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PHILIPPE BALBIANI

TATYANA IVANOVA

Relational representation theorems
for extended contact algebras

Abstract. In topological spaces, the relation of extended contact is a ternary relation that holds
between regular closed subsets A, B and D if the intersection of A and B is included in D. The al-
gebraic counterpart of this mereotopological relation is the notion of extended contact algebra which
is a Boolean algebra extended with a ternary relation. In this paper, we are interested in the relational
representation theory for extended contact algebras. In this respect, we study the correspondences
between point-free and point-based models of space in terms of extended contact. More precisely,
we prove new representation theorems for extended contact algebras.

Keywords: Mereotopology. Point-free theory of space. Contact algebras. Extended contact algebras.
Regular closed subsets. Relational representation.

1. Introduction

Starting with the belief that the spatial entities like points and lines usually consid-
ered in Euclidean geometry are too abstract, de Laguna [19] and Whitehead [30]
put forward other primitive entities like solids or regions. Between these entities,
they considered relations of “connection” (a ternary relation for de Laguna and a
binary relation for Whitehead). They also axiomatically defined sets of properties
that these relations should possess in order to provide an adequate analog of the
reality we perceive about the connection relation between regions. The ideas of
de Laguna and Whitehead about space constitute the basis of multifarious point-
less theories of space since the days of Tarski’s geometry of solids. We can cite
Grzegorczyk’s theory of the binary relations of “part-of” and “separation” [13] and
de Vries’ compingent algebras [29] based on a binary relation that today would be
called “non-tangential proper part” [11].

The reason for the success of the axiomatic method in the context of the region-
based theories of space certainly lies in the fact that our perception of space in-
evitably leads us to think about the relative positions of the objects that occupy
space in terms of “part-of” and “separation” or in terms of “part-of” and “con-
nection”. Since the contributions of Clarke [2, 3], several region-based theories of
space have been developed in artificial intelligence and computer science [4, 20,
22, 23, 24]. In these theories, one generally assumes that regions are regular closed
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subsets in, for example, the real plane together with its ordinary topology, and one
generally studies pointless theories of space based — together with some other re-
lations like “partial overlap”, “tangential proper part”, and so on — on the binary
relation of “contact” which holds between two regular closed subsets when they
have common points.

There are mainly two kinds of results: representability in concrete geometrical
structures like the topological spaces associated to abstract algebraic structures
such as contact algebras [5, 6, 7, 8]; computational complexity of the satisfiability
problem [15, 16, 17, 18]. In this context, the unary relation of “internal connected-
ness” has been considered which holds for those regular closed sets whose interior
cannot be represented as the union of two disjoint nonempty open sets; see the
above-mentioned references for details. As observed by Ivanova [14], this unary
relation cannot be elementarily defined in terms of the binary relation of “contact”
within the class of all topological spaces. This led her to introduce the ternary re-
lation of “covering” which holds between three regular closed sets when the points
common to the first two sets belong to the third set; see also Vakarelov [28] for an
n-ary version of this relation.

By using techniques based on the theory of filters and ideals, Ivanova proved in [14]
representability in ordinary topological spaces of the extended contact algebras that
she defined. As suggested by Galton [9, 10] and Vakarelov [26], representability
in concrete relational structures like the Kripke frames associated to abstract alge-
braic structures such as contact algebras might be obtained too. In this paper, we
prove new representation theorems, this time in concrete relational structures for
extended contact algebras. In Section 2, we introduce contact and extended con-
tact relations between regions in topological spaces. Section 3 defines contact and
extended contact algebras and discusses their topological and relational represen-
tations. In Sections 4 and 5, two other kinds of extended contact algebra based on
equivalence relations are introduced, and the representability of extended contact
algebras in them is proved. Philippe Balbiani was mainly in charge of Sections 1,
2, 3 and 6 whereas Tatyana Ivanova was mainly responsible for Sections 4 and 5.

2. Contact and extended contact relations

In this section, we introduce the contact and extended contact relations between
regular closed subsets of topological spaces.
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2.1. Topological spaces

A topological space is a structure of the form (X, τ), where X is a nonempty
set and τ is a topology on X , i.e. a set of subsets of X such that the following
conditions hold:

• ∅ is in τ ,

• X is in τ ,

• if {Ai : i ∈ I} is a finite subset of τ , then
⋂
{Ai : i ∈ I} is in τ ,

• if {Ai : i ∈ I} is a subset of τ , then
⋃
{Ai : i ∈ I} is in τ .

The subsets of X in τ are called open sets and their complements are called closed
sets. For all subsets A of X , the interior of A (denoted Intτ (A)) is the union of the
open subsets B of X such that B ⊆ A. It is the greatest open set contained in A.
For all subsets A of X , the closure of A (denoted Clτ (A)) is the intersection of the
closed subsets B of X such that A ⊆ B. It is the least closed set containing A. A
subset A of X is regular closed if Clτ (Intτ (A)) = A. Regular closed subsets of
X will also be called regions. It is well-known that the set RC(X, τ) of all regular
closed subsets of X forms a Boolean algebra (RC(X, τ), 0X , ?X ,∪X), where, for
all A,B ∈ RC(X, τ),

• 0X = ∅,
• A?X = Clτ (X \A),
• A ∪X B = A ∪B.

At the Boolean level, we have 1X = 0?XX and A ∩X B = (A?X ∪X B?X )?X , i.e.
1X = X and A ∩X B = Clτ (Intτ (A ∩B)), for all A,B ∈ RC(X, τ).

2.2. Standard contact algebra of regular closed sets

Given a topological space (X, τ), two regions are in contact if they have a non-
empty intersection. For this reason, we define the binary relation CX on RC(X, τ)
by

• CX(A,B) iff A ∩B 6= ∅.

The relationCX is called the contact relation onRC(X, τ), and we readCX(A,B)
as follows: “A and B are in contact”. The structure (RC(X, τ), 0X , ?X ,∪X , CX)
based on the set RC(X, τ) of all regular closed subsets of X is called the standard
contact algebra of regular closed sets. It has been studied at great length in the
context of first-order mereotopologies [21] and region-based theories of space [1,
27]. In order to give a flavor of the properties of the contact relation, let us observe
that, for all A,B,D ∈ RC(X, τ),
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• if CX(A,B) and A ⊆ D, then CX(D,B),

• if CX(A ∪X D,B), then CX(A,B) or CX(D,B),

• if CX(A,B), then A 6= 0X ,

• if A 6= 0X , then CX(A,A),

• if CX(A,B), then CX(B,A).

These conditions, or equivalent ones, give rise to the algebras of regions known
as contact algebras [5, 6] (see also [7, 8]). Representation theorems establish-
ing a correspondence between region-based models such as contact algebras and
point-based models such as topological spaces have been obtained; see Section 3.2.
Just for the sake of completeness, let us mention that another structure, this time
based on the set RO(X, τ) of all regular open subsets of X , i.e. those subsets
A of X such that Intτ (Clτ (A)) = A, can be defined as well. It is the structure
(RO(X, τ), 0X , ?X ,∪X , CX) called the standard contact algebra of regular open
sets, where, for all A,B ∈ RO(X, τ),

• 0X = ∅,
• A?X = Intτ (X \A),
• A ∪X B = Intτ (Clτ (A ∪B)),

• CX(A,B) iff Clτ (A) ∩ Clτ (B) 6= ∅.

