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Abstract: This paper presents a smooth switching between a set of Linear Parameter-Varying
(LPV) controllers that have been designed separately. The switching control strategy is based
on Youla-Kucera (YK) parameterization. A generalized interpolation scheme of various LPV
controllers is shown and proved for the LPV-YK concept. Such kind of parameterization is
beneficial to switch or interpolate between multiple controllers without adding any constraints
to the design of the local controllers and the switching signals. The proposed method is applied
to an Active Magnetic Bearing (AMB) system and compared to a switched LPV controller.
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1 Introduction

Linear Parameter-Varying (LPV) control techniques are
widely used in different applications as in aerospace Jiang
et al. (2020) and autonomous vehicles Atoui et al. (2020a),
Atoui et al. (2020b), etc. Hoffmann and Werner (2015)
presents a deep LPV control review. The synthesis of
an LPV control can be formulated as a Linear Matrix
Inequality (LMI) optimization problem using a single
Lyapunov function, either quadratic Packard (1994) or
parameter-dependent Wu et al. (1996). On the other hand,
a single Lyapunov function for complex models with large
parameter variations may not exist, or if it exists, it
could be conservative. A solution has been proposed in
the literature to design multiple LPV controllers based
on multiple parameter-varying Lyapunov functions, each
suitable for a specific parameter subregion, and switch
between them to achieve better performance Lu and Wu
(2004).

1.1 LPV Switching Control

In 2004, switched LPV control systems have been first
proposed in the pioneering work Lu and Wu (2004). The
switching stability has been studied for hysteresis switch-
ing and switching with average dwell-time strategies. This
methodology enhances the use of the LPV techniques in
several applications, see for instance Bei Lu et al. (2006),
Lescher et al. (2006), Postma and Nagamune (2012).
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On the other hand, it has been stated in Lu and Wu (2004)
that the switched LPV controllers may not provide a
smooth transient response during switching, where aggres-
sive performance is obtained at switching instants. Such
case may lead to mechanical damage, decrease material
lifetime, or signal saturation which is out of real applica-
tion objectives. Following this work, challenges have been
raised to smooth the control response during switching,
and to relax the limitations on the switching signals.
Several research studies have been involved in solving the
switching smoothness. For instance, a bumpless transfer
of switching controllers is proposed in Dimon et al. (2005)
followed by some developments in Chen et al. (2010), and
Safaei et al. (2012).

In addition, a smooth switching LPV controller has been
proposed first in Hanifzadegan and Nagamune (2014). It is
designed in considering adjustable interpolation functions
and a higher order differential control signal. An iterative
descent algorithm is applied to optimize three decision
variables (the parameter-dependent Lyapunov functions,
the local controllers, and the interpolation functions). It
also augments the problem to two dimensional parameter
regions. This concept is developed in the recent works He
et al. (2018) and He et al. (2019), however, it increases the
complexity and the constraints of the design of the local
controllers to achieve its objectives.



1.2 LPV-YK Control

Recently, Youla-Kucera (YK) parameterization has been
also used to switch between LPV controllers. It has been
proposed in Atoui et al. (2021) to interpolate between
two pre-defined quadratically stabilizing LPV controllers.
More advanced LPV-YK control formulations have been
proposed and proofed in Atoui et al. (2022). The objective
is to achieve the closed-loop quadratic stability under arbi-
trary switching signals without requiring a constant Lya-
punov function in the design of the local LPV controllers.
However, the proposed theorem is still conservative since
it requires quadratically stabilizing polytopic controllers.

The interest behind designing an interpolation control
scheme based on YK is to parameterize a set of LPV sta-
bilizing controllers K(Q), where each one is parameterized
by its corresponding LPV-YK parameterQ(ρ). Notice that
Q(ρ) is designed using the doubly coprime factorization
Vidyasagar (2011), Atoui et al. (2021). An advantage of
the YK concept is that it doesn’t require of the re-design
of the defined local LPV controllers. Its LMI conditions
concern only the stability of the YK parameterization.

