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1 Introduction
It is well-known that owing to its structural completeness, Classical Propositional
Logic has a decidable admissibility problem1. It was only after the results of Ry-
bakov [32, 33] that it has been known that Intuitionistic Logic and transitive modal
logics like K4 and S4 have a decidable admissibility problem too. As noticed by Ghi-
lardi [20, 21], these decidability results are also consequences of the following results
about the unification problem: the above-mentioned propositional logics are decidable;
they are of unification type ω; they give rise to type conformal unification algorithms.
The unification problem in a consistent propositional logic L is to determine, given a
formula ϕ, whether there exists a substitution σ such that σ(ϕ) is in L. In that case,
ϕ is L-unifiable and σ is an L-unifier of ϕ. When an L-unifiable formula has min-
imal complete sets of L-unifiers, it is either of type 1, or of type ω, or of type ∞,
depending on the cardinality of these sets. Otherwise, it is of type 0. The types 1, ω,
∞ and 0 being ordered by 1<ω<∞<0, the unification type of L is the greatest type
among the types of all L-unifiable formulas. Since the rule of inference ϕ1,...,ϕn

ψ is

1In a propositional logic L, the rule of inference ϕ1,...,ϕn
ψ

is admissible if and only if for all substitutions
σ, if σ(ϕ1), . . . , σ(ϕn) are in L then σ(ψ) is in L.
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L-admissible if and only if, when L is either of type 1, or of type ω, every maximal L-
unifier of the formula ϕ1 ∧ . . .∧ ϕn is also an L-unifier of the formula ψ, we can turn,
when L is decidable, any type conformal L-unification algorithm into an algorithm
deciding L-admissibility2. As a result, for those who interest in algorithms deciding
L-admissibility, it is of the utmost importance to determine the unification type of L.

Being essential to the design of logical systems that capture elements of reasoning
about knowledge, extensions of K5 are omnipresent in applications [16, 19]. In these
modal logics, every variable-free formula is equivalent either to ⊥, or to >, or to �⊥,
or to ♦>. Therefore, their unification problem is NP-complete. As for their unifica-
tion types, it is only known that extensions of K5 which contain K4 are of unification
type 1 [13, 27]. Indeed, results about unification types in modal logics are scarce3:
Alt1⊕�n⊥ is of type 1 when n≥2 [10]; K⊕�n⊥ is of type ω when n≥2 [10]; Alt1
is of type 0 [12]; extensions of S4.3 are of unification type 1 [18]; transitive modal lo-
gics like K4 and S4 are of unification type ω [21, 24]; K4.2+ is of type 1 [22, 25]; K
is of type 0 [26]; extensions of K4D1 are of unification type 1 [27]. And one observes
that, while trying to determine the unification types of modal logics, little, if anything,
from standard tools and techniques such as canonical models and filtrations is helpful4.

As mentioned above, it is known that extensions of K5 which contain K4 are of uni-
fication type 1. We prove in this paper that K5 and some of its extensions which do
not contain K4 are of unification type 1. In our proof, we proceed as follows. Firstly,
we prove (Proposition 16) in Section 2 that if L contains K45 then every formula has
the small update property in L5. Secondly, generalizing some results obtained in [8],
we prove (Proposition 20) in Section 4 that if L contains K5 then every L-unifiable
formula is L-filtering. Thirdly, we prove (Proposition 27) in Section 5 that if L con-
tains K5 then every L-unifiable formula having the small update property in L is L-
projective. Fourthly, we prove in (Proposition 28) Section 6 that if L contains K5 and
L is global6 then for all substitutions σ, every formula L-unified by σ is implied in K
by an L-projective formula based on the variables of the given formula and having σ
as one of its L-unifiers.

2Reciprocally, since a formula ϕ is L-unifiable if and only if the associated rule of inference ϕ
⊥ is not

L-admissible, we can turn any algorithm deciding L-admissibility into an algorithm deciding L-unifiability.
3For instance, the types of KD, KT, KB, KDB and KTB are not known. Indeed, the modal logics

KD, KT, KB, KDB and KTB have been proved to be of type 0 within the context of unification with
parameters [6, 7, 9, 31]. The difference between elementary unification — as considered in this paper —
and unification with parameters is that in elementary unification, all variables are likely to be replaced by
formulas when one applies a substitution whereas in unification with parameters, some variables — called
parameters — remain unchanged.

4Witness, the fact that the type of a simple modal logic such as DAlt1 is not known.
5The small update property is a property concerning models. It is defined in Section 2.8.
6Globality is defined in Section 2.7.

2



2 Modal logics

2.1 Formulas
Let VAR be a countably infinite set of variables (with typical members denoted x,
y, etc). The set FOR of all formulas (with typical members denoted ϕ, ψ, etc) is
inductively defined by

• ϕ := x | ⊥ | ¬ϕ | (ϕ ∨ ϕ) | �ϕ.

We adopt the standard rules for omission of parentheses. The Boolean connectives >,
∧, → and ↔ and the modal connective ♦ are defined as usual. For all ϕ∈FOR, let
var(ϕ) be the set of all variables occurring in ϕ. For all finite X⊆VAR, let FORX

be the set of all ϕ∈FOR such that var(ϕ)⊆X .

2.2 Substitutions
A substitution is a triple (X,Y, σ) where X,Y⊆VAR are finite and σ is a homo-
morphism from FORX to FORY

7. The sets X and Y are respectively the domain
and the codomain of the substitution (X,Y, σ). Let SUB be the set of all substitu-
tions. We say that (X,Y, σ)∈SUB is variable-free if Y=∅. Substitutions being ho-
momorphisms, it is possible to compose two substitutions if the codomain of the first
is equal to the domain of the second. The composition of (X,Y, σ), (Y,Z, τ)∈SUB
(in symbols (X,Y, σ) ◦ (Y,Z, τ)) is the substitution (X,Z, υ) such that for all x∈X ,
υ(x)=τ(σ(x)). When the domain and the codomain can be guessed from the context of
the discussion, the substitution (X,Y, σ) will be simply indicated by σ. However, when
we write that two substitutions are equal, this will imply in any case that their domains
are equal and their codomains are equal. For all finite X,Y⊆VAR, let SUBX,Y be
the set of all σ∈SUB such that the domain of σ is X and the codomain of σ is Y .

2.3 Normal modal logics
We say that L⊆FOR is a modal logic if the following conditions hold8:

• L contains all tautologies,

• L contains the formula �(x→ y)→ (�x→ �y),

• L is closed for modus ponens: if ϕ→ ψ∈L and ϕ∈L then ψ∈L,

• L is closed for generalization: if ϕ∈L then �ϕ∈L,

• L is closed for uniform substitution: if ϕ∈L then for all substitutions (X,Y, σ),
if var(ϕ)⊆X then σ(ϕ)∈L.

7Substitutions have also been defined as functions from VAR to FOR almost everywhere equal to the
identity function [4, Section 2]. In this paper, we follow the definition of substitutions used, for example, by
Babenyshev and Rybakov [5], Dzik [17] and Ghilardi [20, 21].

8The modal logics considered in this paper are exactly the normal modal logics considered in standard
textbooks such as [14, 15, 28].
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For all modal logics L and for all ϕ∈FOR, we write L⊕ϕ for the least modal logic
containing L and ϕ. K denoting the least modal logic, the following modal logics are
considered in this paper:

• K⊕�x→ ��x (denoted K4),

• K⊕♦x→ �♦x (denoted K5),

• K⊕�x→ ��x⊕♦x→ �♦x (denoted K45),

• K⊕�⊥ (denoted Ver),

• K⊕♦>⊕♦x→ �♦x (denoted KD5),

• K⊕�x→ x⊕♦x→ �♦x (denoted S5).

