabilities of PMLs (see [3] for example).

The aim of this paper is to consider the PML strategy for various hyperbolic dispersive
equations or systems for the water wave problem. We will consider three models, namely the
Korteweg-de Vries (KdV) equation, a hyperbolized version of the KdV equation and a class of
BMM-Boussinesq system. In each case, we derive the set of PML equations and study their
stability and carry out numerical tests to show their ability to absorb outgoing waves. In section
2 we construct PMLs for the linearized KdV equation using the corresponding complex change of
variables. We then show that the constructed PML problem is not always stable. This is mostly
related to the well-known necessary condition for PML to be stable that the group velocity and
the phase velocity should have the same sign.

Then, we introduce a hyperbolized version of the Korteweg-de Vries equation. Recent pro-
gresses in dispersive shallow water modelling are concentrated on developments of first-order
hyperbolic equations with good dispersive properties that can model non-hydrostatic free surface
flows. Using a lagrangian approach, some hyperbolic systems approximating the BBM equation
and the Green-Naghdi equations were proposed in [?] and [27], respectively. The later model
was mathematically justified in [19]. Another hyperbolic approximation was derived in [24] us-
ing the method of an artificial compressibility. In [52] the compressible and quasi-incompressible
hyperbolic models are derived covering the fully nonlinear Boussinesq-type equations and the
Green-Naghdi equations, and a new treatment of the bathymetric terms is proposed.

The use of hyperbolic models simplifies numerous numerical issues and reduces computational
time. Note that it also provides a partial answer to the issue of artificial boundary conditions.
Indeed, if a hyperbolic system admits a Riemann-invariant form, the boundary conditions can be
treated using the Riemann invariant expressions. However, it is not always the case to have such
a form, and in two dimensions even if Riemann invariants exist, that might turn out to be a hard
problem to define them. On the other hand, PML construction for the first order hyperbolic
system is straightforward since only first order derivatives are included. In section 3, we introduce
a hyperbolic relaxed version of the KdV equation and study its ability to reproduce some of the
important properties of the original equation. In particular, we compare the dispersion properties
of the hyperbolized version of KdV and the original KdV equation. Moreover, we study the
nonlinear waves of the hyperbolic system: it admits periodic and solitary wave solutions close to
the KdV periodic and solitary waves. We also show that this model reproduces typical nonlinear
dynamics like the two-soliton configuration and the dispersive shock wave.

In section 4 the PML strategy for the hyperbolic model is proposed and numerical tests are
carried out. We have found that instabilities may appear just like in the original KdV equation.
If we withdraw the source (zeroth order) terms of the model in the design of PML, we recover a
stable PML model: we show numerically that it absorbs outgoing wave.

Finally within section 5 we focus on mixed Benjamin-Bona-Mahony Boussinesq system (also
known as abcd-model). We consider PML equations for this system and analyse its stability
for different sets of parameters associated to physically relevant models. The necessary stability
condition vg(k)vφ(k) ≥ 0 is also found in the PML system for abcd equations. For a large subclass
of models including in particular the shallow water equations with surface tension and for the
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classical Green-Naghdi equations, the PMLs are stable. Numerical illustrations are provided
for the stable cases for the linearized Boussinesq system. We also propose a particular choice
of initial conditions for the classical Boussinesq system in order to demonstrate the stability of
PML equations for the unidirectional wave propagation which corresponds to the KdV equation.

2 A perfectly matched layer approach for the linearized KdV
equation

In this section, we introduce a set of PML equations for the linearized Korteweg-de Vries equation:
we modify the equations so that waves are damped as they propagate in the absorbing layer.
We study the stability of the PML system of PDEs in both cases εU < 0 and εU ≥ 0. We then
perform numerical simulations to validate the stability result.

2.1 Continuous PML conditions

In this section, we consider a linearized version of the KdV equation in the form

(4) ∂tu+ U∂xu+ ε∂xxxu = 0, ∀x ∈]− Lx, Lx[, ∀t > 0,

for some constant U ∈ R. The PML system is obtained by considering the harmonic regime
∂tu = −iωu and by carrying out a complex change of variable ∂x 7→ (1 + iσ

ω )−1∂x. The new
equation reads

(5) −iω(1 +
iσ

ω
)u+ U∂xu+ ε∂x

(
(1 +

iσ

ω
)−1∂x

(
(1 +

iσ

ω
)−1∂xu)

))
= 0.

By introducing auxiliary functions u1 and u2 such that

∂xu = (1 +
iσ

ω
)u1, ∂xu1 = (1 +

iσ

ω
)u2,

one obtains, back to original variables (t, x), the following system:

(6)
∂tu+ σu+ U∂xu+ ε∂xu2 = 0,

∂t (u1 − ∂xu) + σu1 = 0, ∂t (u2 − ∂xu1) + σu2 = 0.

By applying the initial value theorem, one finds

(7) u1|t=0= ∂xu|t=0, u2|t=0= ∂xxu|t=0.

Let us consider the stability of the system (6). In what follows, we will assume that σ is a
constant so that we can use plane wave analysis to study the stability. We search for solutions
with an exponential growth ei(kx−ωt) and the system (6) is stable if and only if =(ω) ≤ 0 for all
σ ≥ 0. We prove the following stability result:

Proposition 2.1. 1. If U = 0, the PML equations (6) are always unstable.

2. If εU < 0, the PML equations (6) are stable if and only if k2 ≥ 16
|U |
|ε|

.

3. If εU > 0, the PML equations (6) are stable if and only if k2 ≤ U

3ε
.
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Proof. Following [3], the dispersion relation associated to (6) is obtained by substituting k by
k/(1 + iσ

ω ) in the dispersion relation for (4). The modified dispersion relation reads:

(8) (ω + iσ)3 = kU(ω + iσ)2 − εk3ω2.

If k = 0, ω = −iσ and the assumption that =(ω) ≤ 0 is satisfied. Next, we assume k 6= 0 is
fixed. If σ is set to 0 in (8), one finds:

(9) ω2(ω − ω0(k)) = 0, ω0(k) = kU − ε k3.

Thus, two roots are bifurcating from 0 whereas one root bifurcates from ω = ω0(k). Let us
consider the case 0 < σ � 1 and continue the roots ω = 0 and ω = ω0. In the case U = 0, the
roots bifurcating from 0 scale as ω = σ3/2Ω and one obtains the following expansion:

ω±(σ, k) = ±σ3/2
√

i

εk3
+O(σ2).

As a result, the PML system (6) is always unstable if U = 0.
In what follows, we assume U 6= 0. We first consider the roots bifurcating from 0. Since

U 6= 0, theses roots may be rescaled as ω as ω := σΩ. In this case, one obtains the equation:

(10) kU(Ω + i)2 − ε k3Ω2 = σ(Ω + i)3.

