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This paper presents a smooth switching between a set of Linear Parameter-Varying (LPV) controllers that have been designed separately. The switching control strategy is based on Youla-Kucera (YK) parameterization. A generalized interpolation scheme of various LPV controllers is shown and proved for the LPV-YK concept. Such kind of parameterization is beneficial to switch or interpolate between multiple controllers without adding any constraints to the design of the local controllers and the switching signals. The proposed method is applied to an Active Magnetic Bearing (AMB) system and compared to a switched LPV controller.

Introduction

Linear Parameter-Varying (LPV) control techniques are widely used in different applications as in aerospace [START_REF] Jiang | Gain-scheduled control for morphing aircraft via switching polytopic linear parameter-varying systems[END_REF] and autonomous vehicles Atoui et al. (2020a), Atoui et al. (2020b), etc. Hoffmann and[START_REF] Hoffmann | A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations[END_REF] presents a deep LPV control review. The synthesis of an LPV control can be formulated as a Linear Matrix Inequality (LMI) optimization problem using a single Lyapunov function, either quadratic [START_REF] Packard | Gain scheduling via linear fractional transformations[END_REF] or parameter-dependent [START_REF] Wu | Induced l2-norm control for lpv systems with bounded parameter variation rates[END_REF]. On the other hand, a single Lyapunov function for complex models with large parameter variations may not exist, or if it exists, it could be conservative. A solution has been proposed in the literature to design multiple LPV controllers based on multiple parameter-varying Lyapunov functions, each suitable for a specific parameter subregion, and switch between them to achieve better performance [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF].

LPV Switching Control

In 2004, switched LPV control systems have been first proposed in the pioneering work [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF]. The switching stability has been studied for hysteresis switching and switching with average dwell-time strategies. This methodology enhances the use of the LPV techniques in several applications, see for instance Bei [START_REF] Lu | Switching lpv control of an f-16 aircraft via controller state reset[END_REF], [START_REF] Lescher | Switching lpv controllers for a variable speed pitch regulated wind turbine[END_REF], [START_REF] Postma | Air-fuel ratio control of spark ignition engines using a switching lpv controller[END_REF].

⋆ Institute of Engineering Univ. Grenoble Alpes On the other hand, it has been stated in [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF] that the switched LPV controllers may not provide a smooth transient response during switching, where aggressive performance is obtained at switching instants. Such case may lead to mechanical damage, decrease material lifetime, or signal saturation which is out of real application objectives. Following this work, challenges have been raised to smooth the control response during switching, and to relax the limitations on the switching signals. Several research studies have been involved in solving the switching smoothness. For instance, a bumpless transfer of switching controllers is proposed in [START_REF] Dimon | Bumpless transfer between observer-based gain scheduled controllers[END_REF] followed by some developments in [START_REF] Chen | The smooth switching control for tora system via lmis[END_REF][START_REF] Safaei | On controller initialization in multivariable switching systems[END_REF].

In addition, a smooth switching LPV controller has been proposed first in [START_REF] Hanifzadegan | Smooth switching lpv controller design for lpv systems[END_REF]. It is designed in considering adjustable interpolation functions and a higher order differential control signal. An iterative descent algorithm is applied to optimize three decision variables (the parameter-dependent Lyapunov functions, the local controllers, and the interpolation functions). It also augments the problem to two dimensional parameter regions. This concept is developed in the recent works [START_REF] He | Simultaneous design of smooth switching state-feedback lpv control[END_REF] and [START_REF] He | Smooth switching lpv dynamic output-feedback control[END_REF], however, it increases the complexity and the constraints of the design of the local controllers to achieve its objectives.