Obviously, K45 contains K4 and K5 whereas KD5 contains K5. Moreover, as is
well-known [23, Chapter 3], Ver contains K45 whereas S5 contains K45 and KD5.
For all positive integers l, let

• χ1
l=

∧
{♦♦xk : 0≤k≤l} →

∨
{♦♦(xi ∧ xj) : 0≤i<j≤l},

• χ2
l=

∧
{♦♦xk : 0≤k≤l} →

∨
{♦xk : 0≤k≤l} ∨

∨
{♦♦(xi ∧ xj) : 0≤i<j≤

l}.

The following modal logics are also considered in this paper:

• K5⊕χ1
l ,

• K5⊕χ2
l ,

• KD5⊕χ1
l ,

• KD5⊕χ2
l ,

where l ranges over the set of all positive integers. We say that a modal logic L is
consistent if L6=FOR. From now on in this paper,

let L be a consistent modal logic.

Let ≡L be the equivalence relation on FOR defined by

• ϕ≡Lψ if and only if ϕ↔ ψ∈L.

We say that L is locally tabular if for all finite X⊆VAR, ≡L possesses finitely many
equivalence classes on FORX .

Proposition 1 If L contains K5 then L is locally tabular.

Proof: This is a standard result, see [30, Corollary 5]. a

We say that ϕ∈FOR is L-derivable from Γ⊆FOR (in symbols Γ `L ϕ) if there exists
n≥1 and there exists ϕ1, . . . , ϕn∈FOR such that ϕn=ϕ and for all k∈{1, . . . , n}, at
least one of the following conditions holds:
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• ϕk∈L,

• ϕk∈Γ,

• there exists i, j∈{1, . . . , n} such that i, j<k and ϕi=ϕj → ϕk,

• there exists i∈{1, . . . , n} such that i<k and ϕk=�ϕi.

Proposition 2 For all n≥1, for all ϕ1, . . . , ϕn∈FOR and for all ψ∈FOR, if for all
k∈{1, . . . , n}, ϕk → �ϕk∈L then the following conditions are equivalent:

• {ϕ1, . . . , ϕn} `L ψ,

• ϕ1 ∧ . . . ∧ ϕn → ψ∈L.

Proof: This is a standard result, see [15, Theorem 3.51]9. a

Substitutions being completely defined by the restrictions to their domains, it is pos-
sible to compare two substitutions by means of these restrictions if their domains are
equal. Let 'L be the equivalence relation on SUB defined by

• (X,Y, σ)'L(X,Z, τ) if and only if for all x∈X , σ(x)↔ τ(x)∈L.

Obviously, if (X,Y, σ)'L(X,Z, τ) then for all ϕ∈FORX , σ(ϕ)↔ τ(ϕ)∈L. Let4L

be the quasi-order on SUB defined by

• (X,Y, σ)4L(X,Z, τ) if and only if there exists (Z, T, υ)∈SUB such that for
all x∈X , σ(x)↔ υ(τ(x))∈L.

Obviously, if (X,Y, σ)4L(X,Z, τ) then there exists (Z, T, υ)∈SUB such that for all
ϕ∈FORX , σ(ϕ) ↔ υ(τ(ϕ))∈L. Moreover, if (X,Y, σ)'L(X,Z, τ) then (X,Y, σ)
4L(X,Z, τ).

Proposition 3 If L is locally tabular then for all finite X,Y⊆VAR, 'L possesses
finitely many equivalence classes on SUBX,Y .

Proof: Suppose L is locally tabular. Let X,Y⊆VAR be finite. For all x∈X , let 'xL
be the equivalence relation on SUBX,Y defined by

• σ'xLτ if and only if σ(x)↔ τ(x)∈L.

Since L is locally tabular and Y is finite, for all x∈X , 'xL possesses finitely many
equivalence classes on SUBX,Y . Since X is finite and the restriction of 'L to
SUBX,Y is equal to

⋂
{'xL: x∈X}, 'L possesses finitely many equivalence classes

on SUBX,Y . a

9In their Theorem 3.51, Chagrov and Zakharyaschev [15] only considers the least modal logic K. How-
ever, their proof can be easily adapted to all modal logics.
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2.4 Relational semantics
We assume the reader is at home with the relational semantics of modal logics. For
more on this, see [14, 15, 28]. A frame is a couple (W,R) where W is a non-
empty set and R is a binary relation on W . In a frame (W,R), for all s∈W , let
R(s)={t∈W : sRt} and for all U⊆W , let R(U)={t∈W : there exists s∈U such
that sRt}. We say that a frame (W,R) is transitive if for all s, t, u∈W , if sRt and
tRu then sRu. We say that a frame (W,R) is Euclidean if for all s, t, u∈W , if sRt
and sRu then tRu. A dead-end is a frame (W,R) such that for all s∈W , R(s)=∅.
We say that a frame (W,R) is serial if for all s∈W , R(s)6=∅. We say that a frame
(W,R) is reflexive if for all s∈W , sRs. We say that a frame (W,R) is symmetric if
for all s, t∈W , if sRt then tRs. A partition is a reflexive symmetric transitive frame.
Notice that every partition is Euclidean whereas every Euclidean reflexive frame is a
partition. For all positive integers l, we say that a frame (W,R) is strongly l-bounded
if for all s∈W , Card(R(R(s)))≤l. For all positive integers l, we say that a frame
(W,R) is weakly l-bounded if for all s∈W , Card(R(R(s)) \ R(s))≤l. We say that a
frame (W,R) is generated from s∈W if for all t∈W , there exists n≥0 and there exists
u0, . . . , un∈W such that u0=s, un=t and for all i∈{1, . . . , n}, ui−1Rui. A valuation
on a frame (W,R) is a function assigning to each variable a subset of W . Given a
frame (W,R) and a valuation V on (W,R), the satisfiability of ϕ∈FOR at s∈W (in
symbols (W,R), V, s|=ϕ) is inductively defined as follows:

• (W,R), V, s|=x if and only if s∈V (x),

• (W,R), V, s6|=⊥,

• (W,R), V, s|=¬ϕ if and only if (W,R), V, s6|=ϕ,

• (W,R), V, s|=ϕ ∨ ψ if and only if either (W,R), V, s|=ϕ, or (W,R), V, s|=ψ,

• (W,R), V, s|=�ϕ if and only if for all t∈W , if sRt then (W,R), V, t|=ϕ.

For all finiteX⊆VAR, for all finite frames (W,R), for all valuations V on (W,R) and
for all s∈W , let forX((W,R), s, V ) = {χ∈FORX : (W,R), V, s|=χ}. Obviously,
forX((W,R), s, V ) is an infinite subset of FORX . Nevertheless, when L is locally
tabular, we will treat forX((W,R), s, V ) as if it is a finite subset of FORX . In that
case, forX((W,R), s, V ) will also denote the conjunction of all formulas in this finite
subset.

Proposition 4 If L contains K5 then for all ϕ∈FOR, if ϕ6∈L then there exists a finite
frame (W,R), there exists a valuation V on (W,R) and there exists s∈W such that
(W,R)|=L, (W,R) is generated from s and (W,R), V, s6|=ϕ.

Proof: Suppose L contains K5. Let ϕ∈FOR be such that ϕ6∈L. Since L contains
K5, by [30, Theorem 3], let (W,R) be a finite frame, V be a valuation on (W,R) and
s∈W be such that (W,R)|=L and (W,R), V, s6|=ϕ. Without loss of generality, by [14,
Proposition 2.6 and Theorem 3.14], we can suppose (W,R) is generated from s. a

For all frames (W,R), for all substitutions (X,Y, σ) and for all valuations V on (W,
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R), let V σ be the valuation on (W,R) such that for all x∈VAR, if x∈X then V σ(x)=
{s∈W : (W,R), V, s|=σ(x)} else V σ(x)=V (x)10.