At the Boolean level, we have 1X = 0?XX and A ∩X B = (A?X ∪X B?X )?X , i.e.
1X = X and A ∩X B = A ∩ B, for all A,B ∈ RO(X, τ). Since an arbitrary
standard contact algebra of regular open sets is isomorphic to the corresponding
standard contact algebra of regular closed sets, in this paper, we are only interested
in the latter.

2.3. Internal connectedness and covering

In the context of topological logics [15, 16, 17, 18, 25], the relation of internal con-
nectedness has been considered too. Given a topological space (X, τ), we define
the unary relation c◦X on RC(X, τ) by

• c◦X(A) iff Intτ (A) is connected, i.e. Intτ (A) cannot be represented as the union
of two disjoint nonempty open sets.

We read c◦X(A) as follows: “A is internally connected”. Immediately, the ques-
tion arises as to whether the relation of internal connectedness can be elementarily
defined in terms of the contact relation within the class of all topological spaces,
i.e. whether the relation of internal connectedness can be defined by means of
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a first-order formula with one free variable in the first-order language with a bi-
nary predicate interpreted as the contact relation within the class of all topological
spaces. This question has been answered negatively [14]. This suggests, given a
topological space (X, τ), to define, as in [14], the ternary relation `X onRC(X, τ)
— the relation of covering — by

• (A,B) `X D iff A ∩B ⊆ D.

We read (A,B) `X D as follows: “A and B are covered by D”. The relation `X
is also called the extended contact relation on RC(X, τ). Obviously, the contact
relation can be elementarily defined in terms of the relation of covering within the
class of all topological spaces: for all A,B ∈ RC(X, τ),

• CX(A,B) iff (A,B) 6`X ∅.

More interestingly, it turns out that the relation of internal connectedness can be as
well elementarily defined in terms of the relation of covering within the class of all
topological spaces: for all A ∈ RC(X, τ),

• c◦X(A) iff, for all B,D ∈ RC(X, τ) such that B,D 6= ∅, if A = B∪X D, then
(B,D) 6`X A?X .

Since the relation of internal connectedness cannot be elementarily defined in terms
of the contact relation within the class of all topological spaces, the relation of
covering cannot be elementarily defined in terms of the contact relation within the
class of all topological spaces. The question as to whether the contact relation can
be elementarily defined in terms of the relation of internal connectedness within the
class of all topological spaces is still open. In order to give a flavor of the properties
of the relation of covering, let us observe that, for all A,B,D,E, F ∈ RC(X, τ),

• if (A,B) `X F , then (A ∪X D,B) `X D ∪X F ,

• if (A,B) `X D, (A,B) `X E and (D,E) `X F , then (A,B) `X F ,

• if A ⊆ F , then (A,B) `X F ,

• if (A,B) `X F , then A ∩X B ⊆ F ,

• if (A,B) `X F , then (B,A) `X F .

These conditions, or equivalent ones, give rise to the algebras of regions known
as extended contact algebras [14]. Representation theorems establishing a cor-
respondence between region-based models such as extended contact algebras and
point-based models such as topological spaces have been obtained; see Section 3.5.
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3. Contact and extended contact algebras

In this section, we introduce contact and extended contact algebras and discuss
their topological and relational representations.

3.1. Contact algebras

A contact algebra [5, 6] is a structure of the form (R, 0R, ?R,∪R, CR), where
(R, 0R, ?R,∪R) is a non-degenerate Boolean algebra1 and CR is a binary relation
onR such that, for all a, b, d ∈ R,

(CA1) if CR(a, b) and a ≤R d, then CR(d, b),

(CA2) if CR(a ∪R d, b), then CR(a, b) or CR(d, b),

(CA3) if CR(a, b), then a 6= 0R,

(CA4) if a 6= 0R, then CR(a, a),

(CA5) if CR(a, b), then CR(b, a).

At the Boolean level, we have 1R = 0?RR and a ∩R b = (a?R ∪R b?R)?R , for all
a, b ∈ R. The elements ofR are called regions.

3.2. Topological representation of contact algebras

We have seen in Section 2 that, for all topological spaces (X, τ), the structure
(RC(X, τ), 0X , ?X ,∪X , CX) based on the setRC(X, τ) of all regular closed sub-
sets of X is a contact algebra. With the following proposition, one can say that
standard contact algebras of regular closed sets are typical examples of contact
algebras.

PROPOSITION 1 ([5, 6, 8]). Let (R, 0R, ?R,∪R, CR) be a contact algebra. There
exist a topological space (X, τ) and an embedding of (R, 0R, ?R,∪R, CR) in
(RC(X, τ), 0X , ?X ,∪X , CX). Moreover, if R is finite, then X is finite and the
embedding is surjective.

3.3. Relational representation of contact algebras

Another kind of contact algebra has been independently considered by Galton [9,
10] and Vakarelov [26]. A frame is a structure of the form (W,R), where W is
a nonempty set and R is a relation on W . In this section, we will only consider
frames (W,R) such that the relation R is reflexive and symmetric. Given a frame
(W,R), let CW be the binary relation on W ’s powerset defined by

1A Boolean algebra is non-degenerate if it contains at least 2 elements.
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• CW (A,B) iff there exists s ∈ A and t ∈ B such that R(s, t).

The reader may easily verify that the structure (P(W ), 0W , ?W ,∪W , CW ), where
0W is the empty set, ?W is the complement operation with respect to W and ∪W is
the union operation, is a contact algebra. At the Boolean level, we have 1W = 0?WW
and A ∩W B = (A?W ∪W B?W )?W , i.e. 1W = W and A ∩W B = A ∩ B, for
all A,B ∈ P(W ). With the following proposition, one can say that these contact
algebras are typical examples of contact algebras as well.

PROPOSITION 2 ([7]). Let (R, 0R, ?R,∪R, CR) be a contact algebra. There exist
a frame (W,R) and an embedding of (R, 0R, ?R,∪R, CR) in (P(W ), 0W , ?W ,
∪W , CW ).

3.4. Extended contact algebras

According to [14], an extended contact algebra is a structure of the form (R, 0R,
?R,∪R,`R), where (R, 0R, ?R,∪R) is a non-degenerate Boolean algebra and `R
is a ternary relation onR such that, for all a, b, d, e, f ∈ R,

(ExtCA1) if (a, b) `R f , then (a ∪R d, b) `R d ∪R f ,

(ExtCA2) if (a, b) `R d, (a, b) `R e and (d, e) `R f , then (a, b) `R f ,

(ExtCA3) if a ≤R f , then (a, b) `R f ,

(ExtCA4) if (a, b) `R f , then a ∩R b ≤R f ,

(ExtCA5) if (a, b) `R f , then (b, a) `R f .

At the Boolean level, we have 1R = 0?RR and a ∩R b = (a?R ∪R b?R)?R , for all
a, b ∈ R. Again, the elements of R are called regions. Conditions (ExtCA1)–
(ExtCA5) have interesting consequences.

PROPOSITION 3. Let (R, 0R, ?R,∪R,`R) be an extended contact algebra. For
all a, b, d, e ∈ R, the following conditions hold:

1. (0R, 1R) `R a,

2. if (a, d) `R e and (b, d) `R e, then (a ∪R b, d) `R e,
3. if (a, b) `R e and d ≤R a, then (d, b) `R e.