By letting σ = 0 in (10), one obtains, (1 + iΩ−1)2 = ε
U k

2. Then, by a classical application of the
implicit function theorem, one deduces that the two roots ω±(σ, k) that bifurcate from 0 expand
as

ω±(σ, k) = − iσ

1±
√
ε

U
k

+O(σ2)

In the case εU < 0, one has =(ω) < 0 for σ sufficiently small whereas in the case εU > 0, we find
that =(ω) ≤ 0 for σ sufficiently small only if |ε|k2 < |U |. In the case εk2 = U , the bifurcation
from 0 is slightly different. If σ = 0, ω = 0 is a triple root (since w0(k) = 0). Following the
argument used previously, one roots expands as ω = − iσ

2 +o(σ) which satisfies =(ω) ≤ 0 whereas
the two other roots are O(

√
σ) and expands, as σ → 0:

ω = ±σ3/2
√
|kU |
√
i+ o(σ3/2)

Thus a necessary condition of stability if εU > 0 is |ε|k2 < |U |.
Let us now consider the root ω bifurcating from ω0(k): in what follows, we will only consider

the cases εU < 0 and εU > 0 with |ε|k2 < |U |. By applying the implicit function theorem, one
finds that

ω(σ, k) = ω0(k)− iσU − 3εk2

U − εk2
+O(σ2).

From these preliminary computations, we deduce a necessary condition for the stability of PML
equations which is (U−εk2)(U−3εk2) > 0. This condition is always satisfied when εU < 0 wheras
in the case εU > 0 with |ε|k2 < |U | , this condition is only satisfied in the case 3|ε|k2 ≤ |U |. Note
that this necessary condition is classical in the PML framework (see [3]) as this condition may
also be written as vg(k)vφ(k) ≥ 0 where vg(k) = U − 3εk2 and vφ(k) = U − εk2 are respectively
the group velocity and the phase velocity and they need to have the same sign.
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Let us now check whether these conditions are sufficient to guarantee stability. The roots ω
being continuous functions of the parameters (k, σ), we shall prove that the roots lies in C \ R
as long as σ > 0. In order to prove this statement, we suppose that (8) admits a root ω ∈ R
when σ > 0. By separating the real and imaginary parts of this equation, one finds that ω is
then solution of

3ω2 − 2kUω = σ2, ω3 − k(U − εk2)ω2 − 3σ2ω + σ2kU = 0.

By eliminating σ2 from this system, one finds that ω is a root of

8ω3 − k(8U + ε k2)ω2 + 2k2U2ω = 0.

In the case k = 0, the roots are ω = 0 which in turns yields σ = 0. Let us assume next that
k 6= 0. We rescale ω as ω = kc and assume c 6= 0. One finds

8c2 − (8U + εk2)c+ 2U2 = 0.

In order to simplify the discussion, we rescale c and k and set

K2 :=
∣∣∣ ε
U

∣∣∣k2, c := U s.

We then find that

σ2 = k2U2(3s2 − 2s) > 0, 8s2 − (8 + sign(εU)K2)s+ 2 = 0.

In the case εU > 0, there is no real solution if |U | − 3|ε|k2 > 0. If εU < 0, there is no real
solution if |ε|k2 ≥ 16|U |. As a conclusion, we have proved that =(ω) < 0 for σ > 0 small enough.
We have also proved that for any σ > 0, there are no real solutions, which means that =(ω) 6= 0.
By continuity of the roots of a complex polynomial with respect to its coefficients, one deduces
that =(ω) < 0 for all σ > 0 and all k satisfying the hypothesis of the proposition.

2.2 Discretisation of PML equations

We will consider a centered finite difference scheme in space together with a Crank Nicolson
time discretization. In what follows, we consider uniform time and space steps. We denote
xj = jδx, j ∈ Z and tn = nδt, n ∈ N where δx, δt are respectively the spatial and time steps.
The discretized system reads

(11)

2
vnj − unj
δt

+ σvnj + U
vnj+1 − vnj−1

2δx
+ ε

vn2,j+1 − vn2,j−1
2δx

= 0,

2

δt

((
vn1,j −

vnj+1 − vnj−1
2δx

)
−
(
un1,j −

unj+1 − unj−1
2δx

))
+ σvn1,j = 0,

2

δt

((
vn2,j −

vn1,j+1 − vn1,j−1
2δx

)
−
(
un2,j −

un1,j+1 − un1,j−1
2δx

))
+ σvn2,j = 0,

with vnk,j =
un+1
k,j +unk,j

2 for k = 0, 1, 2 and un0,j = unj . Let us now consider the stability of
this scheme. We will study the `2 stability and consider the Laplace in time and Fourier in
space transform: unk,j := znei jKδxûk. A straightforward computation shows that we recover the
dispersion relation (8) by setting

−iω :=
2

δt

z − 1

z + 1
, k :=

sin(Kδx)

δx
.

From this remark, one can deduce the following stability result.
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Proposition 2.2. The scheme (11) can only be stable under the assumption: εU > 0 and

δx ≥
√

3ε
U .

Proof. From the relation

−iω =
2

δt

z − 1

z + 1
,

we deduce that

(12) |z|2 =
(1 +

=(ω)δt

2
)2 + (

<(ω)δt

2
)2

(1− =(ω)δt

2
)2 + (

<(ω)δt

2
)2
.

Then, |z| ≤ 1 if and only if |1 + =(ω)dt
2 | ≤ |1 − =(ω)dt2 | which is equivalent to =(ω) ≤ 0. From

proposition 2.1, we deduce that =(ω) ≤ 0 only if k2 ≥ 16 |U ||ε| in the case εU < 0 and k2 ≤ |U |
3|ε| in

the case εU > 0. The latter case can be satisfied if δx ≥
√

3ε
U if εU > 0, otherwise the scheme

is unstable.

2.3 Numerics

We have carried out numerical simulation of (6) with the numerical scheme (11). We have first
considered the case εU > 0. We have chosen a velocity U = 0.4. The function σ involved in the
PML system is given by

σ(x) = 2

(
max(0,

x− 5

3
)4 + max(

−x− 5

3
, 0)4

)
whereas we used Neumann boundary conditions at the end points. The spatial domain is [−8, 8]
and time domain [0, 200], the size of the spatial step is δx = 0.05 whereas the time step is
δt = δx: since we are dealing with a Crank Nicolson time discretization, there is no limitation
on the time step and we chosed to work with a CFL condition CFL = δt/δx = 1 so as to obtain
a good resolution of the advection. The purpose of this first set of numerical simulation is to
illustrate the stability of (11) and its ability to absorb outgoing waves. Following proposition
2.2, for a fixed spatial step δx, there exists a critical dispersion parameter εc = Uδx2/3 such that
(11) is stable if ε < εc and unstable otherwise. In order to illustrate this point, we performed
a numerical simulation with ε = Uδx2/4 (stable case) and ε = Uδx2/2 (unstable case) with an
initial condition u0(x) = exp

(
−40 (x+ 3)2

)
. For the auxiliary variables u1 and u2, we chose

u1 = u′0 and u2 = u′′0. We plotted on the figure 1 a function v(t, x) defined as

v(t, x) = log(1 + 1000|u(t, x)|)

in order to focus on the size of reflexions and spurious modes generated by the PML technique.
The simulations show clearly that the stability of the scheme and its ability to absorb outgoing
waves depending on the stability criteria ε < εc (stable) and ε > εc (unstable).

