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Introduction

The unification problem in a propositional logic is to determine, given a formula ϕ, whether there exists a substitution σ such that σ(ϕ) is in that logic. In that case, σ is a unifier of ϕ. We say that a set of unifiers of a unifiable formula ϕ is complete if for all unifiers σ of ϕ, there exists a unifier τ of ϕ in that set such that τ is more general than σ1 . Now, an important question is to determine whether a given unifiable formula has minimal complete sets of unifiers [START_REF] Baader | Unification in modal and description logics[END_REF]. When such sets exist, they all have the same cardinality. In that case, a unifiable formula is either infinitary, or finitary, or unitary, depending whether its complete sets of unifiers are either infinite, or finite, or with cardinality 1. Otherwise, the formula is nullary. The importance of the unification problem lies in its connection with the admissibility problem. In a consistent propositional logic L, unification is reducible to non-admissibility, seeing that the unifiability in L of a formula ϕ is equivalent to the non-admissibility in L of the inference rule ϕ ⊥ . As observed by Ghilardi [START_REF] Ghilardi | Best solving modal equations[END_REF], when L has a decidable membership problem and L is either unitary, or finitary, algorithms for computing minimal complete sets of unifiers in L can be used as a key component of algorithms for solving the admissibility problem in L, seeing that the admissibility in L of an inference rule ϕ1,...,ϕp ψ is equivalent to the inclusion in L of the set {σ(ψ) : σ∈Σ}, where Σ is an arbitrary minimal complete set of unifiers of ϕ 1 ∧ . . . ∧ ϕ p in L.

Within the context of the unification problem in a propositional logic, we distinguish between elementary unification and unification with constants. In unification with constants, some variables (called constants) are never replaced by formulas when one applies a substitution whereas in elementary unification, all variables are likely to be replaced. About the unification type of modal logics 2 , it is known that KT, KD and KB are nullary [START_REF] Balbiani | Remarks about the unification type of several non-symmetric non-transitive modal logics[END_REF][START_REF] Balbiani | KD is nullary[END_REF][START_REF] Balbiani | About the unification type of modal logics between KB and KTB[END_REF], KD45 and K45 are unitary [START_REF] Balbiani | Unification in epistemic logics[END_REF][START_REF] Balbiani | Elementary unification in modal logic KD45[END_REF][START_REF] Ghilardi | Filtering unification and most general unifiers in modal logic[END_REF][START_REF] Je Ȓ Ábek | Logics with directed unification[END_REF], Alt 1 + d ⊥ (the least modal logic containing Alt 1 and d ⊥) is unitary for each d≥2 [START_REF] Balbiani | About the unification types of the modal logics determined by classes of deterministic frames[END_REF], S5 and S4.3 are unitary [START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Dzik | Projective unification in modal logic[END_REF], transitive modal logics like K4 and S4 are finitary [START_REF] Ghilardi | Best solving modal equations[END_REF][START_REF] Iemhoff | A syntactic approach to unification in transitive reflexive modal logics[END_REF], K is nullary [START_REF] Je Ȓ Ábek | Blending margins: the modal logic K has nullary unification type[END_REF] and K4D1 (the least modal logic containing K4 and ( x → y) ∨ ( y → x)) is unitary [START_REF] Kost | Projective unification in transitive modal logics[END_REF], the type of KT, KD and KB having only been obtained within the context of unification with constants and the type of Alt 1 + d ⊥ having only been obtained within the context of elementary unification. About the unification type of Alt 1 and its extensions, the line of reasoning determining in [START_REF] Balbiani | KD is nullary[END_REF][START_REF] Balbiani | About the unification type of modal logics between KB and KTB[END_REF] the unification type (nullary) of KD within the context of unification with constants can be adapted to Alt 1 + ♦ whereas the line of reasoning determining in [START_REF] Je Ȓ Ábek | Blending margins: the modal logic K has nullary unification type[END_REF] the unification type (nullary) of K has been adapted to Alt 1 [START_REF] Balbiani | Unification in modal logic Alt1[END_REF]. In this paper, within the context of elementary unification, we prove that in K + ⊥ (the least modal logic containing ⊥), unifiable formulas are either finitary, or unitary 3 .

A preliminary result

Let S be a finite set. We write S for the cardinality of S. If S is nonempty then for all equivalence relations ∼ on S, for all α∈S, [α] denotes the equivalence class of α modulo ∼ and for all T ⊆S, T /∼ denotes the quotient set of T modulo ∼. Our first result, Proposition 1, is used later in Section 6. Its proof is presented in an Annex along with the proofs of all other results asserted in this paper.

Proposition 1. Let T be a finite set. If S is nonempty then for all equivalence relations ∼ on S, S/∼ ≤ T ≤ S iff there exists a surjective function f from S to T such that for all α, β∈S, if f (α)=f (β) then α∼β.

Syntax

Let VAR be a countably infinite set of variables (with typical members denoted x, y, etc). Let (x 1 , x 2 , . . .) be an enumeration of VAR without repetitions. Let n≥1. The set FOR n of all n-formulas (with typical members denoted ϕ, ψ, etc) is inductively defined by:

• ϕ, ψ ::= x i | ⊥ | ¬ϕ | (ϕ ∨ ψ) | ϕ.
We adopt the standard rules for omission of the parentheses. The connectives , ∧, → and ↔ are defined by the usual abbreviations. We have also a connective ♦ which is defined by

• ♦ϕ ::= ¬ ¬ϕ.
For all ϕ∈FOR n , we respectively write "ϕ 0 " and "ϕ 1 " to mean "¬ϕ" and "ϕ". An n-substitution is a couple (k, σ) where k≥1 and σ is a homomorphism from FOR n to FOR k . Let SUB n be the set of all n-substitutions. From now on, we write "L 2 " to mean "K + ⊥".

The standard axiomatization of L 2 consists of the following axioms and rules of proof:

• all propositional tautologies,

• (x i → x j ) → ( x i → x j ),
• ⊥,

• modus ponens,

• uniform substitution,

• generalization: given ϕ, prove ϕ.

As is well-known, L 2 is the modal logic of directed graphs where there is no path of length 3. The generated subgraphs of such directed graphs are therefore tree-like Kripke frames of depth at most 1.

They constitute the semantic basis of L 2 -tree-like Kripke models of depth at most 1 -developed in Section 4. In the meantime, let us consider the equivalence relation ≡ n on FOR n defined by:

• ϕ≡ n ψ iff ϕ ↔ ψ∈L 2 .
Proposition 2. ≡ n possesses finitely many equivalence classes.

In other words, L 2 is locally tabular. Locally tabular modal logics possess interesting properties. In particular, in terms of decidability [START_REF] Miyazaki | Normal modal logics containing KTB with some finiteness conditions[END_REF][START_REF] Nagle | The extensions of the modal logic K5[END_REF][START_REF] Shapirovsky | Local tabularity without transitivity[END_REF]. See also [START_REF] Chagrov | Modal Logic[END_REF]Chapter 12] and [START_REF] Gabbay | Products of modal logics, part 1[END_REF]. The equivalence relation n on SUB n is defined by:

• (k, σ) n (l, τ ) iff for all i∈{1, . . . , n}, σ(x i ) ↔ τ (x i )∈L 2 .
The preorder n on SUB n is defined by:

• (k, σ) n (l, τ ) iff there exists a k-substitution (m, υ) such that for all i∈{1, . . . , n}, υ(σ(x i )) ↔ τ (x i )∈L 2 .