PROOF. (1) By (ExtCA3), (0R, 1R) `R a.

(2) Suppose (a, d) `R e and (b, d) `R e. By (ExtCA1) and (ExtCA3), (a ∪R
b, d) `R b ∪R e, (a ∪R b, d) `R d and (b ∪R e, d) `R e. Hence, by (ExtCA2),
(a ∪R b, d) `R e.
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(3) Suppose (a, b) `R e and d ≤R a. By (ExtCA3), (d, b) `R a and (d, b) `R b.
Since (a, b) `R e, therefore by (ExtCA2), (d, b) `R e.

It is remarkable that the binary relation CR on R defined as follows satisfies
conditions (CA1)–(CA5):

• CR(a, b) iff (a, b) 6`R 0R.

This leads us to associate to each g ∈ R the binary relation CgR on R of relative
contact defined as follows:

• CgR(a, b) iff (a, b) 6`R g.

This definition has interesting consequences.

PROPOSITION 4. Let (R, 0R, ?R,∪R,`R) be an extended contact algebra. For
all a, b, d, g ∈ R, the following conditions hold:

1. if CgR(a, b) and a ≤R d, then CgR(d, b),

2. if CgR(a ∪R d, b), then CgR(a, b) or CgR(d, b),

3. if CgR(a, b), then a 6≤R g,

4. if a 6≤R g, then CgR(a, a),

5. if CgR(a, b), then CgR(b, a).

PROOF. (1) Suppose CgR(a, b) and a ≤R d. Hence, (a, b) 6`R g. By item (5) of
Proposition 3, (d, b) 6`R g. Thus, CgR(d, b).

(2) Suppose CgR(a ∪R d, b). Hence, (a ∪R d, b) 6`R g. By item (3) of Propo-
sition 3, (a, b) 6`R g or (d, b) 6`R g. In the former case, CgR(a, b). In the latter case,
CgR(d, b). In either case, CgR(a, b) or CgR(d, b).

(3) Suppose CgR(a, b). Hence, (a, b) 6`R g. By (ExtCA3), a 6≤R g.

(4) Suppose a 6≤R g. By (ExtCA4), (a, a) 6`R g. Hence, CgR(a, a).

(5) Suppose CgR(a, b). Hence, (a, b) 6`R g. By (ExtCA5), (b, a) 6`R g. Thus,
CgR(b, a).
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3.5. Topological representation of extended contact algebras

We have seen in Section 2 that, for all topological spaces (X, τ), the structure
(RC(X, τ), 0X , ?X ,∪X ,`X) based on the set RC(X, τ) of all regular closed sub-
sets of X is an extended contact algebra. With the following proposition, one can
say that standard extended contact algebras of regular closed sets are typical exam-
ples of extended contact algebras; see also [28].

PROPOSITION 5 ([14]). Let (R, 0R, ?R,∪R,`R) be an extended contact alge-
bra. There exist a topological space (X, τ) and an embedding of (R, 0R, ?R,∪R,
`R) in (RC(X, τ), 0X , ?X ,∪X ,`X). Moreover, ifR is finite, then X is finite and
the embedding is surjective.

3.6. Relational representation of extended contact algebras

A generalization of extended contact algebra based on parametrized frames can be
considered. A weak extended contact algebra is a structure of the form (R, 0R, ?R,
∪R,`R), where (R, 0R, ?R,∪R) is a non-degenerate Boolean algebra and `R is a
ternary relation onR such that, for all a, b, d, e, f ∈ R,

(WExtCA1) if a ≤R d, b ≤R e and (d, e) `R f , then (a, b) `R f ,

(WExtCA2) if a = 0R or b = 0R, then (a, b) `R f ,

(WExtCA3) if (a, b) `R f and (d, e) `R f , then (a ∩R d, b ∪R e) `R f and
(a ∪R d, b ∩R e) `R f ,

(WExtCA4) if (a, b) `R d and d ≤R f , then (a, b) `R f .

At the Boolean level, we have 1R = 0?RR and a ∩R b = (a?R ∪R b?R)?R , for all
a, b ∈ R. Again, the elements of R are called regions. Obviously, every extended
contact algebra is also a weak extended contact algebra. What is more, conditions
(WExtCA1)–(WExtCA4) do not imply that `R is symmetric. Nevertheless,
they have interesting consequences.

PROPOSITION 6. Let (R, 0R, ?R,∪R,`R) be a weak extended contact algebra.
For all a, b, d, e, f ∈ R, the following conditions hold:

1. (0R, 1R) `R a,

2. (1R, 0R) `R a,

3. if (a, d) `R e and (b, d) `R e, then (a ∪R b, d) `R e,
4. if (a, b) `R e and (a, d) `R e, then (a, b ∪R d) `R e,
5. if (a, b) `R e and d ≤R a, then (d, b) `R e,
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6. if (a, b) `R e and d ≤R b, then (a, d) `R e.

PROOF. (1) By (WExtCA2), (0R, 1R) `R a.

(2) Similar to (1).

(3) Suppose (a, d) `R e and (b, d) `R e. By (WExtCA3), (a ∪R b, d) `R e.

(4) Similar to (3).

(5) Suppose (a, b) `R e and d ≤R a. By (WExtCA1), (d, b) `R e.

(6) Similar to (5).

A parametrized frame is a structure of the form (W,R), where W is a non-
empty set and R is a function associating to each subset of W a binary relation
on W . Given a parametrized frame (W,R), let `W be the ternary relation on W ’s
powerset defined by

• (A,B) `W D iff, for all s ∈ A, t ∈ B and U ⊆ W , if D ⊆ U , then
(s, t) 6∈ R(U).

The reader may easily verify that the structure (P(W ), 0W , ?W ,∪W ,`W ), where,
again, 0W is the empty set, ?W is the complement operation with respect to W
and ∪W is the union operation, is a weak extended contact algebra. With the follo-
wing proposition, one can say that these weak extended contact algebras are typical
examples of weak extended contact algebras as well.

PROPOSITION 7. Let (R, 0R, ?R,∪R,`R) be a weak extended contact algebra.
There exist a parametrized frame (W,R) and an embedding of (R, 0R, ?R,∪R,
`R) in (P(W ), 0W , ?W ,∪W ,`W ).

PROOF. LetAR be the Boolean algebra (R, 0R, ?R,∪R). Let (W,R) be the struc-
ture such that

• W is the set of all maximal filters in AR,

• R is the function associating to each subset U of W the binary relation R(U)
on W defined by R(U)(s, t) iff, for all a, b, d ∈ R, the following condition
holds:

– if a ∈ s, b ∈ t and (a, b) `R d, then there exists e ∈ R such that d 6≤R e
and, for all u ∈ U , e ∈ u.
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Obviously, (W,R) is a parametrized frame. Let h be the function associating to
each region a in R the set of all s ∈ W such that a ∈ s. In order to prove that h is
an embedding, let us prove that the following conditions hold:

1. h is injective,

2. h(0R) = 0W ,

3. for all regions a inR, h(a?R) = h(a)?W ,

4. for all regions a, b inR, h(a ∪R b) = h(a) ∪W h(b),

5. for all regions a, b, d inR, (a, b) `R d iff (h(a), h(b)) `W h(d).

(1)–(4) The injectivity of h and the fact that h preserves the operations 0, ? and ∪
follow from classical results in the theory of filters and ideals [12].