Proposition 5 Let (W,R) be a frame, (X,Y, σ) be a substitution and V be a valu-
ation on (W,R). For all ϕ∈FORX and for all s∈W , the following conditions are
equivalent:

• (W,R), V σ, s|=ϕ,

• (W,R), V, s|=σ(ϕ).

Proof: By induction on ϕ∈FORX . a

We say that a formula ϕ is valid in a frame (W,R) (in symbols (W,R)|=ϕ) if for
all valuations V on (W,R) and for all s∈W , (W,R), V, s|=ϕ. We say that a set Γ of
formulas is valid in a frame (W,R) (in symbols (W,R)|=Γ) if for all ϕ∈Γ, (W,R)|=ϕ.

Proposition 6 For all frames (W,R),

• (W,R)|=K4 if and only if (W,R) is transitive,

• (W,R)|=K5 if and only if (W,R) is Euclidean,

• (W,R)|=K45 if and only if (W,R) is transitive and Euclidean,

• (W,R)|=Ver if and only if (W,R) is a dead-end,

• (W,R)|=KD5 if and only if (W,R) is serial and Euclidean,

• (W,R)|=S5 if and only if (W,R) is a partition.

Proof: This is a standard result, see [14, Theorem 3.54]11. a

Proposition 7 For all positive integers l and for all frames (W,R),

• (W,R)|=χ1
l if and only if (W,R) is strongly l-bounded,

• (W,R)|=χ2
l if and only if (W,R) is weakly l-bounded.

Proof: See [14, Theorem 3.54]12. a

10Such definition is standard within the context of the problem of determining the unification types of
modal logics [5, 17, 20, 21]

11Indeed, �x → ��x, ♦x → �♦x, �⊥, ♦> and �x → x are Sahlqvist formulas and Proposition 6 is
a routine consequence of Sahlqvist Correspondence Theorem.

12Indeed, for all positive integers l, χ1
l and χ2

l are Sahlqvist formulas and Proposition 7 is a routine
consequence of Sahlqvist Correspondence Theorem.
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2.5 Some specific extensions of K5

The logic of a class C of frames is the set (denoted Log(C)) of all formulas ϕ such that
for all frames (W,R) in C, (W,R)|=ϕ. We say that L is complete with respect to a
class C of frames if L=Log(C).

Proposition 8 • K4 is complete with respect to the class of all transitive frames,

• K5 is complete with respect to the class of all Euclidean frames,

• K45 is complete with respect to the class of all Euclidean transitive frames,

• Ver is complete with respect to the class of all dead-ends,

• KD5 is complete with respect to the class of all serial Euclidean frames,

• S5 is complete with respect to the class of all partitions.

Proof: This is a standard result, see [14, Theorem 4.42]13. a

Proposition 9 For all positive integers l,

• K5⊕χ1
l is complete with respect to the class of all strongly l-bounded Euclidean

frames,

• K5⊕χ2
l is complete with respect to the class of all weakly l-bounded Euclidean

frames,

• KD5⊕χ1
l is complete with respect to the class of all serial strongly l-bounded

Euclidean frames,

• KD5⊕χ2
l is complete with respect to the class of all serial weakly l-bounded

Euclidean frames.

Proof: See [14, Theorem 4.42]14. a

Proposition 10 For all positive integers l,

• K5⊕χ1
l⊃K5⊕χ2

l ,

• KD5⊕χ1
l⊃KD5⊕χ2

l ,

• if l≥2 then K5⊕χ1
l 6⊇K4,

• if l≥2 then KD5⊕χ1
l 6⊇K4.

13Indeed, �x → ��x, ♦x → �♦x, �⊥, ♦> and �x → x are Sahlqvist formulas and Proposition 8 is
a routine consequence of Sahlqvist Completeness Theorem.

14Indeed, for all positive integers l, χ1
l and χ2

l are Sahlqvist formulas and Proposition 9 is a routine
consequence of Sahlqvist Completeness Theorem.
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Proof: Let l be a positive integer.

Obviously, χ2
l is in K5⊕χ1

l . Hence, K5⊕χ1
l⊇K5⊕χ2

l and KD5⊕χ1
l⊇KD5⊕χ2

l .

In order to show that K5⊕χ1
l 6=K5⊕χ2

l and KD5⊕χ1
l 6=KD5⊕χ2

l , it suffices to show
that χ1

l 6∈KD5⊕χ2
l . Let (W,R) be the serial Euclidean frame such thatW={0, . . . , l+

1} andR={(0, 1)}∪({1, . . . , l+1}×{1, . . . , l+1}). Obviously, (W,R) is not strongly
l-bounded and (W,R) is weakly l-bounded. Thus, by Proposition 7, (W,R)6|=χ1

l and
(W,R)|=χ2

l . Consequently, by Proposition 9, χ1
l 6∈KD5⊕χ2

l .

Suppose l≥2. In order to show that K5⊕χ1
l 6⊇K4 and KD5⊕χ1

l 6⊇K4, it suffices
to show that �x → ��x 6∈KD5⊕χ1

l . Let (W,R) be the serial Euclidean frame
such that W={0, 1, 2} and R={(0, 1)} ∪ ({1, 2} × {1, 2}). Obviously, (W,R) is
strongly l-bounded (seeing that l≥2) and non-transitive. Thus, by Propositions 6
and 7, (W,R)|=χ1

l and (W,R)6|=�x→ ��x. Consequently, by Proposition 9, �x→
��x 6∈KD5⊕χ1

l . a

Proposition 11 For all positive integers l, l′, if l<l′ then

• K5⊕χ1
l⊃K5⊕χ1

l′ ,

• K5⊕χ2
l⊃K5⊕χ2

l′ ,

• KD5⊕χ1
l⊃KD5⊕χ1

l′ ,

• KD5⊕χ2
l⊃KD5⊕χ2

l′ .

Proof: Let l, l′ be positive integers such that l<l′.

Obviously, χ1
l′ is in K5⊕χ1

l and χ2
l′ is in K5⊕χ2

l (seeing that l<l′). Hence, K5⊕χ1
l⊇

K5⊕χ1
l′ , K5⊕χ2

l⊇K5⊕χ2
l′ , KD5⊕χ1

l⊇KD5⊕χ1
l′ and KD5⊕χ2

l⊇KD5⊕χ2
l′ .

In order to show that K5⊕χ1
l 6=K5⊕χ1

l′ , K5⊕χ2
l 6=K5⊕χ2

l′ , KD5⊕χ1
l 6=KD5⊕χ1

l′

and KD5⊕χ2
l 6=KD5⊕χ2

l′ , it suffices to show that χ1
l 6∈KD5⊕χ1

l′ and χ2
l 6∈KD5⊕χ2

l′ .
Firstly, let (W,R) be the serial Euclidean frame such that W={0, . . . , l + 1} and
R={(0, 1)} ∪ ({1, . . . , l + 1} × {1, . . . , l + 1}). Obviously, (W,R) is not strongly
l-bounded and (W,R) is strongly l′-bounded (seeing that l<l′). Thus, by Proposi-
tion 7, (W,R)6|=χ1

l and (W,R)|=χ1
l′ . Consequently, by Proposition 9, χ1

l 6∈KD5⊕χ1
l′ .

Secondly, let (W,R) be the serial Euclidean frame such that W={0, . . . , l + 2} and
R={(0, 1)} ∪ ({1, . . . , l + 2} × {1, . . . , l + 2}). Obviously, (W,R) is not weakly l-
bounded and (W,R) is weakly l′-bounded (seeing that l<l′). Hence, by Proposition 7,
(W,R) 6|=χ2

l and (W,R)|=χ2
l′ . Thus, by Proposition 9, χ2

l 6∈KD5⊕χ2
l′ . a

2.6 Well-known properties of extensions of K5

Let S be a frame (W,R) such that Card(W )=1 and R=∅. For all m≥1, let Tm be a
frame (W,R) such that Card(W )=m and R=W ×W . For all m≥1 and for all n≥0,
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let U(m,n) be a frame (W,R) such that there exists s∈W and there exists A,B⊆W
such that A 6=∅, A⊆B, s6∈B, W={s} ∪ B, R=({s} × A) ∪ (B × B), Card(A)=m
and Card(B)=m + n. These frames have been introduced in their relationships with
the extensions of K5 considered in [29].

