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Abstract
The unification problem in a propositional logic is to determine, given a formula ϕ, whether there

exists a substitution σ such that σ(ϕ) is in that logic. In that case, σ is a unifier of ϕ. When a unifiable
formula has minimal complete sets of unifiers, it is either infinitary, finitary, or unitary, depending on
the cardinality of its minimal complete sets of unifiers. Otherwise, it is nullary. In this paper, we
prove that in modal logic K+��⊥, unifiable formulas are either finitary, or unitary.
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1 Introduction
The unification problem in a propositional logic is to determine, given a formula ϕ, whether there exists
a substitution σ such that σ(ϕ) is in that logic. In that case, σ is a unifier of ϕ. We say that a set of
unifiers of a unifiable formula ϕ is complete if for all unifiers σ of ϕ, there exists a unifier τ of ϕ in that
set such that τ is more general than σ1. Now, an important question is to determine whether a given
unifiable formula has minimal complete sets of unifiers [1]. When such sets exist, they all have the
same cardinality. In that case, a unifiable formula is either infinitary, or finitary, or unitary, depending
whether its complete sets of unifiers are either infinite, or finite, or with cardinality 1. Otherwise, the
formula is nullary. The importance of the unification problem lies in its connection with the admissibi-
lity problem. In a consistent propositional logic L, unification is reducible to non-admissibility, seeing
that the unifiability in L of a formula ϕ is equivalent to the non-admissibility in L of the inference rule
ϕ
⊥ . As observed by Ghilardi [15], when L has a decidable membership problem and L is either unitary,
or finitary, algorithms for computing minimal complete sets of unifiers in L can be used as a key com-
ponent of algorithms for solving the admissibility problem in L, seeing that the admissibility in L of
an inference rule ϕ1,...,ϕp

ψ is equivalent to the inclusion in L of the set {σ(ψ) : σ∈Σ}, where Σ is an
arbitrary minimal complete set of unifiers of ϕ1 ∧ . . . ∧ ϕp in L.

Within the context of the unification problem in a propositional logic, we distinguish between ele-
mentary unification and unification with constants. In unification with constants, some variables (called
constants) are never replaced by formulas when one applies a substitution whereas in elementary unifi-
cation, all variables are likely to be replaced. About the unification type of modal logics2, it is known

∗Corresponding author: Philippe Balbiani. E-mail address: philippe.balbiani@irit.fr.
1A substitution σ is more general than a substitution τ in a propositional logic if there exists a substitution υ such that for all

variables x, υ(σ(x))↔ τ(x) is in that logic.
2In this paper, all modal logics are normal. We follow the same conventions as in [9, 10, 23] for talking about them: S5 is

the least modal logic containing the formulas usually denoted T, 4 and 5, KD is the least modal logic containing the formula
usually denoted D, etc.
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that KT, KD and KB are nullary [2, 3, 5], KD45 and K45 are unitary [4, 8, 17, 20], Alt1 + �d⊥
(the least modal logic containing Alt1 and �d⊥) is unitary for each d≥2 [6], S5 and S4.3 are uni-
tary [11, 12, 13], transitive modal logics like K4 and S4 are finitary [15, 19], K is nullary [21] and
K4D1 (the least modal logic containing K4 and �(�x → y) ∨ �(�y → x)) is unitary [22], the type
of KT, KD and KB having only been obtained within the context of unification with constants and
the type of Alt1 +�d⊥ having only been obtained within the context of elementary unification. About
the unification type of Alt1 and its extensions, the line of reasoning determining in [3, 5] the unification
type (nullary) of KD within the context of unification with constants can be adapted to Alt1 + ♦>
whereas the line of reasoning determining in [21] the unification type (nullary) of K has been adapted
to Alt1 [7]. In this paper, within the context of elementary unification, we prove that in K+��⊥ (the
least modal logic containing ��⊥), unifiable formulas are either finitary, or unitary3.

2 A preliminary result
Let S be a finite set. We write ‖S‖ for the cardinality of S. If S is nonempty then for all equivalence
relations ∼ on S, for all α∈S, [α] denotes the equivalence class of α modulo ∼ and for all T⊆S, T/∼
denotes the quotient set of T modulo ∼. Our first result, Proposition 1, is used later in Section 6. Its
proof is presented in an Annex along with the proofs of all other results asserted in this paper.

Proposition 1. Let T be a finite set. If S is nonempty then for all equivalence relations ∼ on S,
‖S/∼‖≤‖T‖≤‖S‖ iff there exists a surjective function f from S to T such that for all α, β∈S, if
f(α)=f(β) then α∼β.

3 Syntax
Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc). Let
(x1, x2, . . .) be an enumeration of VAR without repetitions. Let n≥1. The set FORn of all n-formulas
(with typical members denoted ϕ, ψ, etc) is inductively defined by:

• ϕ,ψ ::= xi | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ.

We adopt the standard rules for omission of the parentheses. The connectives >, ∧, → and ↔ are
defined by the usual abbreviations. We have also a connective ♦ which is defined by

• ♦ϕ ::= ¬�¬ϕ.

For all ϕ∈FORn, we respectively write “ϕ0” and “ϕ1” to mean “¬ϕ” and “ϕ”. An n-substitution is a
couple (k, σ) where k≥1 and σ is a homomorphism from FORn to FORk. Let SUBn be the set of
all n-substitutions. From now on,

we write “L2” to mean “K +��⊥”.

The standard axiomatization of L2 consists of the following axioms and rules of proof:

• all propositional tautologies,

• �(xi → xj)→ (�xi → �xj),

• ��⊥,

3From now on, “. . . iff . . .” means “. . . if and only if . . .” and “. . . not-iff . . .” means “. . . if and only if not . . .”.
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• modus ponens,

• uniform substitution,

• generalization: given ϕ, prove �ϕ.

As is well-known, L2 is the modal logic of directed graphs where there is no path of length 3. The
generated subgraphs of such directed graphs are therefore tree-like Kripke frames of depth at most 1.
They constitute the semantic basis of L2 — tree-like Kripke models of depth at most 1 — developed in
Section 4. In the meantime, let us consider the equivalence relation ≡n on FORn defined by:

• ϕ≡nψ iff ϕ↔ ψ∈L2.

Proposition 2. ≡n possesses finitely many equivalence classes.

In other words, L2 is locally tabular. Locally tabular modal logics possess interesting properties. In
particular, in terms of decidability [24, 25, 26]. See also [10, Chapter 12] and [14]. The equivalence
relation 'n on SUBn is defined by:

• (k, σ)'n(l, τ) iff for all i∈{1, . . . , n}, σ(xi)↔ τ(xi)∈L2.

The preorder 4n on SUBn is defined by:

• (k, σ)4n(l, τ) iff there exists a k-substitution (m,υ) such that for all i∈{1, . . . , n}, υ(σ(xi))↔
τ(xi)∈L2.

4 Semantics
Let n≥1. An n-tuple of bits (denoted α, β, etc) is a function from {1, . . . , n} to {0, 1}. Such function
should be understood as a propositional valuation of the variables x1, . . . , xn: for all i∈{1, . . . , n}, if
αi=0 then it is interpreted to mean “xi is false” else it is interpreted to mean “xi is true”. Let BITn

be the set of all n-tuples of bits. An n-model is a structure of the form (α, S) where α∈BITn and
S⊆BITn. Such structure should be understood as a tree-like Kripke model of depth at most 1: α is the
valuation of its root node and S is the set of the valuations of its non-root nodes. Let MODn be the set
of all n-models. We say that an n-model (α, S) is degenerated if S=∅. Let MODdeg

n be the set of all
degenerated n-models. Notice that ‖MODdeg

n ‖=2n. Notice also that for all sets S of n-tuples of bits,
S × {∅} is a set of degenerated n-models. The binary relation |=n of n-satisfiability between MODn

and FORn is defined as expected:

• (α, S)|=nxi iff αi=1,

• (α, S) 6|=n⊥,

• (α, S)|=n¬ϕ iff (α, S)6|=nϕ,

• (α, S)|=nϕ ∨ ψ iff either (α, S)|=nϕ, or (α, S)|=nψ,

• (α, S)|=n�ϕ iff for all β∈S, (β, ∅)|=nϕ.