(5) Let a, b, d be regions in R. We demonstrate (a, b) `R d iff (h(a), h(b)) `W
h(d).

• Suppose (a, b) `R d and (h(a), h(b)) 6`W h(d). Let s ∈ h(a), t ∈ h(b) and
U ⊆W be such that h(d) ⊆ U and R(U)(s, t). Hence, a ∈ s and b ∈ t. Since
(a, b) `R d and R(U)(s, t), let e ∈ R be such that d 6≤R e and, for all u ∈ U ,
e ∈ u. Let v ∈ W be such that d ∈ v and e 6∈ v. Thus, v ∈ h(d). Since
h(d) ⊆ U , we obtain v ∈ U . Since, for all u ∈ U , e ∈ u, we obtain e ∈ v: a
contradiction.

• Suppose (h(a), h(b)) `W h(d) and (a, b) 6`R d. Let sa be the set of all regions
a′ in R such that a ≤R a′ and let tb be the set of all regions b′ in R such that
b ≤R b′. Observe that a ∈ sa and b ∈ tb.

CLAIM 1. For all a′ ∈ sa and b′ ∈ tb, (a′, b′) 6`R d.

CLAIM 2. sa and tb are filters in AR.

For all filters u, v in AR, let ul be the set of all regions b′ in R such that there
exists a′ ∈ u such that (a′, b′) `R d and let vr be the set of all regions a′ in R
such that there exists b′ ∈ v such that (a′, b′) `R d.

CLAIM 3. For all filters u, v in AR, ul and vr are ideals in AR.

CLAIM 4. For all filters u, v in AR, the following conditions are equivalent:

1. for all a′ ∈ u and b′ ∈ v, (a′, b′) 6`R d,

2. ul ∩ v = ∅,
3. u ∩ vr = ∅.
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By Claims 1–4, sla is an ideal in AR, tb is a filter in AR and sla ∩ tb = ∅.
By classical results in the theory of filters and ideals [12], let t be a maximal
filter in AR such that tb ⊆ t and sla ∩ t = ∅. Since b ∈ tb, we obtain b ∈ t and
t ∈ h(b). Moreover, by Claims 2–4, sa is a filter inAR, tr is an ideal inAR and
sa ∩ tr = ∅. By classical results in the theory of filters and ideals [12], let s be
a maximal filter inAR such that sa ⊆ s and sl∩ t = ∅. Since a ∈ sa, we obtain
a ∈ s and s ∈ h(a). Moreover, since t is a maximal filter in AR, we obtain by
Claim 4, for all a′ ∈ s and b′ ∈ t, (a′, b′) 6`R d. Since (h(a), h(b)) `W h(d)
and t ∈ h(b), we obtain not R(h(d))(s, t). Let a′′, b′′, d′′ ∈ R be such that
a′′ ∈ s, b′′ ∈ t, (a′′, b′′) `R d′′ and, for all e ∈ R, d′′ ≤R e or there exists
u ∈ h(d) such that e 6∈ u. Hence, d′′ ≤R d or there exists u ∈ h(d) such
that d 6∈ u. Since, for all u ∈ h(d), d ∈ u, we obtain d′′ ≤R d. Since
(a′′, b′′) `R d′′, we obtain (a′′, b′′) `R d. Since, for all a′ ∈ s and b′ ∈ t,
(a′, b′) 6`R d, we obtain a′′ 6∈ s or b′′ 6∈ t: a contradiction.

Hence, (a, b) `R d iff (h(a), h(b)) `W h(d).

This completes the proof of Proposition 7.

The weak extended contact algebra (P(W ), 0W , ?W ,∪W ,`W ) considered in
Proposition 7 is based on a parametrized frame (W,R) which is a relatively com-
plex relational structure. In Sections 4 and 5, we introduce two kinds of extended
contact algebra based on equivalence relations.

4. Equivalence frames of type 1

An equivalence frame of type 1 is a structure of the form (W,R), where W is a
nonempty set and R is an equivalence relation on W . In an equivalence frame
(W,R) of type 1, the equivalence class of s ∈W modulo R will be denoted R(s).
Given an equivalence frame (W,R) of type 1, let `W be the ternary relation on
W ’s powerset defined by

• (A,B) `W D iff the intersection of A and B is included in D and, for all
s ∈W , if R(s) intersects both A and B, then R(s) intersects D.

The reader may easily verify that the structure (P(W ), 0W , ?W ,∪W ,`W ) is an
extended contact algebra. With the following proposition, one can say that these
extended contact algebras are typical examples of finite extended contact algebras.

PROPOSITION 8. Let (R, 0R, ?R,∪R,`R) be a finite extended contact algebra.
There exist a finite equivalence frame (W,R) of type 1 and an embedding of (R,
0R, ?R,∪R,`R) in (P(W ), 0W , ?W ,∪W ,`W ).
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PROOF. By Proposition 5, let (X, τ) be a finite topological space and h be a sur-
jective embedding of (R, 0R, ?R,∪R,`R) in (RC(X, τ), 0X , ?X ,∪X ,`X). Let
BX be the Boolean algebra (RC(X, τ), 0X , ?X ,∪X) of all regular closed subsets
of X . Notice that BX is finite. Let (W,R) be the structure such that

• W is the set of all pairs of the form (A, s) in which A ∈ RC(X, τ) and s ∈ X
are such that A is an atom of BX and s ∈ A,

• R is the binary relation on W defined by R((A, s), (B, t)) iff s = t.

Obviously, (W,R) is an equivalence frame of type 1. Let h′ be the function associ-
ating to each region a in R the set of all (A, s) ∈ W such that A ⊆ h(a). In order
to prove that h′ is an embedding, let us prove that the following conditions hold:

1. h′ is injective,

2. h′(0R) = 0W ,

3. for all regions a inR, h′(a?R) = h′(a)?W ,

4. for all regions a, b inR, h′(a ∪R b) = h′(a) ∪W h′(b),

5. for all regions a, b, d inR, (a, b) `R d iff (h′(a), h′(b)) `W h′(d).

(1) We demonstrate h′ is injective. Let a, b be arbitrary distinct regions inR. Since
h is a surjective embedding, h(a) and h(b) are distinct regular closed subsets of
X . Hence, h(a) 6⊆ h(b) or h(b) 6⊆ h(a). Without loss of generality, suppose
h(a) 6⊆ h(b). Let s ∈ X be such that s ∈ h(a) and s 6∈ h(b). SinceBX is finite, let
A1, . . . , An be atoms of BX such that h(a) = A1 ∪X . . . ∪X An. Since s ∈ h(a),
let i ≤ n be such that s ∈ Ai. Since Ai is an atom of BX , the pair (Ai, s) is in W .
Since Ai ⊆ h(a), we obtain (Ai, s) ∈ h′(a). Since s 6∈ h(b) and s ∈ Ai, we obtain
Ai 6⊆ h(b). Thus, (Ai, s) 6∈ h′(b). Since (Ai, s) ∈ h′(a), we obtain h′(a) 6⊆ h′(b).
Consequently, h′(a) and h′(b) are distinct subsets of W . Since a, b were arbitrary,
we obtain h′ is injective.

