
HAL Id: hal-03762144
https://hal.science/hal-03762144v1

Submitted on 7 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Deep Learning for Mean Field Optimal Transport
Sebastian Baudelet, Brieuc Frénais, Mathieu Laurière, Amal Machtalay,

Yuchen Zhu

To cite this version:
Sebastian Baudelet, Brieuc Frénais, Mathieu Laurière, Amal Machtalay, Yuchen Zhu. Deep Learn-
ing for Mean Field Optimal Transport. ESAIM Proceedings and Surveys, ESAIM: Proceedings and
Surveys, 77, pp.145-175, 2024, �10.1051/proc/202477145�. �hal-03762144�

https://hal.science/hal-03762144v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ESAIM: PROCEEDINGS AND SURVEYS, October 2024, Vol. 77, p. 145-175
Emmanuel Franck, Hélène Hivert, Guillaume Latu, Hélène Leman, Bertrand Maury, Michel Mehrenberger, Laurent Navoret

DEEP LEARNING FOR MEAN FIELD OPTIMAL TRANSPORT ∗

SEBASTIAN BAUDELET 1, BRIEUC FRÉNAIS 2, MATHIEU LAURIÈRE 3, AMAL MACHTALAY 4

AND YUCHEN ZHU 5

Abstract. Mean field control (MFC) problems have been introduced to study social optima in very large
populations of strategic agents. The main idea is to consider an infinite population and to simplify the analysis
by using a mean field approximation. These problems can also be viewed as optimal control problems for
McKean-Vlasov dynamics. They have found applications in a wide range of fields, from economics and finance
to social sciences and engineering. Usually, the goal for the agents is to minimize a total cost which consists in
the integral of a running cost plus a terminal cost. In this work, we consider MFC problems in which there is no
terminal cost but, instead, the terminal distribution is prescribed as in optimal transport problem. By analogy
with MFC, we call such problems mean field optimal transport problems (or MFOT for short) since they can
be viewed as a generalization of classical optimal transport problems when mean field interactions occur in the
dynamics or the running cost function. We propose three numerical methods based on neural networks. The
first one is based on directly learning an optimal control. The second one amounts to solve a forward-backward
PDE system characterizing the solution. The third one relies on a primal-dual approach. We illustrate these
methods with numerical experiments conducted on two families of examples.

1. INTRODUCTION

Mean field games (MFGs) have been introduced by Lasry and Lions [44–46] and Caines, Huang and Malhamé [42,
43] to approximate Nash equilibria in games with a very large number of players. At a high level, the main idea is to
use a mean field approximation to represent the state of the population, and then to focus on the interactions between
a single representative player and the distribution of the states of the other players. Mean field control (MFC) [15]
relies on a similar approximation but aims at representing situations in which a large number of agents cooperate to
minimize a common social cost. The problem can be interpreted as an optimal control problem for a McKean-Vlasov
(MKV) stochastic differential equation (SDE) or an optimal control for a Kolmogorov-Fokker-Planck (KFP) partial
differential equation (PDE). In the past decade, the analysis of both MFGs and MFC problems has been extensively
developed, see e.g. [15] for an introduction to this topic, and [22] for a probabilistic viewpoint.

∗ The authors would like to thank the CIRM for welcoming the CEMRACS 2022, the organizers of the CEMRACS 2022 for the opportunity to
work on this project as well as their respective institutions. They are also grateful to the NYU-ECNU Institute of Mathematical Sciences at NYU
Shanghai, the CIMPA fellowships program, and the ENS Rennes for their support. This work was supported in part through the NYUSH IT
High Performance Computing resources, services, and staff expertise, as well as the ASCC Toubkal cluster resources.
1 Université Côte d’Azur, 28 Avenue de Valrose, 06103 Nice, France, sebastian.baudelet@univ-cotedazur.fr
2 IRMA UMR 7501, Université de Strasbourg, 7 Rue René Descartes, 67000 Strasbourg, France, brieuc.frenais@math.unistra.fr
3 NYU Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning; NYU-ECNU Institute of Mathematical Sciences at
NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China, mathieu.lauriere@nyu.edu
4 Mohammed VI Polytechnic University. Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco, amal.machtalay@um6p.ma
5 Georgia Institute of Technology, 686 Cherry Street NW, Atlanta, 30332, USA, yzhu738@gatech.edu

© EDP Sciences, SMAI 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article published online by EDP Sciences and available at https://www.esaim-proc.org or https://doi.org/10.1051/proc/202477145

http://publications.edpsciences.org/
https://www.esaim-proc.org
https://doi.org/10.1051/proc/202477145

146 ESAIM: PROCEEDINGS AND SURVEYS

In the most common setup, the players try to minimize a total cost which is composed of a running cost integrated
over time and a terminal cost. These costs generally account for the efforts made to control the dynamics as well as
the preferences for some states over others. Another class of models has been introduced, in which there is no terminal
cost and instead the terminal distribution of the population is imposed as a constraint. Nash equilibria have been
studied under the name of planning problem for mean field game. This class of problems has been analyzed mostly
using PDE-based techniques [1, 17, 36, 53, 55, 56]. In the special case of linear dynamics and a quadratic running cost
in the control, the problem is related to the Schrödinger bridge problem, and equilibrium conditions can be phrased in
terms of ordinary differential equations (ODEs) [26–30]. Mean-field Schrödinger bridge problems have also received
a growing interest from the stochastic viewpoint, see e.g. [10, 40].

This research direction is tightly connected to optimal transport (OT). Benamou and Brenier proposed in [11] a fluid
mechanics framework for the L2 Monge-Kantorovich mass transport problem. Many works built on this approach to
relate optimal transport and optimal control problems for continuity equations. Of particular interest for MFGs is
the work [20], which clarified the link between geodesics for a class of distances between probability measures and
a PDE system similar to the one arising in MFGs. For more background on OT, we refer the interested reader to
the monographs [8, 54, 60, 64, 65]. However, the solutions of MFGs correspond to Nash equilibria, and hence, in
general, MFGs do not admit a variational structure. Furthermore, in many applications, it is not immediately clear
to us why selfish players caring only about their individual costs would manage to agree and reach a target terminal
distribution. Imposing a fixed terminal distribution seems more natural in the MFC setting, where the agents behave
in a cooperative way to minimize the social cost. In the present work, we focus on such MFC with planning problems,
in which a mean field of agents try to collectively minimize a social cost while ensuring that a fixed distribution is
attained at the terminal time.

Since the work of Benamou and Brenier [11], several numerical methods have been investigated for similar prob-
lems, including MFGs with planning. Achdou et al. have proposed in [1] a method based on finite differences and
Newton method to solve the PDE system of MFG with planning. Benamou and Carlier have used in [12, 14] an
Augmented Lagrangian method approach with the alternating direction method of multipliers to solve OT and MFG
(without planning). Similar methods have been used in [5, 9] to solve MFGs and MFC problems (still without plan-
ning). Benamou et al. proposed in [13] a method to solve MFG with planning through entropy regularization and
Sinkhorn algorithm.

Recently, several deep learning methods have been proposed to solve high-dimensional optimal control problems
and PDEs, such as the DeepBSDE method [37–39], the Deep Galerkin Method [62] and physics-informed neural
networks [57]. Some of these methods have been extended to MFGs and MFC problems. In particular, [7,23] proposed
deep learning methods to solve the PDE systems arising in mean field problems, [24, 33, 34] introduced deep learning
methods for differential MFC problems. Ruthotto et al. introduced a deep learning method for variational MFG
with degenerate diffusion in [59]. Lin et al. introduced a deep learning method in [48] that utilizes the primal-dual
relationship of variational MFG. Cao et al. noticed a connection between MFGs, generative adversarial networks and
OT in [19]. We refer the interested reader to e.g. [25, 35, 41] for recent surveys on this topic. The work most related
to ours is the work of Liu et al. in [49], where they considered the planning problems in a class of MFGs based on
a generalized version of the Schrödinger bridge problem and proposed a neural network-based numerical method to
solved it.

The main goal of this paper is to propose numerical methods based on deep learning to solve MFC problems with
planning constraint, that we will call mean field optimal transport problems. To the best of our knowledge, the theory
remains to be investigated in detail, and this is beyond the scope of the present work. Here, we proceed formally
when needed, and we focus on the numerical aspects using machine learning tools. The rest of the paper is organized
as follows. In Section 2, we introduce the problem and discuss several examples. In Section 3, we describe three
numerical methods, each based on a different approach for the problem. In Section 4, we present numerical results on
several benchmark problems.

ESAIM: PROCEEDINGS AND SURVEYS 147

2. DEFINITION OF THE PROBLEM

Before presenting the mean field optimal transport problem, let us first recall the definition of a typical mean field
control problem. Let T be a time horizon. Let Q = Rd and QT = [0, T]×Q denote the space domain and the time-
space domain. Denote by P2(Q) the set of square-integrable probability measures on Q. Let f : Q×P2(Q)×Rk → R
be a running cost function, g : Q × P2(Q) → R be a terminal cost function, b : Q × P2(Q) × Rk → Rd be a drift
function and σ ∈ R be a non-negative constant diffusion coefficient. In a classical MFC problem with given initial
distribution ρ0 in P2(Q), the goal is to find a feedback control v∗ : QT → Rk minimizing:

JMFC : v 7→ E

[∫ T

0

f(Xv
t , µ

v(t), v(t,Xv
t))dt+ g(Xv

T , µ
v(T))

]
(1)

where µv(t) is the distribution of Xv
t , under the constraint that the process Xv = (Xv

t)t≥0 solves the SDE{
Xv

0 ∼ ρ0

dXv
t = b(Xv

t , µ
v(t), v(t,Xv

t))dt+ σdWt, t ≥ 0,
(2)

where W is a standard d-dimensional Brownian motion. It would also be interesting to consider open-loop controls,
but since we are motivated by numerical applications, we restrict our attention to feedback controls. The cost (1)
can be interpreted either as the expected cost for a single representative player, or as the average cost for the whole
population, which we refer to as the social cost.

In this work, we are interested in a modified version of the above problem, where instead of having a terminal cost,
a terminal distribution is imposed. This type of problem encompasses optimal transport as a special case, but it may
incorporate mean field interactions in the drift and the running cost. For this reason, we will refer to this class of
problems as mean field optimal transport (MFOT for short).1 Given two distributions ρ0 and ρT ∈ P2(Q), the goal is
to find a feedback control v∗ : QT → Rk minimizing

JMFOT : v 7→ E

[∫ T

0

f(Xv
t , µ

v(t), v(t,Xv
t))dt

]
, (3)

where µv(t) is the distribution of Xv
t , under the constraint that the process Xv = (Xv

t)t≥0 solves the SDE{
Xv

0 ∼ ρ0, Xv
T ∼ ρT

dXv
t = b(Xv

t , µ
v(t), v(t,Xv

t))dt+ σdWt, t ≥ 0.
(4)

We stress that the terminal constraint implicitly restricts the class of admissible controls since we are interested in
minimizing only over controls v that make Xv

T have distribution ρT .
We now present a few useful examples, some of which will be revisited in the numerical experiments (see Section 4).

Example 1 (Optimal transport). When b(x, µ, a) = a, f(x, µ, a) = 1
2a

⊤a and σ = 0, the MFOT problem reduces to
a standard OT problem. See e.g. [11].

Example 2 (Linear-quadratic). Take b(x, µ, a) = Ax + Āµ̄ + Ba, f(x, µ, a) = x⊤Qx + µ̄⊤Q̄µ̄ + a⊤Ra, and
g(x, µ) = x⊤QTx + µ̄⊤Q̄T µ̄, where µ̄ =

∫
ξµ(dξ), where A, Ā,B,Q, Q̄, R,QT and Q̄T are matrices of suitable

sizes. In this setting, the MFC problem has an explicit solution, up to solving a forward-backward system of ODEs.