As a result,

• (α, S)|=n♦ϕ iff there exists β∈S such that (β, ∅)|=nϕ.

3



About the unification type of K+ ��⊥ P. Balbiani, Ç. Gencer, M. Rostamigiv, T. Tinchev

Obviously, for all α∈BITn and for all ϕ∈FORn, (α, ∅)|=n�ϕ and (α, ∅)6|=n♦ϕ. We say that
ϕ∈FORn is n-valid if for all (α, S)∈MODn, (α, S)|=nϕ. The soundness and the completeness of
L2 with respect to this concept of validity is well-known. This is what Proposition 3 is about.

Proposition 3. For all ϕ∈FORn, ϕ∈L2 iff ϕ is n-valid.

For all α∈BITn, the n-formula

• x̄α=
∧
{xαi

i : i∈{1, . . . , n}}

exactly characterizes the propositional valuation of the variables x1, . . . , xn represented by α. This is
what Proposition 4 is about.

Proposition 4. For all (α, S)∈MODn and for all β∈BITn, α=β iff (α, S)|=nx̄
β .

For all (α, S)∈MODn, the n-formula

• forn(α, S)=x̄α ∧�
∨
{x̄γ : γ∈S} ∧

∧
{♦x̄γ : γ∈S}

exactly characterizes the tree-like Kripke model of depth at most 1 represented by (α, S). This is what
Proposition 5 is about.

Proposition 5. For all (α, S), (β, T )∈MODn, (α, S)=(β, T ) iff (α, S)|=nforn(β, T ).

As we know, an n-substitution (k, σ) is a homomorphism from FORn to FORk. Taking into
account the duality between n-formulas and n-models, Propositions 6 and 7 tell us how to associate a
function g(k,σ) from MODk to MODn to any n-substitution (k, σ).

Proposition 6. Let (k, σ)∈SUBn. For all (α, S)∈MODk, there exists (β, T )∈MODn such that
(α, S)|=kσ(forn(β, T )).

Proposition 7. Let (k, σ)∈SUBn. Let (α, S)∈MODk. For all (β, T ), (γ, U)∈MODn, if (α, S)|=kσ(forn(β, T ))
and (α, S)|=kσ(forn(γ, U)) then (β, T )=(γ, U).

For all (k, σ)∈SUBn, let g(k,σ) be the function from MODk to MODn such that for all
(α, S)∈MODk,

• g(k,σ)(α, S) is the (β, T )∈MODn such that (α, S)|=kσ(forn(β, T )).

For all (k, σ)∈SUBn, notice that by Propositions 6 and 7, g(k,σ) is well-defined. Moreover, for all
(k, σ)∈SUBn, for all (α, S)∈MODk and for all (β, T )∈MODn, if g(k,σ)(α, S)=(β, T ) then

• for all γ∈S, there exists δ∈T such that g(k,σ)(γ, ∅)=(δ, ∅),

• for all δ∈T , there exists γ∈S such that g(k,σ)(γ, ∅)=(δ, ∅).

See Proposition 8 below. Obviously, the above conditions are very similar to the forward condition and
backward condition of bounded morphisms usually considered in modal logic [9, Definition 2.10]. This
motivates the following definition. For all k≥1, a (k, n)-morphism is a function f from MODk to
MODn such that for all (α, S)∈MODk and for all (β, T )∈MODn, if f(α, S)=(β, T ) then

• for all γ∈S, there exists δ∈T such that f(γ, ∅)=(δ, ∅),

• for all δ∈T , there exists γ∈S such that f(γ, ∅)=(δ, ∅).

Proposition 8. For all (k, σ)∈SUBn, g(k,σ) is a (k, n)-morphism.
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However, the morphisms described here should not be mistaken for the bounded morphisms. In particu-
lar, in the above definition, there is no condition related to the propositional valuations of the variables.
For all (k, σ)∈SUBn, the best we can say about the propositional valuations of the variables concerns
g(k,σ) and is contained in the following result.

Proposition 9. For all (k, σ)∈SUBn and for all (α, S), (β, T )∈MODk, if g(k,σ)(α, S)=g(k,σ)(β, T )
then for all i∈{1, . . . , n}, (α, S)|=kσ(xi) iff (β, T )|=kσ(xi).

Nevertheless, it is not particularly surprising that we have the following results.

Proposition 10. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and (γ, U)∈MODn. If
f(β, T )=(γ, U) then the image by f of T × {∅} is equal to U × {∅}. Moreover, T=∅ iff U=∅.

Proposition 11. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MODk and (γ, U)∈MODn. If
the following conditions hold then f(β, T )=(γ, U):

• f(β, T )|=nx̄
γ ,

• for all δ∈T , there exists ε∈U such that f(δ, ∅)=(ε, ∅),

• for all ε∈U , there exists δ∈T such that f(δ, ∅)=(ε, ∅).

5 Unification
Let n≥1. An n-unifier of ϕ∈FORn is an n-substitution (k, σ) such that σ(ϕ)∈L2. We say that
ϕ∈FORn is n-unifiable if there exists an n-unifier of ϕ. We say that a set Σ of n-unifiers of an
n-unifiable ϕ∈FORn is n-complete if for all n-unifiers (k, σ) of ϕ, there exists (l, τ)∈Σ such that
(l, τ)4n(k, σ). We say that an n-complete set Σ of n-unifiers of an n-unifiable ϕ∈FORn is minimal if
for all n-complete sets ∆ of n-unifiers of ϕ, if ∆⊆Σ then ∆=Σ. As is well-known, for all ϕ∈FORn,
if ϕ is n-unifiable then for all minimal n-complete sets Σ,∆ of n-unifiers of ϕ, Σ and ∆ have the same
cardinality. Then, an important question is the following: when ϕ∈FORn is n-unifiable, is there a
minimal n-complete set of n-unifiers of ϕ? When the answer is “yes”, how large is this set? For all
n-unifiable ϕ∈FORn, we say that:

• ϕ is n-nullary if there exists no minimal complete set of unifiers of ϕ,

• ϕ is n-infinitary if there exists a minimal complete set of unifiers of ϕ with infinite cardinality,

• ϕ is n-finitary if there exists a minimal complete set of unifiers of ϕ with finite cardinality ≥2,

• ϕ is n-unitary if there exists a minimal complete set of unifiers of ϕ with cardinality 1.

Obviously, considered as an n-formula, ♦x1 → �x1 is n-unifiable. Indeed, let (n, υ⊥) and (n, υ>) be
the n-substitutions defined by:

• υ⊥(x1)=⊥ and υ>(x1)=>,

• for all i∈{2, . . . , n}, υ⊥(xi)=xi and υ>(xi)=xi.