LPV-YK Control

Recently, Youla-Kucera (YK) parameterization has been also used to switch between LPV controllers. It has been proposed in [START_REF] Atoui | Interpolation of Multi-LPV Control Systems Based on Youla-Kucera Parameterization[END_REF] to interpolate between two pre-defined quadratically stabilizing LPV controllers. More advanced LPV-YK control formulations have been proposed and proofed in [START_REF] Atoui | Advanced LPV-YK Control Design with Experimental Validation on Autonomous Vehicles[END_REF]. The objective is to achieve the closed-loop quadratic stability under arbitrary switching signals without requiring a constant Lyapunov function in the design of the local LPV controllers. However, the proposed theorem is still conservative since it requires quadratically stabilizing polytopic controllers.

The interest behind designing an interpolation control scheme based on YK is to parameterize a set of LPV stabilizing controllers K(Q), where each one is parameterized by its corresponding LPV-YK parameter Q(ρ). Notice that Q(ρ) is designed using the doubly coprime factorization [START_REF] Vidyasagar | Control system synthesis: a factorization approach, part ii[END_REF], [START_REF] Atoui | Interpolation of Multi-LPV Control Systems Based on Youla-Kucera Parameterization[END_REF]. An advantage of the YK concept is that it doesn't require of the re-design of the defined local LPV controllers. Its LMI conditions concern only the stability of the YK parameterization.

It is worth to mention some advantages of the YK parameteirzation to interpolate between several controllers: 1) Dimensions of the controllers could differ; 2) Interpolated controllers can be designed and tuned separately using different control techniques (H ∞ , LQR, PID, ...) [START_REF] Tay | High performance control[END_REF]; 3) It facilitates adding new controllers to an existing switching control system online as Plug&Play control theory [START_REF] Stoustrup | Plug&play control: Control technology towards new challenges[END_REF], without re-designing; and 4) The closed-loop stability is guaranteed under arbitrary continuous/discontinuous interpolating signals without requiring a common Lyapunov function [START_REF] Hespanha | Switching between stabilizing controllers[END_REF].

Motivation and Contribution

Active Magnetic Bearing (AMB) system is known to be highly nonlinear, multi-variable and inherently unstable system. The nonlinearity is described in the relationship between the electro-magnetic force, current and length of the air gap. Moreover, the system (vibrational) dynamics depend on the rotational speed due to gyroscopic and electro-magnetic coupling. The AMB system has been previously controlled using the three LPV approaches: polytopic [START_REF] Lu | Linear parameter-varying techniques for control of a magnetic bearing system[END_REF]), grid-based [START_REF] Morsi | Model predictive control based on linear parameter-varying models of active magnetic bearing systems[END_REF]), and LFT [START_REF] Lauridsen | Design of robust amb controllers for rotors subjected to varying and uncertain seal forces[END_REF]). In addition, [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF]) has implemented a switched-LPV controller on the AMB application to improve its closed-loop performance. The results have shown good performance over each parameter subregion, however, the proposed switched-LPV controller leads to aggressive transient switching.

This paper aims to design a smooth switched LPV controller based on YK parameterization which ensures the switching stability over the parameter subregions and smooth transient switching. Among all the previous works which have shown successful and smooth LPV switching as [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF], [START_REF] Chen | The smooth switching control for tora system via lmis[END_REF], and [START_REF] Hanifzadegan | Smooth switching lpv controller design for lpv systems[END_REF], all of them require the re-design of the local LPV controllers using proposed LMIs, in addition to switching signals limitations (e.g. hysteresis switching, switching with average dwell-time, etc.). It is worth mentioning that the re-design of all the local LPV controllers together may cause conservatism when increasing the number of subregions or parameter dimensions. The current paper proposes the YK parameterization to: 1) Simplify the design of the LPV switching control system by decreasing the complexity of the LMI conditions (no need to re-design the local LPV controllers); 2) Avoid any limitation on the switching signals without requiring constant Lyapunov function; 3) Smooth the control and state responses during the switching instants; and 4) Avoid the re-design of the switching control scheme if one needs to add or remove any of the local LPV controllers as Plug&Play.