(2) We demonstrate h′(0R) = 0W . Suppose h′(0R) 6= 0W . Let (A, s) be a pair in
W such that (A, s) ∈ h′(0R). Hence, A is an atom of BX . Moreover, A ⊆ h(0R).
Since h is a surjective embedding, h(0R) = 0X . Since A ⊆ h(0R), we obtain
A ⊆ 0X . Thus, A is not an atom: a contradiction. Consequently, h′(0R) = 0W .

(3) Let a be a region inR. We demonstrate h′(a?R) = h′(a)?W .

• Suppose h′(a?R) 6⊆ h′(a)?W . Let (A, s) be a pair in W such that (A, s) ∈
h′(a?R) and (A, s) 6∈ h′(a)?W . Thus, A is an atom of BX . Moreover, A ⊆
h(a?R). Since h is a surjective embedding, h(a?R) = h(a)?X . Since A ⊆
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h(a?R), we obtain A ⊆ h(a)?X . Since (A, s) 6∈ h′(a)?W , we obtain (A, s) ∈
h′(a). Consequently, A ⊆ h(a). Since A ⊆ h(a)?X , we obtain A is not an
atom: a contradiction.

• Suppose h′(a)?W 6⊆ h′(a?R). Let (A, s) be a pair in W such that (A, s) ∈
h′(a)?W and (A, s) 6∈ h′(a?R). Hence, A is an atom of BX . Moreover,
(A, s) 6∈ h′(a). Thus, A 6⊆ h(a). Since (A, s) 6∈ h′(a?R), we obtain A 6⊆
h(a?R). Since h is a surjective embedding, h(a?R) = h(a)?X . Since A 6⊆
h(a?R), we obtain A 6⊆ h(a)?X . Since A 6⊆ h(a), we obtain A is not an atom:
a contradiction.

Consequently, h′(a?R) = h′(a)?W .

(4) Let a, b be regions inR. We demonstrate h′(a ∪R b) = h′(a) ∪W h′(b).

• Suppose h′(a ∪R b) 6⊆ h′(a) ∪W h′(b). Let (A, s) be a pair in W such that
(A, s) ∈ h′(a ∪R b) and (A, s) 6∈ h′(a) ∪W h′(b). Thus, A is an atom of
BX . Moreover, A ⊆ h(a ∪R b). Since h is a surjective embedding, h(a ∪R
b) = h(a) ∪X h(b). Since A ⊆ h(a ∪R b), we obtain A ⊆ h(a) ∪X h(b).
Since (A, s) 6∈ h′(a) ∪W h′(b), we obtain (A, s) 6∈ h′(a) and (A, s) 6∈ h′(b).
Consequently, A 6⊆ h(a) and A 6⊆ h(b). Since A ⊆ h(a) ∪X h(b), we obtain
A is not an atom: a contradiction.

• Suppose h′(a) ∪W h′(b) 6⊆ h′(a ∪R b). Let (A, s) be a pair in W such that
(A, s) ∈ h′(a)∪W h′(b) and (A, s) 6∈ h′(a∪R b). Hence, A is an atom of BX .
Moreover, (A, s) ∈ h′(a) or (A, s) ∈ h′(b). Thus, (A, s) ∈ h′(a) or (A, s) ∈
h′(b). Consequently, A ⊆ h(a) or A ⊆ h(b). Hence, A ⊆ h(a) ∪X h(b).
Since (A, s) 6∈ h′(a ∪R b), we obtain A 6⊆ h(a ∪R b). Since h is a surjective
embedding, h(a ∪R b) = h(a) ∪X h(b). Since A 6⊆ h(a ∪R b), we obtain
A 6⊆ h(a) ∪X h(b): a contradiction.

Thus, h′(a ∪R b) = h′(a) ∪W h′(b).

(5) Let a, b, d be regions in R. We demonstrate (a, b) `R d iff (h′(a), h′(b)) `W
h′(d).

• Suppose (a, b) `R d and (h′(a), h′(b)) 6`W h′(d). Since h is a surjective em-
bedding, (h(a), h(b)) `X h(d). Thus, h(a)∩h(b) ⊆ h(d). Since (h′(a), h′(b))
6`W h′(d), we obtain h′(a) ∩ h′(b) 6⊆ h′(d) or there exists a pair (E,w) in W
such thatR(E,w)∩h′(a) 6= ∅,R(E,w)∩h′(b) 6= ∅ andR(E,w)∩h′(d) = ∅.
We have to consider two cases.

– In the former case, let (E,w) be a pair in W such that (E,w) ∈ h′(a),
(E,w) ∈ h′(b) and (E,w) 6∈ h′(d). Consequently, E is an atom of BX .



Relational representation theorems for extended contact algebras 15

Moreover, E ⊆ h(a), E ⊆ h(b) and E 6⊆ h(d). Hence, E ⊆ h(a) ∩ h(b).
Since h(a) ∩ h(b) ⊆ h(d), we obtain E ⊆ h(d): a contradiction.

– In the latter case, let (E,w) be a pair in W such that R(E,w)∩ h′(a) 6= ∅,
R(E,w) ∩ h′(b) 6= ∅ and R(E,w) ∩ h′(d) = ∅. Let (A, s) and (B, t) be
pairs in W such that R((E,w), (A, s)), (A, s) ∈ h′(a), R((E,w), (B, t))
and (B, t) ∈ h′(b). Thus, A and B are atoms of BX such that s ∈ A and
t ∈ B. Moreover, w = s, A ⊆ h(a), w = t and B ⊆ h(b). Consequently,
w ∈ h(a) ∩ h(b). Since h(a) ∩ h(b) ⊆ h(d), we obtain w ∈ h(d). Since
BX is finite, let D1, . . . , Dn be atoms of BX such that h(d) = D1 ∪X
. . . ∪X Dn. Since w ∈ h(d), let i ≤ n be such that w ∈ Di. Hence,
(Di, w) is a pair in W . Moreover, (Di, w) ∈ R(E,w) and Di ⊆ h(d).
Thus, R(E,w) ∩ h′(d) 6= ∅: a contradiction.

• Suppose (h′(a), h′(b)) `W h′(d) and (a, b) 6`R d. Since h is a surjective
embedding, (h(a), h(b)) 6`X h(d). Consequently, h(a) ∩ h(b) 6⊆ h(d). Let
w ∈ X be such that w ∈ h(a), w ∈ h(b) and w 6∈ h(d). Since BX is finite,
let A1, . . . , Am and B1, . . . , Bn be atoms of BX such that h(a) = A1 ∪X
. . . ∪X Am and h(b) = B1 ∪X . . . ∪X Bn. Since w ∈ h(a) and w ∈ h(b),
let i ≤ m and j ≤ n be such that w ∈ Ai and w ∈ Bj . Since Ai and Bj
are atoms in BX , the pairs (Ai, w) and (Bj , w) are in W . Since Ai ⊆ h(a)
and Bj ⊆ h(b), we obtain (Ai, w) ∈ h′(a) and (Bj , w) ∈ h′(b). Since BX is
finite, letE be an atom ofBX such thatw ∈ E. Hence, the pair (E,w) is inW .
Moreover, R((E,w), (Ai, w)) and R((E,w), (Bj , w)). Since (Ai, w) ∈ h′(a)
and (Bj , w) ∈ h′(b), we obtainR(E,w)∩h′(a) 6= ∅ andR(E,w)∩h′(b) 6= ∅.
Since (h′(a), h′(b)) `W h′(d), we obtainR(E,w)∩h′(d) 6= ∅. Let (E′, w′) be
a pair inW such thatR((E,w), (E′, w′)) and (E′, w′) ∈ h′(d). Thus, w = w′,
w′ ∈ E′ and E′ ⊆ h(d). Consequently, w ∈ h(d): a contradiction.

