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Abstract—This paper deals with the carbon footprint of 

distributed maintenance operations. It concerns the 

maintenance scheduling of a set of geographically 

distributed production sites where pieces of equipment are 

subject to failure. Their health state is monitored by a 

central maintenance workshop (CMW), which plans the 

corresponding preventive maintenance (PM) tasks and 

repairs defective equipment. A mobile maintenance 

workshop (MMW) transports all the resources necessary to 

maintain each piece of equipment, following the predefined 

schedule. This study aims to propose an approach to 

reducing CO2 emissions of the MMW routing. The model 

allows choosing the optimal position of the CMW and the 

capacity of vehicles, both satisfying a low cost and a low 

carbon footprint. We conduct several experiments from a 

real-world case study and European Union (EU) regulation. 

The results show a trade-off between operational 

profitability and strategic sustainability. 

Keywords— Distributed maintenance; Maintenance scheduling; 

Routing optimization; Carbon footprint 

I.  INTRODUCTION 

Every manufacturing systems are subject to failure. Their 

reliability and availability depend strongly on the quality of 

Maintenance Management [1]. Thus, production assets require 

monitoring and scheduling the associated maintenance actions 

(preventive and corrective). Fortunately, the evolution of 

technologies has led to an Industry 4.0 where managers can 

predict failures and conduct maintenance operations remotely 

and in real-time [2]. However, they remain confronted with the 

limitation of budget and resources dedicated to maintenance 

[3]. It is even more complicated when a single company manage 

the maintenance of geographically dispersed Production Sites 

(PS) [4]. One solution to reduce embedded costs consists in 

sharing all the resources (spare parts, operators and tools) in a 

Central Maintenance Workshop (CMW) [5], also known as a 

repair shop [6]. The first concept implementing this approach is 

called Distributed Maintenance [7]. 

This paper studies the reduction of CO2 emission in Distributed 

Maintenance. Indeed, it concerns the Preventive Maintenance 

(PM) scheduling of geographically spread PS in which the 

distances to each other are not too high. A Mobile Maintenance 

Workshop (MMW) transports the resources from the CMW to 

the PS, where pieces of manufacturing equipment are subject to 

failure. Following an optimal schedule, the MMW 

progressively replace each piece of equipment with spare parts 

to prevent expected collapse. However, one of the main 

contributors to global CO2 emission is the transport sector [8]. 

It represented about 20% in 2021 [9]. Hence, Distributed 

Maintenance faces environmental issues. The objective is then 

to reduce carbon footprint while optimizing the routing of the 

MMW. 

Several approaches are found in the literature, dealing with 

either the scheduling in Maintenance Management [10] or the 

routing in Operational Research [11]. Then, the existing 

contributions allow optimizing the visits of the MMW 

considering the constraints related to the uncertain equipment 

state and the capacity constraint of the MMW. However, these 

models don’t embed the optimization of carbon footprint. From 

this gap, this paper provides an improved model called SMCR 

(Sustainable Maintenance and Capacitated Routing). The 

novelty of the approach is to consider the CO2 emissions mainly 

related to the transport of resources. Thus, we state two research 

questions as follow: 

• In the context of Distributed Maintenance, what are 

the elements that generate CO2 emissions? 

• How to reduce the carbon footprint of the MMW? 

This document is organized into six sections. After an 

introduction to the context of this work in section 1, section 2 

is devoted to the literature review. Section 3 defines the 

problem and Section 4 presents in-depth the proposed solution. 

Experiments are conducted in Section 4 to explore the relevance 

of the study approach. The last section contains our conclusion 

and future research work. 