We have also carried out numerical simulation in the case εU < 0. Whereas the stability
condition for the continuous system is k2 ≥ 16 |U ||ε| , its discrete counterpart is sin(Kδx)2 ≥
16 |U ||ε| δx

2 for a plane wave in the form (eijKδx)j∈Z, K ∈ N and the PML conditions are not
numerically stable. We carried out a numerical simulation with a finer resolution δx = δt = 0.01
and a initial data that is a wave packet u0(x) = exp(−(x−3)2) sin(2x). The coefficients encoding
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Figure 1: Represention of the function v(t, x) = log(1 + 1000|u(t, x)|) in the (x, t) plane [−8, 8]×
[0, 200] in the case εU > 0. On the left (stable case): U = 0.4, ε = Uδx2/4. The solution is
nothing but the solution of the Airy equation advected on the right with speed c. The ougoing
waves propagating both on the left and on the right are damped in the absorbing layers. On
the right (instable case): U = 0.4, ε = Uδx2/2. The solution is translated and damped in
the absorbing layer located at x ≥ 5 whereas left going waves growth exponentially fast in the
absorbing layer x ≥ −5.

the PML are unchanged. We decided to carry out numerical simulation for various dispersion
parameter that were multiple of |U |δx2 (hence considering somehow that the factor sin(Kδx) is
away from 0). We carried out a numerical simulation for ε = 16|U |δx2 and ε = 32|U |δx2. In the
first case, we carried out a numerical simulation for times up to time T = 2000 but did not find
any numerical instability. We show the simulation up to time T = 200 in figure 2. In the second
case, a numerical instability is detected at T = 25.

Figure 2: Represention of the function v(t, x) = log(1 + 1000|u(t, x)|) in the (x, t) plane [−8, 8]×
[0, T ] in the case εU < 0. On the left: “stable” case U = −1, ε = 16δx2 with T = 200. The wave
packet travels on the left and is damped in the absorbing layer x ≤ −5. On the right: unstable
case U = −1, ε = 32δx2 with T = 30. The wave packet is damped into the absorbing layer
x ≤ −5 and after some time a numerical instability expands from time t ≈ 25.
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3 A hyperbolic relaxed version of the Korteweg de Vries equation

A classical PML approach is not always stable both from the theoretical and the numerical point
of view. However, they are useful and easily derived for first order systems. In this section, we
consider a hyperbolic system with a source term which is a relaxation of the original Korteweg-
de Vries equation. We perform a theoretical analysis of that system and compare it to the
original Korteweg-de Vries equation on two test cases: the collision of two solitary waves and the
formation of a dispersive shock wave.

3.1 Formulation of the relaxation system

The approximation of mixed hyperbolic-dispersive equation by hyperbolic systems with source
terms was derived in [27] and [?] for respectively Green-Naghdi equations and BBM equation.
Let us consider the system of first order partial differential equations :

(13) ut + uux + εψx = 0, pt −
px − ψ
τ

= 0, ψt +
ux − p
τ

= 0,

where ε is the dispersion parameter and τ > 0 the relaxation parameter. Formally, in the limit
τ → 0, the function u turns out to be an approximate solution of the Korteweg-de Vries equation.
More precisely, provided that the partial derivatives are all bounded, it is an easy computation
to show that p, ψ expand as

p = ux + τutxx +O(τ2), ψ = uxx + τ (utxxx − utx) +O(τ2).

By inserting the expansion of ψ into the first equation of (13), one obtains

(14) (u− τuxx + τuxxxx)t + uux + εuxxx = O(τ2).

If τ = 0, equation (14) reduces to the Korteweg-de Vries equation whereas in the case 0 < τ � 1,
the equation (14) is, up to order one with respect to τ , a Benjamin-Bona-Mahoney regularization
of the Korteweg-de Vries equation (see [42] for more details on the various models found in the
literature on water waves).

3.2 Dispersion relation

In this section, we compare the dispersion properties of (13) linearized about the constant state
u = U, p = ψ = 0 and the linearized KdV equation. First, note that the system (13) admits a
symmetric counterpart. Consider the change of variable (ψ, p) := (ψ/

√
ετ ,
√
ετp): the system

(13) reads

(15) ut + uux +

√
ε√
τ
ψx = 0, ψt +

√
ε√
τ
ux −

1

τ
p = 0, pt −

1

τ
px +

1

τ
ψ = 0.

We compute the dispersion relation when the system (15) is linearized about a constant state
u = U : we search for solutions in the form (u, ψ, p)(t, x) = ei(kx−ω(k))t(û, ψ̂, p̂). One finds the
spectral problem:

A(k, U, ε, τ)

 û

ψ̂
p̂

 = ω(k)

 û

ψ̂
p̂

 , A(k, U, ε, τ) =


kU

k
√
ε√
τ

0

k
√
ε√
τ

0
i

τ

0 − i
τ
−k
τ

 .
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The matrix A(k, U, ε, τ) is Hermitian: its eigenvalues ωi(k), i = 1, 2, 3 (we dropped the U, ε, τ
dependence in order to simplify notations) are real and the matrix A is diagonalized by a unitary
matrix. The eigenvalues ωi(k) are the roots of the polynomial

P (X) = X3 +

(
k

τ
− kU

)
X2 − 1 + (U + ε)τk2

τ2
X +

kU − εk3

τ2
= 0.

We search ωi(k) in the form ωi(k) = k ci(k): one finds that ci satisfy the relation

(16) k2 =
U − c

(1 + τc)(ε+ τcU − τc2)
:= f(c;U, ε, τ).

It is easily proved that f(c;U, ε, τ) ≥ 0 for all

c ∈
]
−∞,−1

τ

]
∪

]
U

2
−
√
U2

4
+
ε

τ
, U

]
∪

]
U

2
+

√
U2

4
+
ε

τ
,+∞

[
.

We denote ckdv(k) the solution of (16) which lies in

]
U

2
−
√
U2

4
+
ε

τ
, U

]
: for fixed k, it expands

as ckdv(k) = c0(k) + O(ε) where c0(k) = U − εk2 is the dispersion relation associated to the
linearized KdV equation

(17) ut + U ux + εuxxx = 0.

We have plotted the two phase velocities for U = ε = 1 and τ = 0.001 in figure 3. Note that as

k →∞, ckdv(k)→ U

2
−
√
U2

4
+
ε

τ
, one of the characteristic speed of the hyperbolic part of (13).