Semantics

Let n≥1. An n-tuple of bits (denoted α, β, etc) is a function from {1, . . . , n} to {0, 1}. Such function should be understood as a propositional valuation of the variables x 1 , . . . , x n : for all i∈{1, . . . , n}, if α i =0 then it is interpreted to mean "x i is false" else it is interpreted to mean "x i is true". Let BIT n be the set of all n-tuples of bits. An n-model is a structure of the form (α, S) where α∈BIT n and S⊆BIT n . Such structure should be understood as a tree-like Kripke model of depth at most 1: α is the valuation of its root node and S is the set of the valuations of its non-root nodes. Let MOD n be the set of all n-models. We say that an n-model (α, S) is degenerated if S=∅. Let MOD deg n be the set of all degenerated n-models. Notice that MOD deg n =2 n . Notice also that for all sets S of n-tuples of bits, S × {∅} is a set of degenerated n-models. The binary relation |= n of n-satisfiability between MOD n and FOR n is defined as expected:

• (α, S)|= n x i iff α i =1, • (α, S) |= n ⊥, • (α, S)|= n ¬ϕ iff (α, S) |= n ϕ, • (α, S)|= n ϕ ∨ ψ iff either (α, S)|= n ϕ, or (α, S)|= n ψ, • (α, S)|= n ϕ iff for all β∈S, (β, ∅)|= n ϕ.

As a result,

• (α, S)|= n ♦ϕ iff there exists β∈S such that (β, ∅)|= n ϕ.

Obviously, for all α∈BIT n and for all ϕ∈FOR n , (α, ∅)|= n ϕ and (α, ∅) |= n ♦ϕ. We say that ϕ∈FOR n is n-valid if for all (α, S)∈MOD n , (α, S)|= n ϕ. The soundness and the completeness of L 2 with respect to this concept of validity is well-known. This is what Proposition 3 is about. Proposition 3. For all ϕ∈FOR n , ϕ∈L 2 iff ϕ is n-valid.

For all α∈BIT n , the n-formula As we know, an n-substitution (k, σ) is a homomorphism from FOR n to FOR k . Taking into account the duality between n-formulas and n-models, Propositions 6 and 7 tell us how to associate a function g (k,σ) from MOD k to MOD n to any n-substitution (k, σ). Proposition 6. Let (k, σ)∈SUB n . For all (α, S)∈MOD k , there exists (β, T )∈MOD n such that (α, S)|= k σ(for n (β, T )). For all (k, σ)∈SUB n , let g (k,σ) be the function from MOD k to MOD n such that for all (α, S)∈MOD k ,

• xα = {x αi i : i∈{1, . . . ,
• g (k,σ) (α, S) is the (β, T )∈MOD n such that (α, S)|= k σ(for n (β, T )).
For all (k, σ)∈SUB n , notice that by Propositions 6 and 7, g (k,σ) is well-defined. Moreover, for all (k, σ)∈SUB n , for all (α, S)∈MOD k and for all (β, T )∈MOD n , if g (k,σ) (α, S)=(β, T ) then

• for all γ∈S, there exists δ∈T such that g (k,σ) (γ, ∅)=(δ, ∅),

• for all δ∈T , there exists γ∈S such that g (k,σ) (γ, ∅)=(δ, ∅).

See Proposition 8 below. Obviously, the above conditions are very similar to the forward condition and backward condition of bounded morphisms usually considered in modal logic [START_REF] Blackburn | Modal Logic[END_REF]Definition 2.10]. This motivates the following definition. For all k≥1, a (k, n)-morphism is a function f from MOD k to MOD n such that for all (α, S)∈MOD k and for all (β, T )∈MOD n , if f (α, S)=(β, T ) then

• for all γ∈S, there exists δ∈T such that f (γ, ∅)=(δ, ∅),

• for all δ∈T , there exists γ∈S such that f (γ, ∅)=(δ, ∅).

Proposition 8. For all (k, σ)∈SUB n , g (k,σ) is a (k, n)-morphism.
However, the morphisms described here should not be mistaken for the bounded morphisms. In particular, in the above definition, there is no condition related to the propositional valuations of the variables. For all (k, σ)∈SUB n , the best we can say about the propositional valuations of the variables concerns g (k,σ) and is contained in the following result. Proposition 9. For all (k, σ)∈SUB n and for all (α, S), (β, T )∈MOD k , if g (k,σ) (α, S)=g (k,σ) (β, T ) then for all i∈{1, . . . , n}, (α,

S)|= k σ(x i ) iff (β, T )|= k σ(x i ).
Nevertheless, it is not particularly surprising that we have the following results.

Proposition 10. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MOD k and (γ, U )∈MOD n . If f (β, T )=(γ, U ) then the image by f of T × {∅} is equal to U × {∅}. Moreover, T =∅ iff U =∅. Proposition 11. Let k≥1. Let f be a (k, n)-morphism. Let (β, T )∈MOD k and (γ, U )∈MOD n . If the following conditions hold then f (β, T )=(γ, U ): • f (β, T )|= n xγ ,
• for all δ∈T , there exists ∈U such that f (δ, ∅)=( , ∅),

• for all ∈U , there exists δ∈T such that f (δ, ∅)=( , ∅).

Unification

Let n≥1. An n-unifier of ϕ∈FOR n is an n-substitution (k, σ) such that σ(ϕ)∈L 2 . We say that ϕ∈FOR n is n-unifiable if there exists an n-unifier of ϕ. We say that a set Σ of n-unifiers of an n-unifiable ϕ∈FOR n is n-complete if for all n-unifiers (k, σ) of ϕ, there exists (l, τ )∈Σ such that (l, τ ) n (k, σ). We say that an n-complete set Σ of n-unifiers of an n-unifiable ϕ∈FOR n is minimal if for all n-complete sets ∆ of n-unifiers of ϕ, if ∆⊆Σ then ∆=Σ. As is well-known, for all ϕ∈FOR n , if ϕ is n-unifiable then for all minimal n-complete sets Σ, ∆ of n-unifiers of ϕ, Σ and ∆ have the same cardinality. Then, an important question is the following: when ϕ∈FOR n is n-unifiable, is there a minimal n-complete set of n-unifiers of ϕ? When the answer is "yes", how large is this set? For all n-unifiable ϕ∈FOR n , we say that:

• ϕ is n-nullary if there exists no minimal complete set of unifiers of ϕ,

• ϕ is n-infinitary if there exists a minimal complete set of unifiers of ϕ with infinite cardinality,

• ϕ is n-finitary if there exists a minimal complete set of unifiers of ϕ with finite cardinality ≥2,

• ϕ is n-unitary if there exists a minimal complete set of unifiers of ϕ with cardinality 1.

Obviously, considered as an n-formula, ♦x 1 → x 1 is n-unifiable. Indeed, let (n, υ ⊥ ) and (n, υ ) be the n-substitutions defined by:

• υ ⊥ (x 1 )=⊥ and υ (x 1 )= ,
• for all i∈{2, . . . , n}, υ ⊥ (x i )=x i and υ

(x i )=x i . Obviously, υ ⊥ (♦x 1 → x 1 )∈L 2 and υ (♦x 1 → x 1 )∈L 2 . Hence, (n, υ ⊥ ) and (n, υ ) are n-unifiers of ♦x 1 → x 1 . Moreover, Proposition 12. The n-unifiable n-formula ♦x 1 → x 1 is n-finitary.
For all n-unifiable ϕ∈FOR n and for all π≥1, we say that ϕ is n-π-reasonable if for all n-unifiers (k, σ) of ϕ, if k≥π then there exists an n-unifier (l, τ ) of ϕ such that (l, τ ) n (k, σ) and l≤π. The idea behind the concept of reasonableness is simple: a unifiable formula is reasonable when a bounded set of variables suffices to express the set of all its unifiers. Since L 2 is locally tabular, it is not particularly surprising that we have the following result.