II. LITTERATURE REVIEW 

Recent technological advances, such as Wireless Sensor, Ad-

hoc Networks, Internet of Things, Cloud Computing, multi-

agent systems and so on, led to the emergence of architectures 

allowing the management of several smart production assets 

geographically dispersed [12]. Therefore, Distributed 

Maintenance was first clearly defined in 2014 [7]. Indeed, three 

main steps allow its implementation: first, modelling and sizing 

of a CMW, whose systematic literature review has been 



conducted in 2021 [6]. The main difficulty remains optimizing 

the CMW location [13], increasing with the number of PS to 

serve and all the constraints embedded. 

It is secondly necessary to define the optimal maintenance 

policy for distributed PS. Among the few studies dealing with 

the scheduling of distributed maintenance, [14] proposed in 

2016 a model for a fixed frequency of Preventive Maintenance 

operations while reducing the occurrence of failures. However, 

the stochastic behaviour of equipment failures and their 

degradation require a more intelligent schedule. Thus, [15] 

proposed in 2018 a bi-objective model based on predictive 

knowledge and residual-useful life of production equipment. 

Another recent paper [16] studied a dynamic approach to 

identify critical facilities and smartly determine components 

that could be replaced preventively. However, a major barrier 

faced by the authors is the combination of maintenance 

scheduling and the routing optimization of the MMW. 

Indeed, the third step of Distributed Maintenance consists to 

schedule the routing of the MMW considering the constraints 

of capacity, costs and maintenance policy. Various recent 

studies contribute to solving this problem. For instance, [17] 

proposed a hybrid algorithm combining the optimal choice of 

the PM frequency and the routing of the vehicles. [18] define a 

MILP (Mixed Integer Linear Programming) to allocate teams 

and tasks for each PM operation. In addition, a routing problem 

is an NP-Hard problem [19]. [20] deals with the computation 

time to solve the MILP. Unfortunately, all these approaches do 

not embed the environmental issues due to the transport of 

resources for maintenance actions. 

MMW generally consist of vehicles that transport spare parts, 

tools and operators. It produces CO2, which contributes to the 

rise in the global average temperature [21]. Carbon footprint 

[22] is a widely used term to measure the environmental impact 

of transport activities. Different methods and regulations exist 

to estimate it depending on the countries [23]. In this study, we 

will focus on the low carbon practices of the European Union 

(EU) [24]. In 2018, the transport sector represented 29% of the 

total CO2 emissions in the EU, against 10% in China and 36% 

in the USA [25]. 

III. PROBLEM DEFINITION 

   We study a system with a set of N Production Sites (PS) 

geographically dispersed over an area. We consider each PS has 

one piece of equipment subject to uncertain failures. A Mobile 

Maintenance Workshop (MMW) aims to transport preventive 

maintenance resources (spare parts and tools). With a schedule, 

the set of PS is visited within a horizon of time, as presented in 

Figure 1. A Centralized Maintenance Workshop (CMW) stores 

the spare parts and monitors the health state of each piece of 

equipment. The MMW starts in the CMW with a limited 

capacity of spare parts and visits all the PS. When the MMW 

reaches a PS, the piece of equipment is replaced systematically 

by a spare part. The goal is to optimize the routing of the MMW 

through the PS while reducing maintenance costs, routing costs 

and carbon footprint.  

 

Fig. 1. Distributed maintenance context. 

The main assumptions of the problem are summarized as 

follows: 

1. The MMW is a fleet of m homogeneous vehicles, each 

with a limited capacity Q. 

2. A vehicle travels with only one operator in charge of 

replacing a piece of equipment with a brand-new spare 

part. 

3. The travel times do not change over the scheduling 

horizon . 

4. The CMW has unlimited capacity. 

5. A piece of equipment is considered not subject to 

degradation. 

6. The health state of one piece of equipment does not 

disrupt that of another one. Thus, it is possible to 

optimize the frequency of preventive maintenance (PM) 

operations for each piece of equipment separately. 

7. Each PM operation must be conducted in a hard time 

window. 

8. When a failure occurs, the customer waits and the 

following PM operation allows to replace the defective 

equipment. 

In the next section, we propose a model called SMCR to solve 

the scheduling and routing problem in the context of Distributed 

Maintenance. 