1By analogy with MFG of planning type, we could also call such problems “MFC of planning type”. Yet another possible terminology would
be “mean field control problems with a terminal constraint”. But referring to “optimal transport” seems clearer so we will stick to the MFOT
terminology. We note that we present the problem with a stochastic dynamics while standard optimal transport problems are usually presented
without noise in the dynamics, see [60,64]. However, the topic of optimal transport with stochastic dynamics has recently attracted interest [52,63],
which justifies our terminology.

148 ESAIM: PROCEEDINGS AND SURVEYS

Furthermore, if the initial distribution is Gaussian, then the optimal flow of distribution remains Gaussian. See
e.g. [15, Chapter 6]. To the best of our knowledge, in the MFOT setting, a similar result is available in the literature
only when Q = Q̄ = 0, which corresponds to the Schrödinger bridge problem. See [30, Section 7.1].

Example 3 (Crowd motion with congestion). Take b(x, µ, a) = a, f(x, µ, a) = (c+ρ⋆µ(x))γ |a|2+ℓ(x, µ(x)), where
c ≥ 0 is a constant, ρ is a regularizing kernel and ⋆ denotes the convolution. For γ = 0, the model is linear-quadratic
in the control. If γ > 0, the cost of moving increases with the density surrounding the agent, which represents the
fact that the “energy” spent to move is higher in regions with higher density. This models a congestion effect. The
last term in f can be used to represent crowd aversion if ℓ is increasing with respect to µ(x), and it can be used to
represent spatial preferences by taking for instance ℓ(x, µ(x)) = |x∗ − x|2, where x∗ is a preferred position. The
terminal cost g can also be used to represent crowd aversion or spatial preferences. See e.g. [3,4] for more details on
the analysis of the MFC PDE system for this class of models and [5] for numerical aspects. When ℓ = 0 and σ = 0,
the corresponding MFOT problem has been studied e.g. in [20]. Similar models have also been studied in the context
of MFGs, see e.g. [2, 6].

3. NUMERICAL METHODS

In this section, we introduce three different numerical methods to solve MFOT. Section 3.1 introduces a direct
approach to solve a MFC problem that approximates the MFOT problem. Section 3.2 discusses the Deep Galerkin
Method (DGM) to solve the underlying PDE system that characterizes the optimal solution to MFOT, which is com-
posed of a coupled Hamilton-Jacobi-Bellman equation and a Kolomogrov-Fokker-Planck equation. Section 3.3 intro-
duces the DeepADMM algorithm that solves a variational reformulation of the MFOT problem based on an augmented
Lagrangian approach.

3.1. Direct approach for the optimal control formulation

We first introduce the direct approach, which does not require any derivation of optimality conditions. In order to
make the problem numerically tractable, we make approximations on several levels. Motivated by the deep learning
method for MFC problems proposed in [23] (see also the first algorithm in [25]), we first approximate the MFOT
problem (3) by an MFC problem in which a terminal penalty is incurred based on the distance between the terminal
distribution and the target distribution. We can then apply the algorithm of [23], which trains a neural network to learn
the optimal control of the MFC problem. This method itself relies on three approximations.

3.1.1. Problem Approximation

Instead of directly tackling the MFOT problem (3), we first consider the following MFC problem as an approxima-
tion of the original problem: Find a feedback control v∗ : QT → Rk minimizing (1) under the constraint (2) when the
terminal cost is:

g(x, µ) = G(W2(µ, ρT)), µ ∈ P2(Q). (5)

whereG : R+ → R+ is an increasing function and W2 denotes the Wasserstein distance on P2(Q). A typical example
that we will use in the experiments is a linear function. The purpose of introducing G(W2(µ, ρT)) is to add a penalty
that enforces the planning constraint for the terminal distribution. Here we focus on the Wasserstein distance because
of its connection with optimal transport, see e.g. [11, 60], although other similarity measures could be used. In our
numerical experiments, we will take an increasing linear function for G.

Then, we use the following approximations:

• Since it is not possible to optimize overall feedback controls, we restrict the space of controls to the space of
neural networks with a given architecture. We will denote by vθ a representative neural network of this class
with parameter θ. The problem becomes a finite-dimensional optimization problem, in which the goal is to
find a value for the parameter θ that minimizes the loss J(vθ), i.e., the total cost of the MFC problem when
using control vθ.

ESAIM: PROCEEDINGS AND SURVEYS 149

• Since it is not possible to represent the mean field state µvθ (t) or to compute its evolution exactly, we approx-
imate it by the empirical distribution µ̄N,vθ (t) = 1

N

∑N
i=1 δXi,vθ

t
, where each Xi,vθ

t is a solution of,

{
Xi,vθ

0 ∼ ρ0 i.i.d.
dXi,vθ

t = b(Xi,vθ
t , µ̄N,vθ (t), vθ(t,X

i,vθ
t))dt+ σdW i

t , t ≥ 0,
(6)

where (W i)i=1,...,N is a family ofN independent d-dimensional Brownian motions, which represent idiosyn-
cratic noises affecting each particle independently. All the SDEs are based on the same control function vθ.

• Last, in order to be able to compute these dynamics using Monte Carlo simulations, we discretize the time
variable t. Letting NT be a number of regular time steps of length ∆t = T/NT , we replace the interval [0, T]
by the time steps {t0 = 0, t1 = ∆t, . . . , tNT

= NT∆t}. The time steps are tn = n∆t, n = 0, . . . , NT .
We then approximate the SDE system (6) using an Euler-Maruyama scheme. The family of trajectories
((Xi,vθ

t)t∈[0,T])i=1,...,N is approximated by the family of sequences ((Xi,vθ,NT

tn)n=0,...,NT
)i=1,...,N satisfy-

ing: {
Xi,vθ,NT

0 ∼ ρ0 i.i.d.
Xi,vθ,NT

tn+1
= Xi,vθ,NT

tn + b(Xi,vθ,NT

tn , µ̄N,vθ,NT

tn , vθ(tn, X
i,vθ,NT

tn))∆t+ σ∆W i
n,

(7)

where µ̄N,vθ,NT

tn = 1
N

∑N
i=1 δXi,vθ,NT

tn

is the empirical distribution associated with the samples Xi,vθ,NT

tn .

Here, (∆W i
n)i=1,...,N,n=0,...,NT−1 are independent Gaussian random variables with variance ∆t.

To summarize, the new problem is to find θ∗ minimizing:

JN,NT (θ) = E

[
1

N

N∑
i=1

NT−1∑
n=0

f(Xi,θ,NT

tn , µ̄N,θ,NT

tn , vθ(tn, X
i,θ,NT

tn))∆t+ g(XN,θ,NT

T , µ̄N,θ,NT

T)

]

subject to the dynamics (7). The full analysis of this problem and its rigorous connection with the original MFOT
problem (3) is beyond the scope of this paper and is left for future work. We expect the control vθ∗ , with the parameter
value that is optimal for the above problem, to be approximately optimal for (3), under suitable assumptions on b
and f . In particular, b and f should probably depend smoothly on the distribution so that they can be evaluated in a
meaningful way at the empirical distribution µ̄N,θ,NT

tn .

3.1.2. Description of the algorithm

Optimization method. To find an approximate minimizer, we use stochastic gradient descent (SGD) or one
of its variants. At iteration k, we have a parameter θk that we wish to update. We sample the initial positions
(X

i,vθk ,NT

0)i=1,...,N and the Brownian motion increments (∆W i
n)i=1,...,N,n=0,...,NT−1. We then compute the empiri-

cal cost for this realization of theN -particle population, and use its gradient with respect to θk to update the parameter.
In other words, we apply SGD to the following loss function:

L(θ) = JN,NT (θ) = ES [L(θ;S)],

with:

L(θ;S) = 1

N

N∑
i=1

NT−1∑
n=0

f(Xi,vθ,NT

tn , µ̄N,vθ,NT

tn , vθ(tn, X
i,vθ,NT

tn))∆t+ g(XN,vθ,NT

T , µ̄N,vθ,NT

T)

where S =
(
(Xi,vθ,NT

0)i=1,...,N , (∆W
i
n)i=1,...,N,n=0,...,NT−1

)
denotes one random sample.

Computation of the Wasserstein distance. As shown in (5), the new problem we considered involves a Wasser-
stein distance between two continuous distributions, namely, the mean field distribution at terminal time µvT and the

150 ESAIM: PROCEEDINGS AND SURVEYS

target distribution ρT . This is in general hard to compute. However, in our implementation, the mean field distribution
is approximated by an empirical distribution obtained by Monte Carlo simulations, as is explained above. We then
sample the same number of points from the target distribution and compute the Wasserstein distance between the two
empirical distributions. This is done in the following way. Let X and Y be two sets of N points each sampled from
distributions µ, ν, Mp the distance matrix, (Mp)ij = |Xi − Yj |p, and the following set:

UN =

A ∈ RN×N |
N∑
j=1

Aij =

N∑
i=1

Aij =
1

N

 . (8)

Then

(Wp (µ, ν))
p
= lim
N→∞

min
T∈UN

⟨T,Mp⟩ .

In order to efficiently compute the Wasserstein distance, we follow the algorithm proposed by Cuturi in [31]. We
consider an extra entropy regularization of the following form. Let α > 0, we want to find T ∗

α , which is the solution
to the following program:

min
T∈UN

⟨T,Mp⟩ − α ⟨T log(T), 1⟩ .

Optimality conditions and Sinkhorn-Knopp [61] theorem give us the existence and uniqueness of the solution, as well
as a unique decomposition of T ∗

α using two vectors u and v such that:

T ∗
α = Diag(u) exp

(
−Mp

α

)
Diag(v).

We can then compute u and v with Sinkhorn-Knopp algorithm. Further explanations on this algorithm can be found
in [31]. This method allows for fast computations and is easy to export to greater dimensions, at the cost of adding a
layer of approximation due to the extra parameter α. It can be noticed that as α tends to zero, the regularized solution
tends to the solution of discrete optimal transport. In practice, reducing α to zero increases the number of iterations
required for Sinkhorn algorithm to converge. However, in our numerical experiments we usually obtain good results
with a small but non-zero α.

Remark 1. Notice that using our approach, we have one empirical distribution and one continuous distribution.
Indeed, we have the empirical distribution obtained by Monte Carlo simulation and the target distribution ρT , which is
generally given by a closed-form formula for its density. We could thus try to use the designated methods, such as Semi-
discrete Optimal transport [51]. While being more accurate, these methods do not scale well in higher dimensions
compared to Sinkhorn’s alternative. Another interesting option, which might scale well in terms of dimension is [32,
50]. However, in our numerical experiments, we did not succeed to obtain equally good results using this alternative
approach. Further investigation is left for future work.

Terminal penalty. In our implementation, we take G as a linear function G(r) = CW r, where CW is a positive
constant that weighs the importance of the terminal penalty in comparison with the running cost. This leads to a
trade-off between minimizing the running cost and satisfying the terminal constraint. We noticed that when CW is too
small, the algorithm minimizes the running cost without much consideration for the terminal condition and hence the
terminal distribution is far from the target distribution. Therefore, the penalization has to be a significant component
of the total loss if we want the terminal planning constraint to be approximately satisfied with good accuracy.

3.2. Deep Galerkin Method for the PDE system

We now turn our attention to a method based on solving a forward-backward PDE system that characterizes the
solution. We first discuss the PDE system and then use a deep learning method to solve this system.