Proposition 13. Let ϕ∈FOR n be n-unifiable and π≥1. If ϕ is n-π-reasonable then ϕ is either nfinitary, or n-unitary.

As a result, in order to prove that n-unifiable n-formulas are either n-finitary, or n-unitary, it suffices to prove that n-unifiable n-formulas are n-n-reasonable. This is what Proposition 14 asserts below.

Main result

Let n≥1. Our aim is now to prove that n-unifiable n-formulas do not require more variables than the variables x 1 , . . ., x n in order to express their unifiers. Let ϕ∈FOR n . Suppose ϕ is n-unifiable. Let (k, σ) be an n-unifier of ϕ such that k≥n. To achieve our aim, it suffices to construct an n-

unifier (n, τ ) of ϕ such that (n, τ ) n (k, σ). The construction of (n, τ ) is based on the definition of a surjective (k, n)-morphism f such that for all (α, S), (β, T )∈MOD k , if f (α, S)=f (β, T ) then g (k,σ) (α, S)=g (k,σ) (β, T ).
See Lemmas 4, 5 and 6 below. The argument leading to the definition of f is based on a sequence of combinatorial facts which proofs require twice the use of Proposition 1. See Lemmas 1, 2 and 3 below. Now, let us start. Let ∼ k be the equivalence relation on MOD k defined by:

• (α, S)∼ k (β, T ) iff g (k,σ) (α, S)=g (k,σ) (β, T ). Lemma 1. 1. MOD deg k /∼ k ≤ MOD deg n , 2. MOD deg n ≤ MOD deg k
.

Hence, by Proposition 1 and Lemma 1, there exists a surjective function

f deg from MOD deg k to MOD deg n such that for all (α, ∅), (β, ∅)∈MOD deg k , if f deg (α, ∅)=f deg (β, ∅) then (α, ∅)∼ k (β, ∅). Lemma 2.
For all nonempty sets S, T of k-tuples of bits, if the images by f deg of S × {∅} and T × {∅} are equal then the images by g (k,σ) of S × {∅} and T × {∅} are equal.

For all nonempty sets E of n-tuples of bits, let

• f • (E) be the set of all (α, S)∈MOD k \ MOD deg k such that the image by f deg of S × {∅} is equal to E × {∅}, • f • (E) be the set of all (α, S)∈MOD n \ MOD deg n such that S=E. Notice that for all nonempty sets E of n-tuples of bits, since f deg is surjective, f • (E) ≥2 k . Notice also that for all nonempty sets E of n-tuples of bits, f • (E) =2 n .
Lemma 3. For all nonempty sets E of n-tuples of bits,

1. f • (E)/∼ k ≤ f • (E) , 2. f • (E) ≤ f • (E) .
Thus, for all nonempty sets E of n-tuples of bits, by Proposition 1 and Lemma 3, there exists a surjective function

f E from f • (E) to f • (E) such that for all (α, S), (β, T )∈f • (E), if f E (α, S)=f E (β, T ) then (α, S)∼ k (β, T ). Let f be the function from MOD k to MOD n such that for all (α, ∅)∈MOD deg k , • f (α, ∅)=f deg (α, ∅)
and for all (α, S)∈MOD k \MOD deg k , E being the nonempty set of n-tuples of bits such that the image by

f deg of S × {∅} is equal to E × {∅}, • f (α, S)=f E (α, S). Lemma 4. f is surjective. Lemma 5. f is a (k, n)-morphism. Lemma 6. For all (α, S), (β, T )∈MOD k , if f (α, S)=f (β, T ) then g (k,σ) (α, S)=g (k,σ) (β, T ).
The reader is invited to notice how Proposition 1 has been used -twice -in the argument leading to the definition of f . Let (n, τ ), (k, ν) be the n-substitutions defined by:

• τ (x i )= {for n (f (α, S)) : (α, S)∈MOD k is such that (α, S)|= k σ(x i )} where i∈{1, . . . , n}, • ν(x i )= {for k (α, S) : (α, S)∈MOD k is such that f (α, S)|= n x i } where i∈{1, . . . , n}.
In Lemmas 7-10 below, we prove interesting properties of these n-substitutions: Lemma 7 is used for showing that (n, τ ) is an n-unifier of ϕ, Lemma 8 is used in the proof of Lemma 9, Lemma 9 is used in the proof of Lemma 10 and Lemma 10 is used for showing that (n, τ ) n (k, σ). Lemma 7. Let ψ∈FOR n . For all (β, T )∈MOD n , the following conditions are equivalent: 

(i) there exists (α, S)∈MOD k such that f (α, S)=(β, T ) and (α, S)|= k σ(ψ); (ii) for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(ψ); (iii) (β, T )|= n τ (ψ).
(x i )) iff (β, T )|= k σ(x i ).
Since (k, σ) is an n-unifier of ϕ, σ(ϕ)∈L 2 . Thus, by Proposition 3, σ(ϕ) is k-valid, i.e. for all (α, S)∈MOD k , (α, S)|= k σ(ϕ). Consequently, by Lemma 7, for all (β, T )∈MOD n , (β, T )|= n τ (ϕ), i.e. τ (ϕ) is n-valid. Hence, by Proposition 3, τ (ϕ)∈L 2 . Thus, (n, τ ) is an n-unifier of ϕ. Since by Lemma 10, (n, τ ) n (k, σ), ϕ is n-n-reasonable. Since ϕ∈FOR n is arbitrary, this proves the following result.

Proposition 14. For all ϕ∈FOR n , if ϕ is n-unifiable then ϕ is n-n-reasonable.

Propositions 13 and 14, lead us to the following result.

Theorem 1. For all ϕ∈FOR n , if ϕ is n-unifiable then ϕ is either n-finitary, or n-unitary.

In the light of Proposition 12 and Theorem 1, we therefore conclude that L 2 is finitary.

Conclusion

In this paper, within the context of elementary unification, we have proved Theorem 1 asserting that in L 2 , unifiable formulas are either finitary, or unitary. We believe that in the line of reasoning leading to Theorem 1, the main properties of L 2 are the ones given in Propositions 2, 6 and 7. Proposition 2 says that L 2 is locally tabular -it is used in the proof of Proposition 13. For all n≥1, Propositions 6 and 7 tell us how to associate a function g (k,σ) from MOD k to MOD n to any n-substitution (k, σ)they are used in the proof of Proposition 14. Notice that Theorem 1 is an immediate consequence of Propositions 13 and 14. However, since L 2 is locally tabular, the reader may think that the line of reasoning leading to Theorem 1 is unnecessarily complicated. In other respect, since the unification type is a categorical invariant, the reader may think that it is possible to directly work in the category of all finite models of L 2 . Indeed, the categorical approach to the unification problem in propositional logic is powerful [START_REF] Ghilardi | Unification, finite duality and projectivity in varieties of Heyting algebras[END_REF]. Nevertheless, the fact that the question of the unification type of L 2 has not been solved before indicates that things may not be so simple.