Hence, (a, b) `R d iff (h′(a), h′(b)) `W h′(d).

This completes the proof of Proposition 8.

5. Equivalence frames of type 2

The weakness of Proposition 8 is that it does not say whether the embedding pre-
serves the relation of internal connectedness. In this section, we introduce another
type of equivalence frames with which we will be able to embed any finite ex-
tended contact algebra while preserving its relation of internal connectedness. An
equivalence frame of type 2 is a structure of the form (W,R1, R2), where W is a
nonempty set and R1 and R2 are equivalence relations on W . In an equivalence
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frame (W,R1, R2) of type 2, the equivalence class of s ∈ W modulo R1 will be
denoted R1(s) and the equivalence class of s ∈ W modulo R2 will be denoted
R2(s). Moreover, for all s ∈ W , we denote by R1(R2(s)) the union of all R1(t)
when t ranges over R2(s). Given an equivalence frame (W,R1, R2) of type 2, let
`W be the ternary relation on W ’s powerset defined by

• (A,B) `W D iff the intersection of A and B is included in D and, for all
s ∈W , if R1(R2(s)) intersects both A and B, then R1(R2(s)) intersects D.

The reader may easily verify that the structure (P(W ), 0W , ?W ,∪W ,`W ) is an
extended contact algebra. With the following proposition, one can say that these
extended contact algebras are typical examples of finite extended contact algebras.

PROPOSITION 9. Let (R, 0R, ?R,∪R,`R) be a finite extended contact algebra.
There exist a finite equivalence frame (W,R1, R2) of type 2 and an embedding
of (R, 0R, ?R,∪R,`R) in (P(W ), 0W , ?W ,∪W ,`W ) preserving the relation of
internal connectedness.

PROOF. By Proposition 5, let (X, τ) be a topological space and h be a surjective
embedding of (R, 0R, ?R,∪R,`R) in (RC(X, τ), 0X , ?X ,∪X ,`X). As proved
in [14], the topological space (X, τ) is finite. Let BX be the Boolean algebra
(RC(X, τ), 0X , ?X ,∪X) of all regular closed subsets of X . Notice that BX is
finite. Let (W,R1, R2) be the structure such that

• W is the set of all pairs of the form (A, s) in which A ∈ RC(X, τ) and s ∈ X
are such that A is an atom of BX and s ∈ A,

• R1 is the binary relation on W defined by R1((A, s), (B, t)) iff A = B,

• R2 is the binary relation on W defined by R2((A, s), (B, t)) iff s = t.

Obviously, (W,R1, R2) is an equivalence frame of type 2. Let h′ be the function
associating to each region a in R the set of all (A, s) ∈ W such that A ⊆ h(a). In
order to prove that h′ is an embedding, let us prove that the following conditions
hold:

1. h′ is injective,

2. h′(0R) = 0W ,

3. for all regions a inR, h′(a?R) = h′(a)?W ,

4. for all regions a, b inR, h′(a ∪R b) = h′(a) ∪W h′(b),

5. for all regions a, b, d inR, (a, b) `R d iff (h′(a), h′(b)) `W h′(d).
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The proofs of items (1)–(4) are similar to the proofs of the corresponding items in
Section 4.

(5) Let a, b, d be regions in R. We demonstrate (a, b) `R d iff (h′(a), h′(b)) `W
h′(d).

• Suppose (a, b) `R d and (h′(a), h′(b)) 6`W h′(d). Since h is a surjective em-
bedding, (h(a), h(b)) `X h(d). Thus, h(a)∩h(b) ⊆ h(d). Since (h′(a), h′(b))
6`W h′(d), we obtain h′(a) ∩ h′(b) 6⊆ h′(d) or there exists a pair (E,w) in
W such that R1(R2(E,w)) ∩ h′(a) 6= ∅, R1(R2(E,w)) ∩ h′(b) 6= ∅ and
R1(R2(E,w)) ∩ h′(d) = ∅. We have to consider two cases.

– In the former case, let (E,w) be a pair in W such that (E,w) ∈ h′(a),
(E,w) ∈ h′(b) and (E,w) 6∈ h′(d). Consequently, E is an atom of BX .
Moreover, E ⊆ h(a), E ⊆ h(b) and E 6⊆ h(d). Hence, E ⊆ h(a) ∩ h(b).
Since h(a) ∩ h(b) ⊆ h(d), we obtain E ⊆ h(d): a contradiction.

– In the latter case, let (E,w) be a pair in W such that R1(R2(E,w)) ∩
h′(a) 6= ∅, R1(R2(E,w))∩h′(b) 6= ∅ and R1(R2(E,w))∩h′(d) = ∅. Let
(A, s), (A′, s′), (B, t) and (B′, t′) be pairs in W such that R2((E,w), (A

′,
s′)), R1((A

′, s′), (A, s)), (A, s) ∈ h′(a), R2((E,w), (B
′, t′)), R1((B

′, t′),
(B, t)) and (B, t) ∈ h′(b). Thus, A, A′, B and B′ are atoms of BX such
that s ∈ A, s′ ∈ A′, t ∈ B and t′ ∈ B′. Moreover, w = s′, A′ = A,
A ⊆ h(a), w = t′, B′ = B and B ⊆ h(b). Consequently, w ∈ h(a) ∩
h(b). Since h(a) ∩ h(b) ⊆ h(d), we obtain w ∈ h(d). Since BX is finite,
let D1, . . . , Dn be atoms of BX such that h(d) = D1 ∪X . . . ∪X Dn.
Since w ∈ h(d), let i ≤ n be such that w ∈ Di. Hence, (Di, w) is a
pair in W . Moreover, (Di, w) ∈ R1(R2(E,w)) and Di ⊆ h(d). Thus,
R1(R2(E,w)) ∩ h′(d) 6= ∅: a contradiction.

• Suppose (h′(a), h′(b)) `W h′(d) and (a, b) 6`R d. Since h is a surjective
embedding, (h(a), h(b)) 6`X h(d). Consequently, h(a) ∩ h(b) 6⊆ h(d). Let
w ∈ X be such that w ∈ h(a), w ∈ h(b) and w 6∈ h(d). Since BX is finite,
let A1, . . . , Am and B1, . . . , Bn be atoms of BX such that h(a) = A1 ∪X
. . . ∪X Am and h(b) = B1 ∪X . . . ∪X Bn. Since w ∈ h(a) and w ∈ h(b),
let i ≤ m and j ≤ n be such that w ∈ Ai and w ∈ Bj . Since Ai and Bj
are atoms in BX , the pairs (Ai, w) and (Bj , w) are in W . Since Ai ⊆ h(a)
and Bj ⊆ h(b), we obtain (Ai, w) ∈ h′(a) and (Bj , w) ∈ h′(b). Since BX is
finite, let E be an atom of BX such that w ∈ E. Hence, the pair (E,w) is in
W . Moreover, (Ai, w) ∈ R1(R2(E,w)) and (Bj , w) ∈ R1(R2(E,w)). Since
(Ai, w) ∈ h′(a) and (Bj , w) ∈ h′(b), we obtain R1(R2(E,w)) ∩ h′(a) 6= ∅
and R1(R2(E,w)) ∩ h′(b) 6= ∅. Since (h′(a), h′(b)) `W h′(d), we obtain
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R1(R2(E,w))∩ h′(d) 6= ∅. Let (E′, w′) and (E′′, w′′) be pairs in W such that
R2((E,w), (E

′′, w′′)), R1((E
′′, w′′), (E′, w′)) and (E′, w′) ∈ h′(d). Thus,

w = w′′, w′′ ∈ E′′, E′′ = E′ and E′ ⊆ h(d). Consequently, w ∈ h(d): a
contradiction.