ESAIM: PROCEEDINGS AND SURVEYS 151

3.2.1. PDE system for MFOT

As recalled above, in a standard MFC, the whole population uses a given feedback control v. Assuming that the
distribution µvt = L(Xv

t) of a representative agent with dynamics (2) admits a smooth enough density mt, the latter
satisfies the Kolmogorov-Fokker-Planck (KFP) PDE:{

∂m
∂t (t, x)− ν∆m(t, x) + div(m(t, x)b(x,m(t, ·), v(t, x))) = 0 t ∈ (0, T], x ∈ Q
m(0, x) = m0(x), x ∈ Q,

where m0 is the density of the initial distribution ρ0 and ν = σ2

2 . The MFC problem (1) can then be viewed as
an optimal control problem driven by the above KFP PDE. Under suitable conditions, the optimal control can be
characterized through an adjoint PDE, which can be derived for instance via calculus of variations. See e.g. [15,
Chapter 4] for more details.

Let H : Q × L2(Q) × Rd → R be the Hamiltonian of the control problem faced by an infinitesimal agent in the
first point above, which is defined by:

H : (x,m, p) 7→ H(x,m, p) = max
v∈Rk

{−L(x,m, v, p)}, (9)

where m denotes the density of µ, L : Q× L2(Q)× Rk × Rd → R is the Lagrangian, defined by:

L : (x,m, v, p) 7→ L(x,m, v, p) = f(x,m, v) + ⟨b(x,m, v), p⟩. (10)

A necessary condition for the existence of an optimal control v∗ is that:

v∗(t, x) = argmax
v∈Rk

{ − L(x,m(t, ·), v,∇u(t, x))},

where (u,m) solve the following system of partial differential equations:

0 = −∂u
∂t

(t, x)− ν∆u(t, x) +H(x,m(t, ·),∇u(t, x))

+

∫
Q

∂H

∂m
(ζ,m(t, ·),∇u(t, ζ))(x)m(t, ζ)dζ, in (0, T]×Q,

0 =
∂m

∂t
(t, x)− ν∆m(t, x)− div(m(t, x)∂pH(x,m(t, ·),∇u(t, x))), in [0, T)×Q,

u(T, x) = g(x,m(T, ·)) +
∫
Q

∂g

∂m
(ζ,m(T, ·))(x)m(T, ζ)dζ, in Q,

m(0, x) = m0(x), in Q.

(11a)

(11b)

(11c)

(11d)

The partial derivatives with respect to m appear in the backward PDE due to the fact that the population distribution
changes when the control changes. These partial derivatives with respect to m should be understood in the following
sense: if φ : L2(Rd) → R is differentiable,

d

dε
φ(m+ εm̃)(x)|ε=0

=

∫
Rd

∂φ

∂m
(m)(ζ)m̃(ζ)dζ.

We refer to e.g. [15, Chapter 4] for more details and for the derivation using calculus of variations, which clarifies
why the partial derivatives with respect to m appear. If the cost functions and the drift function depend on the density
only locally (i.e., only on the density at the current position of the agent), ∂

∂m becomes a derivative in the usual sense.

152 ESAIM: PROCEEDINGS AND SURVEYS

In this PDE system, m plays the role of the MFC problem’s state. The forward equation is a Kolmogorov-Fokker-
Planck (KFP) equation which describes the evolution of the mean field distribution. The other unknown function,
u, plays the role of an adjoint state. Although the backward PDE has the form of a Hamilton-Jacobi-Bellman (HJB)
equation, u cannot, in general, be interpreted as the value function associated to problem (1) because the value function
depends on the population distribution, see e.g. [16, 47]. We refer the interested reader to e.g. [15, Chapters 3 and 4]
for the comparison with the MFG PDE system, in which the terms involving a derivative with respect to m are absent,
and u can be interpreted as the value function of an infinitesimal player.

Now, for the MFOT problem, we can proceed formally in a similar way. We derive an analogous PDE system,
except that the terminal condition for u disappears, and a terminal condition for m is added to the system. More
precisely, we (formally) obtain the following PDE system:

0 = −∂u
∂t

(t, x)− ν∆u(t, x) +H(x,m(t, ·),∇u(t, x))

+

∫
Q

∂H

∂m
(ζ,m(t, ·),∇u(t, ζ))(x)m(t, ζ)dζ, in (0, T]×Q,

0 =
∂m

∂t
(t, x)− ν∆m(t, x)− div(m(t, x)∂pH(x,m(t, ·),∇u(t, x))), in [0, T)×Q,

m(0, x) = m0(x), m(T, x) = mT (x) in Q.

(12a)

(12b)

(12c)

where m0 and mT are respectively the densities of ρ0 and ρT . To the best of our knowledge, this PDE system has not
been derived nor analyzed in a general setting. Notice that even the existence of a solution is a non trivial question
due to the fact that there is both an initial and a terminal constraint on the density. However, this system has been
analyzed in special cases corresponding to optimal transport [11, 20] or to MFGs with planning [1, 36, 55, 56]. In the
numerical examples of Section 4, we will mostly focus on cases that have been previously studied, such as standard
optimal transport or MFOT with congestion effects captured by the running cost.

3.2.2. Description of the algorithm

To solve the PDE system (12), we follow the idea of the Deep Galerkin Method (DGM) introduced by Sigignano
and Spiliopoulos [62] and adapted to the MFG and PDE systems in [7, 24, 25]. The main motivation underlying this
approach is to learn the PDE solutions using parameterized functions. This avoids computing the functions on a mesh,
which is not feasible in high dimensions. In the DGM, we replace the function(s) solving the PDE(s) with a neural
network(s), which are trained to minimize the PDE residual(s) as well as the boundary condition(s).

To be specific, in our setting, we replace the functions m and u with neural networks, denoted by mθ and uω
and parameterized by θ and ω respectively. When the state x is in high dimension, i.e., d is large, we expect mθ

and uω to provide good approximations of m and u using much fewer parameters than the number of points in a
grid. Furthermore, for the numerical implementation, we restrict our attention to a compact domain Q̃. We denote
Q̃T = [0, T] × Q̃. We expect the density to have a negligible mass outside a compact set so that by solving the PDE
system on a large enough compact set, we obtain a good approximation of the solution, at least in the region where the
density is significantly positive. We then define the loss function:

L(θ, ω) = L(KFP)(mθ, uω) + L(HJB)(mθ, uω),

where, for any (m,u) ∈ C1,2(Q̃T)× C1,2(Q̃T), the two losses are:

L(KFP)(m,u) = C(KFP)

∥∥∥∥∂m∂t − ν∆m− div(m∂pH(·,m,∇u))
∥∥∥∥2
L2(Q̃T)

+ C
(KFP)
0 ∥m(0, ·)−m0∥2L2(Q̃) + C

(KFP)
T ∥m(T, ·)−mT ∥2L2(Q̃) , (13)

ESAIM: PROCEEDINGS AND SURVEYS 153

and (omitting the dependence no x and t, and writing explicitly only the dependence on the extra variable ζ in the
integral):

L(HJB)(m,u) = C(HJB)∥ − ∂u

∂t
− ν∆u+H(·,m,∇u) +

∫
Q̃

∂H

∂m
(ζ,m,∇u(ζ))(·)m(ζ)dζ∥2L2(Q̃T).

Here, C(KFP), C
(KFP)
0 , C

(KFP)
T , C(HJB) are positive weights that give more or less importance to each component. If

the space domain is bounded, we must include more penalty terms. Note that any smooth enough solution (m,u) to
the PDE system (12) makes L(KFP) and L(HJB) vanish. The goal is to find two neural networks which approximately
minimize these losses.

Since it is not possible to compute exactly the above residuals, we approximate the L2 norms using Monte Carlo
samples. For example, we rewrite:∥∥∥∥∂m∂t − ν∆m− div(m∂pH(·,m,∇u))

∥∥∥∥2
L2(Q̃T)

= C(Q̃T)Eτ,ξ

[∣∣∣∣∂m∂t (τ, ξ)− ν∆m(τ, ξ)− div(m(τ, ξ)∂pH(ξ,m(τ),∇u(τ, ξ)))
∣∣∣∣2
]
,

where (τ, ξ) follows a uniform distribution over Q̃T , andC(Q̃T) is a normalizing constant that depends on the domain.
Likewise, for the other norms, it would also be possible to use different norms and different distributions to sample
(τ, ξ). But for the sake of simplicity, we will stick to this setting for the present work. We obtain the following
probabilistic formulation of the loss function L:

L(θ, ω) = ES [L(θ, ω;S)] , L(θ, ω;S) = L(KFP)(mθ, uω;S) + L(HJB)(mθ, uω;S),

where S = (τ, ξ, ξ0, ξT) ∈ [0, T]× Q̃× Q̃× Q̃ denotes one sample, and for any (m,u) ∈ C1,2(QT)×C1,2(QT), the
two losses at S are as:

L(KFP)(m,u;S) = C(KFP)

∣∣∣∣∂m∂t (τ, ξ)− ν∆m(τ, ξ)− div(m(τ, ξ)∂pH(ξ,m(τ),∇u(τ, ξ)))
∣∣∣∣2

+ C
(KFP)
0 |m(0, ξ0)−m0(ξ0)|2 + C

(KFP)
T |m(T, ξT)−mT (ξT)|2,

and

L(HJB)(m,u;S) = C(HJB)| − ∂u

∂t
(τ, ξ)− ν∆u(τ, ξ) +H(ξ,m(τ),∇u(τ, ξ))

+

∫
Q

∂H

∂m
(ζ,m(τ),∇u(τ, ζ))(ξ)m(τ, ζ)dζ|2.

Finally, to optimize over (θ, ω), we use SGD (or one of its variants) on the loss L. In practice, we use a mini-
batch of samples at each iteration, which amounts to approximate the expectation by an empirical average over several
samples.

3.3. Augmented Lagrangian Method with Deep Learning

In this subsection, we present an approach based on a primal-dual formulation of the MFOT problem. We then
introduce a deep learning adaptation of the alternating direction method of multipliers. We focus on the case when the
interactions are local, and the drift is the control.

154 ESAIM: PROCEEDINGS AND SURVEYS

3.3.1. Primal and dual problems

Under suitable assumptions, the MFOT problem admits a variational formulation, which can be tackled using a
direct optimization approach. As in the previous subsection, we assume that ρ0 and ρT have respectively density m0

and mT .
We focus on a model with local interactions, meaning that an agent at state x interacts with the density of the

population at x. To alleviate the presentation, we will use the same notations for the costs and the drift functions, but
now their second input is a real number m instead of an element µ ∈ P2(Q). So we have f : Q × R × Rk → R,
g : Q × R → R, and b : Q × R × Rk → Rd. We also modify accordingly the definition of the Hamiltonian H in
(9) and the Lagrangian L in (10) in subsection 3.2. We further assume that f(x,m, v) is convex in v for every (x,m),
and mf(x,m, v) is convex in m for every (x, v). For simplicity, we consider that b(x,m, v) = v, i.e., the drift is the
control. Therefore, in this model, we take k = d (and we will later use k to denote the iteration index).

Primal problem. The MFOT problem (3) introduced in Section 2 is formally equivalent to the following PDE-
constrained optimization problem:

inf
v:QT→Rd

∫
QT

f(x,m(t, x), v(t, x))m(x, t)dxdt

subject to
∂m

∂t
(t, x)− ν∆m(t, x) + div(m(t, x)v(t, x)) = 0 t ∈ (0, T], x ∈ Q

m(0, x) = m0(x), m(T, x) = mT (x) (14)

The PDE constraint is the KFP equation corresponding to the stochastic dynamics in (4). Note that the formulation
in terms of (m, v), while intuitive, is not convex in general. For this reason, we consider an equivalent formulation in
terms of (m, z) = (m,mv). We define:

f̃(x,m, z) =

mf

(
x,m, zm

)
if m > 0

0 if (m, z) = (0, 0)

+∞ otherwise
(15)

Note that (m, z) 7→ f̃(x,m, z) is LSC on R×Rd. Under suitable conditions, it can be proved that (m, z) 7→ f̃(x,m, z)
is convex on R× Rd. We also define the space K,

K =

{
(m, z) | ∂m

∂t
(t, x)− ν∆m(t, x) + div z(t, x) = 0,m(0, x) = m0(x),m(T, x) = mT (x),m ≥ 0

}
(16)

With all these definitions, we are ready to present the primal problem:

inf
(m,z)∈K

B(m, z) = inf
(m,z)∈K

∫
QT

f̃(x,m(t, x), z(t, x))dxdt (17)

Assuming that problem (17) has a unique optimal solution (m∗, z∗) and that problem (14) has a unique optimal control
v∗, then the following connection holds: v∗(t, x) = z∗(t, x)/m∗(t, x) if m∗(t, x) > 0, v∗(t, x) = 0 if m∗(t, x) = 0.