Here are open questions: (i) determine the unification type of the locally tabular modal logic K + d ⊥ for each d≥3, (ii) determine the unification types of the locally tabular modal logics studied in [START_REF] Miyazaki | Normal modal logics containing KTB with some finiteness conditions[END_REF][START_REF] Nagle | The extensions of the modal logic K5[END_REF][START_REF] Shapirovsky | Local tabularity without transitivity[END_REF], (iii) determine the unification types of the modal logics KB, KD and KT. We conjecture that the modal logics mentioned in (i) and (ii) are either finitary, or unitary for elementary unification. As for the modal logics considered in (iii), it is only known that KD and KT are not unitary within the context of elementary unification and KB, KD and KT are nullary within the context of unification with parameters [START_REF] Balbiani | Remarks about the unification type of several non-symmetric non-transitive modal logics[END_REF][START_REF] Balbiani | KD is nullary[END_REF][START_REF] Balbiani | About the unification type of modal logics between KB and KTB[END_REF]. We conjecture that the modal logics mentioned in (iii) are finitary within the context of elementary unification. And of course there is also the open question of the decidability of the unification problem in the modal logics considered in (i), (ii) and (iii). When the modal logics mentioned in (i) and (ii) are decidable, their local tabularity will probably imply the decidability of their unification problem. Concerning the modal logics considered in (iii), the decidability of their unification problem remains a mystery within the context of unification with parameters 4 . all α∈S 2 , f 2 (α)=f 0 (h( [α])). Let f be the function from S to T defined by

f |S 0 =f 0 , f |S 1 =f 1 and f |S 2 =f 2 .
Claim. f is surjective.

Proof. Let β∈T . We consider the following cases.

Case β∈T 0 . Since f 0 is one-to-one, let α∈S 0 be such that f 0 (α)=β. Thus, α∈S. Moreover,

f (α)=f 0 (α). Since f 0 (α)=β, f (α)=β. Case β∈T 1 . Since f 1 is one-to-one, let α∈S 1 be such that f 1 (α)=β. Hence, α∈S. Moreover, f (α)=f 1 (α). Since f 1 (α)=β, f (α)=β.
Claim. For all α, β∈S, if f (α)=f (β) then α∼β.

Proof. Let α, β∈S be such that f (α)=f (β). We consider the following cases.

Case α∈S 0 and β∈S 0 . Consequently, f (α)=f 0 (α) and f (β)=f 0 (β). Since f (α)=f (β), f 0 (α)=f 0 (β). Since f 0 is one-to-one, α=β. Thus, α∼β.

Case α∈S 0 and β∈S 1 .

Consequently, f (α)=f 0 (α) and f (β)=f 1 (β). Since f (α)=f (β), f 0 (α)=f 1 (β).
Since f 0 (α)∈T 0 and f 1 (β)∈T 1 , T 0 and T 1 do not make a partition of T : a contradiction.

Case α∈S 0 and β∈S 2 . Hence,

f (α)=f 0 (α) and f (β)=f 2 (β). Since f (α)=f (β), f 0 (α)=f 2 (β). Thus, f 0 (α)=f 0 (h([β])). Since f 0 is one-to-one, α=h([β]). Since h([β])∈[β], α∈[β]. Consequently, α∼β.
Case α∈S 1 and β∈S 1 . Hence, f (α)=f 1 (α) and f (β)=f 1 (β). Since f (α)=f (β), f 1 (α)=f 1 (β). Since f 1 is one-to-one, α=β. Thus, α∼β.

Case α∈S 1 and β∈S 2 . Hence, f (α)=f 1 (α) 

and f (β)=f 2 (β). Since f (α)=f (β), f 1 (α)=f 2 (β). Thus, f 1 (α)=f 0 (h([β])). Since f 1 (α)∈T 1 and f 0 (h([β]
))∈T 0 , T 0 and T 1 do not make a partition of T : a contradiction.

Case α∈S 2 and β∈S 2 . Hence, f (α)=f 2 (α) 

and f (β)=f 2 (β). Since f (α)=f (β), f 2 (α)=f 2 (β). Consequently, f 0 (h([α]))=f 0 (h([β])). Since f 0 is one-to-one, h([α])=h([β]). Since h([α])∈[α] and h([β])∈[β], [α] ∩ [β] =∅. Thus, α∼β.
Suppose f is a surjective function from S to T such that for all α, β∈S, if f (α)=f (β) then α∼β. For the sake of the contradiction, suppose either S/∼ > T , or T > S . Since f is surjective, T ≤ S . Since either S/∼ > T , or T > S , S/∼ > T . Let p∈N and β 1 , . . . , β p ∈S be such that p> T and for all q, r∈N, if 1≤q, r≤p and q =r then β q ∼β r . Hence, for all q, r∈N, if 1≤q, r≤p and q =r then f (β q ) =f (β r ). Thus, p≤ T : a contradiction.

Proof of Proposition 2: From [9, Proposition 2.29] and from the fact that for all ϕ∈FOR n , there exists ψ∈FOR n such that deg n (ψ)<2 and ϕ ↔ ψ∈L 2 .

Proof of Proposition 3: From [9, Proposition 2.6], from [9, Lemma 4.21] and from the fact that for all maximal consistent sets w of n-formulas, there exists (α, S)∈MOD n such that the submodel of the 

(β, T )), let α ∈S be such that (α , ∅)|= k σ(x β ). Since (α, S)|= k σ(for n (γ, U )), let γ ∈U be such that (α , ∅)|= k σ(x γ ). Since (α , ∅)|= k σ(x β ), β =γ . Consequently, β ∈U . Since β is arbitrary, T ⊆U .
Reciprocally, the reader may easily verify that U ⊆T . Hence, T =U . Since β=γ, (β, T )=(γ, U ).

Proof of Proposition 8: Let (k, σ)∈SUB n . For the sake of the contradiction, suppose g (k,σ) is not a (k, n)-morphism. Hence, let (α, S)∈MOD k and (β, T )∈MOD n be such that g (k,σ) (α, S)=(β, T )and therefore (α, S)|= k σ(for n (β, T )) -and either there exists γ∈S such that for all δ∈T , g (k,σ) (γ, ∅) =(δ, ∅), or there exists δ∈T such that for all γ∈S, g (k,σ) (γ, ∅) =(δ, ∅). In the former case, let δ ∈T be such that (γ, ∅)|= k σ(x δ ). Thus, g (k,σ) (γ, ∅) =(δ , ∅). Since (γ, ∅)|= k σ(x δ ), g (k,σ) (γ, ∅)=(δ , ∅): a contradiction. In the latter case, let γ ∈S be such that (γ , ∅)|= k σ(x δ ). Consequently,

g (k,σ) (γ , ∅) =(δ, ∅). Since (γ , ∅)|= k σ(x δ ), g (k,σ) (γ , ∅)=(δ, ∅): a contradiction.
Proof of Proposition 9: Let (k, σ)∈SUB n and (α, S), (β, T )∈MOD k . Suppose g (k,σ) (α, S)=g (k,σ) (β, T ). Hence, let (γ, U )∈MOD n be such that g (k,σ) (α, S)=(γ, U ) and g (k,σ) (β, T )=(γ, U ). Thus, (α, S)|= k σ(for n (γ, U )) and (β, T )|= k σ(for n (γ, U )). Consequently, (α, S)|= k σ(x γ ) and (β, T )|= k σ(x γ ). Hence, for all i∈{1, . . . , n}, (α,