IV. OPTIMIZATION OF DISTRIBUTED MAINTENANCE 

Generally, it consists in choosing the vehicles' capacity and 

the position of the depot while optimizing the schedule of PM 

operations. The novelty of our study is the consideration of CO2 

emissions. Thus, we use the general framework proposed by 

[26] and extend the core model from CMCR (Combined 

Maintenance and Capacitated Routing) to SMCR. Indeed, as 

presented in Figure 2, the input of SMCR is customers' data 

concerning their geographical locations and equipment failures 

laws. The SMCR model consists in solving two different sub-

models iteratively: 



(1)  Maintenance Model (MM): The objective is to minimize 

the Expected Maintenance Costs (E[MC]). This sub-model 

is first developed by [14]. It allows optimizing the 

frequency of PM operations for each piece of equipment 

separately. It provides optimal time windows for each 

customer within the scheduling horizon. 

(2)  Sustainable Routing Model (SRM): The objective of this 

sub-model is to minimize the Expected Routing Costs 

(E[RC]). It is the prime change from CMCR to SMCR. It 

solves a CVRPTW (Capacitated Vehicle Routing Problem 

with Time Windows), well known in Operational 

Research. In the CVRPTW, a fleet of homogeneous 

vehicles is in charge of serving customers with known 

demands subject to opening hours [11]. The proposed SRM 

is a mathematical model used to solve the routing problem 

and carbon footprint improvement. 

 

Fig. 2. SMCR Model 

The MM and SRM sub-models are linked by the expected 

waiting time wi1 which is the period elapsing between an 

expected failure and the beginning of the next PM operation.  

These two models loop and the sum of 𝐸[𝑀𝐶] and 𝐸[𝑅𝐶] 
converge2 to an optimal solution. The Expected Distributed 

Maintenance Cost is represented by: 

𝐸[𝐷𝑀𝐶] =  𝐸[𝑀𝐶] + 𝐸[𝑅𝐶] 

We go now more in-depth in the SRM model. Let's consider a 

complete directed graph 𝐺 = (𝑉, 𝐴), where 𝑉 = {0,1,2, … , 𝑁} 
is a set of nodes with the depot 0, and 𝑉𝑐 = 𝑉\{0} a subset of 

customers. 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉} denotes the set of links between 

all pairs of nodes. The vehicles set is represented by 𝐾 =
{1,2, … ,𝑚}, each with a capacity 𝑄. Each customer 𝑖 ∈ 𝑉𝑐 has 

                                                           
1 wi is obtained exactly as in [14]. 

a certain positive demand 𝑑𝑖 < 𝑄 and an on-site service time 

𝑇𝑃𝑀𝑖 . Non-negative travel time 𝑡𝑖𝑗 and distance 𝑑𝑖𝑗  are 

associated to each arc (𝑖, 𝑗) ∈ 𝐴.  

The MM allows to obtain time windows for each operation 

[𝑒𝑗, 𝑙𝑗]𝑖  ;  𝑗 = 1,2, … , 𝜂𝑖; where 𝜂𝑖 is the total number of 

preventive maintenance operations over the scheduling horizon 

𝜏 for each customer   𝑖 ∈ 𝑉𝑐. We thus consider an auxiliary 

grouped set of nodes 𝑉′ = {0,1,2, … , 𝑛} where 0 is the depot 

and 𝑛 = ∑ 𝜂𝑖
𝑁
𝑖=1  represents the cardinal of the set of all the 

preventive maintenance operations over the horizon 𝜏. Then, we 

define an auxiliary directed graph 𝐺′ = (𝑉′, 𝐴′), where 𝐴′ =
{(𝑖′, 𝑗′): 𝑖′, 𝑗′ ∈ 𝑉′}  represents the set of arcs. For each node 

𝑖′ ∈ 𝑉′ we can find the equivalent 𝑖 ∈ 𝑉 such as 𝑑𝑖′=𝑑𝑖. And, 

for each arc (𝑖′, 𝑗′) ∈ 𝐴′ we can find the equivalent arc (𝑖, 𝑗) ∈
𝐴 such as 𝑡𝑖𝑗 = 𝑡𝑖′𝑗′ and 𝑑𝑖𝑗 = 𝑑𝑖′𝑗′ . 