Hence, (a, b) `R d iff (h′(a), h′(b)) `W h′(d).

Now, let us prove that, for all regions a inR, c◦R(a) iff c◦W (h′(a)).

Let a be a region inR. We demonstrate c◦R(a) iff c◦W (h′(a)).

• Suppose c◦R(a) and not c◦W (h′(a)). Let A′1, A
′
2 be subsets of W such that

A′1, A
′
2 6= 0W , h′(a) = A′1∪WA′2 and (A′1, A

′
2) `W h′(a)?W . Since h′(a?R) =

h′(a)?W , we obtain (A′1, A
′
2) `W h′(a?R). SinceW is finite andA′1 andA′2 are

subsets of W , let (A1,1, s1,1), . . . , (A1,n1 , s1,n1) and (A2,1, s2,1), . . . , (A2,n2 ,
s2,n2) be pairs in W such that A′1 = {(A1,1, s1,1), . . . , (A1,n1 , s1,n1)} and
A′2 = {(A2,1, s2,1), . . . , (A2,n2 , s2,n2)}. SinceR is finite, let a1 be the least up-
per bound inR of the set of all regions b inR such that h(b) ⊆ A1,1∪X . . .∪X
A1,n1 and a2 be the least upper bound inR of the set of all regions b inR such
that h(b) ⊆ A2,1 ∪X . . . ∪X A2,n2 . Obviously, h(a1) ⊆ A1,1 ∪X . . . ∪X A1,n1

and h(a2) ⊆ A2,1 ∪X . . . ∪X A2,n2 .

CLAIM 5. a1 6= 0R and a2 6= 0R.

CLAIM 6. a = a1 ∪R a2.

CLAIM 7. (a1, a2) `R a?R .

By Claims 5–7, not c◦R(a): a contradiction.

• Suppose not c◦R(a) and c◦W (h′(a)). Let a1, a2 be regions in R such that a1, a2
6= 0R, a = a1 ∪R a2 and (a1, a2) `R a?R . Since h′(a1), h′(a2) 6= 0W ,
h′(a) = h′(a1) ∪W h′(a2) and (h′(a1), h

′(a2)) `W h′(a)?W , therefore not
c◦W (h′(a)): a contradiction.

Hence, c◦R(a) iff c◦W (h′(a)).

This completes the proof of Proposition 9.

6. Conclusion

The above representation theorems for extended contact algebras open new per-
spectives for region-based theories of space. We anticipate further investigations.
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Firstly, there is a question of obtaining a stronger form of Proposition 7 where the
structure in which we embed is an extended contact algebra. Can we find neces-
sary and sufficient conditions such that every extended contact algebra that satisfies
them can be embedded in an extended contact algebra defined over some kind of
parametrized frame? Can these conditions be first-order, or are they intrinsically
second-order? What kind of correspondence can we obtain between topological
spaces and parametrized frames in the context of the extended contact relation?

Secondly, there is a question of a generalization of Propositions 8 and 9 to the
class of all extended contact algebras, not only finite algebras. Can we find nec-
essary and sufficient conditions such that every extended contact algebra that sat-
isfies them can be embedded in the extended contact algebra defined over some
equivalence frames of type 1 or 2? Can these conditions be first-order, or are they
intrinsically second-order?

Thirdly, following the line of reasoning suggested in [31] and furthered in [1, 27]
for what concerns axiomatization/completeness issues and in [15, 16, 17, 18] for
what concerns decidability/complexity issues, it is of the utmost interest to consider
the properties of a quantifier-free first-order language to be interpreted in contact
algebras such as the extended contact algebras discussed in this paper. Can we
transfer in this extended setting the axiomatizability results and the decidability
results obtained in the more restricted context of the contact relation?
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Annex

Proof of Claim 1. Let a′ ∈ sa and b′ ∈ tb. We demonstrate (a′, b′) 6`R d. Suppose (a′, b′) `R d.
Since a′ ∈ sa and b′ ∈ tb, we obtain a ≤R a′ and b ≤R b′. Since (a′, b′) `R d, we obtain
(a, b) `R d: a contradiction. Hence, (a′, b′) 6`R d.

Proof of Claim 2. By classical results in the theory of filters and ideals [12].

Proof of Claim 3. We demonstrate ul is an ideal in AR.

Firstly, suppose 0R 6∈ ul. Since u is a filter in AR, we obtain 1R ∈ u. Since 0R 6∈ ul, we ob-
tain (1R, 0R) 6`R d: a contradiction with Proposition 6. Consequently, 0R ∈ ul.

Secondly, suppose b′1, b′2 ∈ ul are such that b′1∪Rb′2 6∈ ul. Let a′1, a′2 ∈ u be such that (a′1, b′1) `R d
and (a′2, b

′
2) `R d. Since u is a filter in AR, we obtain a′1∩Ra′2 ∈ u. Since b′1∪Rb′2 6∈ ul, we obtain

(a′1 ∩R a′2, b
′
1 ∪R b′2) 6`R d. By Proposition 6, (a′1 ∩R a′2, b

′
1) 6`R d or (a′1 ∩R a′2, b

′
2) 6`R d. Since

(a′1, b
′
1) `R d, (a′2, b′2) `R d, a′1 ∩R a′2 ≤R a′1 and a′1 ∩R a′2 ≤R a′2, we obtain by Proposition 6,

(a′1 ∩R a′2, b
′
1) `R d and (a′1 ∩R a′2, b

′
2) `R d: a contradiction.
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Thirdly, suppose b′1 ∈ ul and b′2 ∈ R are such that b′1 ∩R b′2 6∈ ul. Let a′ ∈ u be such that
(a′, b′1) `R d. Since b′1 ∩R b′2 6∈ ul, we obtain (a′, b′1 ∩R b′2) 6`R d. Since (a′, b′1) `R d and
b′1 ∩R b′2 ≤R b′1, we obtain by Proposition 6, (a′, b′1 ∩R b′2) `R d: a contradiction.

The proof that vr is an ideal in AR is similar.

Proof of Claim 4. (1 ⇒ 2): Suppose, for all a′ ∈ u and b′ ∈ v, (a′, b′) 6`R d. We demon-
strate ul∩v = ∅. Suppose ul∩v 6= ∅. Let b′′ be a region inR such that b′′ ∈ ul and b′′ ∈ v. Hence,
there exists a′ ∈ u such that (a′, b′′) `R d. Since b′′ ∈ v, there exists a′ ∈ u and b′ ∈ v such that
(a′, b′) `R d: a contradiction. Thus, ul ∩ v = ∅.
(2 ⇒ 1): Suppose ul ∩ v = ∅. We demonstrate, for all a′ ∈ u and b′ ∈ v, (a′, b′) 6`R d. Suppose
there exists a′ ∈ u and b′ ∈ v such that (a′, b′) `R d. Let a′′ ∈ u and b′′ ∈ v be such that
(a′′, b′′) `R d. Hence, there exists a′ ∈ u such that (a′, b′′) `R d. Thus, b′′ ∈ ul. Since b′′ ∈ v, we
obtain ul ∩ v 6= ∅: a contradiction. Consequently, for all a′ ∈ u and b′ ∈ v, (a′, b′) 6`R d.
(1⇒ 3) and (3⇒ 1): Similar to (1⇒ 2) and (2⇒ 1).