This behaviour is similar to what is found in mixed Benjamin-Bona-Mahoney (BBM)-Korteweg
de Vries equations.

3.3 Solitary waves

The Korteweg-de Vries equation is known to admit a solitary wave as a solution together with
a family of periodic (cnoidal) waves. In this section, we search for travelling waves solutions of
(13) and see if they are connected to travelling waves of Korteweg-de Vries equation. We search
for travelling waves solutions of (13) with wavespeed s: the system of ODE governing profiles is
given by

(18) (u− s)u′ + εψ′ = 0, (1 + τs)p′ = ψ, u′ − τsψ′ = p.

We search for solutions such that

lim
|x|→∞

(u, ψ, p)(x) = 0.

By integrating the first equation of (18) with these boundary conditions, one obtains

(19) ε(1 + τs)p′ = su− u2

2
, (1 +

τ

ε
s(u− s))u′ = p, εψ = su− u2

2
.

Setting τ = 0 into (19) yields the standard profile equation for KdV profiles. System (19) admits
a conserved quantity Eε,τ (u, p) along the trajectories in the form

(20) Eε,τ (u, p) =
u3

6
− su

2

2
+
sτ

ε

(
u4

8
− su3

2
+
s2u2

2

)
+ ε(1 + τs)

p2

2

10



Figure 3: Dispersion relation c0(k) = U−εk2 for linearized KdV equation (17) and its hyperbolic
counterpart ckdv(k) associated to the system (13). The relaxation parameter is set to τ = 0.001
whereas U = ε = 1. The dispersion relaxtion ckdv(k) remains bounded whereas limk→∞ c0(k) =
−∞.

One has
∂Eε,τ
∂u

=

(
u2

2
− su

)
(1 +

τs

ε
(u− s)).

Then, the point (0, 0) is a local maximum of Eε,τ whereas (2s, 0) and (s− ε
sτ , 0) are local minimum.

It is easily seen that (0, 0) is a saddle point whereas (2s, 0) is a center. By drawing the level
curves of Eε,τ (see figure 4), one easily deduces the existence of a solitary wave asymptotic to
the saddle point (0, 0) and a family of periodic waves limited by this solitary wave and which
emerges from the center point (2s, 0).

Figure 4: The phase portrait for the system (19). The relaxation parameter is set to τ = 0.001
whereas a dispersion parameter is chosed ε = 0.75 and the velocity of the solitary wave is s = 0.5.
The homoclinic orbit in the phase plane starting and ending in (0, 0) saddle point corresponds
to a solitary traveling wave solution.
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3.4 Riemann invariants and conservation laws

The system (13) is hyperbolic, symmetrizable and admits a full system of Riemann invariants
which could be used to design transparent boundary conditions. Indeed, consider a vector form
of (13):

(21) Ut + AUx = F, U = (u, p, ψ)T ,

with

(22) A =


u 0 ε

0 −1

τ
0

1

τ
0 0

 , F =

(
0,−ψ

τ
,
p

τ

)T
.

The eigenvalues λ are :

(23) λ±(u) =
u

2
±
√
u2

4
+
ε

τ
, λ0 = −1

τ
.

Hence, the system is strictly hyperbolic for small ε. The Riemann invariants are given by :

(24) ψ +

∫ u

λ±(s)ds = ψ +
u

2
λ± ±

ln (λ+)

τ
, p.

It is also easily seen that this system admits the energy conservation law :

(25)
(
u2

2τ
+ ε

p2

2
+ ε

ψ2

2

)
t

+

(
u3

3τ
+
ε

τ
ψu− εp2

2τ

)
x

= 0.

3.5 Numerical simulation

In this section, we show the ability of the model to reproduce solutions of the Korteweg-de Vries
equations. We focus on the collision of two solitons on the one hand and on the formation of
a dispersive schock wave on the other hand. We first introduce a numerical scheme to carry
out simulations of (13). It is well known that a time explicit scheme of dispersive equations
can introduce strong limitation on the time step through restrictive CFL conditions. A similar
problem occurs for (13): an explicit in time discretization of this system introduces a CFL
restriction on the stability of the numerical scheme in the form

(26) CFL :=
δt

δx
≤ C max(|λ±(u)|, |λ0|)−1,

where C is a numerical constant depending on the numerical scheme. This, in particular, imposes
CFL = O(

√
τ) with τ � 1. In order to avoid such an issue, we will adopt a splitting in time

strategy with a hyperbolic part which consists in solving the Burgers equation

∂tu+ u∂xu = 0

on the one hand and in solving the linear hyperbolic/dispersive system on the other:

(27) ut + εψx = 0, pt −
px − ψ
τ

= 0, ψt +
ux − p
τ

= 0.

12



In this paper, we will use a Strang splitting in time strategy. Denote U = (u, p, ψ): the splitting
method reads

U(1) = HBurgers

(
Un,

δt

2

)
, U(2) = HAiry

(
U(1), δt

)
,

Un+1 = HBurgers

(
U(2),

δt

2

)
,(28)

where both HBurgers and HAiry are of second order accuracy in time and space. In order to
remove restrictive CFL conditions, we will use a Crank-Nicolson scheme for the linear hyper-
bolic/dispersive system together with centered finite differences scheme for the spatial discretiza-
tion. We discretize the Burgers equation with a Runge Kutta scheme for the time discretization
and Rusanov numerical fluxes with second order in space MUSCL reconstruction: this discretiza-
tion introduce a classical hyperbolic CFL condition.

In order to validate our numerical approach, we have chosen a classical benchmark for the
model and its numerical counterpart which is the propagation and the interaction of Korteweg-de
Vries solitary waves.

Figure 5: Interaction of Korteweg-de Vries solitary waves with the model (13)

For that purpose, we have chosen the following set of parameters: we considered a relaxation
parameter τ = 0.001. The initial condition is a superposition of two solitary waves given by

u(0, x) =
1

2
sech2

(
x+ 27

2ε

)
+
c

2
sech2

(
x+ 10

2ε

)
.

The initial data for p, ψ are given by p(0, x) = ux(0, x) and ψ(0, x) = uxx(0, x). The associated
solitons are solutions of the Korteweg-de Vries equation:

ut + uux + εuxxx = 0.

Here we have chosed a dispersion parameter ε = 0.75 and the velocity of the second soliton is
c = 0.5. The numerical parameters of simulation are

CFL = 0.2, δx = 0.1, δt = CFL δx.
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An other test consist in the simulation of a dispersive shock wave. For this test, we have
chosen a step initial data

u(x, 0) =
1

2
(1− tanh(x+ 10)) , ∀x ∈ [−30, 30].