Proposition 12 Let (W,R) be a frame such that (W,R)|=L. If L contains K5 then for
all s∈W , if (W,R) is generated from s then exactly one of the following 3 conditions
holds:

• W={s} and R=∅,

• R=W ×W ,

• there exists A,B⊆W such that A 6=∅, A⊆B, s6∈B, W={s} ∪B and R=({s} ×
A) ∪ (B ×B).

If L contains K45 then for all s∈W , if (W,R) is generated from s then exactly one of
the following 3 conditions holds:

• W={s} and R=∅,

• R=W ×W ,

• there existsA⊆W such thatA 6=∅, s6∈A,W={s}∪A andR=({s}×A)∪(A×A).

Proof: See [29, Sections 2 and 3]. a

Proposition 13 If L contains K5 then exactly one of the following conditions holds:

• for all m≥1, Tm|=L and S|=L,

• for all m≥1, Tm|=L and S6|=L,

• there exists m≥1 such that Tm|=L, there exists n≥1 such that Tn 6|=L and S|=L,

• there exists m≥1 such that Tm|=L, there exists n≥1 such that Tn 6|=L and S6|=L,

• for all m≥1, Tm 6|=L.

Proof: See [29, Sections 2 and 3]. a

2.7 Globality
We say that L is global if for all m,m′≥1 and for all n′≥0, if m=m′ + n′ and Tm|=L
then U(m′,n′)|=L.

Proposition 14 If either L=K5, or L=KD5, or L=K5⊕χ1
l for some positive integer

l, or L=KD5⊕χ1
l for some positive integer l, or L=Ver then L is global.
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Proof: Suppose either L=K5, or L=KD5, or L=K5⊕χ1
l for some positive integer l,

or L=KD5⊕χ1
l for some positive integer l, or L=Ver.

Case “L=K5”: Hence, for all m′≥1 and for all n′≥0, U(m′,n′)|=L. Thus, L is global.

Case “L=KD5”: Consequently, for all m′≥1 and for all n′≥0, U(m′,n′)|=L. Hence,
L is global.

Case “L=K5⊕χ1
l for some positive integer l”: Let m,m′≥1 and n′≥0 be arbitrary.

Suppose m=m′ + n′ and Tm|=L. Thus, by Proposition 7, m≤l. Since m=m′ + n′,
U(m′,n′)|=L. Since m,m′≥1 and n′≥0 were arbitrary, L is global.

Case “L=KD5⊕χ1
l for some positive integer l”: Let m,m′≥1 and n′≥0 be ar-

bitrary. Supposem=m′+n′ and Tm|=L. Consequently, by Proposition 7, m≤l. Since
m=m′ + n′, U(m′,n′)|=L. Since m,m′≥1 and n′≥0 were arbitrary, L is global.

Case “L=Ver”: Hence, for all m≥1, Tm 6|=L. Thus, L is global. a

Proposition 15 If L contains K5 and L is global then either L=K5, or L=KD5, or
L=K5⊕χ1

l for some positive integer l, or L=KD5⊕χ1
l for some positive integer l, or

L=Ver.

Proof: Suppose L contains K5 and L is global. For the sake of the contradiction,
suppose neither L=K5, nor L=KD5, nor L=K5⊕χ1

l for some positive integer l, nor
L=KD5⊕χ1

l for some positive integer l, nor L=Ver. By Proposition 13, we have to
consider the following 5 cases.

Case “for allm≥1, Tm|=L and S|=L”: Since L contains K5 and L is global, L=K5:
a contradiction.

Case “for all m≥1, Tm|=L and S6|=L”: Since L contains K5 and L is global,
L=KD5: a contradiction.

Case “there exists m≥1 such that Tm|=L, there exists n≥1 such that Tn 6|=L and
S|=L”: Thus, let l be the greatest positive integer such that Tl|=L. Since L contains
K5, L is global and S|=L, L=K5⊕χ1

l : a contradiction.

Case “there exists m≥1 such that Tm|=L, there exists n≥1 such that Tn 6|=L and
S6|=L”: Consequently, let l be the greatest positive integer such that Tl|=L. Since L
contains K5, L is global and S6|=L, L=KD5⊕χ1

l : a contradiction.

Case “for all m≥1, Tm 6|=L”: Hence, L=Ver: a contradiction. a

By Propositions 10, 11, 14 and 15, it immediately follows that there exists countably
many global extensions of K5 — the modal logics K5⊕χ1

l and KD5⊕χ1
l for each
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positive integer l — and countably many non-global extensions of K5 — the modal
logics K5⊕χ2

l and KD5⊕χ2
l for each positive integer l.

2.8 Small update property
For all finite frames (W,R), for all valuations V on (W,R), for all s∈W and for all
finite X⊆VAR, we say that a valuation V ′ on (W,R) is a variant of V with respect to
s and X if for all x∈X , V ′(x) \ {s}=V (x) \ {s}. We say that ϕ∈FOR has the small
update property in L if for all finite frames (W,R), for all valuations V on (W,R) and
for all s∈W , if (W,R)|=L and (W,R) is generated from s then there exists a variant
V ′ of V with respect to s and var(ϕ) such that (W,R), V ′, s|=♦�ϕ→ ϕ.

Proposition 16 If L contains K45 then for all ϕ∈FOR, ϕ has the small update pro-
perty in L.

Proof: Suppose L contains K45. Let ϕ∈FOR. Let (W,R) be a finite frame, V be a
valuation on (W,R) and s∈W be such that (W,R)|=L and (W,R) is generated from
s. Since L contains K45, by Proposition 12, we have to consider the following 3 cases.

Case “W={s} and R=∅”: Obviously, V is a variant of V with respect to s and
var(ϕ). Moreover, (W,R), V, s|=♦�ϕ→ ϕ.

Case “R=W × W”: Obviously, V is a variant of V with respect to s and var(ϕ).
Moreover, (W,R), V, s|=♦�ϕ→ ϕ.

Case “there existsA⊆W such thatA 6=∅, s6∈A,W={s}∪A andR=({s}×A)∪(A×
A)”: Let t∈A. Obviously, (W,R), V, t|=♦�ϕ → ϕ. Let V ′ be a valuation on (W,R)
such that for all x∈var(ϕ), if t∈V (x) then V ′(x)=V (x)∪{s} else V ′(x)=V (x)\{s}.
Obviously, V ′ is a variant of V with respect to s and var(ϕ). Moreover, by induction
on ψ∈FORvar(ϕ), the reader may easily verify that

• for all u∈A, (W,R), V, u|=ψ if and only if (W,R), V ′, u|=ψ.

In other respect, by induction on ψ∈FORvar(ϕ), the reader may easily verify that

• (W,R), V, t|=ψ if and only if (W,R), V ′, s|=ψ.