It is worth to mention some advantages of the YK param-
eteirzation to interpolate between several controllers: 1)
Dimensions of the controllers could differ; 2) Interpolated
controllers can be designed and tuned separately using
different control techniques (H∞, LQR, PID, ...) Tay et al.
(1997); 3) It facilitates adding new controllers to an exist-
ing switching control system online as Plug&Play control
theory Stoustrup (2009), without re-designing; and 4) The
closed-loop stability is guaranteed under arbitrary contin-
uous/discontinuous interpolating signals without requiring
a common Lyapunov function Hespanha and Morse (2002).

1.3 Motivation and Contribution

Active Magnetic Bearing (AMB) system is known to be
highly nonlinear, multi-variable and inherently unstable
system. The nonlinearity is described in the relationship
between the electro-magnetic force, current and length of
the air gap. Moreover, the system (vibrational) dynamics
depend on the rotational speed due to gyroscopic and
electro-magnetic coupling. The AMB system has been
previously controlled using the three LPV approaches:
polytopic (Lu et al. (2008)), grid-based (Morsi et al.
(2021)), and LFT (Lauridsen and Santos (2017)). In ad-
dition, (Lu and Wu (2004)) has implemented a switched-
LPV controller on the AMB application to improve its
closed-loop performance. The results have shown good
performance over each parameter subregion, however, the
proposed switched-LPV controller leads to aggressive tran-
sient switching.

This paper aims to design a smooth switched LPV con-
troller based on YK parameterization which ensures the
switching stability over the parameter subregions and
smooth transient switching. Among all the previous works
which have shown successful and smooth LPV switching as
Lu and Wu (2004), Chen et al. (2010), and Hanifzadegan
and Nagamune (2014), all of them require the re-design
of the local LPV controllers using proposed LMIs, in
addition to switching signals limitations (e.g. hysteresis
switching, switching with average dwell-time, etc.). It is

worth mentioning that the re-design of all the local LPV
controllers together may cause conservatism when increas-
ing the number of subregions or parameter dimensions.
The current paper proposes the YK parameterization to:
1) Simplify the design of the LPV switching control system
by decreasing the complexity of the LMI conditions (no
need to re-design the local LPV controllers); 2) Avoid
any limitation on the switching signals without requiring
constant Lyapunov function; 3) Smooth the control and
state responses during the switching instants; and 4) Avoid
the re-design of the switching control scheme if one needs
to add or remove any of the local LPV controllers as
Plug&Play.

The general contribution of this paper is to interpolate
between multiple LPV controllers smoothly, each LPV
controller is designed to perform well over a certain param-
eter sub-region. The interpolation scheme is formulated
based on the LPV-YK parameterization. Notice that the
proposed LPV-YK control scheme has been contributed
and proved in (Atoui et al. (2022)). An interpolation
scheme is drawn between multi-LPV controllers based on
YK parameterization which guarantees the closed-loop
stability and performance under arbitrary interpolating
signals. In addition, a comparative numerical simulation is
presented at the end to compare the switching smoothness
between the proposed LPV-YK switching controller and
the LPV switched controller proposed by Lu and Wu
(2004).

2 Grid-based LPV-YK Control Configuration

This section represents the configuration scheme of a grid-
based LPV-YK controller using the coprime factorization.

2.1 LPV Plant and Controllers Description

Consider a Multi-Input-Multi-Output (MIMO) LPV sys-
tem G(ρ) with m inputs and p outputs:

G(ρ)

{
ẋ(t) = A(ρ(t))x(t) +B1(ρ(t))w(t) +B2(ρ(t))u(t)
z(t) = C1(ρ(t))x(t) +D11(ρ(t))w(t) +D12(ρ(t))u(t)
y(t) = C2(ρ(t))x(t) +D21(ρ(t))w(t) +D22(ρ(t))u(t)

(1)
where x(t) ∈ Rnx , y(t) ∈ Rp, u(t) ∈ Rm, z(t) ∈ Rnz

are the state, output, input, controlled output vectors

respectively. w(t) = [r n d]
T ∈ Rnw contains the exoge-

nous inputs of the tracking reference r, noise n and input
disturbance d. All the state-space data are continuous
functions of the parameter vector ρ. Assume that ρ is in
a compact set P ⊂ Rs with its parameter variation rate
bounded by νk ≤ ρ̇k ≤ νk for k = 1, 2, ..., s. Moreover, let
us assume the following:

• (A(ρ), B2(ρ), C2(ρ)) triple is parameter-dependent
stabilizable and detectable ∀ρ ∈ P.