The general contribution of this paper is to interpolate between multiple LPV controllers smoothly, each LPV controller is designed to perform well over a certain parameter sub-region. The interpolation scheme is formulated based on the LPV-YK parameterization. Notice that the proposed LPV-YK control scheme has been contributed and proved in [START_REF] Atoui | Advanced LPV-YK Control Design with Experimental Validation on Autonomous Vehicles[END_REF]). An interpolation scheme is drawn between multi-LPV controllers based on YK parameterization which guarantees the closed-loop stability and performance under arbitrary interpolating signals. In addition, a comparative numerical simulation is presented at the end to compare the switching smoothness between the proposed LPV-YK switching controller and the LPV switched controller proposed by [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF].

Grid-based LPV-YK Control Configuration

This section represents the configuration scheme of a gridbased LPV-YK controller using the coprime factorization.

LPV Plant and Controllers Description

Consider a Multi-Input-Multi-Output (MIMO) LPV system G(ρ) with m inputs and p outputs:

G(ρ) ẋ(t) = A(ρ(t))x(t) + B 1 (ρ(t))w(t) + B 2 (ρ(t))u(t) z(t) = C 1 (ρ(t))x(t) + D 11 (ρ(t))w(t) + D 12 (ρ(t))u(t) y(t) = C 2 (ρ(t))x(t) + D 21 (ρ(t))w(t) + D 22 (ρ(t))u(t) (1) where x(t) ∈ R nx , y(t) ∈ R p , u(t) ∈ R m , z(t) ∈ R nz are the state, output, input, controlled output vectors respectively. w(t) = [r n d]
T ∈ R nw contains the exogenous inputs of the tracking reference r, noise n and input disturbance d. All the state-space data are continuous functions of the parameter vector ρ. Assume that ρ is in a compact set P ⊂ R s with its parameter variation rate bounded by ν k ≤ ρk ≤ ν k for k = 1, 2, ..., s. Moreover, let us assume the following:

• (A(ρ), B 2 (ρ), C 2 (ρ)) triple is parameter-dependent stabilizable and detectable ∀ρ ∈ P. • B T 2 (ρ) D T 12 (ρ) and [C 2 (ρ) D 21 (ρ)] have full row ranks ∀ρ ∈ P. • D 22 (ρ) = 0.
Suppose that the parameter set P is covered by a finite number of closed subsets {P i } i∈Z N , where the index set Z N = {1, 2, . . . , N }, and P = P i . At the boundaries between each adjacent subsets, there exist at least a single intersecting boundary or an intersecting surface. 

{P i } i∈Z N . Each K i (ρ)
is designed to achieve a suitable performance in its corresponding parameter subregion {P i } i∈Z N .

Fig. 1 shows the partitioned parameter region P with intersecting boundaries. The orange solid line represents the chosen nominal LPV controller K 0 (ρ), as defined by (A.1). The blue solid lines represent the local LPV controllers K i (ρ) (i ∈ Z N ) as defined in (A.2). The overall switching controller is performed using the interpolating signal γ = [γ 1 , ..., γ N ] (γ i ∈ [0, 1] ∀i), and is represented by the LPV-YK controller K(ρ, γ). These LPV and LPV-YK controllers are designed in the next section. The defined LPV controllers K i (ρ) (i ≥ 0) are described over P i as

K i (ρ) : A k,i (ρ, ρ) B k,i (ρ) C k,i (ρ) D k,i (ρ) , i ∈ {0, Z N } (2)
where

A k,i (ρ, ρ) ∈ R n k,i ×n k,i , B k,i (ρ) ∈ R n k,i ×m k , C k,i (ρ) ∈ R p k ×n k,i and D k,i (ρ) ∈ R p k ×m k .
Remark 2.1. At each subset P i , K i (ρ) may be designed using different concepts (H ∞ , PID, LQR/H 2 , ...). As a result, n k,i may differ from one controller to another.