ESAIM: PROCEEDINGS AND SURVEYS 155

Dual problem. We now introduce a dual optimization problem. We define the following functionals:

A(u) = inf
m≥0

∫
QT

m(t, x)(
∂u

∂t
(t, x) + ν∆u(t, x)−H(x,m(t, x),∇u(t, x)))dxdt

+

∫
Q
(m0(x)u(0, x)−mT (x)u(T, x)) dx (18)

F(u) =

∫
Q
mT (x)u(T, x)−m0(x)u(0, x)dx (19)

G(a, b) = − inf
m≥0

∫
QT

m(t, x)(a(t, x)−H(x,m(t, x), b(t, x)))dxdt. (20)

Note that if we define the linear differential operator Λu = (∂u∂t + ν∆u,∇u), then A(u) = −(G(Λu) + F(u)).
Similar variation formulation for first-order mean field game, mean field type control, and first-order planning mean
field game has been considered e.g. in the works [4, 12, 36] 2. Here, we generalize the variation formulation to the
problem of mean field optimal transport. The functional A(u) could be considered as the Lagrangian dual function of
the primal functional B(m, z), which can be further related to the sum of two functionals F(u) and G(Λu). Consider
the following problem:

inf
u

F(u) + G(Λu). (21)

Based on Fenchel-Rockafellar duality theorem (see Section 31, Theorem 31.1 in [58]), we expect problems (17)
and (21) to be in duality, meaning:

inf
(m,z)∈K

B(m, z) = sup
u

A(u) = − inf
u

F(u) + G(Λu) (22)

Note that this primal-dual relationship also plays an important role in demonstrating the uniqueness and existence of
solutions to MFG and MFC PDE systems, see e.g. [4,21,46]. Here, we expect a similar result to hold for MFOT under
suitable conditions. The rigorous definition of the two problems and the analysis of this duality relationship is left for
future work. For now, we proceed formally.

We can at least formally establish a connection between the primal problem, the dual problem, and the optimal
control in the following way. Let u∗ be the optimal solution to the dual (21) and let (m∗, z∗) be the optimal solution
to the primal problem (17). Then the optimal control for the original problem (14) is given by:

v∗(t, x) = ∂pH(x,m∗(t, x),∇u∗(t, x)).

We notice that (u∗,m∗) forms a solution to the MFOT PDE system (12). This fact suggests that we can work
on the dual problem (21) directly to solve the MFOT problem. Under suitable assumptions, it can be shown that the
dual problem (21) is a strongly convex, unconstrained optimization problem over function space, which motivates the
use of classic algorithms in convex optimization. However, the presence of the infinite dimensional linear operator
Λ makes the problem hard to solve efficiently in general. Fortunately, the structure of the objective as a sum of two
convex functionals makes the problem amenable to algorithms based on splitting schemes, such as the Alternating
Direction Method of Multipliers (ADMM) [18].

3.3.2. Description of the algorithm

Introducing a new variable q that will play the role of Λu, we can rewrite problem (21) as the following constrained
optimization program:

inf
u,q: q=Λu

F(u) + G(q). (23)

2See Lemma 2.2 in [4], Lemma 2.1 in [36]

156 ESAIM: PROCEEDINGS AND SURVEYS

Algorithm 1: Vanilla ADMM for MFOT

Data: Initial Guess (u(0), q(0), λ(0)); number of iterations N ; hyperparameter r > 0
Result: Function (u(N), q(N), λ(N)) that are close to the saddle point of Lr defined in (24)

1 begin
2 for k = 1, · · · , N, do
3 u(k) = argmin

u:QT→R
F(u)− ⟨λ(k−1),Λu⟩+ r

2∥Λu− q(k−1)∥2

4 q(k) = argmin
q:QT→Rd+1

G(q) + ⟨λ(k−1), q⟩+ r
2∥Λu(k) − q∥2

5 λ(k) = λ(k−1) − r(Λu(k) − q(k))

The goal is now to find a saddle point of the associated Lagrangian. In fact, for numerical purposes, we will consider
an augmented Lagrangian, defined as follows.

Let r > 0 be a constant and introduce λ : QT → Rd+1, the Lagrangian multiplier associated with the constraint
q = Λu. Let ⟨·, ·⟩ denote the inner product on L2(QT). We introduce the augmented Lagrangian:

Lr(u, q, λ) = F(u) + G(q)− ⟨λ,Λu− q⟩+ r

2
∥Λu− q∥2 (24)

Now, the original MFOT problem is reduced to finding a saddle point of Lr. Here, we state the original ADMM
method in Algorithm 1 that finds the saddle point via an alternating optimization procedure.

This general procedure can be implemented, for example, when the functions (u, q, λ) are approximated by their
values on a finite-difference grid. Such a procedure has been used for MFG and MFC problems, using finite ele-
ments [9,12] or finite differences [5]. Furthermore, Benamou et.al. proved that under the existence of solution and the
full column rank condition of the finite-difference differential operator Λ, the ADMM method converges to the desired
solution for mean field games, see Theorem 3.1 in [12]. However, as already mentioned, approximating functions by
their values on a mesh is not feasible in high dimensions. We thus propose a different implementation of the ADMM
based on neural network approximations.

In Algorithm 1, the objectives in the steps are given by functionals to be minimized over functional spaces, which is
not tractable in general. We restrict our attention to spaces of parameterized functions that can be expressed as neural
networks, denoted by (uθ, qω, λψ) with parameter θ, ω, ψ respectively. We then follow the strategy introduced with
the DGM [62] and already used in Section 3.2 to create computable loss functions that are stochastic approximations
of the functionals.

Recall that the truncated space domain Q̃ and the associated time-space domain Q̃T . Let X ∼ U(Q̃T), Y ∼ U(Q̃)
be two random variables with uniform distribution in the time-space domain and the space domain respectively. Let
ρX , ρY be the value of the uniform density on Q̃T and Q̃ respectively. Here, we overload the notation ⟨·, ·⟩ and ∥ · ∥
to represent the Euclidean inner product and norm on both L2(Q̃T) and Rd+1:

L(u)(θ;ω, ψ) = L1(uθ, qω, λψ), L(q)(ω; θ, ψ) = L2(uθ, qω, λψ), L(λ)(ψ; θ, ω, ψold) = L3(uθ, qω, λψold
, λψ),

where

L1(u, q, λ) =
1

ρY
EY [u(T, Y)mT (Y)− u(0, Y)m0(Y)] +

1

ρX
EX

[r
2
∥Λu(X)− q(X)∥2 − ⟨Λu(X), λ(X)⟩

]
(25)

L2(u, q, λ) =
1

ρX
EX

[
G(q(X)) + ⟨λ(X), q(X)⟩+ r

2
∥Λu(X)− q(X)∥2

]
L3(u, q, λold, λ) =

1

ρX
EX [∥λold(X)− r (Λu(X)− q(X))− λ(X)∥2]. (26)

ESAIM: PROCEEDINGS AND SURVEYS 157

Here, the subscript old is used to refer to the previous iteration: the loss for λ involves the previous estimate λold. When
using a neural network, it amounts to using the previous neural network parameters ψold. The loss function aims at
mimicking the effect of the direct update in the third step of standard ADMM (Algorithm 1) when λ is approximated
by a neural network.

The algorithm DeepADMM is presented in Algorithm 2.

Algorithm 2: DeepADMM for MFOT

Data: Initial parameter θ(0), ω(0), ψ(0); number of ADMM iterations K; SGD parameters
Result: Final parameter θ(K), ω(K), ψ(K)

1 begin
2 for k = 1, · · · ,K do
3 Compute θ(k) using SGD to (approximately) minimize the loss L(u)(·;ω(k−1), ψ(k−1))

4 Compute ω(k) using SGD to (approximately) minimize the loss L(q)(·; θ(k), ψ(k−1))

5 Compute ψ(k) using SGD to (approximately) minimize the loss L(λ)(·; θ(k), ω(k), ψ(k−1))

We have several remarks regarding DeepADMM and the augmented Lagrangian formulation in order for readers
to better understand this approach. First, compared with Algorithm 1, the updates in Algorithm 2 for functions u and
q are quite straightforward to understand. Instead of searching optimizer over function space, we reduce the problem
to a finite dimension through stochastic approximation of the objective and search in the parameter space instead. The
computed stochastic gradient can be considered as an unbiased estimator of the population gradient with respect to the
functional, and the variance of this stochastic gradient decreases as the batch size increases.

In Appendix B, we discuss the computation of G for several typical models.

4. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments obtained with the three methods discussed in the previous section.
For brevity, we refer to the three methods respectively introduced in sections 3.1, 3.2 and 3.3 as Method 1, Method 2
and Method 3 (and M1, M2, and M3 for short in the plots).

We first consider two test cases for which we have explicit solutions (up to solving ODE systems) and can thus
be used to benchmark our algorithms in any dimension. We then consider two test cases that can be viewed as
modifications of standard OT with crowd aversion or congestion effects.

4.1. Case 1: Linear Quadratic Problem

The first class of models that we consider has a linear-quadratic structure, which falls in the setting discussed in
Example 2.

4.1.1. Description of the problem

In this model, we take:

b(x, µ, a) = Ax+Ba, f(x, µ, a) = a⊤Ra, ρ0 = N (x̄0; Σ0), ρT = N (x̄T ; ΣT),

where A,B,R,Σ0,ΣT are (constant) matrices of suitable sizes. The vectors x̄0 and x̄T correspond to the initial and
terminal means. We will consider two settings. In order to have a benchmark solution, we will take σ = B. This
enables us to use the solution provided by [30, Section 7.1], which boils down to solving a system of ODEs. For the
sake of completeness, we provide the details in Appendix A.

158 ESAIM: PROCEEDINGS AND SURVEYS

4.1.2. Evaluation Metrics

In this model, since we have access to the optimal solution, we can evaluate the learnt solutions given by the
three methods we proposed with respect to the ground-truth solution. We denote by v∗ the optimal control and v̂ a
learnt control. As explained below in detail, we use the following metrics: the total cost (namely JMFOT (v̂), with
JMFOT introduced in (3)), the relative error between the achieved cost, and the optimal cost (namely JMFOT (v̂)
and JMFOT (v∗)), the deviation from the terminal distribution (i.e., the Wasserstein distance between the achieved
terminal distribution and the target terminal distribution, ρT), and the weighted L2 error between the learnt control v̂
and the optimal control v∗, weighted by the population distribution.

Computation of the control. The control is parameterized in different ways across different methods. For Method 1,
v̂(t, x) = vθ(t, x). For Method 2 and Method 3, v̂(t, x) = − 1

2BR
−1∇ûθ(t, x), where ûθ is the neural network that

approximates the dual variable, solution to the HJB equation.