The problem therefore consists in solving a classical CVRPTW 

considering the graph 𝐺′ such that: 

•  Each maintenance operation 𝑖′ ∈ 𝑉′\{0} is performed 

exactly once. 

• A vehicle cannot transport spare parts over its capacity 

𝑄. 

• Each time windows [𝑒𝑗 , 𝑙𝑗]𝑖 ;  𝑖 ∈ 𝑉\
{0}  is equivalent to 

a time window [𝑒𝑖′ , 𝑙𝑖′] ;  𝑖
′ ∈ 𝑉′\{0} .  

CVRPTW is an NP-hard problem and it can be solved only for 

small instances of the problem. The most recent and relevant 

model is proposed by [27]. Based on this classical model, we 

now define the Mixed-Integer Linear Programming model 

(MILP) of the SRM. For the rest of the paper, we use the index 

𝑖 instead of 𝑖′ to denote each PM operation. 

The binary decision variable 𝑥𝑖𝑗  is defined to indicate if a 

vehicle crosses an arc (𝑖, 𝑗) in the optimal solution. A vehicle 

arrives for a service 𝑖 at a time denoted by 𝑠𝑖 and with a load 𝑦𝑖 . 
The SRM model is composed of a function E[RC] and 

constraints. 

𝐸[𝑅𝐶] = ∑ ∑ (𝐶𝑜𝑒𝑓. 𝐶𝐷 +  
𝐶𝑇

𝑉
) . 𝑑𝑖𝑗 . 𝑥𝑖𝑗 +

𝑛
𝑗=0

𝑛
𝑖=0

 𝐶𝑜𝑒𝑓. 𝐶𝑃.𝑚  (1)  

𝑊ℎ𝑒𝑟𝑒:      
  

{
 
 

 
 
𝐶𝑜𝑒𝑓: 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑛𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝐶𝐷: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ($/𝑘𝑚) 

𝐶𝑇: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 ($/ℎ)

𝐶𝑃: 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ($)

𝑉: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 (𝑘𝑚/ℎ)

 

2 It is necessary to define a tolerance interval for convergence. 

The optimization stops if E[DMC] doesn’t exceed the bound 

after several iterations. 



It is a question to adapt the objective function according to the 

European strategies for low-emission transport [28]. Indeed, 

two formulas allow to evaluate the expected carbon footprint: 

𝐸[𝐶𝐹]1 = ∑ ∑ 𝐸𝐹. 𝐶𝑅. 𝑑𝑖𝑗 . 𝑥𝑖𝑗
𝑛
𝑗=0

𝑛
𝑖=0   (2)  

𝐸[𝐶𝐹]2 = ∑ ∑ 𝐸𝐹. 𝐶𝑅.
𝑦𝑖

𝑄
. 𝑑𝑖𝑗 . 𝑥𝑖𝑗

𝑛
𝑗=0

𝑛
𝑖=0   (3)  

𝑊ℎ𝑒𝑟𝑒 :  

   {
𝐸𝐹: 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑘𝑔𝐶𝑂2𝑒/𝑙)
𝐶𝑅: 𝐶𝑜𝑚𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑙/𝑘𝑚)

 

 

Formula (2) is used when the vehicles and production 

equipment are owned by the same company and Formula (3) 

otherwise. 