Proof of Claim 5. Suppose a1 = 0R or a2 = 0R. Without loss of generality, suppose a1 = 0R.
Since A′1 6= 0W , we obtain n1 ≥ 1. Let i ≤ n1; hence, A1,i is an atom of BX . Since h is a surjec-
tive embedding, let b be a region inR such that h(b) = A1,i. Thus, h(b) ⊆ A1,1 ∪X . . . ∪X A1,n1 .
Consequently, b ≤R a1. Since a1 = 0R, we obtain b = 0R. Since A1,i is an atom of BX , we obtain
A1,i 6= 0X . Since h(b) = A1,i, we obtain h(b) 6= 0X . Since h is a surjective embedding, b 6= 0R:
a contradiction. Hence, a1 6= 0R and a2 6= 0R.

Proof of Claim 6. Suppose a 6= a1 ∪R a2. We have to consider two cases.

• Suppose h′(a) 6⊆ h′(a1) ∪W h′(a2). Since h′(a) = A′1 ∪W A′2, we obtain A′1 ∪W A′2 6⊆
h′(a1) ∪W h′(a2). Thus, A′1 6⊆ h′(a1) ∪W h′(a2) or A′2 6⊆ h′(a1) ∪W h′(a2). Without loss
of generality, suppose A′1 6⊆ h′(a1) ∪W h′(a2). Consequently, A′1 6⊆ h′(a1). Let i ≤ n1 be
such that (A1,i, s1,i) 6∈ h′(a1). Hence, A1,i 6⊆ h(a1). Since h is a surjective embedding, let b
be a region in R such that h(b) = A1,i. Thus, h(b) ⊆ A1,1 ∪X . . . ∪X A1,n1 . Consequently,
b ≤R a1. Since h is a surjective embedding, h(b) ⊆ h(a1). Since A1,i 6⊆ h(a1), we obtain
h(b) 6= A1,i: a contradiction.

• Suppose h′(a1) ∪W h′(a2) 6⊆ h′(a). Let (B, t) be a pair in W such that (B, t) ∈ h′(a1) ∪W
h′(a2) and (B, t) 6∈ h′(a). Hence, (B, t) ∈ h′(a1) or (B, t) ∈ h′(a2). Without loss of
generality, suppose (B, t) ∈ h′(a1). Thus, B ⊆ h(a1). Since h(a1) ⊆ A1,1 ∪X . . .∪X A1,n1 ,
we obtain B ⊆ A1,1 ∪X . . . ∪X A1,n1 . Since A1,1, . . . , A1,n1 and B are atoms of BX , let
i ≤ n1 be such that B = A1,i. Consequently, (B, s1,i) ∈ A′1. Hence, (B, s1,i) ∈ A′1 ∪W A′2.
Since h′(a) = A′1 ∪W A′2, we obtain (B, s1,i) ∈ h′(a). Thus, B ⊆ h(a). Consequently,
(B, t) ∈ h′(a): a contradiction.

Hence, a = a1 ∪R a2.

Proof of Claim 7. Suppose (a1, a2) 6`R a?R . We have to consider two cases.

• Suppose h′(a1) ∩W h′(a2) 6⊆ h′(a?R). Let (B, t) be a pair in W such that (B, t) ∈ h′(a1),
(B, t) ∈ h′(a2) and (B, t) 6∈ h′(a?R). Thus, B ⊆ h(a1), B ⊆ h(a2) and B 6⊆ h(a?R).
Since h(a1) ⊆ A1,1 ∪X . . . ∪X A1,n1 and h(a2) ⊆ A2,1 ∪X . . . ∪X A2,n2 , we obtain B ⊆
A1,1∪X . . .∪XA1,n1 and B ⊆ A2,1∪X . . .∪XA2,n2 . Since A1,1, . . . , A1,n1 , A2,1, . . . , A2,n2

and B are atoms of BX , let i ≤ n1 and j ≤ n2 be such that B = A1,i and B = A2,j . Let
u ∈ Intτ (B). Consequently, (A1,i, s1,i) ∈ R1(R2(B, u)) and (A2,j , s2,j) ∈ R1(R2(B, u)).
Hence, R1(R2(B, u)) ∩ A′1 6= ∅ and R1(R2(B, u)) ∩ A′2 6= ∅. Since (A′1, A

′
2) `W h′(a)?W ,
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we obtain R1(R2(B, u)) ∩ h′(a)?W 6= ∅. Let (D, v) be a pair in W such that (D, v) ∈
R1(R2(B, u)) and (D, v) ∈ h′(a)?W . Since u ∈ Intτ (B), we obtain B = D. Since h is
a surjective embedding, h′(a?R) = h′(a)?W . Since (D, v) ∈ h′(a)?W , we obtain (D, v) ∈
h′(a?R). Thus, D ⊆ h(a?R). Since B 6⊆ h(a?R), we obtain B 6= D: a contradiction.

• Suppose there exists a pair (B, t) in W such that R1(R2(B, t)) intersects both h′(a1) and
h′(a2) and R1(R2(B, t)) does not intersect h′(a?R). Let (B, t) be a pair in W such that
R1(R2(B, t)) intersects both h′(a1) and h′(a2) and R1(R2(B, t)) does not intersect h′(a?R).
Let (D1, u1), (D2, u2) be pairs in W such that (D1, u1) ∈ R1(R2(B, t)), (D1, u1) ∈ h′(a1),
(D2, u2) ∈ R1(R2(B, t)) and (D2, u2) ∈ h′(a2). Consequently, D1 ⊆ h(a1) and D2 ⊆
h(a2). Since h(a1) ⊆ A1,1 ∪X . . . ∪X A1,n1 and h(a2) ⊆ A2,1 ∪X . . . ∪X A2,n2 , we obtain
D1 ⊆ A1,1 ∪X . . . ∪X A1,n1 and D2 ⊆ A2,1 ∪X . . . ∪X A2,n2 . Since A1,1, . . . , A1,n1 ,
A2,1, . . . , A2,n2 , D1 and D2 are atoms of BX , let i ≤ n1 and j ≤ n2 be such that D1 = A1,i

and D2 = A2,j . Hence, (A1,i, s1,i) ∈ R1(R2(B, t)) and (A2,j , s2,j) ∈ R1(R2(B, t)). Thus,
R1(R2(B, t)) ∩ A′1 6= ∅ and R1(R2(B, t)) ∩ A′2 6= ∅. Since (A′1, A

′
2) `W h′(a)?W , we

obtain R1(R2(B, t)) ∩ h′(a)?W 6= ∅. Since h is a surjective embedding, h′(a?R) = h′(a)?W .
Since R1(R2(B, t)) does not intersect h′(a?R), we obtain R1(R2(B, t)) ∩ h′(a)?W = ∅: a
contradiction.

Consequently, (a1, a2) `R a?R .