Total cost. Recall the definition of the objective JMFOT defined in (1). Let v be a control. In the present Linear-
Quadratic case, we have that,

JMFOT (v) =

∫ T

0

∫
Q
mv(t, x)f(x,mv, v)dxdt =

∫ T

0

∫
Q
mv(t, x)v(t, x)⊤Rv(t, x)dxdt,

where mv is the density of mean field distribution driven by v, which satisfies the KFP PDE (12). In order to evaluate
JMFOT (v), we use Monte Carlo simulations. We discretize the time variable t. Let NT be a number of time steps of
length ∆t = T/NT . We consider an equi-distanced time discretization with time-steps {t0 = 0, t1 = ∆t, . . . , tNT

=
NT∆t}. Again, we simulate solutions to the underlying SDE using an Euler-Maruyama scheme similar to the one
used in (7). We simulate a family of N sequences ((Xi,v

tn)n=0,...,NT
)i=1,··· ,N using the following update{

Xi,v
0 ∼ ρ0 i.i.d.

Xi,v
tn+1

= Xi,v
tn + (AXi,v

tn +Bv(tn, X
i,v
tn))∆t+ σ

√
∆t∆W i

n,
(27)

where {∆W i
n} are i.i.d standard Gaussian random variables in Rd. With these sampled sequences, we compute the

objective as

JMFOT (v) =
1

N

N∑
i=1

NT−1∑
n=0

v(tn, X
i,v
tn)⊤Rv(tn, X

i,v
tn)∆t.

Relative Error. The relative error between JMFOT (v̂) and JMFOT (v∗) is defined as

|JMFOT (v̂)− JMFOT (v∗)|
|JMFOT (v∗)| .

The major reason to consider relative error instead of absolute error is because the scale of the running cost varies
greatly across different problems. Also, we want to stress that even though v∗ is the analytical optimal solution, it may
happen that JMFOT (v̂) < JMFOT (v∗) if v̂ does not satisfy exactly the constraint (in contrast with v∗).

Expected L2 error for control. The expected L2 error between the learnt control v̂ and the ground-truth control v∗ is
defined as,

dL2(v̂, v∗) =

∫ T

0

∫
Q
m∗(t, x)∥v̂(t, x)− v∗(t, x)∥2dxdt

where m∗ is the density of the optimal mean-field associated with v∗. For the LQ problem, the optimal mean field m∗

is Gaussian for any t ∈ [0, T], with mean µt and variance Σt given by analytical formulas in Appendix A. We can thus

ESAIM: PROCEEDINGS AND SURVEYS 159

Test d A B σ R x̄0 Σ0 x̄T ΣT

LQ Test 1 1 1 1 1 1
2 0.0 1 2.0 0.5

LQ Test 2 2 Id Id Id
1
2Id [0.0, 0.0] Id [2.0, 2.0] 1

2Id

TABLE 1. Parameters for the two linear-quadratic test cases. For LQ Test 2, x̄0 and x̄T are 2-
dimensional vectors with all coordinates equal to 0 or 2 respectively, and Id denotes the 2 × 2
identity matrix.

evaluate the L2 error again with Monte Carlo samples for each time step. As above, we discretize the time variable t
with NT +1 points and for tn = n∆t, n = 0, . . . , NT , we generate i.i.d. samples (Xi,v

tn)i=1,...,N ∼ N (µtn ,Σtn). We
then estimate the L2 error as:

dL2(v̂, v∗) ≈ 1

N

N∑
i=1

NT−1∑
n=0

∥v̂(tn, Xi,v
tn)− v∗(tn, X

i,v
tn)∥2∆t.

Deviation of distribution. The deviation of the mean field ρ̂T from the terminal target distribution ρT is quantified
by two different metrics: Wasserstein-2 distance W2(ρ̂T , ρT) and L2 distance dL2(m̂T ,mT). Here, ρ̂T is the measure
of the mean field distribution driven by the learnt control v̂ at time T . m̂T and mT are the density of ρ̂T and ρT
respectively.

• Wasserstein-2 distance. We adopt a similar method to compute the Wasserstein-2 distance as the one dis-
cussed in Section 3.1. We simulate N particles following the dynamics (27), and obtain a collection of N
samples (Xi,v̂

T)i=1,...,N , which forms an empirical distribution approximating ρ̂T . We also generate N sam-
ples directly from the target distribution ρT , denoted by (Y iT)i=1,...,N . Then, we define the distance matrix M
by Mij = |Xi,v̂

T − Y jT |2, and we recall that the set UN is defined by (8). We approximate the Wasserstein-2
distance between the two empirical distributions formed byXi,v̂

T and Y iT through the following linear program:

W2 (ρ̂T , ρT) ≈ (min
A∈UN

⟨A,M⟩)1/2.

• L2 distance. We will also use as a metric the L2 distance between m̂T and mT on the truncated domain Q̃.
To evaluate the integral, in the absence of analytical formula for mT , we again use a Monte Carlo approach.
We uniformly sample N points in Q̃ denoted by (Xj)j=1,...,N . Let C(Q̃) denotes the inverse of the value of
the uniform density. Then we can approximate the L2 distance by:

C(Q̃)

N

N∑
i=1

∥m̂T (Xi)−mT (Xi)∥2.

4.1.3. Numerical results

In the numerical tests, we take the values given in Table 1 for the parameters of the model, with the time horizon
T = 1.0.

For LQ test 1, in dimension 1, Figure 1 displays the evolution of the density. For methods 1, 2, and 3, we obtain
the control learnt using the neural networks and simulate N trajectories by the Monte Carlo method following the
dynamics (27), with v replaced by the learnt control. We then estimate the mean field distribution using kernel density
estimation (KDE). We see that the distributions obtained with the three methods match well the ground-truth one
obtained with ODEs. The distributions move towards the right and concentrate around the final mean. Figure 2 shows
the evolution of the control. We see that the three methods provide good approximations of the true optimal control,

160 ESAIM: PROCEEDINGS AND SURVEYS

−4 −2 0 2 4

x1

0.0

0.1

0.2

0.3

0.4

0.5

Time: 0.00

−4 −2 0 2 4

x1

Time: 0.25

−4 −2 0 2 4

x1

Time: 0.50

−4 −2 0 2 4

x1

Time: 0.75

−4 −2 0 2 4

x1

Time: 1.00

D
en

si
ty

M1 M2 M3 ODE

FIGURE 1. Evolution of the density in the LQ Test case 1. Each plot corresponds to one time step
and displays the densities as functions of the space variable, x. The densities are: The density
obtained by applying the control learnt by each of the three deep learning methods as well as the
ground-truth density given by the ODE method.

−4 −2 0 2 4 6

x1

−10

−5

0

5

10

15
Time: 0.00

−4 −2 0 2 4 6

x1

Time: 0.25

−4 −2 0 2 4 6

x1

Time: 0.50

−4 −2 0 2 4 6

x1

Time: 0.75

−4 −2 0 2 4 6

x1

Time: 1.00

C
o

n
tr

o
l

M1 M2 M3 ODE

FIGURE 2. Evolution of the control in the LQ Test case 1. Each plot corresponds to one time step
and displays the controls as functions of the space variable, x. The controls are: The control learnt
by each of the three deep learning methods as well as the ground-truth control given by the ODE
method.

at least in the region where the density is high. In regions where the density is very low, the control is not well
approximated, but this is not an issue as far as the optimal behavior of the population is concerned. The first part
of Table 2 shows the results obtained for the metrics introduced above. We see that some of the methods achieve a
smaller total cost than the true optimal control. This would not be possible for controls satisfying perfectly the terminal
constraint, but it is possible here due to the fact that the methods satisfy only approximately the planning constraint.
This also explains why the relative errors on the total cost are of the order of a few percents. We expect that it would
be possible to reduce the relative errors by further fine-tuning the hyperparameters. Moreover, the optimal control is
well approximated, as shown by the L2 distance to the true optimal control. Furthermore, we see that Methods 2 and 3
have a higher Wasserstein-2 distance between the terminal distribution and the target distribution, but the L2 distance
is much lower.

As for LQ test 2, in dimension 2, Figure 3 displays the evolution of the density for each of the methods. The
densities move from the bottom left corner to the top right corner. Furthermore, the terminal distribution is more
concentrated because the terminal variance is smaller than the initial variance. Figure 4 shows the evolution of the first
dimension of the control (the second dimension is similar, so we omit it for brevity). The ground-truth control is linear
in space for each time step. We see that the three methods manage to learn approximately linear controls, at least in
the region where the density is significantly positive. Table 3 shows the results obtained for the metrics introduced
above. We see that here again, each of the three methods achieves a smaller total cost than the true optimal control
due to the fact that the terminal constraint is not perfectly satisfied. The optimal control is well approximated, and the
terminal distribution is matched with good accuracy.

ESAIM: PROCEEDINGS AND SURVEYS 161

Test case (µ± σ) Method Total Cost Relative Error dL2(v̂, v∗)(×10−2) W2(ρ̂T , ρT)(×10−2) dL2(m̂T ,mT)(×10−3)

Linear Quadratic

LQ Test 1

ODE (v∗) 2.112± 0.001 - - - -

M1 2.223± 0.001 5.25% 2.701± 0.872 0.6622± 0.388 1.772± 1.101

M2 2.088± 0.003 1.13% 0.038± 0.024 7.119± 3.643 0.0003± 0.0002

M3 1.998± 0.056 5.39% 4.461± 1.261 9.763± 7.542 3.826± 5.044

TABLE 2. Comparison of three different methods v.s. the analytical solution on the LQ test case 1.
The evaluation metrics are described in Section 4.1.2.

FIGURE 3. Evolution of the density in the Linear Quadratic Test case 2. Each column corresponds
to one time step, and each row corresponds to one of the methods. Each plot displays the density as
a function of the space variable, i.e., (m(t, x)1)x∈[−4,6]2 . The first row corresponds to the solution
obtained by the ground-truth ODE method. The second, third and fourth rows correspond respec-
tively to methods 1, 2 and 3.

Test case (µ± σ) Method Total Cost Relative Error dL2(v̂, v∗)(×10−2) W2(ρ̂T , ρT)(×10−2) dL2(m̂T ,mT)(×10−3)

Linear Quadratic

LQ Test 2

ODE (v∗) 4.242± 0.039 - - - -

M1 4.338± 0.049 2.26% 7.995± 1.760 3.192± 0.708 2.205± 0.567

M2 3.822± 0.034 9.90% 5.799± 0.329 56.86± 17.35 0.013± 0.002

M3 4.079± 0.083 3.84% 9.348± 1.739 52.40± 11.24 7.897± 2.648

TABLE 3. Comparison of three different methods v.s. the analytical solution on the LQ test case 2.
The evaluation metrics are described in Section 4.1.2.

162 ESAIM: PROCEEDINGS AND SURVEYS

FIGURE 4. Evolution of the control in the Linear Quadratic Test case 2. Each column corresponds
to one time step, and each row corresponds to one of the methods. Each plot displays the first
dimension of the control as a function of the space variable, i.e., (v(t, x)1)x∈[−4,6]2 . The first row
corresponds to the solution obtained by the ground-truth ODE method. The second, third and fourth
rows correspond respectively to methods 1, 2 and 3.

4.2. Case 2: Transport with congestion effects

The second class of models that we consider is inspired by crowd motion and falls in the setting discussed in
Example 3.

4.2.1. Description of the problem

In this model, intuitively, the cost is higher when moving through a crowded region, i.e., where the density is high.
Specifically, we take:

b(x, µ, a) = a, f(x, µ, a) = R|ℓ(x, µ)|γ |a|2, ρ0 = N (x̄0; Σ0), ρT = N (x̄T ; ΣT).

For the function ℓ, we take two different models. We consider the following non-local dependence:

ℓ(x, µ) = c+ ρϵ ⋆ µ(x),

where c > 0 is a constant, ρϵ is a Gaussian kernel and ⋆ denotes the convolution. We use Method 1 to solve the
MFOT problem with this function ℓ. Since it is based on Monte Carlo simulations of trajectories, it is straightforward
to compute a convolution with the empirical distribution at a given time step.

We also consider a variation with a local dependence.