Obviously, υ⊥(♦x1 → �x1)∈L2 and υ>(♦x1 → �x1)∈L2. Hence, (n, υ⊥) and (n, υ>) are n-unifiers
of ♦x1 → �x1. Moreover,

Proposition 12. The n-unifiable n-formula ♦x1 → �x1 is n-finitary.
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For all n-unifiable ϕ∈FORn and for all π≥1, we say that ϕ is n-π-reasonable if for all n-unifiers
(k, σ) of ϕ, if k≥π then there exists an n-unifier (l, τ) of ϕ such that (l, τ)4n(k, σ) and l≤π. The idea
behind the concept of reasonableness is simple: a unifiable formula is reasonable when a bounded set
of variables suffices to express the set of all its unifiers. Since L2 is locally tabular, it is not particularly
surprising that we have the following result.

Proposition 13. Let ϕ∈FORn be n-unifiable and π≥1. If ϕ is n-π-reasonable then ϕ is either n-
finitary, or n-unitary.

As a result, in order to prove that n-unifiable n-formulas are either n-finitary, or n-unitary, it suffices
to prove that n-unifiable n-formulas are n-n-reasonable. This is what Proposition 14 asserts below.

6 Main result
Let n≥1. Our aim is now to prove that n-unifiable n-formulas do not require more variables than
the variables x1, . . ., xn in order to express their unifiers. Let ϕ∈FORn. Suppose ϕ is n-unifiable.
Let (k, σ) be an n-unifier of ϕ such that k≥n. To achieve our aim, it suffices to construct an n-
unifier (n, τ) of ϕ such that (n, τ)4n(k, σ). The construction of (n, τ) is based on the definition
of a surjective (k, n)-morphism f such that for all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then
g(k,σ)(α, S)=g(k,σ)(β, T ). See Lemmas 4, 5 and 6 below. The argument leading to the definition of f
is based on a sequence of combinatorial facts which proofs require twice the use of Proposition 1. See
Lemmas 1, 2 and 3 below. Now, let us start. Let ∼k be the equivalence relation on MODk defined by:

• (α, S)∼k(β, T ) iff g(k,σ)(α, S)=g(k,σ)(β, T ).

Lemma 1. 1. ‖MODdeg
k /∼k‖≤‖MODdeg

n ‖,

2. ‖MODdeg
n ‖≤‖MOD

deg
k ‖.

Hence, by Proposition 1 and Lemma 1, there exists a surjective function fdeg from MODdeg
k to

MODdeg
n such that for all (α, ∅), (β, ∅)∈MODdeg

k , if fdeg(α, ∅)=fdeg(β, ∅) then (α, ∅)∼k(β, ∅).

Lemma 2. For all nonempty sets S, T of k-tuples of bits, if the images by fdeg of S ×{∅} and T ×{∅}
are equal then the images by g(k,σ) of S × {∅} and T × {∅} are equal.

For all nonempty sets E of n-tuples of bits, let

• f◦(E) be the set of all (α, S)∈MODk \MODdeg
k such that the image by fdeg of S × {∅} is

equal to E × {∅},

• f•(E) be the set of all (α, S)∈MODn \MODdeg
n such that S=E.

Notice that for all nonempty sets E of n-tuples of bits, since fdeg is surjective, ‖f◦(E)‖≥2k. Notice
also that for all nonempty sets E of n-tuples of bits, ‖f•(E)‖=2n.

Lemma 3. For all nonempty sets E of n-tuples of bits,

1. ‖f◦(E)/∼k‖≤‖f•(E)‖,

2. ‖f•(E)‖≤‖f◦(E)‖.

Thus, for all nonempty sets E of n-tuples of bits, by Proposition 1 and Lemma 3, there ex-
ists a surjective function fE from f◦(E) to f•(E) such that for all (α, S), (β, T )∈f◦(E), if
fE(α, S)=fE(β, T ) then (α, S)∼k(β, T ). Let f be the function from MODk to MODn such that
for all (α, ∅)∈MODdeg

k ,

6
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• f(α, ∅)=fdeg(α, ∅)

and for all (α, S)∈MODk \MODdeg
k ,E being the nonempty set of n-tuples of bits such that the image

by fdeg of S × {∅} is equal to E × {∅},

• f(α, S)=fE(α, S).

Lemma 4. f is surjective.

Lemma 5. f is a (k, n)-morphism.

Lemma 6. For all (α, S), (β, T )∈MODk, if f(α, S)=f(β, T ) then g(k,σ)(α, S)=g(k,σ)(β, T ).

The reader is invited to notice how Proposition 1 has been used — twice — in the argument leading to
the definition of f . Let (n, τ), (k, ν) be the n-substitutions defined by:

• τ(xi)=
∨
{forn(f(α, S)) : (α, S)∈MODk is such that (α, S)|=kσ(xi)} where i∈{1, . . . , n},

• ν(xi)=
∨
{fork(α, S) : (α, S)∈MODk is such that f(α, S)|=nxi} where i∈{1, . . . , n}.

In Lemmas 7–10 below, we prove interesting properties of these n-substitutions: Lemma 7 is used for
showing that (n, τ) is an n-unifier of ϕ, Lemma 8 is used in the proof of Lemma 9, Lemma 9 is used in
the proof of Lemma 10 and Lemma 10 is used for showing that (n, τ)4n(k, σ).

Lemma 7. Let ψ∈FORn. For all (β, T )∈MODn, the following conditions are equivalent: (i) there
exists (α, S)∈MODk such that f(α, S)=(β, T ) and (α, S)|=kσ(ψ); (ii) for all (α, S)∈MODk, if
f(α, S)=(β, T ) then (α, S)|=kσ(ψ); (iii) (β, T )|=nτ(ψ).

Lemma 8. For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(xi) iff f(β, T )|=nxi.

Lemma 9. For all (β, T )∈MODk and for all (γ, U)∈MODn, f(β, T )=(γ, U) iff (β, T )|=kν(forn(γ, U)).

Lemma 10. For all (β, T )∈MODk and for all i∈{1, . . . , n}, (β, T )|=kν(τ(xi)) iff (β, T )|=kσ(xi).

Since (k, σ) is an n-unifier of ϕ, σ(ϕ)∈L2. Thus, by Proposition 3, σ(ϕ) is k-valid, i.e. for all
(α, S)∈MODk, (α, S)|=kσ(ϕ). Consequently, by Lemma 7, for all (β, T )∈MODn, (β, T )|=nτ(ϕ),
i.e. τ(ϕ) is n-valid. Hence, by Proposition 3, τ(ϕ)∈L2. Thus, (n, τ) is an n-unifier of ϕ. Since by
Lemma 10, (n, τ)4n(k, σ), ϕ is n-n-reasonable. Since ϕ∈FORn is arbitrary, this proves the following
result.

Proposition 14. For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is n-n-reasonable.

Propositions 13 and 14, lead us to the following result.

Theorem 1. For all ϕ∈FORn, if ϕ is n-unifiable then ϕ is either n-finitary, or n-unitary.

In the light of Proposition 12 and Theorem 1, we therefore conclude that L2 is finitary.

7 Conclusion
In this paper, within the context of elementary unification, we have proved Theorem 1 asserting that in
L2, unifiable formulas are either finitary, or unitary. We believe that in the line of reasoning leading
to Theorem 1, the main properties of L2 are the ones given in Propositions 2, 6 and 7. Proposition 2
says that L2 is locally tabular — it is used in the proof of Proposition 13. For all n≥1, Propositions 6
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and 7 tell us how to associate a function g(k,σ) from MODk to MODn to any n-substitution (k, σ) —
they are used in the proof of Proposition 14. Notice that Theorem 1 is an immediate consequence of
Propositions 13 and 14. However, since L2 is locally tabular, the reader may think that the line of rea-
soning leading to Theorem 1 is unnecessarily complicated. In other respect, since the unification type
is a categorical invariant, the reader may think that it is possible to directly work in the category of all
finite models of L2. Indeed, the categorical approach to the unification problem in propositional logic is
powerful [16]. Nevertheless, the fact that the question of the unification type of L2 has not been solved
before indicates that things may not be so simple.