From the equations (1), (2) we establish a new objective 

function that considers both the routing costs and the CO2 

emissions as follow: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  

(1 − 𝜺). 𝐸[𝑅𝐶] + 𝜺. 𝐸𝐶. 𝐸[𝐶𝐹]1     (4) 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

− 𝑄.𝑚 ≤ −∑ 𝑑𝑖
𝑛
𝑖=1 ;  (5)  

∑ 𝑥0𝑗
𝑛
𝑗=1 −𝑚 = 0 ; (6)  

∑ 𝑥𝑖𝑖
𝑛
𝑖=0 = 0 ; (7) 

∑ 𝑥𝑖𝑗
𝑛
𝑖=0,𝑖≠𝑗 = 1, ∀𝑗 ∈ 𝑉′ − {0} ;  (8)  

∑ 𝑥𝑖𝑗
𝑛
𝑗=1,𝑖≠𝑗 ≤ 1, ∀𝑖 ∈ 𝑉′ − {0} ; (9)  

𝑦𝑖 − 𝑦𝑗 + (𝑑𝑗 + 𝑄)𝑥𝑖𝑗 ≤ 𝑄, ∀𝑖, 𝑗 ∈ 𝑉′ − {0}, 𝑖 ≠ 𝑗; (10) 

𝑠𝑖 − 𝑠𝑗 + (𝑇𝑃𝑀𝑖 + 𝑡𝑖𝑗 + 𝜏). 𝑥𝑖𝑗 ≤ 𝜏 , ∀𝑖, 𝑗 ∈ 𝑉′ − {0}, 𝑖 ≠ 𝑗 ;  

(11) 

𝑑𝑖 ≤ 𝑦𝑖 ≤ 𝑄, ∀𝑖 ∈ 𝑉′ − {0} ; (12) 

𝑒𝑖 ≤ 𝑠𝑖 ≤ 𝑙𝑖 , 𝑖 ∈ 𝑉
′ − {0} ;  (13) 

𝑥𝑖𝑗 ∈ {0,1},   ∀𝑖, 𝑗 ∈ 𝑉
′, 𝑖 ≠ 𝑗 ;  (14) 

In this MILP formulation, the objective function (4) embeds a 

variable  𝜀 ∈ [0,1] which denotes the trade-off between the 

minimal routing costs and the minimal carbon footprint. 𝐸𝐶 

represents the emission cost ($/𝑘𝑔𝐶𝑂2𝑒). The constraint (5) 
determines the minimum number of vehicles needed to serve all 

the operations. The constraint (6) imposes that exactly 𝑚 

vehicles leave the depot. The classical flow constraints (7), (8) 
and (9) guarantee that each vehicle can leave the depot exactly 

once, and each maintenance operation is performed only once. 

In the constraint (10), the capacity of vehicles is stated such 

that the difference of a vehicle’s load between two successive 

services 𝑖 and 𝑗 do not exceed the demand of 𝑗. The constraint 

(11) ensures that the time between two successive services 𝑖 

and 𝑗 do not exceed 𝑇𝑃𝑀𝑖 + 𝑡𝑖𝑗. The constraints (12), (13) and 

(14) restrict the upper and lower bounds of decision variables. 

In the next paragraph, we will implement the proposed model 

in a real-world case study. 

V. ILLUSTRATED CASE STUDY IN OIL AND GAS INDUSTRY 

a. Test instance 

In this section, we run the SMCR in the oil and gas field to 

highlight the relevance of the proposed model. 

(1)  Equipment: we study the case of onshore pumps. 

(2)  Customers: we consider ten distributed pumping stations 

in a radius of 300 km. The matrix of distances [𝑑𝑖𝑗] is 

represented by the Appendix 1. 

(3) We assume that each customer has exactly one pump 

subject to uncertain failures. A pump is systematically 

replaced within a PM operation and transported to the 

depot. 

The objective is to find the optimal location of the depot, the 

capacity of the vehicles and the scheduling of PM operations. 

We first get data on pump failures and operational costs [14] 

(Appendix 2 for details).  