S)|= k σ(x i ) iff (β, T )|= k σ(x i ).
Proof of Proposition 10: For the sake of the contradiction, suppose f (β, T )=(γ, U ) and the image by f of T × {∅} is not equal to U × {∅}. Hence, either the image by f of T × {∅} is not included in U × {∅}, or the image by f of T × {∅} does not include to U × {∅}. In the former case, let δ∈T be such that f (δ, ∅) ∈U × {∅}. Since f is a (k, n)-morphism and f (β, T )=(γ, U ), let ∈U be such that f (δ, ∅)=( , ∅). Thus, f (δ, ∅)∈U × {∅}: a contradiction. In the latter case, let ∈U be such that ( , ∅) ∈f (T × {∅}). Since f is a (k, n)-morphism and f (β, T )=(γ, U ), let δ ∈T be such that f (δ , ∅)=( , ∅). Consequently, ( , ∅)∈f (T × {∅}): a contradiction.

Proof of Proposition 11:

For the sake of the contradiction, suppose f (β, T ) =(γ, U ), f (β, T )|= n xγ , for all δ∈T , there exists ∈U such that f (δ, ∅)=( , ∅) and for all ∈U , there exists δ∈T such that f (δ, ∅)=( , ∅). Let (γ , U )∈MOD n be such that f (β, T )=(γ , U ). Since f (β, T )|= n xγ , by Pro-position 4, γ=γ . Since f (β, T ) =(γ, U ) and f (β, T )=(γ , U ), U =U . Hence, either U ⊆U , or U ⊇U . In the former case, let ∈U be such that ∈U . Since for all ∈U , there exists δ∈T such that f (δ, ∅)=( , ∅), let δ ∈T be such that f (δ , ∅)=( , ∅). Since f is a (k, n)-morphism and f (β, T )=(γ , U ), ∈U : a contradiction. In the latter case, let ∈U be such that ∈U . Since f is a (k, n)-morphism and f (β, T )=(γ , U ), let δ ∈T be such that f (δ , ∅)=( , ∅). Since for all δ∈T , there exists ∈U such that f (δ, ∅)=( , ∅), ∈U : a contradiction.

Proof of Proposition 12: Let (n, σ) and (n, τ ) be the n-substitutions defined by:

• σ(x 1 )= ⊥ ∨ x 1 and τ (x 1 )=♦ ∧ x 1 ,
• for all i∈{2, . . . , n}, σ(x i )=x i and τ (x i )=x i .

Obviously, σ(♦x 1 → x 1 )∈L 2 and τ (♦x 1 → x 1 )∈L 2 . Hence, (n, σ) and (n, τ ) are n-unifiers of ♦x 1 → x 1 . In order to prove that

♦x 1 → x 1 is n-finitary, it suffices to prove that {(n, σ), (n, τ )} is a minimal n-complete set of n-unifiers of ♦x 1 → x 1 .
n-completeness of {(n, σ), (n, τ )}: Let (k, υ) be an arbitrary n-unifier of ♦x 1 → x 1 . Thus, υ(♦x 1 → x 1 )∈L 2 . By using the semantics of L 2 , it follows that either ⊥ → υ(x 1 )∈L 2 , or υ(x 1 ) → ♦ ∈L 2 . Indeed, for the sake of the contradiction, suppose neither

⊥ → υ(x 1 )∈L 2 , nor υ(x 1 ) → ♦ ∈L 2 . Consequently, by Proposition 3, neither ⊥ → υ(x 1 ) is k-valid, nor υ(x 1 ) → ♦ is k-valid. Hence, let (α, ∅), (β, ∅)∈MOD deg k be such that (α, ∅) |= k υ(x 1 ) and (β, ∅)|= k υ(x 1 ). Let γ∈BIT k . Since (α, ∅) |= k υ(x 1 ) and (β, ∅)|= k υ(x 1 ), (γ, {α, β}) |= k υ(♦x 1 → x 1 ). Thus, υ(♦x 1 → x 1 ) is not k-valid.
Consequently, by Proposition 3, υ(♦x 1 → x 1 ) ∈L 2 : a contradiction. In the former case where ⊥ → υ(x 1 )∈L 2 , it follows immediately that υ(σ(x 1 ))≡ k υ(x 1 ). Hence, (n, σ) n (k, υ). In the latter case where υ(x 1 ) → ♦ ∈L 2 , it follows immediately that υ(τ (x 1 ))≡ L2 υ(x 1 ). Thus, (n, τ ) n (k, υ).

Minimality of {(n, σ), (n, τ )}: For the sake of the contradiction, suppose {(n, σ), (n, τ )} is not minimal. Consequently, either (n, σ) n (n, τ ), or (n, τ ) n (n, σ). In the former case, there exists an n-substitution (n, υ) such that υ(σ(x 1 ))≡ n τ (x 1 ). Hence, ⊥ ∨ υ(x 1 )≡ n ♦ ∧ x 1 . In the latter case, there exists a substitution (n, υ) such that υ(τ (x 1 ))≡ n σ(x). Thus, ♦ ∧ υ(x 1 )≡ n ⊥ ∨ x 1 . In both cases, ⊥ → ♦ ∈L 2 . Consequently, ♦ ∈L 2 : a contradiction.

Proof of Proposition 13: Suppose ϕ is n-π-reasonable. Let Σ be the set of all n-unifiers of ϕ. Notice that Σ is n-complete. Let Σ be the set of n-substitutions obtained from Σ by keeping only the n-substitutions (k, σ) such that k≤π. Since ϕ is n-π-reasonable and Σ is n-complete, Σ is n-complete. Let Σ be the set of n-substitutions obtained from Σ by keeping only one representative of each equivalence class modulo n . Since Σ is n-complete, Σ is n-complete. Moreover, by Proposition 2, Σ is finite. Hence, either ϕ is n-finitary, or ϕ is n-unitary.

Proof of Lemma 1: (1) For the sake of the contradiction, suppose

MOD deg k /∼ k > MOD deg n . Let p∈N and (α 1 , ∅), . . . , (α p , ∅)∈MOD deg k
be such that p> MOD deg n and for all q, r∈N, if 1≤q, r≤p and q =r then (α q , ∅) ∼ k (α r , ∅). Hence, for all q, r∈N, if 1≤q, r≤p and q =r then g

(k,σ) (α q , ∅) =g (k,σ) (α r , ∅). Since g (k,σ) is a (k, n)-morphism, let β 1 , . . . , β p ∈BIT n be such that g (k,σ) (α 1 , ∅)=(β 1 , ∅), . . ., g (k,σ) (α p , ∅)=(β p , ∅).
Since for all q, r∈N, if 1≤q, r≤p and q =r then g (k,σ) (α q , ∅) =g (k,σ) (α r , ∅), for all q, r∈N, if 1≤q, r≤p and q =r then β q =β r . Thus, p≤2 n . Since