According to the theory developped in [46], after the time T ∗ of the formation of the inviscid
shock, there is an oscillatory zone expanding between two characteristic speeds x = c1t and
x = csolt where csol represents the velocity of the solitary wave with endstate u = 0 and c1 < csol
represents the speed of planar waves about u = 1. We have implemented Neumann boundary
conditions for this particular case and stopped the numerical simulation before the front of the
shock hit the boundary. The dispersion and relaxation parameters are given by

ε = 0.35, τ = 2.5 10−4,

whereas the numerical parameters are given by δx = 0.05, CFL = 0.05 and δt = CFL× δx.

Figure 6: Simulation of a dispersive shock solution of the system (13) with initial step function
of height 1. On the left: representation of u at time t = 5. We observe that the oscillatory part
extends in time along mostly two straight lines. On the right: characteristic curves in the x, t
plane separating the zone u = 0 (blue) and the zone u = 1 (green).

4 PML strategy for the hyperbolic relaxation of KdV

We now use the first order system introduced in the previous section to design a Perfectly
Matched Layer approach for the Korteweg-de Vries equation. We introduce the PML system for
the first order system and then study the stability of the modified equations. We then carry out
several numerical simulations to illustrate the validity and the limits of this approach.

4.1 A perfectly matched layer formulation

In this section, we consider the perfectly matched layer approach for the linearized hyperbolic
system (13). Applying directly the PML approach, that is a change of variable in the complex
plane, yields the following system

(29)
ut + σu+ U ux + εψx = 0, pt + σp− px − ψ

τ
+
σ

τ
φ = 0,

ψt + σψ +
ux − p
τ
− σ

τ
q = 0, qt = p, φt = ψ.

14



where ε is the dispersion parameter, τ the relaxation parameter and σ the damping parameter
associated to the PML method. An alternative approach would consist in neglecting the source
term when deriving the PML equation. This yields the following PML equations:

(30) ut + σu+ U ux + εψx = 0, pt + σp− px − ψ
τ

= 0, ψt + σψ +
ux − p
τ

= 0.

Let us now consider the problem of the well posedness and stability of both systems (29)
and (30). Since the effect of applying the PML strategy only introduces zeroth order terms, the
systems (29) and (30) are both strongly well posed. Let us now consider the stability problem.
The system (30) is the simplest one to deal with: it is a straightforward computation to show
that a solution (u, p, ψ) of (30) satisfies the energy estimate:

(31)
(
u2

2τ
+ ε

p2

2
+ ε

ψ2

2

)
t

+ σ(
u2

τ
+ εψ2 + εp2) +

(
U
u2

2τ
+
ε

τ
ψu− εp2

2τ

)
x

= 0.

As a consequence, the system (30) is strongly stable, however recall that it is not an exact PML
system. Let us now consider the system (29). We carry out a stability analysis in the Von
Neumann sense and carry out a Fourier transform in space of (29): setting V̂ = (û, ψ̂, p̂, φ̂, q̂),
one obtains

(32) V̂t + A(ξ)V̂ = 0,

with

A(ξ) =



σ + iξU iεξ 0 0 0

iξ

τ
σ −1

τ
0 −σ

τ

0
1

τ
σ − iξ

τ

σ

τ
0

0 −1 0 0 0
0 0 −1 0 0


.

Let us now study the eigenvalues of A: the characteristic equation associated to A is given by

a(X) := (σ −X + iξU)
(
τX2(σ −X)(τ(σ −X)− iξ) + (σ −X)2

)
+

εξ2X2 (τ(σ −X)− iξ) = 0.

We consider the high frequency limit ξ → ∞: in order to do so, we consider the rescaled
characteristic equation obtained by setting X = ξ x: we obtain

x2
(
τ(
σ

ξ
− x)− i

)(
ε+ τ(

σ

ξ
− x)(

σ

ξ
− x+ iU)

)
+ ξ−2(x− σ

ξ
)2(

σ

ξ
− x+ iU) = 0.

Setting ξ = +∞ in this equation yields

x2(i+ τx)(ε+ τx(x− iU)) = 0.

This equation has three non trivial roots which are nothing but the characteristic speeds of the
original system (13):

x0 = − i
τ
, x± =

i

2

(
U ±

√
U2 +

4ε

τ

)
.
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There is an additional root, x = 0, with multiplicity 2: this correspond to a couple of roots of the
original polynom that converge to 0 as ξ → ∞. In order to compute an asymptotic expansion
as ξ →∞ of these two roots, we rescale x as x = y/ξ2. One then obtains:

y2 =
U

ε
σ2 +O(

1

ξ
).

From this equation, we deduce that y = ±
√

U
ε σ. If εU > 0, the system (29) is not strongly

stable. This may generates numerical instabilities: we shall illustrate this fact numerically in
the next section. This is consistent with the fact that the KdV equation and the hyperbolized
version of KdV have similar dispersive properties. However, this later formulation provides a
natural approximate PML strategy if the source terms are neglected.

4.2 Numerical simulation of PML systems for the hyperbolized version of
KdV

We have only carried out numerical simulations in situations where PML are unstable for the
primary system. We have used the splitting in time scheme of the section 3. We have chosen
a reference velocity U = 1 whereas the dispersion parameter is set to ε = d × δx2 with d = 5
which corresponds to unstable situations for primary PML equations. We set the space step to
δx = 0.02 and time step δt = CFLδx with CFL = 0.3. The relaxation parameter τ is set to
τ = 10−6. The initial condition is set to u0(x) = exp(−40(x+2)2). The function σ associated to
the damping term in the absorbing layer is given by σ(x) = 5

(
max(x− 5, 0)4 + max(5− x, 0)4

)
.

As a result, the PML system (30), although not an exact perfectly matched layer method absorb
outgoing waves without numerical instabilities (see figure 7).

Figure 7: Representation of the function v(t, x) = log(1 + 1000|u(t, x)|) in the (x, t) plane
[−8, 8] × [0, 10] in the case εU > 0 with U = 1 and ε = 5δx2 (unstable case for the original
PML system for KdV). On the left: partial “stable” PML conditions associated to system (30).
On the right: complete “unstable” PML conditions associated to system (29). At time t ≈ 9, a
numerical instability occurs.
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5 Perfectly Matched Layers for BBM- Boussinesq equations

In this section, we apply PML strategy for hyperbolic-dispersive systems which models water
wave propagation. We will consider BBM-Boussinesq type model which are often used to describe
the evolution of shallow water flows:

(33)
(1− b∂2x)∂tη + ∂xu+ a∂3xu = 0,

(1− d∂2x)∂tu+ ∂xη + c∂3xη = 0,
∀(t, x) ∈ [0, T ]× [x`, xr].

where η represents the surface evolution and u the fluid velocity. This system was introduced
by Bona, Chen and Saut in [11] to describe small amplitude waves on the surface of an inviscid
fluid. A by-product of this analysis is that one may perform KdV type simulation by chosing
proper initial data that creates approximate one-way propagating waves.