The MMW has a fleet of homogeneous vehicles whose capacity 

needs to be optimized. The unit costs related to each vehicle 

are:  𝐶𝐷 = 0.476$/𝑘𝑚, 𝐶𝑇 = 60$/ℎ and  𝐶𝑃 = 12,000$. 

We consider 3 types of vehicles with an average speed of 

60𝑘𝑚/ℎ as shown in Table 2. 𝐸𝐶 = 0.145$/𝑘𝑔𝐶𝑂2𝑒 [29] 

TABLE 2. TYPES OF VEHICLES 

Vehicles 𝑪𝒐𝒆𝒇 𝑸 
𝑷𝒐𝒘𝒆𝒓 

(𝒄𝒉) 
𝑬𝑭 

(𝒌𝒈𝑪𝑶𝟐/𝒍) 
𝑪𝑹 

(𝒍/𝒌𝒎) 
Medium 1.0 4 350 3.16 0.087 

Heavy 1.5 6 525 3.16 0.210 

Extra-

heavy 
2.0 8 700 3.16 0.330 

 

We choose the software Scilab 5.5.2 to implement the case 

study. All the tests have been run using the library “FOSSEE 

Optimization Toolbox” adapted for MILP. We perform the 

experiments on Windows 8, 64 bits machine, with an Intel(R) 

Core (TM) i7-10850H, CPU 2.70 GHz and 32 Go of RAM. 

b. Results 

The SMCR reduces the carbon footprint of PM operations for 

geographically distributed equipment. In this case study, 

several experiments explore the benefits of the proposed model. 

Indeed, we have executed the proposed iterative process until 

reaching ten successive iterations where the value of  𝐸[𝐷𝑀𝐶] 
does not change by more than 1%. Five instances of the solution 

can be considered by varying the parameter 𝜀 ∈ [0,1] as shown 

in Table 3. 

Therefore, each solution instance is made to choose the right 

type of vehicle and the best depot position that satisfies the 



lowest cost 𝐸[𝐷𝑀𝐶]. For example, Figure 3 presents the results 

obtained for SMCR-1 (𝜀 = 1). Indeed, it can be observed that 

when the depot is near customer 8, the costs are the lowest with 

a heavy vehicle (131$/ℎ). Figure 4 represents as instance, the 

corresponding carbon footprint 𝐸[𝐶𝐹]1 (8.19 𝑘𝑔𝐶𝑂2𝑒/ℎ).  

TABLE 3. INSTANCES OF SOLUTION AVAILABLE 

 

 

Fig. 3. Expected Ditributed Maintenance Cost for SMCR-1 

 

Fig. 4. Expected Carbon Footprint for SMCR-1 

To better present the results, Table 4 only represents the best 

parameters for each instance of the solution. Obviously, the 

existing CMCR model provides the best 𝐸[𝐷𝑀𝐶]. But, its 

carbon footprint compared to the others is the worst. In fact, 𝜀 

allows the reduction of 𝐸[𝐶𝐹]1 by 48% and 𝐸[𝐶𝐹]2 by 47%. 

However, the penalty for obtaining a lower emission of CO2 

only represents 2% of 𝐸[𝐷𝑀𝐶]. It can be balanced if the 

company has to pay a carbon tax.  

In addition, by converting 𝐸[𝐶𝐹]1 into 𝑔𝐶𝑂2𝑒/𝑘𝑚, we can 

compare the results to the EU target for the period of 2020-2024 

[30], as presented in Figure 5. It can be observed that the 

proposed model allows dropping the emission of CO2 to less 

than 95𝑔𝐶𝑂2𝑒/𝑘𝑚. 