LPV Coprime Factorization

Using the YK parameterization concept, the plant model and the stabilizing LPV controllers, at each subset {P i } i≥0 , can be factorised using the following doubly coprime factorization:

G i (ρ) = N i (ρ)M i (ρ) = Mi (ρ) Ñi (ρ) K i (ρ) = U i (ρ)V -1 i (ρ) = Ṽ -1 i (ρ) Ũi (ρ) (3) 
Notice that, ∀i ∈ {0, Z N }, the coprime factors are computed such that M i , N i , Mi , Ñi , U i , V i , Ũi , Ṽi are stable, proper, and satisfying the following Bezout Identity:

Ṽi (ρ) -Ũi (ρ) -Ñi (ρ) Mi (ρ) M i (ρ) U i (ρ) N i (ρ) V i (ρ) = M i (ρ) U i (ρ) N i (ρ) V i (ρ) Ṽi (ρ) -Ũi (ρ) -Ñi (ρ) Mi (ρ) = I 0 0 I
(4) The coprime factors are computed for every ρ ∈ {P i } i≥0 using the state-space representations written in ( 5)-(6). 

(ρ) + B 2 (ρ)F g (ρ)] and [A k,i (ρ) + B k,i (ρ)F k,i (ρ)] (∀i ∈ {0, Z N }) must be stable. M i (ρ) U i (ρ) N i (ρ) V i (ρ) :=    A(ρ) + B 2 (ρ)F g (ρ) 0 B 2 (ρ) 0 0 A k,i (ρ) + B k,i (ρ)F k,i (ρ) 0 B k,i (ρ) F g (ρ) C k,i (ρ) + D k,i (ρ)F k,i (ρ) I D k,i (ρ) C 2 (ρ) F k,i (ρ) 0 I    , (5) 
Ṽi(ρ) -Ũi(ρ)

-Ñi(ρ) Mi(ρ) :=    A(ρ) + B2(ρ)Dk(ρ)C2(ρ) B2(ρ)Ck,i(ρ) -B2(ρ) B2(ρ)Dk,i(ρ) Bk,i(ρ)C2(ρ) Ak,i(ρ) 0 Bk,i(ρ) Fg(ρ) -Dk,i(ρ)C2(ρ) -Ck,i(ρ) I -Dk,i(ρ) C2(ρ) -Fk,i(ρ) 0 I    .
(6)

LPV-YK Control Structure

Fig. 2 shows the structure of the LPV-YK controller K(ρ, γ) defined as:

K(ρ, γ) = (U 0 (ρ) + M (ρ)Q(ρ, γ))(V 0 (ρ) + N (ρ)Q(ρ, γ)) -1 = ( Ṽ0 (ρ) + Q(ρ, γ) Ñ (ρ)) -1 ( Ũ0 (ρ) + Q(ρ, γ) M (ρ)) (7) 
where, Q(ρ, γ)

= N i=1 γ i Q i (ρ), and 
Q i (ρ) = Ũi (ρ)V 0 (ρ) -Ṽi (ρ)U 0 (ρ) (8) 
See [START_REF] Atoui | Advanced LPV-YK Control Design with Experimental Validation on Autonomous Vehicles[END_REF]) for more details on the stability proof.

γ(ρ) is a vector of the parameter-dependent switching signals γ i (ρ) (i ∈ Z N ) that are chosen here as follows:

• if γ i (ρ) = 0 ∀i, K(ρ, γ) ≡ K 0 (ρ). • For any ρ ∈ P m , γ m (ρ) = 1 and γ i (ρ) = 0 ∀i ̸ = m, which implies that K(ρ, γ) is equivalent to F l (J(ρ), Q m (ρ)) that recovers K m (ρ).