We will assume that a ≤ 0, c ≤ 0, b ≥ 0, d ≥ 0. Following the strategy used for the KdV
equation, we introduce, in the hamonic regime ∂t 7→ −iω, the change of variable x 7→ (1+ iσ

ω )−1∂x.
We define auxiliary functions ηi and ui for i = 1, 2 as

ηi = (1 +
iσ

ω
)−1∂xηi−1, ui = (1 +

iσ

ω
)−1∂xui−1, i = 1, 2,

with (η0, u0) = (η, u). The PML system then reads:

(34)

∂t(η − bη2) + σ(η − bη2) + ∂x(u+ au2) = 0,

∂t(u− du2) + σ(u− du2) + ∂x(η + cη2) = 0,

∂t(η1 − ∂xη) + ση1 = 0, ∂t(η2 − ∂xη1) + ση2 = 0,

∂t(u1 − ∂xu) + σu1 = 0, ∂t(u2 − ∂xu1) + σu2 = 0.

The initial conditions are given by

ηi|t=0= ∂xηi−1|t=0, ui|t=0= ∂xui−1|t=0, i = 1, 2.

Let us now consider the stability of the system (34): as usual, we search for plane wave
solution with growth (η, u) = ei(kx−wt)(η̂, û). The PML system is stable if =(ω) ≤ 0 for any
σ ≥ 0. The dispersion relation for the system (34) is obtain by performing the change of variable
k 7→ (1 + iσ

ω )−1k in the dispersion relation of the unperturbed equations (33) given by

(35) ω2 = k2
(1− a k2)(1− c k2)
(1 + b k2)(1 + d k2)

.

The dispersion relation for the PML equations (34) then reads as

(ω + iσ)2((ω + iσ)2 + bk2ω2)((ω + iσ)2 + dk2ω2)−
k2((ω + iσ)2 − ak2ω2)((ω + iσ)2 − ck2ω2) = 0.(36)

We first consider necessary stability conditions. A classical condition is given by the following
proposition:

Proposition 5.1. Denote vg and vφ respectively the group velocity and phase velocity associated
to the system (33). A necessary condition of stability of (34) is vg(k)vφ(k) ≥ 0 for all k ∈ R.
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Proof. Letting σ → 0 in the dispersion relation (36), one finds

ω4((1 + bk2)(1 + dk2)ω2 − k2(1− ak2)(1− ck2)) = 0.

Then, there are four roots bifurcating from ω = 0 and two roots which correspond to the modes
of the original model.

Note that no instabilities are generated from the four roots ω bifurcating from 0 for 0 < σ � 1.
We can see this by rescaling ω = σΩ. If k = 0, the only solution is Ω = −i and we have stability.
Now we assume that k 6= 0. One finds that Ω satisfies

σ2(Ω + i)2((Ω + i)2 + bk2Ω2)((Ω + i)2 + dk2Ω2)−
k2((Ω + i)2 − ak2Ω2)((Ω + i)2 − ck2Ω2) = 0.(37)

For a fixed k 6= 0 and letting σ → 0, one obtains

((Ω + i)2 − ak2Ω2)((Ω + i)2 − ck2Ω2) = 0.

From this equation, we deduce that Ω is given by

Ωa
± =

−i
1± i

√
|a|k2

, Ωc
± =

−i
1± i

√
|c|k2

.

By applying the implicit function theorem, one finds that the four roots ω bifurcating from 0
expands as

ωa± =
−iσ

1± i
√
|a|k2

+O(σ2), ωc± =
−iσ

1± i
√
|c|k2

+O(σ2).

Let us now focus on the two roots bifurcating from the physical modes ω0
±(k) defined as

(ω0
±(k))2 = k2

(1− a k2)(1− c k2)
(1 + b k2)(1 + d k2)

, ω0
−(k) = −ω0

+(k) < 0.

A straightforward application of the implicit function theorem yields

ω±(k, σ) = ω0
±(k)− iσ

(3 + 2(b+ d)k2 + bd k4)(ω0
±(k))2 − k2(2− (a+ c)k2)

k2(1− ak2)(1− ck2)
+O(σ2).

If =(ω±(k, σ)) ≤ 0 then necessarily one has

(3 + 2(b+ d)k2 + bd k4)(ω0
±(k))2 − k2(2− (a+ c)k2) ≥ 0.

By substituting the formula for ω0
±, we find that it is equivalent to

1− 2(a+ c)k2 + (3ac− bd− (b+ d)(a+ c))k4 + 2(b+ d)ack6 + abcd k8 ≥ 0.

From the dispersion relation, one finds that the group velocity vg = dω
dk and the phase velocity

vφ = ω
k satisfy the relation

(1 + (b+ d)k2 + bdk4)vg(k)vφ(k) = 1− 2(a+ c)k2+

(3ac− bd− (b+ d)(a+ c))k4 + 2(b+ d)ack6 + abcd k8.

This concludes the proof of the proposition.
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This condition is a generic condition of stability of PML equation: it was also found e.g. in [3].
Let us check this condition for some classical examples of BBM-Boussinesq model found in the
literature. For that purpose, we analyse some of the examples treated in [11]. Let us mention,
among others, the following systems that are proved to be well posed:

1. The purely BBM-type Boussinesq system: a = c = 0 and b = d = 1
6

2. The purely KdV-type Boussinesq system: b = d = 0 and a = c = 1
6

3. The classical Boussinesq system: a = b = c = 0 and d = 1
3 which is nothing but the

linearized Green-Naghdi equations.

We shall also consider the case a = b = d = 0 and c < 0 which corresponds to linearized
shallow water equations with surface tension. It is easily seen that classical Boussinesq system
(a = b = c = 0 and d > 0) and shallow water equations with surface tension (a = b = d = 0
and c < 0) always satisfy the necessary condition vg(k)vφ(k) > 0. It is also a straightforward
computation that BBM-type Boussinesq system satisfy the necessary condition of stability of
PML equations provided that 1 − b k2 ≥ 0 whereas KdV-type Boussinesq system verify this
necessary condition if (1− a k2)(1− 3a k2) ≥ 0.

In what follows, we consider two subcases where we can prove stability.

Proposition 5.2. The PML equations associated to the classical Boussinesq equation (a = b =
c = 0, d > 0) and the shallow water equations with surface tension (a = b = d = 0, c < 0) are
stable.

Proof. Let us first consider the classical Boussinesq system. The dispersion relation associated
with this system reads

(ω + iσ)2
(
(ω + iσ)2 + dk2ω2 − k2

)
= 0.

The roots (ωi)i=1,...,4 are given by

ω1 = ω2 = −iσ, ω3 = −
iσ +

√
k2(1 + dk2 + 4dσ2)

1 + d k2
, ω4 = −

iσ −
√
k2(1 + dk2 + 4dσ2)

1 + d k2
.