MOD deg n =2 n , p≤ MOD deg n : a contradiction. (2) Since MOD deg n =2 n , MOD deg k =2 k and k≥n, MOD deg n ≤ MOD deg k .
Proof of Lemma 2: Let S, T be nonempty sets of k-tuples of bits. Suppose the images by f deg of S × {∅} and T × {∅} are equal. For the sake of the contradiction, suppose the images by g (k,σ) of S × {∅} and T × {∅} are not equal. Since g (k,σ) is a (k, n)-morphism, let (γ, ∅)∈MOD deg n be such that either (γ, ∅) is in the image by g (k,σ) of S × {∅} without being in the image by g (k,σ) of T × {∅}, or (γ, ∅) is in the image by g (k,σ) of T × {∅} without being in the image by g (k,σ) of S × {∅}. Without loss of generality, suppose (γ, ∅) is in the image by g (k,σ) of S × {∅} without being in the image by g (k,σ) of T × {∅}. Hence, let α∈S be such that g (k,σ) (α, ∅)=(γ, ∅). Since the images by f deg of S × {∅} and T × {∅} are equal, let β∈T be such that

f deg (α, ∅)=f deg (β, ∅). Thus, (α, ∅)∼ k (β, ∅). Consequently, g (k,σ) (α, ∅)=g (k,σ) (β, ∅). Since g (k,σ) (α, ∅)=(γ, ∅), (γ, ∅) is in the image by g (k,σ) of T × {∅}: a contradiction.
Proof of Lemma 3: Let E be a nonempty set of n-tuples of bits.

(1) For the sake of the contradiction, suppose f

• (E)/∼ k > f • (E) . Let p∈N and (α 1 , S 1 ), . . . , (α p , S p )∈MOD k \ MOD deg k
be such that p> f • (E) , the images by f deg of S 1 × {∅}, . . . , S p × {∅} are equal to E × {∅} and for all q, r∈N, if 1≤q, r≤p and q =r then (α q , S q ) ∼ k (α r , S r ). Hence, for all q, r∈N, if 1≤q, r≤p and q =r then g (k,σ) (α q , S q ) =g (k,σ) (α r , S r ). Since g (k,σ) is a (k, n)-morphism and the images by f deg of S 1 × {∅}, . . . , S p × {∅} are equal to E × {∅}, let β 1 , . . . , β p ∈BIT n be such that g (k,σ) (α 1 , S 1 )=(β 1 , E), . . ., g (k,σ) (α p , S p )=(β p , E). Since for all q, r∈N, if 1≤q, r≤p and q =r then g (k,σ) (α q , S q ) =g (k,σ) (α r , S r ), for all q, r∈N, if 1≤q, r≤p and q =r then β q =β r . Thus, p≤2 n . Since

f • (E) =2 n , p≤ f • (E) : a contradiction. (2) Since k≥n, f • (E) ≥2 k and f • (E) =2 n , f • (E) ≤ f • (E) .
Proof of Lemma 4: Let β∈BIT n and T be a set of n-tuples of bits. We consider the following cases. Proof of Lemma 5: For the sake of the contradiction, suppose f is not a (k, n)-morphism. Hence, let (α, S)∈MOD k and (β, T )∈MOD n be such that f (α, S)=(β, T ) and either there exists γ ∈S such that for all δ ∈T , f (γ , ∅) =(δ , ∅), or there exists δ ∈T such that for all γ ∈S, f (γ , ∅) =(δ , ∅). In the former case, S =∅. Thus, (α, S)∈MOD k \ MOD deg 

Case

f deg of T × {∅} is equal to F × {∅}. Since f (α, S)=f (β, T ), f E (α, S)=f F (β, T ). Thus, E=F . Since f E (α, S)=f F (β, T ), (α, S)∼ k (β, T ). Consequently, g (k,σ) (α, S)=g (k,σ) (β, T ).
Proof of Lemma 7: By induction on ψ. Let (β, T )∈MOD n . We consider the following cases.

Case ψ=x i for some i∈{1, . . . , n}. (i)⇒(ii) Suppose f (α, S)=(β, T ) and (α, S)|= k σ(x i ) for some (α, S)∈MOD k . Let (α , S )∈MOD k . Suppose f (α , S )=(β, T ). Since f (α, S)=(β, T ), f (α, S)=f (α , S ). Hence, g (k,σ) (α, S)=g (k,σ) (α , S ). Thus, by Proposition 9, (α,

S)|= k σ(x i ) iff (α , S )|= k σ(x i ). Since (α, S)|= k σ(x i ), (α , S )|= k σ(x i ).
(ii)⇒(iii) Suppose for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(x i ). Since f is surjective, let (α , S )∈MOD k be such that f (α , S )=(β, T ). Since for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(x i ), (α , S )|= k σ(x i ). Consequently, for n (f (α , S )) is one of the disjuncts of τ (x i ). Since f (α , S )=(β, T ), by Proposition 5, (β, T )|= n τ (x i ).

(iii)⇒(i) Suppose (β, T )|= n τ (x i ). Hence, let (α, S)∈MOD k be such that (α, S)|= k σ(x i ) and (β, T )|= n for n (f (α, S)). Thus, by Proposition 5, f (α, S)=(β, T ).

Case ψ=⊥. (i)⇒(ii) Obviously, the condition "f (α, S)=(β, T ) and (α, S)|= k σ(⊥) for some (α, S)∈MOD k cannot hold.

(ii)⇒(iii) Since f is surjective, the condition "for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(⊥)" cannot hold. 

ii)⇒(iii) Suppose for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(χ ∨ θ). For the sake of the contradiction, suppose (β, T ) |= n τ (χ ∨ θ). Thus, neither (β, T )|= n τ (χ), nor (β, T )|= n τ (θ). Since f is surjective, let (α , S )∈MOD k be such that f (α , S )=(β, T ). Since for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(χ ∨ θ), (α , S )|= k σ(χ ∨ θ). Consequently, either (α , S )|= k σ(χ), or (α , S )|= k σ(θ). Since f (α , S )=(β, T ), by induction hypothesis, either (β, T )|= n τ (χ), or (β, T )|= n τ (θ): a contradiction. (iii)⇒(i) Suppose (β, T )|= n τ (χ ∨ θ). Since f is surjective, let (α, S)∈MOD k be such that f (α, S)=(β, T ). For the sake of the contradiction, suppose (α, S) |= k σ(χ ∨ θ). Hence, nei- ther (α, S)|= k σ(χ), nor (α, S)|= k σ(θ). Since f (α, S)=(β, T ), by induction hypothesis, neither (β, T )|= n τ (χ), nor (β, T )|= n τ (θ). Thus, (β, T ) |= n τ (χ ∨ θ): a contradiction.
Case ψ= χ. (i)⇒(ii) Suppose there exists (α, S)∈MOD k such that f (α, S)=(β, T ) and (α, S)|= k σ( χ). Let (α , S )∈MOD k . Suppose f (α , S )=(β, T ). For the sake of the contradiction, suppose (α , S ) |= k σ( χ). Consequently, let γ ∈S be such that (γ , ∅) |= k σ(χ). Since f is a (k, n)-morphism and f (α , S )=(β, T ), let δ∈T be such that f (γ , ∅)=(δ, ∅). Since f is a (k, n)-morphism and f (α, S)=(β, T ), let γ∈S be such that f (γ, ∅)=(δ, ∅). Since (γ , ∅) |= k σ(χ) and f (γ , ∅)=(δ, ∅), by induction hypothesis, (γ, ∅) |= k σ(χ). Hence, (α, S) |= k σ( χ): a contradiction.