ℓ(x, µ) = c+m(x)

where c > 0 is a constant and m denotes the density of µ. For this type of model, Methods 2 and 3 are better suited
since, in these methods, we directly have access to the approximate density in the form of a neural network.

ESAIM: PROCEEDINGS AND SURVEYS 163

4.2.2. Numerical results

We focus on one test case called "Congestion" below in dimension d = 1. In this model, γ = 1. For the sake of
comparison, we also consider the corresponding model with the same choice of parameters except that γ = 0, i.e.,
there are no congestion effects in the running cost. The values that we take in the numerical tests are given in Table 4
below.

Test case d γ c σ R x̄0 Σ0 x̄T ΣT

Case 1, No congestion 1 0 0.1 0.1 0.5 0 0.04 2 0.04

Case 2, Congestion 1 1 0.1 0.1 0.5 0 0.04 2 0.04

Case 3, Congestion 5 1 1 Id 0.5 [0, . . . , 0] 0.1 Id [2, . . . , 2] 0.1 Id

TABLE 4. Parameters for the test case with congestion and the benchmark model without congestion
effects. For Case 3, x̄0 and x̄T are 5-dimensional vectors with all coordinates equal to 0 or 2
respectively, and Id denotes the 5× 5 identity matrix.

In Figure 5, we present the evolution of the density under the control learnt by each of the three methods for
congestion cases 1 and 2. Each row corresponds to one method. We see that, in the case where γ = 0 (no congestion
effect), the mass is transported directly towards the terminal distribution without much change in its shape. In contrast,
in the case with γ = 1, the mass spreads in space and one part starts moving towards the target mean x̄T = 2 whereas
another part stays behind and catches up at later time steps. This is consistent with the idea that moving in congested
regions is more expensive, so some agents would agree to wait until the density decreases before moving forward.

Finally, in Figure 6, we present the evolution of the density under the control learnt by each of the three methods
for congestion case 3, which is in dimension 5. Each row corresponds to one method. To visualize density evolution
in dimension 5, we plot the marginal distribution of the mean field distribution on the first and second dimensions. We
see that, similarly to the congestion case 2, the mass spreads in space and gradually moves towards the target mean.
Compared with congestion case 2, the difference in the moving pattern and extent of spreading is due to the difference
of parameters in Table 4. With a larger value c, the behavior of the density would be closer to a direct transport to the
terminal distribution without changes in the shape of the distribution.

4.3. Remarks on the choice of hyperparameters

Each method has several hyperparameters, including the architecture of the neural networks. We provide below
some remarks about the choice of hyperparameters in our implementation.

Method 1. In our implementation, we choose G(r) = CW r where CW is a hyperparameter that we adjust
dynamically. We increase the constant CW when we expect a higher running cost (for instance, in a higher dimension)
in order to give enough importance to the penalty. The coefficient α of regularization for the computation of the
Wasserstein distance is also a hyperparameter that we adjust dynamically using the following heuristics. We start with
a given value for α and, when the estimated Wasserstein distance is small enough, we reduce the value of α. The idea
is that, as long as the terminal distribution does not match well enough the target distribution, we need a high level
of regularization in order to estimate efficiently the Wasserstein distance between them. As the two distributions get
closer, we can decrease the degree of regularization in order to have a more accurate estimation of the Wasserstein
distance. The way we adjust CW also depends on the dimension of the state variable. There is also a computational
time aspect to take into account: as α becomes smaller, the computations take more time (see 3.1.2 for more details).
For the neural network, we take a feedforward fully connected neural network with 6 layers of 60 neurons each. The
other hyperparameters are the number of particles N and the number of time steps NT . We take N = 300 and
NT = 20.

164 ESAIM: PROCEEDINGS AND SURVEYS

FIGURE 5. Visualization of the mean field density m̂(t, x) in Congestion test Case 1,2

FIGURE 6. Visualization of the mean field density m̂(t, x) in Congestion test Case 3

Method 2. In the second method, no time or space discretization is needed, and the density is directly approximated
by a neural network, so we do not need to use a finite number of particles. However, we need to choose the values
of the weights C(KFP)

0 , C
(KFP)
T , C(KFP), and C(HJB) in the loss function. We used C(KFP)

0 = 20, C
(KFP)
T = 50,

C(KFP) = 20, C(HJB) = 1. As for the neural network, we used the architecture proposed in the DGM article [62],
with 2 layers and a width equal to 40. During the training, at each iteration of SGD, we use a minibatch of 500 points
in time and space, and 500 points in space for the initial and terminal conditions.

ESAIM: PROCEEDINGS AND SURVEYS 165

Method 3. The main hyperparameter in this method is r, which is used in the definition of the augmented
Lagrangian (24). For the experiments, we select r = 0.1. Even though, in theory, the convergence of ADMM is
independent of the choice of r, in practice, we often find that a large r value could potentially increase numerical
instability and lead the algorithm to diverge. Similarly, a small r value could slow down the convergence. As for the
neural networks, we use the following architectures. For both uθ, qω , and λψ , in general, we use a fully connected
neural network with residual connections, sigmoid activation function, and appropriate output dimension. We use 6
layers and 100 neurons per layer. For LQ test cases, we further consider an extra quadratic correction in addition to the
neural networks: the output of uθ is the sum of neural network output and a quadratic function with trainable weights.
To effectively model the mean field density, a sigmoid activation function is applied to the first dimension of the output
of the neural network λψ , and then the result is multiplied by a constant C. In this way, the first dimension of λψ takes
values in (0, C). In the experiments, we take C = 1 for the LQ test cases and C = 5 for the congestion test cases.
During training, at each iteration of SGD, we use a minibatch of 512 points in time and space, and 512 points in space
for the initial and terminal conditions.

5. CONCLUSION AND FUTURE DIRECTIONS

In this work, we have proposed three numerical methods based on deep learning for mean field optimal transport
problems. The three methods can tackle a larger class of problems than deep learning methods proposed previously,
which were mostly focusing on the Schrödinger bridge problem or MFGs with a specific structure. The first method
replaces the terminal constraint with a penalty and then directly learns the optimal control using Monte Carlo trajecto-
ries. The second method solves a PDE system which is obtained as the optimality conditions for the MFOT problem.
The third method relies on an augmented Lagrangian approach for the variational formulation of the problem. The
numerical results show that the three methods match the analytical solution on an LQ problem, and that they are able
to handle non-trivial mean field interactions modeling congestion effects.

From here, we can envision several research directions. First of all, the theoretical analysis of the MFOT problem
remains to be tackled. For example, the existence and uniqueness of the solution to the PDE system have been proved
only in relatively specific cases, see e.g. [1, 20, 36, 55]. It would be interesting to extend the analysis to more general
forms of dynamics and cost functions. From the numerical point of view, it would be interesting to scale-up the
methods proposed in this work to a higher dimension, and to explore other deep learning methods. The numerical
analysis and the convergence proof of the proposed methods also remain to be investigated in future work.

REFERENCES

1. Yves Achdou, Fabio Camilli, and Italo Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem, SIAM Journal on
Control and Optimization 50 (2012), no. 1, 77–109.

2. Yves Achdou and Jean-Michel Lasry, Mean field games for modeling crowd motion, Contributions to partial differential equations and applica-
tions (2019), 17–42.

3. Yves Achdou and Mathieu Laurière, On the system of partial differential equations arising in mean field type control, Discrete and Continuous
Dynamical Systems 35 (2015), no. 9, 3879–3900.

4. , Mean field type control with congestion, Applied Mathematics & Optimization 73 (2016), no. 3, 393–418.
5. , Mean field type control with congestion (II): An augmented Lagrangian method, Applied Mathematics & Optimization 74 (2016),

no. 3, 535–578.
6. Yves Achdou and Alessio Porretta, Mean field games with congestion, Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 35,

Elsevier, 2018, pp. 443–480.
7. Ali Al-Aradi, Adolfo Correia, Danilo Naiff, Gabriel Jardim, and Yuri Saporito, Solving nonlinear and high-dimensional partial differential

equations via deep learning, arXiv preprint arXiv:1811.08782 (2018).
8. Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows: in metric spaces and in the space of probability measures, Springer

Science & Business Media, 2005.
9. Roman Andreev, Preconditioning the augmented Lagrangian method for instationary mean field games with diffusion, SIAM Journal on

Scientific Computing 39 (2017), no. 6, A2763–A2783.
10. Julio Backhoff, Giovanni Conforti, Ivan Gentil, and Christian Léonard, The mean field Schrödinger problem: ergodic behavior, entropy esti-

mates and functional inequalities, Probability Theory and Related Fields 178 (2020), no. 1, 475–530.

166 ESAIM: PROCEEDINGS AND SURVEYS

11. Jean-David Benamou and Yann Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Nu-
merische Mathematik 84 (2000), no. 3, 375–393.

12. Jean-David Benamou and Guillaume Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate
elliptic equations, Journal of Optimization Theory and Applications 167 (2015), no. 1, 1–26.

13. Jean-David Benamou, Guillaume Carlier, Simone Di Marino, and Luca Nenna, An entropy minimization approach to second-order variational
mean-field games, Mathematical Models and Methods in Applied Sciences 29 (2019), no. 08, 1553–1583.

14. Jean-David Benamou, Guillaume Carlier, and Maxime Laborde, An augmented Lagrangian approach to Wasserstein gradient flows and appli-
cations, ESAIM: Proceedings and surveys 54 (2016), 1–17.

15. Alain Bensoussan, Jens Frehse, Phillip Yam, et al., Mean field games and mean field type control theory, vol. 101, Springer, 2013.
16. Alain Bensoussan, Jens Frehse, and Sheung Chi Phillip Yam, The master equation in mean field theory, Journal de Mathématiques Pures et

Appliquées 103 (2015), no. 6, 1441–1474.
17. Charles Bertucci, Jean-Michel Lasry, and Pierre-Louis Lions, Master equation for the finite state space planning problem, Archive for Rational

Mechanics and Analysis 242 (2021), no. 1, 327–342.
18. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al., Distributed optimization and statistical learning via the alter-

nating direction method of multipliers, Foundations and Trends® in Machine learning 3 (2011), no. 1, 1–122.
19. Haoyang Cao, Xin Guo, and Mathieu Laurière, Connecting GANs, MFGs, and OT, arXiv preprint arXiv:2002.04112 (2020).
20. Pierre Cardaliaguet, Guillaume Carlier, and Bruno Nazaret, Geodesics for a class of distances in the space of probability measures, Calculus

of Variations and Partial Differential Equations 48 (2013), no. 3, 395–420.
21. Pierre Cardaliaguet and P Jameson Graber, Mean field games systems of first order, ESAIM: Control, Optimisation and Calculus of Variations

21 (2015), no. 3, 690–722.
22. René Carmona, François Delarue, et al., Probabilistic theory of mean field games with applications I-II, Springer, 2018.
23. René Carmona and Mathieu Laurière, Convergence analysis of machine learning algorithms for the numerical solution of mean field control

and games: II: The finite horizon case, arXiv preprint arXiv:1908.01613 (2019).
24. , Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games I: the ergodic case,

SIAM Journal on Numerical Analysis 59 (2021), no. 3, 1455–1485.
25. René Carmona and Mathieu Laurière, Deep learning for mean field games and mean field control with applications to finance, 2021.
26. Yongxin Chen, Tryphon T Georgiou, and Michele Pavon, Optimal steering of a linear stochastic system to a final probability distribution, part

I, IEEE Transactions on Automatic Control 61 (2015), no. 5, 1158–1169.
27. , Optimal steering of a linear stochastic system to a final probability distribution, part II, IEEE Transactions on Automatic Control 61

(2015), no. 5, 1170–1180.
28. , On the relation between optimal transport and schrödinger bridges: A stochastic control viewpoint, Journal of Optimization Theory

and Applications 169 (2016), no. 2, 671–691.
29. , Optimal steering of a linear stochastic system to a final probability distribution—part III, IEEE Transactions on Automatic Control

63 (2018), no. 9, 3112–3118.
30. , Steering the distribution of agents in mean-field games system, Journal of Optimization Theory and Applications 179 (2018), no. 1,

332–357.
31. Marco Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, Advances in neural information processing systems 26 (2013).
32. Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel Peyré, Interpolating between optimal

transport and mmd using sinkhorn divergences, The 22nd International Conference on Artificial Intelligence and Statistics, PMLR, 2019,
pp. 2681–2690.