Since (W,R), V, t|=♦�ϕ→ ϕ, (W,R), V ′, s|=♦�ϕ→ ϕ. a

3 Unification
An L-unifier of ϕ∈FOR is a substitution (var(ϕ), X, σ) such that σ(ϕ)∈L. We write
ΣL(ϕ) to mean the set of all L-unifiers of ϕ∈FOR. We say that ϕ∈FOR is L-
unifiable if ΣL(ϕ)6=∅. Since L is closed for uniform substitution, for all L-unifiable
ϕ∈FOR, ΣL(ϕ) contains variable-free substitutions. We say that an L-unifier σ of
ϕ∈FOR is a most general L-unifier of ϕ if for all L-unifiers τ of ϕ, τ4Lσ. We say
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that a set Σ of L-unifiers of an L-unifiable ϕ∈FOR is complete if for all L-unifiers σ
of ϕ, there exists τ∈Σ such that σ4Lτ . Obviously, for all L-unifiable ϕ∈FOR, ΣL(ϕ)
is a complete set of L-unifiers of ϕ. We say that a complete set Σ of L-unifiers of an L-
unifiable ϕ∈FOR is a basis for ϕ if for all σ, τ∈Σ, if σ4Lτ then σ=τ . Obviously, for
all complete sets Σ of L-unifiers of an L-unifiable ϕ∈FOR, the following conditions
are equivalent:

• Σ is a basis for ϕ,

• Σ is a minimal complete set of L-unifiers of ϕ, i.e. for all ∆⊆Σ, if ∆ is a
complete set of L-unifiers of ϕ then ∆=Σ.

Proposition 17 For all L-unifiable ϕ∈FOR and for all bases Σ,∆ for ϕ, Σ and ∆
have the same cardinality.

Proof: This is a standard result, although we have not been able to find a published
proof of it. Let ϕ∈FOR be L-unifiable and Σ,∆ be bases for ϕ. Hence, Σ and ∆ are
minimal complete sets of L-unifiers of ϕ. By the completeness of Σ and ∆, one can
readily define functions f : Σ −→ ∆ and g : ∆ −→ Σ such that σ4Lf(σ) for each
σ∈Σ and δ4Lg(δ) for each δ∈∆. By the minimality of Σ and ∆, it easily follows that
f and g are injective. Thus, Σ and ∆ have the same cardinality. a

As a consequence of Proposition 17, an important question is the following: when
ϕ∈FOR is L-unifiable, is there a basis for ϕ? When the answer is “yes”, how large is
this basis? For all L-unifiable ϕ∈FOR, we say that:

• ϕ is of type 1 if there exists a basis for ϕ with cardinality 1,

• ϕ is of type ω if there exists a basis for ϕ with finite cardinality ≥2,

• ϕ is of type∞ if there exists a basis for ϕ with infinite cardinality,

• ϕ is of type 0 if there exists no basis for ϕ.

Obviously, the types 1, ω,∞ and 0 constitute a set of jointly exhaustive and pairwise
distinct situations for each L-unifiable ϕ∈FOR. The types 1, ω, ∞ and 0 being or-
dered by 1<ω<∞<0, the unification type of L is the greatest one among the types of
its unifiable formulas, i.e.

• L is of type 1 if every L-unifiable formula is of type 1,

• L is of type ω if every L-unifiable formula is either of type 1, or of type ω and
there exists an L-unifiable formula of type ω,

• L is of type∞ if every L-unifiable formula is either of type 1, or of type ω, or of
type∞ and there exists an L-unifiable formula of type∞,

• L is of type 0 if there exists an L-unifiable formula of type 0.
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4 Filtering formulas
For all L-unifiable ϕ∈FOR, we say that ϕ is L-filtering if for all L-unifiers σ, τ of ϕ,
there exists an L-unifier υ of ϕ such that σ4Lυ and τ4Lυ.

Proposition 18 Let ϕ∈FOR be L-unifiable. If ϕ is L-filtering then ϕ is either of type
1, or of type 0.

Proof: This is a standard result, although we have not been able to find a published
proof of it. Suppose ϕ is L-filtering. For the sake of the contradiction, suppose ϕ is
neither of type 1, nor of type 0. Hence, ϕ is either of type ω, or of type∞. Thus, let
Σ be a basis for ϕ either with finite cardinality ≥2, or with infinite cardinality. Conse-
quently, let σ, τ∈Σ be such that σ 6=τ . Since ϕ is L-filtering, there exists an L-unifier υ
of ϕ such that σ4Lυ and τ4Lυ. Since Σ is a basis for ϕ, let υ′∈Σ be such that υ4Lυ

′.
Since σ4Lυ and τ4Lυ, σ4Lυ

′ and τ4Lυ
′. Since Σ is a basis for ϕ, σ=υ′ and τ=υ′.

Hence, σ=τ : a contradiction. a

We say that L has filtering unification if for all L-unifiable ϕ∈FOR, ϕ is L-filtering.

Proposition 19 If L has filtering unification then L is either of type 1, or of type 0.

Proof: By Proposition 18. a

Proposition 20 If L contains K5 then for all L-unifiable ϕ∈FOR, ϕ is L-filtering.

Proof: This result generalizes some results obtained in [8]. Suppose L contains K5.
Let ϕ∈FOR be L-unifiable. Let (var(ϕ), X, σ), (var(ϕ), Y, τ) be L-unifiers of ϕ.
Hence, σ(ϕ)∈L and τ(ϕ)∈L. Let (var(ϕ), X∪Y ∪{z}, υ) be the substitution defined
for all x∈var(ϕ), by υ(x)=((��z∧(z∨♦>))∧σ(x))∨((♦♦¬z∨(¬z∧�⊥))∧τ(x))
where z is a new variable, i.e. neither z∈var(ϕ), nor z∈X ∪ Y . Let λ> and λ⊥ be
substitutions with domain X ∪ Y ∪ {z} and such that for all t∈X ∪ Y , λ>(t)=t
and λ⊥(t)=t and λ>(z)=> and λ⊥(z)=⊥. Obviously, for all x∈var(ϕ), σ(x) ↔
λ>(υ(x))∈L and τ(x) ↔ λ⊥(υ(x))∈L. Thus, σ4Lυ and τ4Lυ. Moreover, by in-
duction on ψ∈FORvar(ϕ), using the facts that (��z ∧ (z ∨ ♦>))→ �(��z ∧ (z ∨
♦>))∈K5, (♦♦¬z∨ (¬z∧�⊥))→ �(♦♦¬z∨ (¬z∧�⊥))∈K5 and L contains K5,
the reader may easily verify that

• (��z ∧ (z ∨ ♦>))→ (υ(ψ)↔ σ(ψ))∈L,

• (♦♦¬z ∨ (¬z ∧�⊥))→ (υ(ψ)↔ τ(ψ))∈L.

Since σ(ϕ)∈L and τ(ϕ)∈L, υ(ϕ)∈L. Consequently, υ is an L-unifier of ϕ. Hence, ϕ
is L-filtering. a

5 Projective formulas
For all ϕ∈FOR, a substitution (var(ϕ), var(ϕ), σ) is L-projective for ϕ if for all
x∈var(ϕ), ϕ `L x↔ σ(x).

14



Proposition 21 Let ϕ∈FOR. Let (W,R) be a finite frame, V be a valuation on
(W,R) and s∈W be such that (W,R)|=L, (W,R) is generated from s and (W,R), V, s
|=♦�ϕ. If L contains K5 then for all L-projective substitutions υ for ϕ, V υ is a va-
riant of V with respect to s and var(ϕ).

Proof: Suppose L contains K5. Let υ be an L-projective substitution for ϕ. Hence,
for all x∈var(ϕ), ϕ `L x↔ υ(x). Let x∈var(ϕ). Thus, ϕ `L x↔ υ(x). Let t∈W .
Suppose t∈V υ(x) \ {s}. Consequently, t6=s and by Proposition 5, (W,R), V, t|=υ(x).
Since (W,R)|=L, (W,R) is generated from s, (W,R), V, s|=♦�ϕ, L contains K5
and ϕ `L x ↔ υ(x), (W,R), V, t|=x. Since t 6=s, t∈V (x) \ {s}. Reciprocally,
suppose t∈V (x) \ {s}. Consequently, t6=s and (W,R), V, t|=x. Since (W,R)|=L,
(W,R) is generated from s, (W,R), V, s|=♦�ϕ, L contains K5 and ϕ `L x↔ υ(x),
(W,R), V, t|=υ(x). Since t6=s, by Proposition 5, t∈V υ(x) \ {s}. Hence, V υ is a va-
riant of V with respect to s and var(ϕ). a

The proofs of Propositions 22, 23 and 24 can be found in the references [1] and [17].