(ii)⇒(iii) Suppose for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ( χ). For the sake of the contradiction, suppose (β, T ) |= n τ ( χ). Thus, let δ∈T be such that (δ, ∅) |= n τ (χ). Since f is surjective, let (α , S )∈MOD k be such that f (α , S )=(β, T ). Since for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ( χ), (α , S )|= k σ( χ). Since f is a (k, n)-morphism and f (α , S )=(β, T ), let γ ∈S be such that f (γ , ∅)=(δ, ∅). Since (δ, ∅) |= n τ (χ), by induction hypothesis, (γ , ∅) |= k σ(χ). Consequently, (α , S ) |= k σ( χ): a contradiction.

(iii)⇒(i) Suppose (β, T )|= n τ ( χ). Since f is surjective, let (α, S)∈MOD k be such that f (α, S)=(β, T ). For the sake of the contradiction, suppose (α, S) |= k σ( χ). Hence, let γ∈S be such that (γ, ∅) |= k σ(χ). Since f is a (k, n)-morphism and f (α, S)=(β, T ), let δ∈T be such that f (γ, ∅)=(δ, ∅). Since 

Proposition 7 .

 7 Let (k, σ)∈SUB n . Let (α, S)∈MOD k . For all (β, T ), (γ, U )∈MOD n , if (α, S)|= k σ(for n (β, T )) and (α, S)|= k σ(for n (γ, U )) then (β, T )=(γ, U ).

Lemma 8 .

 8 For all (β, T )∈MOD k and for all i∈{1, . . . , n}, (β, T )|= k ν(x i ) iff f (β, T )|= n x i . Lemma 9. For all (β, T )∈MOD k and for all (γ, U )∈MOD n , f (β, T )=(γ, U ) iff (β, T )|= k ν(for n (γ, U )). Lemma 10. For all (β, T )∈MOD k and for all i∈{1, . . . , n}, (β, T )|= k ν(τ

  (β, T )∈MOD deg n . Since f deg is surjective, let α∈BIT k be such that f deg (α, ∅)=(β, ∅). Hence, f (α, ∅)=(β, T ). Case (β, T )∈MOD n \ MOD deg n . Thus, (β, T )∈f • (T ). Since f T is surjective, let (α, S)∈f • (T ) be such that f T (α, S)=(β, T ). Consequently, (α, S)∈MOD k \ MOD degk and the image by f deg of S × {∅} is equal to T × {∅}. Hence, f (α, S)=f T (α, S). Since f T (α, S)=(β, T ), f (α, S)=(β, T ).

k

  and, E being the nonempty set of ntuples of bits such that the image byf deg of S × {∅} is equal to E × {∅}, f (α, S)=f E (α, S). Since f (α, S)=(β, T ), f E (α, S)=(β, T ). Consequently, T =E. Since the image by f deg of S × {∅} is equal to E × {∅}, the image by f deg of S × {∅} is equal to T × {∅}.Hence, let δ∈T be such that f (γ , ∅)=(δ, ∅). Since for all δ ∈T , f (γ , ∅) =(δ , ∅), f (γ , ∅) =(δ, ∅): a contradiction. In the latter case, T =∅. Since f (α, S)=(β, T ), S =∅. Thus, (α, S)∈MOD k \ MOD deg k and, E being the nonempty set of n-tuples of bits such that the image byf deg of S × {∅} is equal to E × {∅}, f (α, S)=f E (α, S). Since f (α, S)=(β, T ), f E (α, S)=(β, T ). Consequently, T =E. Since the image by f deg of S × {∅} is equal to E × {∅}, the image by f deg of S × {∅} is equal to T × {∅}. Hence, let γ∈S be such that f (γ, ∅)=(δ , ∅). Since for all γ ∈S, f (γ , ∅) =(δ , ∅), f (γ, ∅) =(δ , ∅): a contradiction.Proof of Lemma 6: Let (α, S), (β, T )∈MOD k . Suppose f (α, S)=f (β, T ). We consider the following cases. Case S=∅. Since f (α, S)=f (β, T ), by Lemma 5, T =∅. Since S=∅, (α, S), (β, T )∈MOD deg k . Hence, f (α, S)=f deg (α, S) and f (β, T )=f deg (β, T ). Since f (α, S)=f (β, T ), f deg (α, S)=f deg (β, T ). Thus, (α, S)∼ k (β, T ). Consequently, g (k,σ) (α, S)=g (k,σ) (β, T ). Case S =∅. Since f (α, S)=f (β, T ), by Lemma 5, T =∅. Since S =∅, (α, S), (β, T )∈MOD k \ MOD deg k . Hence, f (α, S)=f E (α, S) and f (β, T )=f F (β, T ), E being the nonempty set of n-tuples of bits such that the image by f deg of S × {∅} is equal to E × {∅} and F being the nonempty set of ntuples of bits such that the image by

(

  iii)⇒(i) Obviously, the condition "(β, T )|= n τ (⊥)" cannot hold.Case ψ=¬χ. (i)⇒(ii) Suppose f (α, S)=(β, T ) and (α, S)|= k σ(¬χ) for some (α, S)∈MOD k . Let (α , S )∈MOD k . Suppose f (α , S )=(β, T ).For the sake of the contradiction, suppose (α , S ) |= k σ(¬χ). Consequently, (α , S )|= k σ(χ). Since f (α, S)=(β, T ) and f (α , S )=(β, T ), by induction hypothesis, (α, S)|= k σ(χ). Hence, (α, S) |= k σ(¬χ): a contradiction.

(

  ii)⇒(iii) Suppose for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(¬χ). For the sake of the contradiction, suppose (β, T ) |= n τ (¬χ). Thus, (β, T )|= n τ (χ). Since f is surjective, let (α , S )∈MOD k be such that f (α , S )=(β, T ). Since for all (α, S)∈MOD k , if f (α, S)=(β, T ) then (α, S)|= k σ(¬χ), (α , S )|= k σ(¬χ). Consequently, (α , S ) |= k σ(χ). Since f (α , S )=(β, T ), by induction hypothesis, (β, T ) |= n τ (χ): a contradiction.

(

  iii)⇒(i) Suppose (β, T )|= n τ (¬χ). Since f is surjective, let (α, S)∈MOD k be such that f (α, S)=(β, T ). For the sake of the contradiction, suppose (α, S) |= k σ(¬χ). Hence, (α, S)|= k σ(χ). Since f (α, S)=(β, T ), by induction hypothesis, (β, T )|= n τ (χ). Thus, (β, T ) |= n τ (¬χ): a contradiction. Case ψ=χ ∨ θ. (i)⇒(ii) Suppose f (α, S)=(β, T ) and (α, S)|= k σ(χ ∨ θ) for some (α, S)∈MOD k . Let (α , S )∈MOD k . Suppose f (α , S )=(β, T ). For the sake of the contradiction, suppose (α , S ) |= k σ(χ∨θ). Consequently, neither (α , S )|= k σ(χ), nor (α , S )|= k σ(θ). Since f (α, S)=(β, T ) and f (α , S )=(β, T ), by induction hypothesis, neither (α, S)|= k σ(χ), nor (α, S)|= k σ(θ). Hence, (α, S) |= k σ(χ ∨ θ): a contradiction.