TABLE 4. RESULTS FOR EACH INSTANCE OF PROPOSED SOLUTION 

 CMCR 
SMCR

-1 

SMCR-

0.75 

SMCR

-0.5 

SMCR-

0.25 

E[DMC] 

($/h) 127 131 130 130 129 

E[CF]1 

(𝑘𝑔𝐶𝑂2𝑒/h) 
8.40 8.19 8.35 4.41 4.66 

E[CF]2 

(𝑘𝑔𝐶𝑂2𝑒/h) 
4.64 4.53 4.46 2.46 2.48 

Position of 

the depot 
1 8 9 9 8 

Capacity of 

vehicles 
Heavy Heavy Heavy Medium Medium 

Computati

on time (h) 
2.41 4.73 5.91 7.45 6.32 

 

 

Fig. 5. Carbon footprint overview 

VI. CONCLUSION 

    This paper tackled the problem of carbon footprint in the 

distributed maintenance context. We considered a set of 

geographically dispersed production sites where equipment is 

subject to failures. PM operations need to be performed in a 

horizon of time to ensure the reliability of facilities. We 

proposed a model to reduce the CO2 emission of the vehicles 

transporting spare parts, operators and tools, without degrading 

too much the maintenance cost. 

Instance 1 2 3 4 5 

𝜺 0 1 0.75 0.5 0.25 

Model CMCR 
SMCR-

1 

SMCR-

0.75 

SMCR-

0.5 

SMCR-

0.25 



Several experiments have been run to explore the relevance of 

the proposed model. The carbon footprint is reduced by more 

than 47%, while the costs could increase by less than 2%. 

However, in the case where the concerned company has to pay 

taxes for CO2 emissions, the costs could be balanced. 

Furthermore, according to the EU low carbon goals for the 

period of 2020-2024, our study shows that the distributed 

maintenance concept fits the expectation (less than 95𝑔𝐶𝑂2𝑒/
𝑘𝑚). 

However, we assumed that each production site has exactly one 

piece of equipment. But in most industries, various pieces of 

equipment are handled in the same place. Future research based 

on this work could extend this possibility. Furthermore, it could 

be interesting to consider some cases where uncertain failure 

occurs while implementing the optimal schedule of PM 

operations. In addition, it can be more realistic considering the 

entire life cycle of production equipment. Their end of life 

could be studied through circular strategies such as 

remanufacturing or recycling. Another extension could be the 

study of electric vehicles for transportation instead of thermal, 

with the related autonomy problem. 
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APPENDIX 1. DISTANCE MATRIX OF CUSTOMERS (HOURS) 

i  j           

  0 1 2 3 4 5 6 7 8 9 10 

    0  0 258 136 179 164 327 211 191 176 191 326 

1  258 0 207 101 146 69 230 85 111 86 176 

2  136 207 0 184 62 272 76 185 189 121 204 

3  179 101 184 0 141 161 237 16 11 99 249 

4  164 146 62 141 0 210 96 138 149 60 162 

5  327 69 272 161 210 0 284 145 170 152 192 

6  211 230 76 237 96 284 0 234 245 150 162 

7  191 85 185 16 138 145 234 0 26 91 237 

8  176 111 189 11 149 170 245 26 0 109 260 

9  191 86 121 99 60 152 150 91 109 0 157 

10  326 176 204 249 162 192 162 237 260 157 0 

 

APPENDIX 2. DATA ON PUMP’S FAILURES 

i CPMi
a TPMi

a Cwi
a fi(t)

 b 

1 183 9 15 N(45,4) 

2 121 5 14 N(54,4.5) 

3 193 6 19 W(66,3.5) 

4 156 8 14 W(100,3.5) 

5 138 8 13 W(63,3.5) 

6 194 10 17 N(44,4.4) 

7 163 9 15 W(84,3.5) 

8 100 9 12 N(78,7) 

9 193 6 13 N(96,8.728) 

10 105 10 18 N(75,6.819) 

a. CPMi: service cost of replacing a pump; TPMi: time necessary to replace a pump; Cwi: 

downtime cost per time unit 

b. N(, ) denotes the Normal probability density function with mean  and standard 

deviation ; and W(, k) denotes the Weibull probability density function with scale 

parameter  and shape parameter k. 