It is easily seen that =(ωi) ≤ 0 for all i = 1, 2, 3, 4 and σ ≥ 0 which in turn yields stability.

Let us now consider the shallow water equation with surface tension. The dispersion relation
reads

(38) (ω + iσ)4 = k2(ω + iσ)2 + |c|k2ω2.

We know that for 0 < σ � 1 and fixed k, =(ω) ≤ 0. Assume that there exists σ > 0 such that
=(ω) > 0 then, by continuity of the roots of (38), there exists σ > 0 and ω ∈ R solution of (38).
Then, one finds that ω, σ satisfy

ω4 − 6σ2ω2 + σ4 = k2
(
ω2 − σ2 + |c|k2ω2

)
,

ωσ(2k2 − 4(ω2 − σ2)) = 0.

If ω = 0 then σ = 0. Then, the former system is equivalent to

ω4 − 6σ2ω2 + σ4 = k2
(
ω2 − σ2 + |c|k2ω2

)
, 2k2 − 4(ω2 − σ2) = 0.
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By eliminating σ from these equations, one finds that ω satisfies

4ω4 − (2k2 − |c|k4)ω2 +
k4

4
= 0.

This equation do not have real solutions thus we get a contradiction: for all σ > 0, one has
=(ω) ≤ 0 for all ω solution of (38). The PML equations for the shallow water equations with
surface tension are then stable.

Remark 5.3. Note that in these two cases, the PML equations have a simpler form. The PML
equations for the classical Boussinesq system reads

(39)
∂tη + ση + ∂xu = 0, ∂t(u− d u2) + σ(u− du2) + ∂xη = 0,

∂t(u1 − ∂xu) + σu1 = 0, ∂t(u2 − ∂xu1) + σu2 = 0.

whereas the PML system for shallow water equations with surface tension reads

(40)
∂tη + ση + ∂xu = 0, ∂tu+ σu+ ∂x(η + cη2) = 0,

∂t(η1 − ∂xu) + ση1 = 0, ∂t(u2 − ∂xu1) + σu2 = 0.

Proposition 5.4. The PML system is stable under the assumption a = d = 0 and b > 0, c < 0.
The PML system is also stable in the case b = c = 0 and d > 0, a < 0.

Proof. We only consider the first case, the second one being treated by symmetry. Note that in
the case a = d = 0, the PML system reduces to

∂t(η − bη2) + σ(η − bη2) + ∂xu = 0,
∂tu+ σu+ ∂x(η + cη2) = 0,
∂t(η1 − ∂xη) + ση1 = 0, ∂t(η2 − ∂xη1) + ση2 = 0.

The dispersion relation reads

(41) (ω + iσ)2
(
(ω + iσ)2 + bk2ω2

)
= k2

(
(ω + iσ)2 − ck2ω2

)
.

When σ = 0, one finds the roots

ω = 0, ω2 = k2
1− ck2

1 + bk2
,

where ω is a double roots. We can prove again that for σ > 0 and small enough the imaginary
part of ω is strictly negative. Therefore, there remains to prove that (41) has no real roots ω.
Assume it is true: then necessarily both ω, σ satisfy the equations:

(ω2 − σ2)(ω2(1 + bk2)− σ2)− 4σ2ω2 = k2(ω2(1− ck2)− σ2),
ω2(2 + bk2)− 2σ2 = k2.

We simplify this set of equations by setting Ω = ω2 and S = σ2. We can eliminate Ω from these
equations and find that S is solution of

(42) (16 + 8bk2 + b2k4)S2 − 2Sk2((b+ 2c)k2 + bck4 − 3) + (1 + 2|c|k2 + b|c|k4)k4 = 0.
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If this equation admits a positive root S̄ then there is a positive solution Ω̄ given by

Ω̄ =
2S̄ + k2

2 + bk2
.

We compute the reduced discriminant of (42), denote ∆:

∆ = −k4
(
7 + k2(14b+ 20|c|) + k4(30b|c| − 4c2) + k6(12b2|c| − 4bc2) + b2k8|c|(b− |c|)

)
.

Either b ≥ |c| and ∆ < 0 and (42) has no real roots, or b < |c|: in this case ∆ can change sign.
If it is non negative then (42) admits real roots. A closer look at the coefficients of (42) shows
that the roots have the same sign and that ∆ is always negative. As a conclusion, there are no
real solution of (42) that are positive. This concludes the proof of the proposition: the PML
system is always stable.

5.1 Numerical results

In this section, we proposed several numerical tests with the model (39) in order to illustrate the
stability of the PMLs constructed above. We focus here on the classical linearized Boussinesq
approximation, meaning that the parameters are fixed as follows: a = b = c = 0 and d > 0 (we
have fixed d = 1/3). Using a centered finite differences in space with a Crank Nicolson time
discretization, the numerical scheme reads as follows

(43)

2
hnj − ηnj
δt

+ σhnj +
vnj+1 − vnj−1

2δx
= 0,

2

δt

(
(vnj − dvn2,j)− (unj − dun2,j)

)
+ σ(vnj + vn2,j) +

hnj+1 − hnj−1
2δx

= 0,

2

δt

((
vn1,j −

vnj+1 − vnj−1
2δx

)
−
(
un1,j −

unj+1 − unj−1
2δx

))
+ σvn1,j = 0,

2

δt

((
vn2,j −

vn1,j+1 − vn1,j−1
2δx

)
−
(
un2,j −

un1,j+1 − un1,j−1
2δx

))
+ σvn2,j = 0,

where we use similar notations to the ones already used, namely,

vnk,j =
un+1
k,j + unk,j

2
for k = 0, 1, 2 with un0,j = unj and hnj =

ηn+1
j + ηnj

2
.

We consider the spatial domain [−10, 10] and provide different test cases to describe the physics
included in the model. First, we present the case where bidirectional wave propagation is ob-
served. Indeed, the initial condition of the form

η(t = 0, x) = exp(−x2), u(t = 0, x) = 0 ∀x ∈ [−10, 10]

yields bidirectional dispersive propagation of waves. For the PML parameter σ we choose the
power function of the following form

σ(x) = max(0, x− 6)4 + min(0, x+ 6)4,

so that the absorbing layers start at x ≤ −6 and x ≥ 6. We fix uniform space step δx = 0.01,
and the time step is set to δt = δx, since we are dealing again with a Crank-Nicolson time-
discretization. We used Neumann boundary conditions at the end points. The time domain is
[0, 100].
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Figure 8: Bidirectional dispersive waves propagation with the model (39) in the case a = b =
c = 0 and d = 1/3 in the (x, t) plane [−10, 10] × [0, 100]. Representation of the evolution
log(1 + 1000|η(t, x)|) (on the left) and log(1 + 1000|u(t, x)|) (on the right). The absorbing layers
are located at x ≤ −6 and x ≥ 6. For |x| ≥ 8, the outgoing waves are completely absorbed.