(

  

  (γ, ∅) |= k σ(χ), by induction hypothesis, (δ, ∅) |= n τ (χ). Thus, (β, T ) |= n τ ( χ): a contradiction. Proof of Lemma 8: Let (β, T )∈MOD k and all i∈{1, . . . , n}. For the sake of the contradiction, suppose either (β, T )|= k ν(x i ) and f (β, T ) |= n x i , or (β, T ) |= k ν(x i ) and f (β, T )|= n x i . In the former case, by definition of ν, let (α, S)∈MOD k be such that f (α, S)|= n x i and (β, T )|= k for k (α, S). Hence, by Proposition 5, (β, T )=(α, S). Since f (α, S)|= n x i , f (β, T )|= n x i : a contradiction. In the latter case, by definition of ν, for k (β, T ) is one of the disjuncts of ν(x i ). Since by Proposition 5, (β, T )|= for k (β, T ), (β, T )|= k ν(x i ): a contradiction. Proof of Lemma 9: Let (β, T )∈MOD k and (γ, U )∈MOD n . For the sake of the contradiction, suppose either f (β, T )=(γ, U ) and (β, T ) |= k ν(for n (γ, U )), or f (β, T ) =(γ, U ) and (β, T )|= k ν(for n (γ, U )). In the former case, since by Proposition 4, (γ, U )|= n xγ , f (β, T )|= n xγ . Hence, by Lemma 8, (β, T )|= k ν(x γ ). Since f is a (k, n)-morphism and by Proposition 4, for all γ , γ ∈U , (γ , ∅)|= n xγ iff γ =γ , for all β ∈T , there exists γ ∈U such that f (β , ∅)|= nxγ and for all γ ∈U , there exists β ∈T such that f (β , ∅)|= n xγ . Thus, by Lemma 8, for all β ∈T , there exists γ ∈U such that (β , ∅)|= k ν(x γ ) and for all γ ∈U , there exists β ∈T such that (β , ∅)|= k ν(x ). Since (β, T )|= k ν(x γ ), (β, T )|= k ν(for n (γ, U )): a contradiction. In the latter case, (β, T )|= k ν(x γ ). Moreover, for all β ∈T , there exists γ ∈U such that (β , ∅)|= k ν(x γ ) and for all γ ∈U , there exists β ∈T such that (β , ∅)|= k ν(x ). Consequently, by Lemma 8, for all β ∈T , there exists γ ∈U such that f (β , ∅)|= n xγ and for all γ ∈U , there exists β ∈T such that f (β , ∅)|= n xγ . Since f is a (k, n)morphism and by Proposition 4, for all γ , γ ∈U , (γ , ∅)|= n xγ iff γ =γ , for all β ∈T , there exists γ ∈U such that f (β , ∅)=(γ , ∅) and for all γ ∈U , there existsβ ∈T such that f (β , ∅)=(γ , ∅). Since (β, T )|= k ν(x γ ), by Proposition 11, f (β, T )=(γ, U ): a contradiction.Proof of Lemma 10: Let (β, T )∈MOD k and i∈{1, . . . , n}. For the sake of the contradiction, suppose either (β, T )|= k ν(τ (x i )) and (β, T ) |= k σ(x i ), or (β, T ) |= k ν(τ (x i )) and (β, T )|= k σ(x i ). In the former case, by definition of τ , let (α, S)∈MOD k be such that (α, S)|= k σ(x i ) and (β, T )|= k ν(for n (f (α, S))). Hence, by Lemma 9, f (β, T )=f (α, S). Thus, g (k,σ) (β, T )=g (k,σ) (α, S). Consequently, by Proposition 9, (β, T )|= k σ(x i ) iff (α, S)|= k σ(x i ). Since (α, S)|= k σ(x i ), (β, T )|= k σ(x i ): a contradiction. In the latter case, by definition of τ , for n (f (β, T )) is one of the disjuncts of τ (x i ). Since by Lemma 9, (β, T )|= k ν(for n f (β, T )), (β, T )|= k ν(τ (x i )): a contradiction.

  n}} exactly characterizes the propositional valuation of the variables x 1 , . . . , x n represented by α. This is what Proposition 4 is about. Proposition 4. For all (α, S)∈MOD n and for all β∈BIT n , α=β iff (α, S)|= n xβ .

	For all (α, S)∈MOD n , the n-formula
	• for n (α, S)=x α ∧	{x γ : γ∈S} ∧ {♦x γ : γ∈S}
	exactly characterizes the tree-like Kripke model of depth at most 1 represented by (α, S). This is what
	Proposition 5 is about.	

Proposition 5. For all (α, S), (β, T )∈MOD n , (α, S)=(β, T ) iff (α, S)|= n for n (β, T ).

  ⊥ P. Balbiani, C ¸. Gencer, M. Rostamigiv, T. Tinchev canonical model of L 2 generated by w is isomorphic to (α, S). Let (α, S)∈MOD n and β∈BIT n . For the sake of the contradiction, suppose α=β not-iff (α, S)|= n xβ . Hence, either α=β and (α, S) |= n xβ , or α =β and (α, S)|= n xβ . In the former case, for all i∈{1, . . . , n}, α i =β i . Thus, for all i∈{1, . . . , n}, (α, S)|= n x βi i . Consequently, (α, S)|= n xβ : a contradiction. In the latter case, let i∈{1, . . . , n} be such that α i =β i . Hence, (α, S) |= n x βi i . Thus, (α, S) |= n xβ : a contradiction. Proof of Proposition 5: From [18, Theorem 32], from the fact that for all (α, S)∈MOD n , for n (α, S) characterizes n-models modulo bisimulation and from the fact that for all (α, S), (β, T )∈MOD n , if (α, S) and (β, T ) are bisimilar then (α, S)=(β, T ). Let (α, S)∈MOD k . Let β be the n-tuple of bits such that for all i∈{1, . . . , n},

	Proof of Proposition 4: Proof of Proposition 6:

if (α, S) |= k σ(x i ) then β i =0 else β i =1. Let T be the least set of n-tuples of bits such that for all γ∈S, there exists δ∈T such that for all i∈{1, . . . , n}, if

(γ, ∅) |= k σ(x i ) then δ i =0 else δ i =1.

By induction on ϕ∈FOR n , the reader may easily verify that (α, S)|= k σ(ϕ) iff (β, T )|= n ϕ. Since by Proposition 5, (β, T )|= n for n (β, T ), (α, S)|= k σ(for n (β, T )). Proof of Proposition 7: Let (β, T ), (γ, U )∈MOD n . Suppose (α, S)|= k σ(for n (β, T )) and (α, S)|= k σ(for n (γ, U )). Hence, (α, S)|= k σ(x β ) and (α, S)|= k σ(x γ ). Thus, β=γ. Let β ∈T be arbitrary. Since (α, S)|= k σ(for n

A substitution σ is more general than a substitution τ in a propositional logic if there exists a substitution υ such that for all variables x, υ(σ(x)) ↔ τ (x) is in that logic.

In this paper, all modal logics are normal. We follow the same conventions as in[START_REF] Blackburn | Modal Logic[END_REF][START_REF] Chagrov | Modal Logic[END_REF][START_REF] Kracht | Tools and Techniques in Modal Logic[END_REF] for talking about them: S5 is the least modal logic containing the formulas usually denoted T, 4 and 5, KD is the least modal logic containing the formula usually denoted D, etc.

From now on, ". . . iff . . ." means ". . . if and only if . . ." and ". . . not-iff . . ." means ". . . if and only if not . . .".

As is well-known, the unification problem in KB, KD and KT is in NP within the context of elementary unification.

Since S is finite, the proof of the existence of ∼ does not require the use of the axiom of choice.
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