Model Formulation

In this section, the Active Magnetic Bearing (AMB) system is defined and reformulated as an LPV model. Then, the design steps of the grid-based LPV-YK controller are illustrated using the contributed Theorem in [START_REF] Atoui | Advanced LPV-YK Control Design with Experimental Validation on Autonomous Vehicles[END_REF]. The nonlinear gyroscopic equations of the AMB system can be represented as: 2004)

l θ = - ρJ a J r l ṗ si + 1 m (-4c 2 lθ + 2c 1 ϕ θ + f dθ ), l ψ = ρJ a J r l θ + 1 m (-4c 2 lψ + 2c 1 ϕ ψ + f dψ ), φθ = 1 N (e θ + 2d 2 lθ -d 1 ϕ θ ), φψ = 1 N (e ψ + 2d 2 lψ -d 1 ϕ ψ ), (9) 
where θ and ψ represents the Euler angles denoting the orientation of rotor centerline. ϕ θ and ϕ ψ denote the differential magnetic flux from electromagnetic pairs. J a , J r , and ρ are the moment of inertia of the rotor in axial and radial directions, respectively. e θ and e ψ represents the corresponding differences of electric voltage. f dθ and f dψ are the disturbance forces caused by gravity, modelling errors, imbalances, etc. The geometry and parameters of the AMB, c 1 , c 2 , d 1 , d 2 , m and l, can be found in [START_REF] Mohamed | Imbalance compensation and automation balancing in magnetic bearing systems using the q-parameterization theory[END_REF].

AMB LPV Model

The nonlinear model in ( 9) can be written in form of a parameter-varying state-space representation as ẋ = A(ρ)x

+ B 1 d + B 2 u, e = C 1 x + D 11 d + D 12 u, y = C 2 x + D 21 d + D 22 u, (10) 
where,

A(ρ) =         0 0 1 0 0 0 0 0 0 1 0 0 -4c2 m 0 0 -ρJa Jr 2c1 m 0 0 -4c2 m ρJa Jr 0 0 2c1 m 2d2 N 0 0 0 -d1 N 0 0 2d2 N 0 0 0 -d1 N         , B 1 = 0 6×2 , B 2 = 1 N 0 4×2 I 2 , C 1 = I 2 0 2×4 0 2×6 , D 11 = 0 4×2 , D 12 = 0 2×2 I 2 , C 2 = [I 2 0 2×4 ] , D 21 = I 2 , D 22 = 0 2×2 .
The LPV model is formulated having the rotor speed ρ(t) as the parameter-varying. The objective of designing a switching LPV control is to stabilize the AMB system over large range of rotor speeds and to attenuate the disturbance effect on the gap displacement at bearing locations, defined as

d T = [f dθ f dψ ].

LPV-YK Control Design

This section aims to design a grid-based LPV-YK controller that switches between multiple LPV controllers, each suitable for a specific parameter region. Each LPV controller is designed separately achieving closed-loop exponential stability over its corresponding gridded subset.

The rotor speed is assumed to vary within the range ρ ∈ P = [315, 1100] rad/s, with a variation less than 100 rad/s 2 . Since the system dynamics changes significantly in this speed range, it could be conservative to design a single LPV controller over the full parameter region. Thus, the parameter region is divided into two overlapped subsets P 1 = [315 720] and P 2 = [700 1100]. In this example, two methods are used to design a switching LPV controller, the first one is our proposed LPV-YK controller and the second is designed using the Theorem presented in [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF].

The requirements are achieved by choosing dynamic weighting functions as W z (s) = 10(s+8) s+0.001 I 2 , W u (s) = 0.01(s+100) s+100000 I 2 , W n (s) = 0.001I 2 , and a weighted generalized plant is obtained (see Fig. 3). The following steps are used to design K(ρ, γ) (7) for every ρ ∈ P:

(1) The nominal controller K 0 (ρ) is designed over the full parameter region P satisfying (A.1) with γ ∞,0 = 48.01. Following (A.2), the controllers K 1 (ρ) and K 2 (ρ) are designed separately over P 1 and P 2 achieving γ ∞,1 = 47.95 and γ ∞,2 = 47.93 performances, respectively. Notice that K 0 (ρ) could be designed with the same mentioned weighting functions, or with more robust requirements.