Proposition 22 Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all
ψ∈FORvar(ϕ), ϕ `L ψ ↔ σ(ψ).

Proposition 23 Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all
L-projective substitutions τ for ϕ, σ ◦ τ is L-projective for ϕ.

Proposition 24 Let ϕ∈FOR and σ be an L-projective substitution for ϕ. For all
L-unifiers τ of ϕ, τ4Lσ.

For all L-unifiable ϕ∈FOR, we say that ϕ is L-projective if there exists an L-projecti-
ve L-unifier of ϕ.

Proposition 25 Let ϕ∈FOR be L-unifiable. If ϕ is L-projective then ϕ is of type 1.

Proof: By Proposition 24. a

We say that L has projective unification if for all L-unifiable ϕ∈FOR, ϕ is L-projecti-
ve.

Proposition 26 If L has projective unification then L is of type 1.

Proof: By Proposition 25. a

Proposition 27 If L contains K5 then for all L-unifiable ϕ∈FOR, the following con-
ditions are equivalent:

1. ϕ is L-projective,

2. ϕ has the small update property in L.
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Proof: Suppose L contains K5. Let ϕ∈FOR be L-unifiable.

(1 ⇒ 2) Suppose ϕ is L-projective. For the sake of the contradiction, suppose ϕ has
not the small update property in L. Since ϕ is L-projective, let υ be an L-projective
L-unifier of ϕ. Since ϕ has not the small update property in L, let (W,R) be a finite
frame, V be a valuation on (W,R) and s∈W be such that

• (W,R)|=L,

• (W,R) is generated from s,

• for all variants V ′ of V with respect to s and var(ϕ), (W,R), V ′, s6|=♦�ϕ→ ϕ.

Obviously, V is a variant of V with respect to s and var(ϕ). Hence, (W,R), V, s6|=
♦�ϕ → ϕ. Thus, (W,R), V, s|=♦�ϕ. Since υ is an L-projective L-unifier of ϕ,
υ(ϕ)∈L. Moreover, since L contains K5, (W,R)|=L, (W,R) is generated from s
and (W,R), V, s|=♦�ϕ, by Proposition 21, V υ is a variant of V with respect to s and
var(ϕ). Consequently, (W,R), V υ, s6|=♦�ϕ → ϕ. Hence, (W,R), V υ, s6|=ϕ. Thus,
by Proposition 5, (W,R), V, s6|=υ(ϕ). Since (W,R)|=L, υ(ϕ)6∈L: a contradiction.

(2 ⇒ 1) Suppose ϕ has the small update property in L. For the sake of the con-
tradiction, suppose ϕ is not L-projective. Since ϕ∈FOR is L-unifiable, let σ be a
variable-free L-unifier of ϕ. Consequently, σ(ϕ)∈L. Let (var(ϕ), ∅, τ) be a variable-
free substitution. Let (var(ϕ), var(ϕ), ετ ) be the substitution such that

• for all x∈var(ϕ), ετ (x)=((ϕ ∧��ϕ) ∧ x) ∨ ((¬ϕ ∨ ♦♦¬ϕ) ∧ τ(x)).

Notice that ϕ`K5ϕ∧��ϕ. Since L contains K5, ϕ`Lϕ∧��ϕ and the following fact
can be easily proved: for all x∈var(ϕ), ϕ `L x ↔ ετ (x). Hence, ετ is L-projective
for ϕ. Moreover, ϕ∧��ϕ `L x↔ ετ (x) and ¬ϕ∨♦♦¬ϕ `L τ(x)↔ ετ (x) for each
x∈var(ϕ). Therefore, by induction on ψ∈FORvar(ϕ), the reader may easily verify
that

• ϕ ∧��ϕ`Lψ ↔ ετ (ψ),

• ¬ϕ ∨ ♦♦¬ϕ`Lτ(ψ)↔ ετ (ψ).

Thus, ϕ∧��ϕ`Lϕ↔ ετ (ϕ) and ♦♦¬ϕ`Lτ(ϕ)↔ ετ (ϕ). Notice that (ϕ∧��ϕ)→
�(ϕ ∧ ��ϕ)∈K5 and ♦♦¬ϕ → �♦♦¬ϕ∈K5. Since L contains K5, by Pro-
position 2, ϕ ∧ ��ϕ → (ϕ ↔ ετ (ϕ))∈L and ♦♦¬ϕ → (τ(ϕ) ↔ ετ (ϕ))∈L.
Now, suppose for a while that τ(ϕ)∈L. Therefore, ��ϕ → (ϕ → ετ (ϕ))∈L and
♦♦¬ϕ → ετ (ϕ)∈L. In that case, ϕ → ετ (ϕ)∈L and ��ϕ ∨ ετ (ϕ)∈L — which im-
plies that ��ετ (ϕ)∈L. Consequently, we have shown that for all variable-free substi-
tutions (var(ϕ), ∅, τ), if τ(ϕ)∈L then ��ετ (ϕ)∈L. Since σ(ϕ)∈L, ��εσ(ϕ)∈L.
Let l≥1 and ((var(ϕ), ∅, τ1), . . . , (var(ϕ), ∅, τl)) be an enumeration of the set of all
variable-free substitutions (var(ϕ), ∅, τ) such that for all x∈var(ϕ), either τ(x)=>,
or τ(x)=⊥15. Let ε=εσ ◦ ετl ◦ . . . ◦ ετ1 ◦ εσ . Since ��εσ(ϕ)∈L, ��ε(ϕ)∈L. More-
over, since εσ, ετ1 , . . . , ετl are L-projective for ϕ, by Proposition 23, ε is L-projective

15Obviously, l=2Card(var(ϕ)).
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for ϕ. Since ϕ is not L-projective, ε(ϕ) 6∈L. Since L contains K5, by Proposition 4, let
(W,R) be a finite frame, V be a valuation on (W,R) and s∈W be such that (W,R)|=L,
(W,R) is generated from s and (W,R), V, s6|=ε(ϕ). Since��ε(ϕ)∈L and (W,R)|=L,
(W,R), V, s|=��ε(ϕ). Since (W,R), V, s6|=ε(ϕ), R 6=W ×W . Since L contains K5,
(W,R)|=L and (W,R) is generated from s, by Proposition 12, we have to consider the
following 2 cases.

Case “W={s} and R=∅”: By induction on ψ∈FORvar(ϕ), the reader may easily
verify that

• ϕ ∧��ϕ`Lψ ↔ ε(ψ).

Hence, ϕ∧��ϕ`Lϕ↔ ε(ϕ). Since (W,R)|=L and (W,R), V, s6|=ε(ϕ), (W,R), V, s
6|=ϕ. By induction on ψ∈FORvar(ϕ), the reader may easily verify that

• ¬ϕ ∨ ♦♦¬ϕ`Lσ(ψ)↔ εσ(ψ).

Thus, ¬ϕ∨♦♦¬ϕ`Lσ(ϕ)↔ εσ(ϕ). Since σ(ϕ)∈L, (W,R)|=L and (W,R), V, s6|=ϕ,
(W,R), V, s|=εσ(ϕ). Hence, by Proposition 5, (W,R), V εσ , s|=ϕ. By induction on
ψ∈FORvar(ϕ), the reader may easily verify that

• ϕ ∧��ϕ`Lψ ↔ ετ1(. . . ετl(εσ(ψ)) . . .).

Consequently, ϕ∧��ϕ`Lϕ↔ ετ1(. . . ετl(εσ(ϕ)) . . .). Since (W,R)|=L and (W,R),
V εσ , s|=ϕ, (W,R), V εσ , s|=ετ1(. . . ετl(εσ(ϕ)) . . .). Hence, by Proposition 5, (W,R),
V, s|=ε(ϕ): a contradiction.