•
[
BT2 (ρ) D

T
12(ρ)

]
and [C2(ρ) D21(ρ)] have full row

ranks ∀ρ ∈ P.
• D22(ρ) = 0.

Suppose that the parameter set P is covered by a finite
number of closed subsets {Pi}i∈ZN

, where the index set
ZN = {1, 2, . . . , N}, and P =

⋃
Pi. At the boundaries

between each adjacent subsets, there exist at least a single
intersecting boundary or an intersecting surface.



Fig. 1. LPV-YK gridded controller

Now, assume that
(A.1). There exists an LPV output-feedback controller
K0(ρ) which exponentially stabilizes G(ρ) at the full pa-
rameter region P0 := P. (following the approach in Wu
et al. (1996)),
(A.2). Over each parameter subset {Pi}i∈ZN

, there ex-
ists an LPV controller Ki(ρ) pre-designed separately and
exponentially stabilizes G(ρ) over {Pi}i∈ZN

. Each Ki(ρ)
is designed to achieve a suitable performance in its corre-
sponding parameter subregion {Pi}i∈ZN

.

Fig. 1 shows the partitioned parameter region P with
intersecting boundaries. The orange solid line represents
the chosen nominal LPV controller K0(ρ), as defined
by (A.1). The blue solid lines represent the local LPV
controllers Ki(ρ) (i ∈ ZN ) as defined in (A.2). The overall
switching controller is performed using the interpolating
signal γ = [γ1, ..., γN ] (γi ∈ [0, 1] ∀i), and is represented

by the LPV-YK controller K̃(ρ, γ). These LPV and LPV-
YK controllers are designed in the next section.

The defined LPV controllers Ki(ρ) (i ≥ 0) are described
over Pi as

Ki(ρ) :

[
Ak,i(ρ, ρ̇) Bk,i(ρ)
Ck,i(ρ) Dk,i(ρ)

]
, i ∈ {0, ZN} (2)

where Ak,i(ρ, ρ̇) ∈ Rnk,i×nk,i , Bk,i(ρ) ∈ Rnk,i×mk ,
Ck,i(ρ) ∈ Rpk×nk,i and Dk,i(ρ) ∈ Rpk×mk .

Remark 2.1. At each subset Pi, Ki(ρ) may be designed
using different concepts (H∞, PID, LQR/H2, ...). As a
result, nk,i may differ from one controller to another.

2.2 LPV Coprime Factorization

Using the YK parameterization concept, the plant model
and the stabilizing LPV controllers, at each subset
{Pi}i≥0, can be factorised using the following doubly co-
prime factorization:

Gi(ρ) = Ni(ρ)Mi(ρ) = M̃i(ρ)Ñi(ρ)

Ki(ρ) = Ui(ρ)V
−1
i (ρ) = Ṽ −1

i (ρ)Ũi(ρ)
(3)

Notice that, ∀i ∈ {0, ZN}, the coprime factors are com-

puted such that Mi, Ni, M̃i, Ñi, Ui, Vi, Ũi, Ṽi are stable,
proper, and satisfying the following Bezout Identity :[

Ṽi(ρ) −Ũi(ρ)
−Ñi(ρ) M̃i(ρ)

] [
Mi(ρ) Ui(ρ)
Ni(ρ) Vi(ρ)

]
=

[
Mi(ρ) Ui(ρ)
Ni(ρ) Vi(ρ)

] [
Ṽi(ρ) −Ũi(ρ)
−Ñi(ρ) M̃i(ρ)

]
=

[
I 0
0 I

]
(4)

The coprime factors are computed for every ρ ∈ {Pi}i≥0

using the state-space representations written in (5)-(6).