Figure 9: Unidirectional propagation in the (x, t) plane [−10, 10]× [0, 100]: plots of the function
log(1 + 1000|η(t, x)|) where η(x, t) is the solution to the model (39). On the left: the initial
condition is given by (44). There is a significant left-going wave meaning that this choice of the
initial conditions is not appropriate. Note however that the outgoing waves are absorbed. On
the right: the initial condition is given by (45). This generates a right-going wave, the left-going
part of the solution being negligible, the wave is absorbed in the layer.

We plot the (x, t)-contour plot of the solution in logarithmic scale (namely, we have plotted
the functions log(1 + 1000|η(t, x)|) and log(1 + 1000|u(t, x)|)) in order to see clearly that there
is no any reflections on the numerical boundaries (see figure 8).

As already mentioned, the dynamics of unidirectional waves is approximated to first order by
the KdV equation. It implies that the assumption of unidirectional propagation of waves allows
to reduce the classical Boussinesq system to the KdV equation. Hence, the second test we focus
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on is the simulation of unidirectional propagation. This implies a particular choice of the initial
data. First we have tested the initial conditions given as

(44) η(t = 0, x) = exp(−x2), u(t = 0, x) = η(t = 0, x).

In fact, this simple choice for u(t = 0, x) corresponds to the classical linear acoustic system
(which is equivalent to the linear wave equation) and allows to reduce the solution in this case
to the right-going waves only. Of course, this choice is not exact for the Boussinesq equation,
and numerically we observe in figure 9 (on the left) that a significant left-going wave appears
quickly. However, note that the PML absorbing layers are stable as expected.

In order to set an exact initial condition for the Boussinesq system that will generate a right-
going wave, we need to factorize a corresponding differential operator in a similar way as for the
wave equation. This is done with the following condition:

(45) u(t = 0, x) = (1− d∂2x)−1/2η(t = 0, x).

The Fast Fourier transform and inverse Fast Fourier transform allow to calculate the fractional
derivative. We observe in figure 9 that the more accurate choice (45) of initials conditions gives
a better result and generate a right-going wave that is later damped in the absorbing layer.

6 Conclusion

In this paper, we have studied the stability of classical perfectly matched layer equations for
different types of linear dispersive wave models. First, we applied the PML strategy to the
linearized Korteweg-de Vries equation, and showed analytically and numerically that this ap-
proach is not always stable. The main issue is, as it is now classical in PML literature, that
the group velocity vg(k) and phase velocity vφ(k) may have not the same sign depending on the
wave number k. We have introduced a hyperbolic system with a source term which formally
approximates the Korteweg-de Vries equation and have shown its ability to mimic most of the
classical properties of the Korteweg-de Vries equation (dispersion relation, existence of solitons
and periodic waves). As one of the characteristic velocities of the extended system shares the
dispersive property of the original equation, the full PML system may not be always stable and
we have illustrated some cases of instability. Note, however, that if we choose to discard the
source terms in the derivation of PML equations, one obtains approximate PML equations that
are always stable. Finally, we have considered a class of more realistic water wave models, namely
mixed BBM-Boussinesq system that describes the evolution of a shallow layer of inviscid fluid.
In this last case, the dispersive properties of a subclass of these models including Boussinesq
equation and shallow water equation with surface tension ensure that the necessary condition
of stability vg(k)vφ(k) ≥ 0 is always satisfied. Moreover, we prove a complete stability for the
associated PML equations and illustrate numerically that the PML technique works in this case.

In any case, this does not cure the problem of instabilities when the common necessary
stability condition of PML is violated and an alternative approach to truncate the computational
domain should be proposed. There exist several stabilisation techniques for some models with
backward propagating modes (see, for example, [2] for hyperbolic systems, [17] for advected
acoustics, [15] for anisotropic acoustics, [40] for linear Euler equations). In the context of the
various hyperbolic-dispersive models found in the literature, other strategies are possible, like
transparent boundary conditions: see e.g. [41] for linearized Green-Naghdi equations and [56]
for its application to domain decomposition for water wave propagation. However this kind of
technique is hard to extend to a two dimensional problem (see [8] for the 2d linear transport
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equation). Another interesting approach consists in imitating the shallow water equations with
nonlocal flux: see [44] in the case of a Boussinesq system where the problem of generating a
wave in the computational domain is treated. Concerning the PML techniques, it would be of
great interest to complete the analysis and test the methodology both in the case of nonlinear
equations and in order to tackle wave generation in the computational domain. We shall also
consider the extension to 2d problems: for this latter problem, it is of particular importance to
have systems that have dispersion properties adapted to the PML techniques, in particular to a
2d version of the necessary condition vg(k)vφ(k) ≥ 0.

7 Appendix

Consider the following system of equations :

(46) ut + uux + ψx = 0, pt −
px − ψ
ε

= 0, ψt +
ux − p
ε

= 0.

Formally, in the limit ε→ 0 we recover the KdV equation. Let us introduce potentials ϕ, γ and
χ such that

(47) u = ϕx, p = χx, ψ = γx,

and the Lagrangian

(48) L = −ϕtϕx
2
− ϕ3

x

6
− ϕxγx − ε

γtγx
2
− εχtχx

2
+
χ2
x

2
+ χγx.

Proposition 7.1. The system (46) is the Euler-Lagrange equations for the Lagrangian (48).

Proof. Indeed, the Euler-Lagrange equation for ϕ

(49) − ∂

∂t

(
∂L

∂ϕt

)
− ∂

∂x

(
∂L

∂ϕx

)
= 0

gives us

(50) ϕtx + ϕxxϕx + γxx = 0.

The Euler-Lagrange equation for χ

(51) − ∂

∂t

(
∂L

∂χt

)
− ∂

∂x

(
∂L

∂χx

)
+
∂L

∂χ
= 0

gives

(52) εχtx − χxx + γx = 0.

The Euler-Lagrange equation for γ

(53) − ∂

∂t

(
∂L

∂γt

)
− ∂

∂x

(
∂L

∂γx

)
= 0

gives

(54) εγtx + ϕxx − χx = 0.

This is exactly the system (46) written in terms of potentials.
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Thus, the relaxation system (46) conserves the variational structure of the KdV equation
which turns out to be important for good approximation properties with respect to the original
equations. Such a method of extended Lagrangian transforming a dispersive system admitting
a variational formulation into the hyperbolic system was successfully used for the Serre-Green-
Naghdi equations [12, 27], NLS equation and Euler-Korteweg equations [16], and BBM equation
[34]. The method of extended Lagranian was, in particular, justified in [19] for the Serre-Green-
Naghdi equations.

The system (46) does not inherit the Galilean invariance of the KdV equation. However, this
property is not relevant from the numerical point of view when the computations are performed
for fixed meshes.
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