Here are open questions: (i) determine the unification type of the locally tabular modal logic
K + �d⊥ for each d≥3, (ii) determine the unification types of the locally tabular modal logics stu-
died in [24, 25, 26], (iii) determine the unification types of the modal logics KB, KD and KT. We
conjecture that the modal logics mentioned in (i) and (ii) are either finitary, or unitary for elementary
unification. As for the modal logics considered in (iii), it is only known that KD and KT are not
unitary within the context of elementary unification and KB, KD and KT are nullary within the con-
text of unification with parameters [2, 3, 5]. We conjecture that the modal logics mentioned in (iii) are
finitary within the context of elementary unification. And of course there is also the open question of the
decidability of the unification problem in the modal logics considered in (i), (ii) and (iii). When the
modal logics mentioned in (i) and (ii) are decidable, their local tabularity will probably imply the de-
cidability of their unification problem. Concerning the modal logics considered in (iii), the decidability
of their unification problem remains a mystery within the context of unification with parameters4.
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[4] BALBIANI, P., and Ç. GENCER, ‘Unification in epistemic logics’, Journal of Applied Non-Classical Logics 27

(2017) 91–105.
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[20] JER̆ÁBEK, E., ‘Logics with directed unification’, In: Algebra and Coalgebra meet Proof Theory, Workshop at

Utrecht University (2013).
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Annex
Proof of Proposition 1: Suppose S is nonempty. Let ∼ be an equivalence relation on S.

Suppose ‖S/∼‖≤‖T‖≤‖S‖. Let h be a function from S/∼ to S such that for all α∈S, h([α])∈[α],
i.e. h is a function selecting an element in each equivalence class modulo ∼5. Obviously, h is injective.
Let S0={h([α]) : α∈S}. Since h is injective, ‖S/∼‖=‖S0‖. Since ‖S/∼‖≤‖T‖, ‖S0‖≤‖T‖. Let
T0 be a subset of T such that ‖T0‖=‖S0‖. Let f0 be a one-to-one correspondence between S0 and
T0. Let T1=T\T0. Notice that T0 and T1 make a partition of T . Since ‖T‖≤‖S‖ and ‖T0‖=‖S0‖,
‖T1‖≤‖S\S0‖. Let S1 be a subset of S\S0 such that ‖S1‖=‖T1‖. Let f1 be a one-to-one correspon-
dence between S1 and T1. Let S2=(S\S0)\S1. Let f2 be the function from S2 to T such that for

5Since S is finite, the proof of the existence of ∼ does not require the use of the axiom of choice.
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all α∈S2, f2(α)=f0(h([α])). Let f be the function from S to T defined by f |S0=f0, f |S1=f1 and
f |S2=f2.

Claim. f is surjective.

Proof. Let β∈T . We consider the following cases.

Case β∈T0. Since f0 is one-to-one, let α∈S0 be such that f0(α)=β. Thus, α∈S. Moreover,
f(α)=f0(α). Since f0(α)=β, f(α)=β.

Case β∈T1. Since f1 is one-to-one, let α∈S1 be such that f1(α)=β. Hence, α∈S. Moreover,
f(α)=f1(α). Since f1(α)=β, f(α)=β.

Claim. For all α, β∈S, if f(α)=f(β) then α∼β.

Proof. Let α, β∈S be such that f(α)=f(β). We consider the following cases.

Case α∈S0 and β∈S0. Consequently, f(α)=f0(α) and f(β)=f0(β). Since f(α)=f(β), f0(α)=f0(β).
Since f0 is one-to-one, α=β. Thus, α∼β.

Case α∈S0 and β∈S1. Consequently, f(α)=f0(α) and f(β)=f1(β). Since f(α)=f(β), f0(α)=f1(β).
Since f0(α)∈T0 and f1(β)∈T1, T0 and T1 do not make a partition of T : a contradiction.

Case α∈S0 and β∈S2. Hence, f(α)=f0(α) and f(β)=f2(β). Since f(α)=f(β), f0(α)=f2(β). Thus,
f0(α)=f0(h([β])). Since f0 is one-to-one, α=h([β]). Since h([β])∈[β], α∈[β]. Consequently, α∼β.

Case α∈S1 and β∈S1. Hence, f(α)=f1(α) and f(β)=f1(β). Since f(α)=f(β), f1(α)=f1(β). Since
f1 is one-to-one, α=β. Thus, α∼β.

Case α∈S1 and β∈S2. Hence, f(α)=f1(α) and f(β)=f2(β). Since f(α)=f(β), f1(α)=f2(β). Thus,
f1(α)=f0(h([β])). Since f1(α)∈T1 and f0(h([β]))∈T0, T0 and T1 do not make a partition of T : a
contradiction.

Case α∈S2 and β∈S2. Hence, f(α)=f2(α) and f(β)=f2(β). Since f(α)=f(β), f2(α)=f2(β).
Consequently, f0(h([α]))=f0(h([β])). Since f0 is one-to-one, h([α])=h([β]). Since h([α])∈[α] and
h([β])∈[β], [α] ∩ [β]6=∅. Thus, α∼β.

Suppose f is a surjective function from S to T such that for all α, β∈S, if f(α)=f(β) then α∼β.
For the sake of the contradiction, suppose either ‖S/∼‖>‖T‖, or ‖T‖>‖S‖. Since f is surjective,
‖T‖≤‖S‖. Since either ‖S/∼‖>‖T‖, or ‖T‖>‖S‖, ‖S/∼‖>‖T‖. Let p∈N and β1, . . . , βp∈S be
such that p>‖T‖ and for all q, r∈N, if 1≤q, r≤p and q 6=r then βq 6∼βr. Hence, for all q, r∈N, if
1≤q, r≤p and q 6=r then f(βq)6=f(βr). Thus, p≤‖T‖: a contradiction.

Proof of Proposition 2: From [9, Proposition 2.29] and from the fact that for all ϕ∈FORn, there
exists ψ∈FORn such that degn(ψ)<2 and ϕ↔ ψ∈L2.

Proof of Proposition 3: From [9, Proposition 2.6], from [9, Lemma 4.21] and from the fact that for
all maximal consistent sets w of n-formulas, there exists (α, S)∈MODn such that the submodel of the
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canonical model of L2 generated by w is isomorphic to (α, S).

Proof of Proposition 4: Let (α, S)∈MODn and β∈BITn. For the sake of the contradiction, sup-
pose α=β not-iff (α, S)|=nx̄

β . Hence, either α=β and (α, S)6|=nx̄
β , or α 6=β and (α, S)|=nx̄

β . In
the former case, for all i∈{1, . . . , n}, αi=βi. Thus, for all i∈{1, . . . , n}, (α, S)|=nx

βi

i . Conse-
quently, (α, S)|=nx̄

β : a contradiction. In the latter case, let i∈{1, . . . , n} be such that αi 6=βi. Hence,
(α, S) 6|=nx

βi

i . Thus, (α, S)6|=nx̄
β : a contradiction.

Proof of Proposition 5: From [18, Theorem 32], from the fact that for all (α, S)∈MODn, forn(α, S)
characterizes n-models modulo bisimulation and from the fact that for all (α, S), (β, T )∈MODn, if
(α, S) and (β, T ) are bisimilar then (α, S)=(β, T ).