33. Jean-Pierre Fouque and Zhaoyu Zhang, Deep learning methods for mean field control problems with delay, Frontiers in Applied Mathematics
and Statistics 6 (2020), 11.

34. Maximilien Germain, Joseph Mikael, and Xavier Warin, Numerical resolution of McKean-Vlasov FBSDEs using neural networks, Methodology
and Computing in Applied Probability (2022), 1–30.

35. Maximilien Germain, Huyên Pham, and Xavier Warin, Neural networks-based algorithms for stochastic control and PDEs in finance, arXiv
preprint arXiv:2101.08068 (2021).

36. P Jameson Graber, Alpár R Mészáros, Francisco J Silva, and Daniela Tonon, The planning problem in mean field games as regularized mass
transport, Calculus of Variations and Partial Differential Equations 58 (2019), no. 3, 1–28.

37. Jiequn Han, Ruimeng Hu, and Jihao Long, Learning high-dimensional McKean-Vlasov forward-backward stochastic differential equations
with general distribution dependence, arXiv preprint arXiv:2204.11924 (2022).

38. Jiequn Han, Arnulf Jentzen, and Weinan E, Solving high-dimensional partial differential equations using deep learning, Proceedings of the
National Academy of Sciences 115 (2018), no. 34, 8505–8510.

39. Jiequn Han, Arnulf Jentzen, et al., Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and
backward stochastic differential equations, Communications in mathematics and statistics 5 (2017), no. 4, 349–380.

40. Camilo Hernández and Ludovic Tangpi, Propagation of chaos for mean field schr\" odinger problems, arXiv preprint arXiv:2304.09340 (2023).
41. Ruimeng Hu and Mathieu Laurière, Recent developments in machine learning methods for stochastic control and games, Preprint.

SSRN:4096569 (2022).
42. Minyi Huang, Peter E Caines, and Roland P Malhamé, Large-population cost-coupled lqg problems with nonuniform agents: individual-mass

behavior and decentralized ε-Nash equilibria, IEEE transactions on automatic control 52 (2007), no. 9, 1560–1571.

ESAIM: PROCEEDINGS AND SURVEYS 167

43. Minyi Huang, Roland P Malhamé, and Peter E Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and
the Nash certainty equivalence principle, Communications in Information & Systems 6 (2006), no. 3, 221–252.

44. Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. I–le cas stationnaire, Comptes Rendus Mathématique 343 (2006), no. 9,
619–625.

45. , Jeux à champ moyen. II–Horizon fini et contrôle optimal, Comptes Rendus Mathématique 343 (2006), no. 10, 679–684.
46. , Mean field games, Japanese journal of mathematics 2 (2007), no. 1, 229–260.
47. Mathieu Laurière and Olivier Pironneau, Dynamic programming for mean-field type control, Comptes Rendus Mathematique 352 (2014), no. 9,

707–713.
48. Alex Tong Lin, Samy Wu Fung, Wuchen Li, Levon Nurbekyan, and Stanley J Osher, Apac-net: Alternating the population and agent control

via two neural networks to solve high-dimensional stochastic mean field games, arXiv preprint arXiv:2002.10113 (2020).
49. Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos Theodorou, Deep generalized schrödinger bridge, Advances in Neural Information

Processing Systems (Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, eds.), 2022.
50. Gonzalo Mena and Jonathan Niles-Weed, Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem,

Advances in neural information processing systems 32 (2019).
51. Quentin Merigot and Boris Thibert, Optimal transport: discretization and algorithms, Handbook of Numerical Analysis, vol. 22, Elsevier,

2021, pp. 133–212.
52. Toshio Mikami, Stochastic optimal transport revisited, SN Partial Differential Equations and Applications 2 (2021), no. 1, 5.
53. Carlo Orrieri, Alessio Porretta, and Giuseppe Savaré, A variational approach to the mean field planning problem, Journal of Functional Analysis

277 (2019), no. 6, 1868–1957.
54. Gabriel Peyré, Marco Cuturi, et al., Computational optimal transport: With applications to data science, Foundations and Trends® in Machine

Learning 11 (2019), no. 5-6, 355–607.
55. Alessio Porretta, On the planning problem for a class of mean field games, Comptes Rendus Mathematique 351 (2013), no. 11-12, 457–462.
56. , On the planning problem for the mean field games system, Dynamic Games and Applications 4 (2014), no. 2, 231–256.
57. Maziar Raissi, Paris Perdikaris, and George E Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations, Journal of Computational physics 378 (2019), 686–707.
58. R Tyrrell Rockafellar, Convex analysis, vol. 18, Princeton university press, 1970.
59. Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu Fung, A machine learning framework for solving high-dimensional

mean field game and mean field control problems, Proceedings of the National Academy of Sciences 117 (2020), no. 17, 9183–9193.
60. Filippo Santambrogio, Optimal transport for applied mathematicians, Birkäuser, NY 55 (2015), no. 58-63, 94.
61. Richard Sinkhorn and Paul Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific Journal of Mathematics 21 (1967),

no. 2, 343–348.
62. Justin Sirignano and Konstantinos Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, Journal of compu-

tational physics 375 (2018), 1339–1364.
63. Xiaolu Tan and Nizar Touzi, Optimal transportation under controlled stochastic dynamics, The Annals of Probability 41 (2013), no. 5, 3201.
64. Cédric Villani, Optimal transport: old and new, vol. 338, Springer, 2009.
65. , Topics in optimal transportation, vol. 58, American Mathematical Soc., 2021.

168 ESAIM: PROCEEDINGS AND SURVEYS

A. SOLUTION FOR LQ PROBLEM

In this section, we provide an explicit solution for the LQ setting considered in Section 4.1. We summarize the
analytical solution derived in [30, Section 7.1] and we add the analytical formula for the variance, which is useful to
fully describe the evolution of the population distribution. We consider the following setting, which is actually slightly
more general than the one used in Section 4.1. For any probability distribution µ admitting a first moment, we use the
notation µ̄ =

∫
xµ(dx), to be understood coordinate-wise. In this model, we take:

b(x, µ, a) = Ax+ Āµ̄+Ba, σ = B, f(x, µ, a) =
1

2
a⊤a, ρ0 = N (x̄0; Σ0), ρT = N (x̄T ; ΣT).

We denote by v∗ the optimal control and by (µt)t∈[0,T] the optimal flow of distributions. Since the dynamics are linear
and the initial and terminal distributions are Gaussians, it can be shown that the distribution remains Gaussian at every
t. At each t, we denote by µ̄t its mean and by Σt its covariance matrix. In the case without mean field interactions, the
optimal control is linear in space, and the coefficient depends on the solution of a Ricatti equation in time. The mean
field interaction being uniform in space and the fact that our problem is linear explains why we can set

v∗(t, x) = −B⊤Πtx+B⊤nt

and solve for (Πt)t∈[0,T] and (nt)t∈[0,T], as time-dependent functions only. Note that µ̄ is now solution of the following
ODE depending on nt:

˙̄µt = (A+ Ā−BB⊤Πt)µ̄t +BB⊤nt, µ̄0 = x̄0. (28)

Furthermore, if we apply Itô’s formula to Vt = E[XtX
⊤
t] = Σt + µ̄tµ̄

⊤
t , we also obtain a matrix ODE depending on

(nt)t∈[0,T] for (Vt)t∈[0,T]:{
V̇t = Vt(A

⊤ −Π⊤
t BB

⊤) + (A−BB⊤Πt)Vt + µ̄tn
⊤
t BB

⊤ +BB⊤ntµ̄
⊤
t + µ̄tµ̄

⊤
t Ā

⊤ + Āµ̄tµ̄
⊤
t +BB⊤

V0 = Σ0 + µ̄0µ̄
⊤
0 .

(29)

We will also need the state transition matrices associated to A and A+ Ā: we define Φ as the solution of

∂Φ(t, s)

∂t
= AΦ(t, s), Φ(s, s) = I, 0 ≤ s ≤ t ≤ T.

Since A is constant, we have Φ(t, s) = e(t−s)A. Similarly, we define Φ̄(t, s) = e(t−s)(A+Ā). We also set
M(t, s) =

∫ t

s

Φ(t, τ)BB⊤Φ(t, τ)⊤dτ, 0 ≤ s ≤ t ≤ T,

M̄(t, s) =

∫ t

s

Φ̄(t, τ)BB⊤Φ̄(t, τ)⊤dτ, 0 ≤ s ≤ t ≤ T,

(30)

and denote for brevity ΦT,0 = Φ(T, 0), Φ̄T,0 = Φ̄(T, 0), MT,0 = M(T, 0), and M̄T,0 = M̄(T, 0). Notice that if
BB⊤ commutes with Φ and Φ̄, and if the matrices A + A⊤ and A + Ā + A⊤ + Ā⊤ are non-singular, then we have
the following closed form expressions for M(t, s) and M̄(t, s), with 0 ≤ s ≤ t ≤ T :

M(t, s) = BB⊤
∫ t

s

eA+A⊤
(t− τ)dτ = BB⊤[e(A+A⊤)t − e(A+A⊤)s](A+A⊤)−1

M̄(t, s) = BB⊤
∫ t

s

eA+A⊤+Ā+Ā⊤
(t− τ)dτ = BB⊤[e(A+A⊤+Ā+Ā⊤)t − e(A+A⊤+Ā+Ā⊤)s](A+A⊤ + Ā+ Ā⊤)−1.

ESAIM: PROCEEDINGS AND SURVEYS 169

Now, (Πt)t∈[0,T] is the solution to the following Riccati ODE, which is independent from the other variables:Π̇t = −A⊤Πt −ΠtA+ΠtBB
⊤Πt

Π0 = Σ
−1/2
0

[
I
2 +Σ

1/2
0 Φ⊤

T,0M
−1
T,0ΦT,0Σ

1/2
0 −

(
I
4 +Σ

1/2
0 Φ⊤

T,0M
−1
T,0ΣTM

−1
T,0ΦT,0Σ

1/2
0

)1/2
]
Σ

−1/2
0 .

(31)

Under some conditions, Riccati equations admit explicit solutions in dimension 1, see e.g. page 110 in [22]. More
generally, we can solve (31) using a forward time-marching method.

We can then show that

nt = ΠtΦ̄(t, T)M̄(T, t)M̄−1
T,0Φ̄T,0z0 +ΠtM̄(T, 0)Φ̄(T, t)⊤M̄−1

T,0zT + Φ̄(T, t)⊤M̄−1
T,0(zT − Φ̄T,0z0), (32)

where (zt)t∈[0,T] is defined by

zt = Φ̄(T, t)⊤M̄−1
T,0(x̄T − Φ̄T,0x̄0). (33)

Now, up to the computation of Π, we have an explicit formula for n and we can obtain the mean µ̄t from (28) and
then the covariance matrix Σt from (29). The optimal mean field distribution at time t is the Gaussian distribution with
mean µ̄t and variance Σt.

B. COMPUTATION OF G
In this section, we discuss some of the issues arising when computing G in practice, as well as our solutions. As

the reader may notice, the losses defined in (25) and (26) depend on the exact form of functionals F and G. As F is
already defined in an explicit, easy-to-compute form, we are left with the problem of figuring out a good approach to
compute G. Recalling the definition of G, we have the following observation,

G(a, b) = − inf
m≥0

∫
QT

m(t, x)(a(t, x)−H(x,m(t, x), b(t, x)))dxdt

= −
∫
QT

inf
m≥0

[m(a(t, x)−H(x,m, b(t, x)))]dxdt (34)

= −
∫
QT

K(a(t, x), b(t, x))dxdt, (35)

where we denoted K(a, b) = infm≥0[m(a−H(x,m, b))].
Therefore, the form of G depends on K. In general, we do not know any closed form of K in terms of a and b.