Fig. 2. YK control structure

To perform a stable coprime factorization, the closed-
loops [A(ρ) + B2(ρ)Fg(ρ)] and [Ak,i(ρ) + Bk,i(ρ)Fk,i(ρ)]
(∀i ∈ {0, ZN}) must be stable.

[
Mi(ρ) Ui(ρ)
Ni(ρ) Vi(ρ)

]
:=

A(ρ) +B2(ρ)Fg(ρ) 0 B2(ρ) 0
0 Ak,i(ρ) +Bk,i(ρ)Fk,i(ρ) 0 Bk,i(ρ)

Fg(ρ) Ck,i(ρ) +Dk,i(ρ)Fk,i(ρ) I Dk,i(ρ)
C2(ρ) Fk,i(ρ) 0 I

 ,
(5)

[
Ṽi(ρ) −Ũi(ρ)
−Ñi(ρ) M̃i(ρ)

]
:=

A(ρ) +B2(ρ)Dk(ρ)C2(ρ) B2(ρ)Ck,i(ρ) −B2(ρ) B2(ρ)Dk,i(ρ)
Bk,i(ρ)C2(ρ) Ak,i(ρ) 0 Bk,i(ρ)

Fg(ρ)−Dk,i(ρ)C2(ρ) −Ck,i(ρ) I −Dk,i(ρ)
C2(ρ) −Fk,i(ρ) 0 I

 .
(6)

2.3 LPV-YK Control Structure

Fig.2 shows the structure of the LPV-YK controller
K̃(ρ, γ) defined as:

K̃(ρ, γ) = (U0(ρ) +M(ρ)Q(ρ, γ))(V0(ρ) +N(ρ)Q(ρ, γ))−1

= (Ṽ0(ρ) +Q(ρ, γ)Ñ(ρ))−1(Ũ0(ρ) +Q(ρ, γ)M̃(ρ))
(7)

where, Q(ρ, γ) =
N∑
i=1

γiQi(ρ), and

Qi(ρ) = Ũi(ρ)V0(ρ)− Ṽi(ρ)U0(ρ) (8)

See (Atoui et al. (2022)) for more details on the stability
proof.

γ(ρ) is a vector of the parameter-dependent switching
signals γi(ρ) (i ∈ ZN ) that are chosen here as follows:

• if γi(ρ) = 0 ∀i, K̃(ρ, γ) ≡ K0(ρ).
• For any ρ ∈ Pm, γm(ρ) = 1 and γi(ρ) = 0

∀i ̸= m, which implies that K̃(ρ, γ) is equivalent to
Fl(J(ρ), Qm(ρ)) that recovers Km(ρ).

3 Model Formulation

In this section, the Active Magnetic Bearing (AMB) sys-
tem is defined and reformulated as an LPV model. Then,
the design steps of the grid-based LPV-YK controller are
illustrated using the contributed Theorem in Atoui et al.
(2022). The nonlinear gyroscopic equations of the AMB
system can be represented as:



Fig. 3. Weighted open-loop interconnection Lu and Wu
(2004)

lθ̈ = −ρJa
Jr

l ˙psi+
1

m
(−4c2lθ + 2c1ϕθ + fdθ),

lψ̈ =
ρJa
Jr

lθ̇ +
1

m
(−4c2lψ + 2c1ϕψ + fdψ),

ϕ̇θ =
1

N
(eθ + 2d2lθ − d1ϕθ),

ϕ̇ψ =
1

N
(eψ + 2d2lψ − d1ϕψ),

(9)

where θ and ψ represents the Euler angles denoting the
orientation of rotor centerline. ϕθ and ϕψ denote the
differential magnetic flux from electromagnetic pairs. Ja,
Jr, and ρ are the moment of inertia of the rotor in axial
and radial directions, respectively. eθ and eψ represents
the corresponding differences of electric voltage. fdθ and
fdψ are the disturbance forces caused by gravity, modelling
errors, imbalances, etc. The geometry and parameters of
the AMB, c1, c2, d1, d2,m and l, can be found in Mohamed
and Busch-Vishniac (1995).