Case “there existsA,B⊆W such thatA 6=∅,A⊆B, s6∈B,W={s}∪B andR=({s}×
A)∪(B×B)”: For all i≤l, let εi=ετi ◦. . .◦ετ1 ◦εσ . Thus, for all i≤l, if i=0 then εi=εσ
else εi=ετi ◦ εi−1. Since ��εσ(ϕ)∈L and (W,R)|=L, (W,R), V, s|=��εσ(ϕ). Con-
sequently, by Proposition 5, (W,R), V εσ , s|=��ϕ. Hence, (W,R), V εσ , s|=♦�ϕ.
Since ϕ has the small update property in L, (W,R)|=L and (W,R) is generated from s,
let V ′ be a variant of V εσ with respect to s and var(ϕ) such that (W,R), V ′, s|=♦�ϕ
→ ϕ. Since (W,R), V εσ , s|=♦�ϕ, let t∈A be such that (W,R), V εσ , t|=�ϕ. By
induction on ψ∈FORvar(ϕ), the reader may easily verify that

• for all u∈A, (W,R), V εσ , u|=ψ if and only if (W,R), V ′, u|=ψ.

Since t∈A and (W,R), V εσ , t|=�ϕ, (W,R), V ′, t|=�ϕ. Since t∈A, (W,R), V ′, s|=
♦�ϕ. Since (W,R), V ′, s|=♦�ϕ → ϕ, (W,R), V ′, s|=ϕ. Let j∈{1, . . . , l} be such
that for all x∈var(ϕ),

• if (W,R), V ′, s|=x then τj(x)=>,

• if (W,R), V ′, s6|=x then τj(x)=⊥.

Since (W,R), V, s6|=ε(ϕ), (W,R), V, s6|=εj−1(ετj (. . . ετl(εσ(ϕ)) . . .)). Thus, by Pro-
position 5, (W,R), V εj−1 , s6|=ετj (. . . ετl(εσ(ϕ)) . . .). By induction on ψ∈FORvar(ϕ),
the reader may easily verify that
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• ϕ ∧��ϕ`Lψ ↔ ετj (. . . ετl(εσ(ψ)) . . .).

Consequently, ϕ∧��ϕ`Lϕ↔ ετj (. . . ετl(εσ(ϕ)) . . .). Since (W,R)|=L and (W,R),
V εj−1 , s6|=ετj (. . . ετl(εσ(ϕ)) . . .), (W,R), V εj−1 , s6|=ϕ ∧ ��ϕ. By induction on i≤l,
the reader may easily verify that

• for all ψ∈FORvar(ϕ) and for all u∈B, (W,R), V εi , u|=ψ if and only if (W,R),
V εσ , u|=ψ.

By induction on ψ∈FORvar(ϕ), the reader may easily verify that

• (W,R), V εj , s|=ψ if and only if (W,R), V ′, s|=ψ.

Since (W,R), V ′, s|=♦�ϕ and (W,R), V ′, s|=ϕ, (W,R), V εj , s|=♦�ϕ and (W,R),
V εj , s|=ϕ. Since L contains K5 and (W,R)|=L, (W,R), V εj , s|=ϕ ∧ ��ϕ. By in-
duction on ψ∈FORvar(ϕ), the reader may easily verify that

• ϕ ∧��ϕ`Lψ ↔ ετj+1
(. . . ετl(εσ(ψ)) . . .).

Hence, ϕ∧��ϕ`Lϕ↔ ετj+1(. . . ετl(εσ(ϕ)) . . .). Since (W,R)|=L and (W,R), V εj ,
s|=ϕ ∧ ��ϕ, (W,R), V εj , s|=ετj+1(. . . ετl(εσ(ϕ)) . . .). Thus, by Proposition 5, (W,
R), V, s|=ε(ϕ): a contradiction. a

Proposition 28 If L contains K5 and L is global then for all L-unifiable ϕ∈FOR
and for all L-unifiers σ of ϕ, there exists ψ∈FORvar(ϕ) such that

1. σ(ψ)∈L,

2. ψ → ϕ∈K,

3. ψ is L-projective.

Proof: Suppose L contains K5 and L is global. Let ϕ∈FOR be L-unifiable and
(var(ϕ), X, σ) be an L-unifier of ϕ. Hence, σ(ϕ)∈L. Let Γvar(ϕ)(σ) be the set of all
sets of formulas of the form forvar(ϕ)((W,R), s, V σ) where (W,R) is a finite frame,
V is a valuation on (W,R) and s∈W are such that (W,R)|=L and (W,R) is generated
from s. Obviously, Γvar(ϕ)(σ) is a set of infinite subsets of FORvar(ϕ). Nevertheless,
since L contains K5, by Proposition 1, L is locally tabular and we will treat Γvar(ϕ)(σ)
as if it is a finite set of finite subsets of FORvar(ϕ). Indeed, knowing that for all finite
frames (W,R), for all valuations V on (W,R) and for all s∈W , if (W,R)|=L and
(W,R) is generated from s then forvar(ϕ)((W,R), s, V σ) also denotes the conjunction
of the formulas that forvar(ϕ)((W,R), s, V σ) contains, we will treat Γvar(ϕ)(σ) as if
it is a finite subset of FORvar(ϕ). Let ψ be the disjunction of all formulas in this finite
subset, that is to say ψ=

∨
{forvar(ϕ)((W,R), s, V σ) : (W,R) is a finite frame, V is a

valuation on (W,R) and s∈W are such that (W,R)|=L and (W,R) is generated from
s}. Obviously,

(∗) for all finite frames (W,R), for all valuations V on (W,R) and for all s∈W , if
(W,R)|=L and (W,R) is generated from s then (W,R), V σ, s|=ψ.
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(1) Suppose σ(ψ) 6∈L. Since L contains K5, by Proposition 4, let (W,R) be a finite
frame, V be a valuation on (W,R) and s∈W be such that (W,R)|=L, (W,R) is gene-
rated from s and (W,R), V, s6|=σ(ψ). Thus, by (∗), (W,R), V σ, s|=ψ. Consequently,
by Proposition 5, (W,R), V, s|=σ(ψ): a contradiction.

(2) Suppose ψ → ϕ6∈K. Hence, let (W ′, R′) be a frame, V ′ be a valuation on
(W ′, R′) and s′∈W ′ be such that (W ′, R′), V ′, s′|=ψ and (W ′, R′), V ′, s′ 6|=ϕ. Thus,
there exists a finite frame (W,R), there exists a valuation V on (W,R) and there ex-
ists s∈W such that (W,R)|=L and (W ′, R′), V ′, s′|=forvar(ϕ)((W,R), s, V σ). Since
(W ′, R′), V ′, s′ 6|=ϕ, (W,R), V σ, s6|=ϕ. Consequently, by Proposition 5, (W,R), V, s
6|=σ(ϕ). Since (W,R)|=L, σ(ϕ)6∈L: a contradiction.

(3) Suppose ψ is not L-projective. Since L contains K5, by Proposition 27, ψ has
not the small update property in L. Hence, let (W ′, R′) be a finite frame, V ′ be a
valuation on (W ′, R′) and s′∈W ′ be such that

• (W ′, R′)|=L,

• (W ′, R′) is generated from s′,

• for all variants V ′′ of V ′ with respect to s′ and var(ϕ), (W ′, R′), V ′′, s′ 6|=♦�ψ
→ ψ.