Proof of Proposition 6: Let (α, S)∈MODk. Let β be the n-tuple of bits such that for all i∈{1, . . . , n},
if (α, S)6|=kσ(xi) then βi=0 else βi=1. Let T be the least set of n-tuples of bits such that for all γ∈S,
there exists δ∈T such that for all i∈{1, . . . , n}, if (γ, ∅) 6|=kσ(xi) then δi=0 else δi=1. By induction
on ϕ∈FORn, the reader may easily verify that (α, S)|=kσ(ϕ) iff (β, T )|=nϕ. Since by Proposition 5,
(β, T )|=nforn(β, T ), (α, S)|=kσ(forn(β, T )).

Proof of Proposition 7: Let (β, T ), (γ, U)∈MODn. Suppose (α, S)|=kσ(forn(β, T )) and (α, S)|=kσ(forn(γ, U)).
Hence, (α, S)|=kσ(x̄β) and (α, S)|=kσ(x̄γ). Thus, β=γ. Let β′∈T be arbitrary. Since (α, S)|=kσ(forn(β, T )),
let α′∈S be such that (α′, ∅)|=kσ(x̄β

′
). Since (α, S)|=kσ(forn(γ, U)), let γ′∈U be such that

(α′, ∅)|=kσ(x̄γ
′
). Since (α′, ∅)|=kσ(x̄β

′
), β′=γ′. Consequently, β′∈U . Since β′ is arbitrary, T⊆U .

Reciprocally, the reader may easily verify that U⊆T . Hence, T=U . Since β=γ, (β, T )=(γ, U).

Proof of Proposition 8: Let (k, σ)∈SUBn. For the sake of the contradiction, suppose g(k,σ) is not a
(k, n)-morphism. Hence, let (α, S)∈MODk and (β, T )∈MODn be such that g(k,σ)(α, S)=(β, T ) —
and therefore (α, S)|=kσ(forn(β, T )) — and either there exists γ∈S such that for all δ∈T , g(k,σ)(γ, ∅)6=(δ, ∅),
or there exists δ∈T such that for all γ∈S, g(k,σ)(γ, ∅) 6=(δ, ∅). In the former case, let δ′∈T be such that
(γ, ∅)|=kσ(x̄δ

′
). Thus, g(k,σ)(γ, ∅)6=(δ′, ∅). Since (γ, ∅)|=kσ(x̄δ

′
), g(k,σ)(γ, ∅)=(δ′, ∅): a contradic-

tion. In the latter case, let γ′∈S be such that (γ′, ∅)|=kσ(x̄δ). Consequently, g(k,σ)(γ′, ∅) 6=(δ, ∅). Since
(γ′, ∅)|=kσ(x̄δ), g(k,σ)(γ′, ∅)=(δ, ∅): a contradiction.

Proof of Proposition 9: Let (k, σ)∈SUBn and (α, S), (β, T )∈MODk. Suppose g(k,σ)(α, S)=g(k,σ)(β, T ).
Hence, let (γ, U)∈MODn be such that g(k,σ)(α, S)=(γ, U) and g(k,σ)(β, T )=(γ, U). Thus, (α, S)|=kσ(forn(γ, U))
and (β, T )|=kσ(forn(γ, U)). Consequently, (α, S)|=kσ(x̄γ) and (β, T )|=kσ(x̄γ). Hence, for all
i∈{1, . . . , n}, (α, S)|=kσ(xi) iff (β, T )|=kσ(xi).

Proof of Proposition 10: For the sake of the contradiction, suppose f(β, T )=(γ, U) and the image
by f of T × {∅} is not equal to U × {∅}. Hence, either the image by f of T × {∅} is not included
in U × {∅}, or the image by f of T × {∅} does not include to U × {∅}. In the former case, let
δ∈T be such that f(δ, ∅) 6∈U × {∅}. Since f is a (k, n)-morphism and f(β, T )=(γ, U), let ε′∈U be
such that f(δ, ∅)=(ε′, ∅). Thus, f(δ, ∅)∈U × {∅}: a contradiction. In the latter case, let ε∈U be such
that (ε, ∅) 6∈f(T × {∅}). Since f is a (k, n)-morphism and f(β, T )=(γ, U), let δ′∈T be such that
f(δ′, ∅)=(ε, ∅). Consequently, (ε, ∅)∈f(T × {∅}): a contradiction.

Proof of Proposition 11: For the sake of the contradiction, suppose f(β, T )6=(γ, U), f(β, T )|=nx̄
γ ,

for all δ∈T , there exists ε∈U such that f(δ, ∅)=(ε, ∅) and for all ε∈U , there exists δ∈T such that
f(δ, ∅)=(ε, ∅). Let (γ′, U ′)∈MODn be such that f(β, T )=(γ′, U ′). Since f(β, T )|=nx̄

γ , by Pro-
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position 4, γ=γ′. Since f(β, T )6=(γ, U) and f(β, T )=(γ′, U ′), U 6=U ′. Hence, either U 6⊆U ′, or
U 6⊇U ′. In the former case, let ε′∈U be such that ε′ 6∈U ′. Since for all ε∈U , there exists δ∈T
such that f(δ, ∅)=(ε, ∅), let δ′∈T be such that f(δ′, ∅)=(ε′, ∅). Since f is a (k, n)-morphism and
f(β, T )=(γ′, U ′), ε′∈U ′: a contradiction. In the latter case, let ε′′∈U ′ be such that ε′′ 6∈U . Since f is
a (k, n)-morphism and f(β, T )=(γ′, U ′), let δ′′∈T be such that f(δ′′, ∅)=(ε′′, ∅). Since for all δ∈T ,
there exists ε∈U such that f(δ, ∅)=(ε, ∅), ε′′∈U : a contradiction.

Proof of Proposition 12: Let (n, σ) and (n, τ) be the n-substitutions defined by:

• σ(x1)=�⊥ ∨ x1 and τ(x1)=♦> ∧ x1,

• for all i∈{2, . . . , n}, σ(xi)=xi and τ(xi)=xi.

Obviously, σ(♦x1 → �x1)∈L2 and τ(♦x1 → �x1)∈L2. Hence, (n, σ) and (n, τ) are n-unifiers of
♦x1 → �x1. In order to prove that ♦x1 → �x1 is n-finitary, it suffices to prove that {(n, σ), (n, τ)} is
a minimal n-complete set of n-unifiers of ♦x1 → �x1.

n-completeness of {(n, σ), (n, τ)}: Let (k, υ) be an arbitrary n-unifier of ♦x1 → �x1. Thus,
υ(♦x1 → �x1)∈L2. By using the semantics of L2, it follows that either �⊥ → υ(x1)∈L2, or
υ(x1) → ♦>∈L2. Indeed, for the sake of the contradiction, suppose neither �⊥ → υ(x1)∈L2, nor
υ(x1) → ♦>∈L2. Consequently, by Proposition 3, neither �⊥ → υ(x1) is k-valid, nor υ(x1) → ♦>
is k-valid. Hence, let (α, ∅), (β, ∅)∈MOD

deg
k be such that (α, ∅)6|=kυ(x1) and (β, ∅)|=kυ(x1).