3.1 AMB LPV Model

The nonlinear model in (9) can be written in form of a
parameter-varying state-space representation as

ẋ = A(ρ)x+B1d+B2u,
e = C1x+D11d+D12u,
y = C2x+D21d+D22u,

(10)

where,

A(ρ) =



0 0 1 0 0 0
0 0 0 1 0 0

− 4c2
m 0 0 −ρJa

Jr
2c1
m 0

0 − 4c2
m

ρJa
Jr

0 0 2c1
m

2d2
N 0 0 0 −d1

N 0
0 2d2

N 0 0 0 −d1
N

 ,

B1 = 06×2, B2 = 1
N

[
04×2

I2

]
,

C1 =

[
I2 02×4

02×6

]
, D11 = 04×2, D12 =

[
02×2

I2

]
,

C2 = [I2 02×4] , D21 = I2, D22 = 02×2.

The LPV model is formulated having the rotor speed ρ(t)
as the parameter-varying. The objective of designing a
switching LPV control is to stabilize the AMB system
over large range of rotor speeds and to attenuate the
disturbance effect on the gap displacement at bearing
locations, defined as dT = [fdθ fdψ].

4 LPV-YK Control Design

This section aims to design a grid-based LPV-YK con-
troller that switches between multiple LPV controllers,
each suitable for a specific parameter region. Each LPV
controller is designed separately achieving closed-loop ex-
ponential stability over its corresponding gridded subset.

The rotor speed is assumed to vary within the range
ρ ∈ P = [315, 1100] rad/s, with a variation less than 100
rad/s2. Since the system dynamics changes significantly in
this speed range, it could be conservative to design a single
LPV controller over the full parameter region. Thus, the
parameter region is divided into two overlapped subsets
P1 = [315 720] and P2 = [700 1100]. In this example, two
methods are used to design a switching LPV controller,
the first one is our proposed LPV-YK controller and the
second is designed using the Theorem presented in Lu and
Wu (2004).

The requirements are achieved by choosing dynamic

weighting functions as Wz(s) = 10(s+8)
s+0.001I2, Wu(s) =

0.01(s+100)
s+100000 I2,Wn(s) = 0.001I2, and a weighted generalized

plant is obtained (see Fig. 3). The following steps are used

to design K̃(ρ, γ) (7) for every ρ ∈ P:

(1) The nominal controller K0(ρ) is designed over the
full parameter region P satisfying (A.1) with γ∞,0 =
48.01. Following (A.2), the controllers K1(ρ) and
K2(ρ) are designed separately over P1 and P2 achiev-
ing γ∞,1 = 47.95 and γ∞,2 = 47.93 performances,
respectively. Notice that K0(ρ) could be designed
with the same mentioned weighting functions, or with
more robust requirements.

(2) The LPV state-feedback gains Fg(ρ) and Fk,0(ρ) are
designed using the LMIs (11)-(12),

A(ρ)Xg(ρ) +Xg(ρ)A
T (ρ) +

s∑
j=1

±{νj , νj}
∂Xg

∂ρj

+B2(ρ)V (ρ) + V T (ρ)BT2 (ρ) < 0
(11)

Ak,0(ρ)Xk,0(ρ) +Xk,0(ρ)A
T
k,0(ρ) +

s∑
j=1

±{νj , νj}
∂Xk,0

∂ρj

+Bk,0(ρ)W (ρ) +WT (ρ)BTk,0(ρ) < 0

(12)
where the multiple parameter-dependent Lyapunov

functions at each subset are specified as affine func-
tions of scheduling parameters. That is,

Xg(ρ) = X0
g +X1

g ρ, Xk,0(ρ) = X0
k,0 +X1

k,0 ρ,

where matrices Xj
g and Xj

k,0, j = 0, 1 are new opti-
mization variables to be determined. Then, compute
Fg(ρ) = V (ρ)X−1

g (ρ) and Fk,0(ρ) =Wk,0(ρ)X
−1
k,0(ρ).