However, for several Hamiltonian functions H(x,m, p) of interest, we can derive such closed-form solution. Here we
demonstrate some of the calculations to deliver a general idea.

Example 4 (Mean-field Aversion). Consider the running cost f(m, v) = 1
4∥v∥2 +m and drift b(x,m, v) = v. The

corresponding Hamiltonian is H(x,m, p) = ∥p∥2 −m. Then

K(a, b) = inf
m≥0

m2 + (a− ∥b∥2)m =

{
− 1

4 (a− ∥b∥2)2 if a− ∥b∥2 ≥ 0

0 otherwise.
(36)

Example 5 (Mean-field Maximum Entropy). Consider the running cost f(m, v) = 1
4∥v∥2 + log(m) and drift

b(x,m, v) = v, the corresponding Hamiltonian is H(x,m, p) = 1
2∥p∥2 − log(m), then

K(a, b) = inf
m≥0

m logm+ (a− 1

2
∥b∥2)m = − exp(

1

2
∥b∥2 − a− 1). (37)

170 ESAIM: PROCEEDINGS AND SURVEYS

Example 6 (Continuous Optimal Transport). Consider the running cost f(m, v) = 1
2∥v∥2 and drift b(x,m, v) = v,

the corresponding Hamiltonian is H(x,m, p) = 1
2∥p∥2, then

K(a, b) = inf
m≥0

m(a− 1

2
∥b∥2) =

{
0 if a− 1

2∥b∥2 ≥ 0

−∞ otherwise.
(38)

Example 7 (Mean-field Congestion). Consider the running cost f(m, v) = 1
4m∥v∥2 and drift b(x,m, v) = v, the

corresponding Hamiltonian is H(x,m, p) = ∥p∥2

m , then

K(a, b) = inf
m≥0

m(a− ∥b∥2
m

) =

{
−∥b∥2 if a ≥ 0

−∞ otherwise.
(39)

From these examples, it can be seen that K has a closed form for many smooth Hamiltonian. However, the existence
of closed form expressions of K alone is not enough for making the training loss tractable. In the example of (38)
and (39), K takes values −∞, which makes G singular and computationally intractable at some points. Moreover,
gradient-based training cannot be carried out successfully in the presence of infinite values as well. The presence of
−∞ in K is due to the degeneracy ofH in terms of order inm. For cases with singular K and G, we need an additional
trick to tackle this issue.

Recall that in Algorithm 1, the update for function q is given by,

q(k) = argmin
q:QT→Rd+1

G(q) + ⟨λ(k−1), q⟩+ r

2
∥Λu(k) − q∥2

= argmin
q:QT→Rd+1

∫
QT

(
−K(q(t, x)) + ⟨λ(k−1)(t, x), q(t, x)⟩+ r

2
∥Λu(k)(t, x)− q(t, x)∥2

)
dx dt (40)

Since we don’t have any additional constraint on the value of q, the function q(k) that minimizes the integral in (40)
should minimize the integrand point wisely. Therefore, it holds that:

q(k)(t, x) = argmin
q∈Rd+1

(
−K(q) + ⟨λ(k−1)(t, x), q⟩+ r

2
∥Λu(k)(t, x)− q∥2

)
= argmin

q∈Rd+1

sup
m≥0

m(H(x,m, q2)− q1) + ⟨λ(k−1)(t, x), q⟩+ r

2
∥Λu(k)(t, x)− q∥2, (41)

where we denote q = (q1, q2), with q1 ∈ R and q2 ∈ Rd. For fixed λ(k−1) and u(k), let us define L(q,m) =

m(H(x,m, q2) − q1) + ⟨λ(k−1)(t, x), q⟩ + r
2∥Λu(k)(t, x) − q∥2. Under certain conditions, the following minimax

equality holds for the right-hand side of (41),

inf
q∈Rd+1

sup
m≥0

L(q,m) = sup
m≥0

inf
q∈Rd+1

L(q,m) (42)

Therefore, we can exploit (42) to address the issues of singular K. We notice that for the cases of congestion and
general linear quadratic, L(q,m) is quadratic in q for fixed m. This means that we can solve explicitly in a closed
form for infq L(q,m) for fixed m, then we solve for the maximization problem over m ≥ 0. In this way, we can
effectively avoid the issues generated by infinity values in K.

Moreover, using this trick, we directly obtain the value for q(k) at any (t, x) based on the value of u(k)(t, x) and
λ(k−1)(t, x). Therefore, we can skip the neural network training in Algorithm 2 for function q in each DeepADMM
iteration. Instead, we compute the values for q(k)(t, x) directly following the above procedure whenever the values
are needed to compute L(u) and L(λ).

ESAIM: PROCEEDINGS AND SURVEYS 171

(A) LQ Test 1 (d = 1) (B) LQ Test 2 (d = 2)

FIGURE 7. Evolution of the loss in the linear-quadratic case for method 1.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 7

10 5

10 3

10 1

101

103

Lo
ss

 v
al

ue

Total loss
HJB loss
KFP loss
Initial BC
Terminal BC

(A) LQ Test 1 (d = 1)

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 5

10 3

10 1

101

103

Lo
ss

 v
al

ue

Total loss
HJB loss
KFP loss
Initial BC
Terminal BC

(B) LQ Test 2 (d = 2)

FIGURE 8. Evolution of the loss in the linear-quadratic case for method 2.

C. LOSS PLOTS

In this section, we provide plots for the training losses of the proposed algorithms on each of the examples discussed
in the text. For each test case and each of the three methods, we ran the algorithm 10 times and computed the average
loss (or average component of the loss, for each component). We also computed the standard deviation over these
10 runs. In each plot, we display the average loss by a line and we represent by a shaded area the region contained
between the average minus the standard deviation and the average plus the standard deviation.

We start by presenting the loss plots for the two LQ test cases in Figure 7 for Method 1, Figure 8 for Method 2, and
Figure 9 for Method 3.

We then present the losses for the congestion test cases. Contrary to the LQ case, we do not have any benchmark
solution to compare our numerical results to. We already explained why the methods gave consistent results, namely

172 ESAIM: PROCEEDINGS AND SURVEYS

0 20 40 60 80 100 120 140
ADMM Iterations

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

L
os

s
va

lu
e

Primal Objective

Dual Objective

10−4

10−3

10−2

10−1

100

101
FP Residual

HJB Residual

Boundary Condition Residual 0

Boundary Condition Residual 1

(A) LQ Test 1 (d = 1)

0 25 50 75 100 125 150 175 200
ADMM Iterations

−4

−2

0

2

4

6

8

L
os

s
va

lu
e

Primal Objective

Dual Objective

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1FP Residual

HJB Residual

Boundary Condition Residual 0

Boundary Condition Residual 1

(B) LQ Test 2 (d = 2)

FIGURE 9. Evolution of the loss in the linear-quadratic case for method 3.

(A) Case 1, No congestion (d = 1) (B) Case 2, Congestion (d = 1)

FIGURE 10. Evolution of the loss in the congestion cases 1 and 2 for method 1.

that we see the density spreading before reforming the terminal distribution, in contrast with the LQ case where the
shape of the population remains the same along the trajectory (see 4.2.2). The following comments can be made about
the plots of the losses:

• Figures 10 and 11 show the losses for Method 1. The total loss is the sum of the “running cost” loss and the
“terminal penalization” loss multiplied by CW . For instance in dimension 1 we took CW = 10, meaning that
the penalization is ten times the Wasserstein distance between the effective terminal distribution of agents and
the desired one. In all three cases, we observe that for the first iterations, the distance is high and the running
cost almost zero, which comes from the fact that the first try is not to move. Then the algorithm makes the
penalization decrease by paying a trade-off in the form of the running cost. In the case with no congestion
(Figure 10a), it seems to reach a plateau which approximately corresponds to the theoretical optimal running

ESAIM: PROCEEDINGS AND SURVEYS 173

FIGURE 11. Evolution of the loss in the congestion case in dimension 5 for method 1.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 9

10 7

10 5

10 3

10 1

101

Lo
ss

 v
al

ue

Total loss
HJB loss
KFP loss
Initial BC
Terminal BC

(A) Case 1, No congestion (d = 1)

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 6

10 4

10 2

100

102

Lo
ss

 v
al

ue
Total loss
HJB loss
KFP loss
Initial BC
Terminal BC

(B) Case 2, Congestion (d = 1)

FIGURE 12. Evolution of the loss in the congestion cases 1 and 2 for method 2.

cost3, while in the cases with congestion (in dimension 1 and 5), the running cost keeps on decaying slowly
as the algorithm tries to spread as much as possible before moving.

• Figure 12 and 13 show the losses for Method 2. The “HJB loss” is the squared L2 residual for the HJB
equation. The “KFP loss” is the squared L2 residual for the KFP equation. The “initial BC” loss and the
“terminal BC” loss respectively correspond to the squared L2 error on the initial and terminal distributions.
The “total loss” is the sum of the other losses, up to multiplicative weights.

• Figures 14 and 15 show, for Method 3, the squared L2 residuals for the HJB and KFP equations, as well as
the squared L2 loss for the initial and terminal conditions. Note that these losses are not directly minimized
during the algorithm of Method 3, but they are minimized as a by-product of the iterations.

3This test case with no congestion is in fact another instance of the LQ test in which we only want to move from one Gaussian distribution to another
one with the same variance. Hence the optimal cost is the distance between the two means, which in this case is 2.

174 ESAIM: PROCEEDINGS AND SURVEYS

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 5

10 4

10 3

10 2

10 1

100

101

102

Lo
ss

 v
al

ue

Total loss
HJB loss
KFP loss
Initial BC
Terminal BC

FIGURE 13. Evolution of the loss in the congestion case in dimension 5 for method 2.

0 50 100 150 200 250 300 350 400
ADMM Iterations

−10

−5

0

5

10

15

L
os

s
va

lu
e

Primal Objective

Dual Objective

10−3

10−2

10−1

100

101

102FP Residual

HJB Residual

Boundary Condition Residual 0

Boundary Condition Residual 1

(A) Case 1, No Congestion (d = 1)

0 50 100 150 200 250 300 350
ADMM Iterations

0

5

10

15

20

25

L
os

s
va

lu
e

Primal Objective

Dual Objective

10−3

10−2

10−1

100

101

FP Residual

HJB Residual

Boundary Condition Residual 0

Boundary Condition Residual 1

(B) Case 2, Congestion (d = 1)

FIGURE 14. Evolution of the loss in the congestion cases 1 and 2 for method 3.

ESAIM: PROCEEDINGS AND SURVEYS 175

0 50 100 150 200 250 300 350
ADMM Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

L
os

s
va

lu
e

Primal Objective

Dual Objective

10−6

10−4

10−2

100

FP Residual

HJB Residual

Boundary Condition Residual 0

Boundary Condition Residual 1

FIGURE 15. Evolution of the loss in the congestion case in dimension 5 for method 3.

	1. Introduction
	2. Definition of the problem
	3. Numerical methods
	3.1. Direct approach for the optimal control formulation
	3.2. Deep Galerkin Method for the PDE system
	3.3. Augmented Lagrangian Method with Deep Learning

	4. Numerical experiments
	4.1. Case 1: Linear Quadratic Problem
	4.2. Case 2: Transport with congestion effects
	4.3. Remarks on the choice of hyperparameters

	5. Conclusion and future directions
	References
	A. Solution for LQ problem
	B. Computation of G
	C. Loss plots