Let γ∈BITk. Since (α, ∅)6|=kυ(x1) and (β, ∅)|=kυ(x1), (γ, {α, β})6|=kυ(♦x1 → �x1). Thus,
υ(♦x1 → �x1) is not k-valid. Consequently, by Proposition 3, υ(♦x1 → �x1)6∈L2: a contradic-
tion. In the former case where �⊥ → υ(x1)∈L2, it follows immediately that υ(σ(x1))≡kυ(x1).
Hence, (n, σ)4n(k, υ). In the latter case where υ(x1) → ♦>∈L2, it follows immediately that
υ(τ(x1))≡L2υ(x1). Thus, (n, τ)4n(k, υ).

Minimality of {(n, σ), (n, τ)}: For the sake of the contradiction, suppose {(n, σ), (n, τ)} is not mi-
nimal. Consequently, either (n, σ)4n(n, τ), or (n, τ)4n(n, σ). In the former case, there exists an
n-substitution (n, υ) such that υ(σ(x1))≡nτ(x1). Hence, �⊥ ∨ υ(x1)≡n♦> ∧ x1. In the latter case,
there exists a substitution (n, υ) such that υ(τ(x1))≡nσ(x). Thus, ♦> ∧ υ(x1)≡n�⊥ ∨ x1. In both
cases, �⊥ → ♦>∈L2. Consequently, ♦>∈L2: a contradiction.

Proof of Proposition 13: Suppose ϕ is n-π-reasonable. Let Σ be the set of all n-unifiers of ϕ. No-
tice that Σ is n-complete. Let Σ′ be the set of n-substitutions obtained from Σ by keeping only the
n-substitutions (k, σ) such that k≤π. Since ϕ is n-π-reasonable and Σ is n-complete, Σ′ is n-complete.
Let Σ′′ be the set of n-substitutions obtained from Σ′ by keeping only one representative of each equi-
valence class modulo 'n. Since Σ′ is n-complete, Σ′′ is n-complete. Moreover, by Proposition 2, Σ′′

is finite. Hence, either ϕ is n-finitary, or ϕ is n-unitary.

Proof of Lemma 1: (1) For the sake of the contradiction, suppose ‖MODdeg
k /∼k‖>‖MODdeg

n ‖.
Let p∈N and (α1, ∅), . . . , (αp, ∅)∈MOD

deg
k be such that p>‖MODdeg

n ‖ and for all q, r∈N, if
1≤q, r≤p and q 6=r then (αq, ∅)6∼k(αr, ∅). Hence, for all q, r∈N, if 1≤q, r≤p and q 6=r then
g(k,σ)(α

q, ∅)6=g(k,σ)(αr, ∅). Since g(k,σ) is a (k, n)-morphism, let β1, . . . , βp∈BITn be such that
g(k,σ)(α

1, ∅)=(β1, ∅), . . ., g(k,σ)(αp, ∅)=(βp, ∅). Since for all q, r∈N, if 1≤q, r≤p and q 6=r then
g(k,σ)(α

q, ∅)6=g(k,σ)(αr, ∅), for all q, r∈N, if 1≤q, r≤p and q 6=r then βq 6=βr. Thus, p≤2n. Since
‖MODdeg

n ‖=2n, p≤‖MODdeg
n ‖: a contradiction.

(2) Since ‖MODdeg
n ‖=2n, ‖MOD

deg
k ‖=2k and k≥n, ‖MODdeg

n ‖≤‖MOD
deg
k ‖.
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Proof of Lemma 2: Let S, T be nonempty sets of k-tuples of bits. Suppose the images by fdeg of
S × {∅} and T × {∅} are equal. For the sake of the contradiction, suppose the images by g(k,σ) of
S×{∅} and T ×{∅} are not equal. Since g(k,σ) is a (k, n)-morphism, let (γ, ∅)∈MODdeg

n be such that
either (γ, ∅) is in the image by g(k,σ) of S × {∅} without being in the image by g(k,σ) of T × {∅}, or
(γ, ∅) is in the image by g(k,σ) of T ×{∅} without being in the image by g(k,σ) of S×{∅}. Without loss
of generality, suppose (γ, ∅) is in the image by g(k,σ) of S × {∅} without being in the image by g(k,σ)
of T × {∅}. Hence, let α∈S be such that g(k,σ)(α, ∅)=(γ, ∅). Since the images by fdeg of S × {∅} and
T × {∅} are equal, let β∈T be such that fdeg(α, ∅)=fdeg(β, ∅). Thus, (α, ∅)∼k(β, ∅). Consequently,
g(k,σ)(α, ∅)=g(k,σ)(β, ∅). Since g(k,σ)(α, ∅)=(γ, ∅), (γ, ∅) is in the image by g(k,σ) of T × {∅}: a
contradiction.

Proof of Lemma 3: Let E be a nonempty set of n-tuples of bits.

(1) For the sake of the contradiction, suppose ‖f◦(E)/∼k‖>‖f•(E)‖. Let p∈N and (α1, S1), . . . , (αp, Sp)∈MODk\
MOD

deg
k be such that p>‖f•(E)‖, the images by fdeg of S1 × {∅}, . . . , Sp × {∅} are equal to

E × {∅} and for all q, r∈N, if 1≤q, r≤p and q 6=r then (αq, Sq)6∼k(αr, Sr). Hence, for all q, r∈N,
if 1≤q, r≤p and q 6=r then g(k,σ)(αq, Sq)6=g(k,σ)(αr, Sr). Since g(k,σ) is a (k, n)-morphism and the
images by fdeg of S1 × {∅}, . . . , Sp × {∅} are equal to E × {∅}, let β1, . . . , βp∈BITn be such that
g(k,σ)(α

1, S1)=(β1, E), . . ., g(k,σ)(αp, Sp)=(βp, E). Since for all q, r∈N, if 1≤q, r≤p and q 6=r then
g(k,σ)(α

q, Sq)6=g(k,σ)(αr, Sr), for all q, r∈N, if 1≤q, r≤p and q 6=r then βq 6=βr. Thus, p≤2n. Since
‖f•(E)‖=2n, p≤‖f•(E)‖: a contradiction.

(2) Since k≥n, ‖f◦(E)‖≥2k and ‖f•(E)‖=2n, ‖f•(E)‖≤‖f◦(E)‖.

Proof of Lemma 4: Let β∈BITn and T be a set of n-tuples of bits. We consider the following
cases.

Case (β, T )∈MODdeg
n . Since fdeg is surjective, let α∈BITk be such that fdeg(α, ∅)=(β, ∅). Hence,

f(α, ∅)=(β, T ).

Case (β, T )∈MODn \MODdeg
n . Thus, (β, T )∈f•(T ). Since fT is surjective, let (α, S)∈f◦(T )

be such that fT (α, S)=(β, T ). Consequently, (α, S)∈MODk \MODdeg
k and the image by fdeg of

S × {∅} is equal to T × {∅}. Hence, f(α, S)=fT (α, S). Since fT (α, S)=(β, T ), f(α, S)=(β, T ).