(3) The state-space representations ofM(ρ), N(ρ), U0(ρ)

and V0(ρ), Ũ1(ρ), Ṽ1(ρ), Ũ2(ρ), and Ṽ2(ρ) are com-
puted using (5)-(6). Q1(ρ) and Q2(ρ) are obtained
from (8).

(4) Q(ρ, γ) =
2∑
i=1

γi(ρ)Qi(ρ), where γi(ρ) is switched be-

tween {0,1} when ρ(t) touches the switching instants
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Fig. 4. Parameter-varying rotor speed ρ (rad/s)

(see Fig. 5). Then, the LPV-YK controller K̃(ρ, γ) is
structured and implemented as shown in Fig. 2.

Then, ∀ρ ∈ P, the state-space matrices of K̃(ρ, γ) are

Ãk(ρ, γ) =

[
A(ρ) +B2(ρ)Fg(ρ)−B2(ρ)Dq(ρ, γ)C2(ρ) −B2(ρ)Dq(ρ, γ)Fk,0(ρ) B2(ρ)Cq(ρ, γ)

−Bk,0(ρ)C2(ρ) Ak,0(ρ) 0
−Bq(ρ)C2(ρ) −Bq(ρ)Fk,0(ρ) Aq(ρ)

]

B̃k(ρ, γ) = [B2(ρ)Dq(ρ, γ) Bk,0(ρ) Bq(ρ)]
T

C̃k(ρ, γ) = [Fg(ρ)− (Dk,0(ρ) +Dq(ρ, γ))C2(ρ) Ck,0(ρ)−Dq(ρ, γ)Fk,0(ρ) Cq(ρ, γ)]

D̃k(ρ, γ) = Dk,0(ρ) +Dq(ρ, γ)

(13)
where

Aq(ρ) =

[
Aq,1 0
0 Aq,2

]
, Bq(ρ) = [Bq,1 Bq,2]

T
,

Cq(ρ, γ) = [γ1Cq,1 γ2Cq,2] , Dq(ρ, γ) =
2∑
i=1

γiDq,i

(14)

being Aq,i, Bq,i, Cq,i, and Dq,i the state-space matri-
ces of Qi(ρ), Fg(ρ) = V (ρ)X−1

g (ρ), and Fk,0(ρ) =

Wk,0(ρ)X
−1
k,0(ρ).

5 Simulation Results

Same as in Lu and Wu (2004), the rotor speed profile ρ(t)
is taken as shown in Fig. 4. The switching events happen
at t = 2.9s and at t = 6.5s. The simulation is performed
as in Lu and Wu (2004), where the disturbances fdθ and
fdψ are injected to the system as step inputs with same
magnitude but opposite signs. The comparison between
the LPV switching controller Lu and Wu (2004) and the

proposed LPV-YK controller K̃(ρ, γ) is done by observing
the output responses x1 and x2 and the control inputs u1
and u2 at the switching instants.

Figs. 6a and 6b represent the states transitions that are
zoomed during switching. It is observed that the switching
effect is negligible for the proposed LPV-YK controller,
which is not the case for the switched LPV controller in
Lu and Wu (2004). Moreover, as shown in Figs. 7a and 7b,
the LPV switching controller leads to high control jumps
at the switching instants. However, the LPV-YK controller
switches smoothly with negligible control variation.

6 Conclusion

This work has proposed a new YK-based switching LPV
method to obtain smooth switching performance. The
switching signal can be used to incorporate any ad-
hoc physically-based switching, without adding any con-
straints or conservatism to the pre-design problem. As a
result, a YK control scheme is drawn between multiple
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Fig. 5. Interpolating signal γ
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Fig. 6. States x1 and x2 (m)

gridded LPV controllers. An application to the AMB sys-
tem is carried out to compare the proposed approach with
the approaches proposed by Lu and Wu (2004) and He
et al. (2019). The simulation results show the efficiency of
the proposed method to perfectly handle the system with
negligible effect on the control input.

As a future work, an interest appears to study the choice
of Q dynamics, i.e. how to choose the best design of the
state-feedback gains Fg and Fk,0, and how they affect the
closed-loop performance.
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