Obviously, V ′ is a variant of V ′ with respect to s′ and var(ϕ). Thus, (W ′, R′), V ′, s′ 6|=
♦�ψ → ψ. Consequently, (W ′, R′), V ′, s′|=♦�ψ and (W ′, R′), V ′, s′ 6|=ψ. Hence,
neitherR′=∅, norR′ = W ′×W ′. Since L contains K5, (W ′, R′)|=L and (W ′, R′) is
generated from s′, by Proposition 12, there exists A′, B′⊆W ′ such that A′ 6=∅, A′⊆B′,
s′ 6∈B′,W ′={s′}∪B′ andR′=({s′}×A′)∪(B′×B′). Since (W ′, R′), V ′, s′|=♦�ψ,
let t′∈A′ be such that (W ′, R′), V ′, t′|=�ψ. Thus, (W ′, R′), V ′, t′|=ψ. Consequently,
there exists a finite frame (W,R), there exists a valuation V on (W,R) and there exists
t∈W such that

• (W,R)|=L,

• (W,R) is generated from t,

• (W ′, R′), V ′, t′|=forvar(ϕ)((W,R), t, V σ).

Obviously, (B′, B′ × B′) is the subframe of (W ′, R′) generated from t′. Let V ′B′ be
the restriction of V ′B′ to B′. Since (W ′, R′), V ′, t′|=forvar(ϕ)((W,R), t, V σ), by [14,
Proposition 2.6], (B′, B′×B′), V ′B′ , t′|=forvar(ϕ)((W,R), t, V σ). Since (B′, B′×B′)
and (W,R) are finite, by [14, Theorem 2.24], let Z⊆B′×W be a bisimulation between
(B′, B′ ×B′) and (W,R) such that

• t′Zt,

• for all u′∈B′ and for all u∈W , if u′Zu then for all x∈var(ϕ), u′∈V ′B′(x) if and
only if u∈V σ(x).
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Hence, R 6=∅. Since L contains K5, (W,R)|=L and (W,R) is generated from t, by
Proposition 12, we have to consider the following 2 cases.

Case “R=W ×W”: Let A={u∈W : there exists u′∈A′ such that u′Zu} and B=W .
Obviously, A 6=∅ and A⊆B. Moreover, since (W,R)|=L, (B,B × B)|=L. Let (W1,
R1) be a finite frame, V1 be a valuation on (W1, R1) and s1∈W1 be such that s1 6∈B,
W1={s1}∪B, R1=({s1}×A)∪ (B×B) and for all x∈var(ϕ), V1(x)=V (x). Since
L is global and (B,B × B)|=L, (W1, R1)|=L. Thus, by (∗), (W1, R1), V σ1 , s1|=ψ.
Let V ′′ be a valuation on (W ′, R′) such that for all x∈var(ϕ), if s1∈V σ1 (x) then
V ′′(x)=V ′(x) ∪ {s′} else V ′′(x)=V ′(x) \ {s′}. Obviously, V ′′ is a variant of V ′

with respect to s′ and var(ϕ). Consequently, (W ′, R′), V ′′, s′ 6|=♦�ψ → ψ. Hence,
(W ′, R′), V ′′, s′ 6|=ψ By induction on χ∈FORvar(ϕ), the reader may easily verify that

• (W ′, R′), V ′′, s′|=χ if and only if (W1, R1), V σ1 , s1|=χ.

Since (W ′, R′), V ′′, s′ 6|=ψ, (W1, R1), V σ1 , s1 6|=ψ: a contradiction.

Case “there existsA,B⊆W such thatA 6=∅,A⊆B, t6∈B,W={t}∪B andR=({t}×
A) ∪ (B ×B)”: Hence, let t0∈A be such that t′Zt0. Let Z0 be the restriction of Z to
W ′×B and V0 be the restriction of V to B. Since (W,R)|=L, by [14, Theorem 3.14],
(B,B × B)|=L. Since Z⊆W ′ ×W is a bisimulation between (W ′, R′) and (W,R)
such that t′Zt0 and for all u′∈W ′ and for all u∈W , if u′Zu then for all x∈var(ϕ),
u′∈V ′(x) if and only if u∈V σ(x), Z0⊆W ′ × B is a bisimulation between (W ′, R′)
and (B,B × B) such that t′Z0t0 and for all u′∈W ′ and for all u∈B, if u′Z0u then
for all x∈var(ϕ), u′∈V ′0(x) if and only if u∈V σ0 (x). Then, proceed as in the case
“R=W ×W ”. a

6 Extensions of K5

Firstly, let us consider the extensions of K45.

Proposition 29 If L contains K45 then for all L-unifiable ϕ∈FOR, ϕ is L-projective.

Proof: This is a well-known result [27, Theorem 4.3]. Notice that an alternative proof
of it can be based on Propositions 16 and 27. a

Proposition 30 If L contains K45 then L has projective unification.

Proof: By Proposition 29. a

Secondly, let us consider the extensions of K5.

Proposition 31 If L contains K5 and L is global then for all L-unifiable ϕ∈FOR, ϕ
is of type 1.
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Proof: Suppose L contains K5 and L is global. Let ϕ∈FOR be L-unifiable. Let
σ be an L-unifier of ϕ. Since L contains K5 and L is global, by Proposition 28, let
ψσ∈FORvar(ϕ) be such that σ(ψσ)∈L, ψσ → ϕ∈K and ψσ is L-projective. Hence,
let εσ be an L-projective L-unifier of ψσ . Let Σ = {εσ : σ is an L-unifier of ϕ}. By
Propositions 24 and 28, Σ is a complete set of L-unifiers of ϕ. Let Σ′ be the set of
substitutions obtained from Σ by keeping only one representative of each equivalence
class modulo 'L. Since Σ is a complete set of L-unifiers of ϕ, Σ′ is a complete set
of L-unifiers of ϕ. Moreover, since L is locally tabular, by Proposition 3, Σ′ is finite.
Thus, ϕ is either of type 1, or of type ω. Since L contains K5, by Propositions 18
and 20, ϕ is of type 1. a

Proposition 32 If L contains K5 and L is global then L is of type 1.

Proof: By Proposition 31. a

By Propositions 10, 11 and 14, it follows that there exists countably many extensions of
K5 of type 1: the modal logics K5⊕χ1

l and KD5⊕χ1
l for each positive integer l≥2 —

which by Proposition 10, do not contain K4. We leave open the question whether for
all positive integers l≥2, the modal logics K5⊕χ2

l and KD5⊕χ2
l — which by Propo-

sition 10, do not contain K4 either — are of unification type 1 too.

7 Conclusion
In this paper, we have proved that K5, KD5 and some of their extensions — the modal
logics K5⊕χ1

l and KD5⊕χ1
l for each positive integer l≥2 — which do not contain

K4 are of unification type 1. We have also seen that if a logic has projective unification
then it is of unification type 1. However, the converse is not true, seeing that there exists
non-projective logics — for instance, De Morgan intermediate logic — of unification
type 1 [20, Theorem 3 and Example 2]. Hence, the question remains unsettled whether
K5, KD5 and the modal logics K5⊕χ1

l and KD5⊕χ1
l for each positive integer l≥2

have projective unification.

Recently, Balbiani et al. [10, 11] have proved that for all positive integers d≥2, the
modal logic Alt1 ⊕ �d⊥ is of unification type 1 and the modal logic K ⊕ �d⊥ is
of unification type ω16. K5, KD5, the modal logics K5⊕χ1

l and KD5⊕χ1
l for each

positive integer l≥2 and the modal logics Alt1 ⊕ �d⊥ and K ⊕ �d⊥ for each posi-
tive integer d≥2 are locally tabular. Since there exists no known example of a locally
tabular logic either of unification type∞, or of unification type 0, our result immedi-
ately gives rise to the question whether every locally tabular modal logic is either of
unification type 1, or of unification type ω.

16See also [2, 3] for variants of this result in the context of the description logics FL0 and EL.
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[7] BALBIANI, P., and Ç. GENCER, ‘KD is nullary’, Journal of Applied Non-
Classical Logics 27 (2017) 196–205.
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[9] BALBIANI, P., and Ç. GENCER, ‘About the unification type of modal logics bet-
ween KB and KTB’, Studia Logica 108 (2020) 941–966.

22
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