Proof of Lemma 5: For the sake of the contradiction, suppose f is not a (k, n)-morphism. Hence,
let (α, S)∈MODk and (β, T )∈MODn be such that f(α, S)=(β, T ) and either there exists γ′∈S
such that for all δ′∈T , f(γ′, ∅)6=(δ′, ∅), or there exists δ′′∈T such that for all γ′′∈S, f(γ′′, ∅)6=(δ′′, ∅).
In the former case, S 6=∅. Thus, (α, S)∈MODk \MODdeg

k and, E being the nonempty set of n-
tuples of bits such that the image by fdeg of S × {∅} is equal to E × {∅}, f(α, S)=fE(α, S). Since
f(α, S)=(β, T ), fE(α, S)=(β, T ). Consequently, T=E. Since the image by fdeg of S × {∅} is
equal to E × {∅}, the image by fdeg of S × {∅} is equal to T × {∅}. Hence, let δ∈T be such that
f(γ′, ∅)=(δ, ∅). Since for all δ′∈T , f(γ′, ∅) 6=(δ′, ∅), f(γ′, ∅) 6=(δ, ∅): a contradiction. In the latter case,
T 6=∅. Since f(α, S)=(β, T ), S 6=∅. Thus, (α, S)∈MODk \MODdeg

k and, E being the nonempty set
of n-tuples of bits such that the image by fdeg of S × {∅} is equal to E × {∅}, f(α, S)=fE(α, S).
Since f(α, S)=(β, T ), fE(α, S)=(β, T ). Consequently, T=E. Since the image by fdeg of S × {∅}
is equal to E × {∅}, the image by fdeg of S × {∅} is equal to T × {∅}. Hence, let γ∈S be such that
f(γ, ∅)=(δ′′, ∅). Since for all γ′′∈S, f(γ′′, ∅) 6=(δ′′, ∅), f(γ, ∅)6=(δ′′, ∅): a contradiction.
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Proof of Lemma 6: Let (α, S), (β, T )∈MODk. Suppose f(α, S)=f(β, T ). We consider the fol-
lowing cases.

Case S=∅. Since f(α, S)=f(β, T ), by Lemma 5, T=∅. Since S=∅, (α, S), (β, T )∈MODdeg
k . Hence,

f(α, S)=fdeg(α, S) and f(β, T )=fdeg(β, T ). Since f(α, S)=f(β, T ), fdeg(α, S)=fdeg(β, T ). Thus,
(α, S)∼k(β, T ). Consequently, g(k,σ)(α, S)=g(k,σ)(β, T ).

Case S 6=∅. Since f(α, S)=f(β, T ), by Lemma 5, T 6=∅. Since S 6=∅, (α, S), (β, T )∈MODk \
MODdeg

k . Hence, f(α, S)=fE(α, S) and f(β, T )=fF (β, T ), E being the nonempty set of n-tuples
of bits such that the image by fdeg of S × {∅} is equal to E × {∅} and F being the nonempty set of n-
tuples of bits such that the image by fdeg of T × {∅} is equal to F × {∅}. Since f(α, S)=f(β, T ),
fE(α, S)=fF (β, T ). Thus, E=F . Since fE(α, S)=fF (β, T ), (α, S)∼k(β, T ). Consequently,
g(k,σ)(α, S)=g(k,σ)(β, T ).

Proof of Lemma 7: By induction on ψ. Let (β, T )∈MODn. We consider the following cases.

Case ψ=xi for some i∈{1, . . . , n}. (i)⇒(ii) Suppose f(α, S)=(β, T ) and (α, S)|=kσ(xi) for
some (α, S)∈MODk. Let (α′, S′)∈MODk. Suppose f(α′, S′)=(β, T ). Since f(α, S)=(β, T ),
f(α, S)=f(α′, S′). Hence, g(k,σ)(α, S)=g(k,σ)(α

′, S′). Thus, by Proposition 9, (α, S)|=kσ(xi) iff
(α′, S′)|=kσ(xi). Since (α, S)|=kσ(xi), (α′, S′)|=kσ(xi).

(ii)⇒(iii) Suppose for all (α, S)∈MODk, if f(α, S)=(β, T ) then (α, S)|=kσ(xi). Since f is
surjective, let (α′, S′)∈MODk be such that f(α′, S′)=(β, T ). Since for all (α, S)∈MODk, if
f(α, S)=(β, T ) then (α, S)|=kσ(xi), (α′, S′)|=kσ(xi). Consequently, forn(f(α′, S′)) is one of the
disjuncts of τ(xi). Since f(α′, S′)=(β, T ), by Proposition 5, (β, T )|=nτ(xi).

(iii)⇒(i) Suppose (β, T )|=nτ(xi). Hence, let (α, S)∈MODk be such that (α, S)|=kσ(xi) and
(β, T )|=nforn(f(α, S)). Thus, by Proposition 5, f(α, S)=(β, T ).

Caseψ=⊥. (i)⇒(ii) Obviously, the condition “f(α, S)=(β, T ) and (α, S)|=kσ(⊥) for some (α, S)∈MODk

cannot hold.

(ii)⇒(iii) Since f is surjective, the condition “for all (α, S)∈MODk, if f(α, S)=(β, T ) then
(α, S)|=kσ(⊥)” cannot hold.

(iii)⇒(i) Obviously, the condition “(β, T )|=nτ(⊥)” cannot hold.

Case ψ=¬χ. (i)⇒(ii) Suppose f(α, S)=(β, T ) and (α, S)|=kσ(¬χ) for some (α, S)∈MODk.
Let (α′, S′)∈MODk. Suppose f(α′, S′)=(β, T ). For the sake of the contradiction, suppose
(α′, S′) 6|=kσ(¬χ). Consequently, (α′, S′)|=kσ(χ). Since f(α, S)=(β, T ) and f(α′, S′)=(β, T ), by
induction hypothesis, (α, S)|=kσ(χ). Hence, (α, S)6|=kσ(¬χ): a contradiction.

(ii)⇒(iii) Suppose for all (α, S)∈MODk, if f(α, S)=(β, T ) then (α, S)|=kσ(¬χ). For the sake
of the contradiction, suppose (β, T )6|=nτ(¬χ). Thus, (β, T )|=nτ(χ). Since f is surjective, let
(α′, S′)∈MODk be such that f(α′, S′)=(β, T ). Since for all (α, S)∈MODk, if f(α, S)=(β, T )
then (α, S)|=kσ(¬χ), (α′, S′)|=kσ(¬χ). Consequently, (α′, S′)6|=kσ(χ). Since f(α′, S′)=(β, T ), by
induction hypothesis, (β, T ) 6|=nτ(χ): a contradiction.
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(iii)⇒(i) Suppose (β, T )|=nτ(¬χ). Since f is surjective, let (α, S)∈MODk be such that f(α, S)=(β, T ).
For the sake of the contradiction, suppose (α, S) 6|=kσ(¬χ). Hence, (α, S)|=kσ(χ). Since f(α, S)=(β, T ),
by induction hypothesis, (β, T )|=nτ(χ). Thus, (β, T ) 6|=nτ(¬χ): a contradiction.

Case ψ=χ ∨ θ. (i)⇒(ii) Suppose f(α, S)=(β, T ) and (α, S)|=kσ(χ ∨ θ) for some (α, S)∈MODk.
Let (α′, S′)∈MODk. Suppose f(α′, S′)=(β, T ). For the sake of the contradiction, suppose
(α′, S′)6|=kσ(χ∨θ). Consequently, neither (α′, S′)|=kσ(χ), nor (α′, S′)|=kσ(θ). Since f(α, S)=(β, T )
and f(α′, S′)=(β, T ), by induction hypothesis, neither (α, S)|=kσ(χ), nor (α, S)|=kσ(θ). Hence,
(α, S) 6|=kσ(χ ∨ θ): a contradiction.

(ii)⇒(iii) Suppose for all (α, S)∈MODk, if f(α, S)=(β, T ) then (α, S)|=kσ(χ ∨ θ). For the sake of
the contradiction, suppose (β, T )6|=nτ(χ ∨ θ). Thus, neither (β, T )|=nτ(χ), nor (β, T )|=nτ(θ). Since
f is surjective, let (α′, S′)∈MODk be such that f(α′, S′)=(β, T ). Since for all (α, S)∈MODk, if
f(α, S)=(β, T ) then (α, S)|=kσ(χ ∨ θ), (α′, S′)|=kσ(χ ∨ θ). Consequently, either (α′, S′)|=kσ(χ),
or (α′, S′)|=kσ(θ). Since f(α′, S′)=(β, T ), by induction hypothesis, either (β, T )|=nτ(χ), or
(β, T )|=nτ(θ): a contradiction.

(iii)⇒(i) Suppose (β, T )|=nτ(χ ∨ θ). Since f is surjective, let (α, S)∈MODk be such that
f(α, S)=(β, T ). For the sake of the contradiction, suppose (α, S)6|=kσ(χ ∨ θ). Hence, nei-
ther (α, S)|=kσ(χ), nor (α, S)|=kσ(θ). Since f(α, S)=(β, T ), by induction hypothesis, neither
(β, T )|=nτ(χ), nor (β, T )|=nτ(θ). Thus, (β, T ) 6|=nτ(χ ∨ θ): a contradiction.

Caseψ=�χ. (i)⇒(ii) Suppose there exists (α, S)∈MODk such that f(α, S)=(β, T ) and (α, S)|=kσ(�χ).
Let (α′, S′)∈MODk. Suppose f(α′, S′)=(β, T ). For the sake of the contradiction, suppose
(α′, S′) 6|=kσ(�χ). Consequently, let γ′∈S′ be such that (γ′, ∅) 6|=kσ(χ). Since f is a (k, n)-morphism
and f(α′, S′)=(β, T ), let δ∈T be such that f(γ′, ∅)=(δ, ∅). Since f is a (k, n)-morphism and
f(α, S)=(β, T ), let γ∈S be such that f(γ, ∅)=(δ, ∅). Since (γ′, ∅) 6|=kσ(χ) and f(γ′, ∅)=(δ, ∅), by
induction hypothesis, (γ, ∅) 6|=kσ(χ). Hence, (α, S)6|=kσ(�χ): a contradiction.

(ii)⇒(iii) Suppose for all (α, S)∈MODk, if f(α, S)=(β, T ) then (α, S)|=kσ(�χ). For the sake of the
contradiction, suppose (β, T )6|=nτ(�χ). Thus, let δ∈T be such that (δ, ∅) 6|=nτ(χ). Since f is surjective,
let (α′, S′)∈MODk be such that f(α′, S′)=(β, T ). Since for all (α, S)∈MODk, if f(α, S)=(β, T )
then (α, S)|=kσ(�χ), (α′, S′)|=kσ(�χ). Since f is a (k, n)-morphism and f(α′, S′)=(β, T ), let
γ′∈S′ be such that f(γ′, ∅)=(δ, ∅). Since (δ, ∅) 6|=nτ(χ), by induction hypothesis, (γ′, ∅) 6|=kσ(χ). Con-
sequently, (α′, S′)6|=kσ(�χ): a contradiction.

(iii)⇒(i) Suppose (β, T )|=nτ(�χ). Since f is surjective, let (α, S)∈MODk be such that f(α, S)=(β, T ).
For the sake of the contradiction, suppose (α, S)6|=kσ(�χ). Hence, let γ∈S be such that (γ, ∅)6|=kσ(χ).
Since f is a (k, n)-morphism and f(α, S)=(β, T ), let δ∈T be such that f(γ, ∅)=(δ, ∅). Since
(γ, ∅)6|=kσ(χ), by induction hypothesis, (δ, ∅) 6|=nτ(χ). Thus, (β, T )6|=nτ(�χ): a contradiction.

Proof of Lemma 8: Let (β, T )∈MODk and all i∈{1, . . . , n}. For the sake of the contradiction, sup-
pose either (β, T )|=kν(xi) and f(β, T ) 6|=nxi, or (β, T )6|=kν(xi) and f(β, T )|=nxi. In the former case,
by definition of ν, let (α, S)∈MODk be such that f(α, S)|=nxi and (β, T )|=kfork(α, S). Hence, by
Proposition 5, (β, T )=(α, S). Since f(α, S)|=nxi, f(β, T )|=nxi: a contradiction. In the latter case, by
definition of ν, fork(β, T ) is one of the disjuncts of ν(xi). Since by Proposition 5, (β, T )|= fork(β, T ),
(β, T )|=kν(xi): a contradiction.
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Proof of Lemma 9: Let (β, T )∈MODk and (γ, U)∈MODn. For the sake of the contradiction, sup-
pose either f(β, T )=(γ, U) and (β, T )6|=kν(forn(γ, U)), or f(β, T )6=(γ, U) and (β, T )|=kν(forn(γ, U)).
In the former case, since by Proposition 4, (γ, U)|=nx̄

γ , f(β, T )|=nx̄
γ . Hence, by Lemma 8,

(β, T )|=kν(x̄γ). Since f is a (k, n)-morphism and by Proposition 4, for all γ′′′, γ′′′′∈U , (γ′′′, ∅)|=nx̄
γ′′′′

iff γ′′′=γ′′′′, for all β′∈T , there exists γ′∈U such that f(β′, ∅)|=nx̄
γ′

and for all γ′′∈U , there
exists β′′∈T such that f(β′′, ∅)|=nx̄

γ′′
. Thus, by Lemma 8, for all β′∈T , there exists γ′∈U

such that (β′, ∅)|=kν(x̄γ
′
) and for all γ′′∈U , there exists β′′∈T such that (β′′, ∅)|=kν(x̄′′). Since

(β, T )|=kν(x̄γ), (β, T )|=kν(forn(γ, U)): a contradiction. In the latter case, (β, T )|=kν(x̄γ). More-
over, for all β′∈T , there exists γ′∈U such that (β′, ∅)|=kν(x̄γ

′
) and for all γ′′∈U , there exists β′′∈T

such that (β′′, ∅)|=kν(x̄′′). Consequently, by Lemma 8, for all β′∈T , there exists γ′∈U such that
f(β′, ∅)|=nx̄

γ′
and for all γ′′∈U , there exists β′′∈T such that f(β′′, ∅)|=nx̄

γ′′
. Since f is a (k, n)-

morphism and by Proposition 4, for all γ′′′, γ′′′′∈U , (γ′′′, ∅)|=nx̄
γ′′′′

iff γ′′′=γ′′′′, for all β′∈T , there
exists γ′∈U such that f(β′, ∅)=(γ′, ∅) and for all γ′′∈U , there exists β′′∈T such that f(β′′, ∅)=(γ′′, ∅).
Since (β, T )|=kν(x̄γ), by Proposition 11, f(β, T )=(γ, U): a contradiction.

Proof of Lemma 10: Let (β, T )∈MODk and i∈{1, . . . , n}. For the sake of the contradiction, suppose
either (β, T )|=kν(τ(xi)) and (β, T )6|=kσ(xi), or (β, T ) 6|=kν(τ(xi)) and (β, T )|=kσ(xi). In the former
case, by definition of τ , let (α, S)∈MODk be such that (α, S)|=kσ(xi) and (β, T )|=kν(forn(f(α, S))).
Hence, by Lemma 9, f(β, T )=f(α, S). Thus, g(k,σ)(β, T )=g(k,σ)(α, S). Consequently, by Proposi-
tion 9, (β, T )|=kσ(xi) iff (α, S)|=kσ(xi). Since (α, S)|=kσ(xi), (β, T )|=kσ(xi): a contradiction. In
the latter case, by definition of τ , forn(f(β, T )) is one of the disjuncts of τ(xi). Since by Lemma 9,
(β, T )|=kν(fornf(β, T )), (β, T )|=kν(τ(xi)): a contradiction.
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