(2) The LPV state-feedback gains F g (ρ) and F k,0 (ρ) are designed using the LMIs ( 11)-( 12),

A(ρ)X g (ρ) + X g (ρ)A T (ρ) + s j=1 ±{ν j , ν j } ∂X g ∂ρ j + B 2 (ρ)V (ρ) + V T (ρ)B T 2 (ρ) < 0 (11) A k,0 (ρ)X k,0 (ρ) + X k,0 (ρ)A T k,0 (ρ) + s j=1 ±{ν j , ν j } ∂X k,0 ∂ρ j + B k,0 (ρ)W (ρ) + W T (ρ)B T k,0 (ρ) < 0
(12) where the multiple parameter-dependent Lyapunov functions at each subset are specified as affine functions of scheduling parameters. That is,

X g (ρ) = X 0 g + X 1 g ρ, X k,0 (ρ) = X 0 k,0 + X 1 k,0 ρ
, where matrices X j g and X j k,0 , j = 0, 1 are new optimization variables to be determined. Then, compute

F g (ρ) = V (ρ)X -1 g (ρ) and F k,0 (ρ) = W k,0 (ρ)X -1 k,0 (ρ).
(3) The state-space representations of M (ρ), N (ρ), U 0 (ρ) and V 0 (ρ), Ũ1 (ρ), Ṽ1 (ρ), Ũ2 (ρ), and Ṽ2 (ρ) are computed using ( 5)-( 6). Q 1 (ρ) and Q 2 (ρ) are obtained from ( 8).

(

) Q(ρ, γ) = 2 i=1 γ i (ρ)Q i (ρ) 4 
, where γ i (ρ) is switched between {0,1} when ρ(t) touches the switching instants (see Fig. 5). Then, the LPV-YK controller K(ρ, γ) is structured and implemented as shown in Fig. 2.

Then, ∀ρ ∈ P, the state-space matrices of K(ρ, γ) are

Ãk(ρ, γ) = A(ρ) + B2(ρ)Fg(ρ) -B2(ρ)Dq(ρ, γ)C2(ρ) -B2(ρ)Dq(ρ, γ)Fk,0(ρ) B2(ρ)Cq(ρ, γ) -Bk,0(ρ)C2(ρ) Ak,0(ρ) 0 -Bq(ρ)C2(ρ) -Bq(ρ)Fk,0(ρ) Aq(ρ) Bk (ρ, γ) = [B2(ρ)Dq(ρ, γ) B k,0 (ρ) B q (ρ)] T Ck (ρ, γ) = [Fg(ρ) -(D k,0 (ρ) + D q (ρ, γ))C 2 (ρ) C k,0 (ρ) -D q (ρ, γ)F k,0 (ρ) C q (ρ, γ)] Dk (ρ, γ) = D k,0 (ρ) + D q (ρ, γ) (13) 
where

A q (ρ) = A q,1 0 0 A q,2 , B q (ρ) = [B q,1 B q,2 ] T , C q (ρ, γ) = [γ 1 C q,1 γ 2 C q,2 ] , D q (ρ, γ) = 2 i=1 γ i D q,i (14) 
being A q,i , B q,i , C q,i , and D q,i the state-space matrices of

Q i (ρ), F g (ρ) = V (ρ)X -1 g (ρ), and F k,0 (ρ) = W k,0 (ρ)X -1 k,0 (ρ) 
.

Simulation Results

Same as in [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF], the rotor speed profile ρ(t) is taken as shown in Fig. 4. The switching events happen at t = 2.9s and at t = 6.5s. The simulation is performed as in [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF], where the disturbances f dθ and f dψ are injected to the system as step inputs with same magnitude but opposite signs. The comparison between the LPV switching controller [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF] and the proposed LPV-YK controller K(ρ, γ) is done by observing the output responses x 1 and x 2 and the control inputs u 1 and u 2 at the switching instants.

Figs. 6a and 6b represent the states transitions that are zoomed during switching. It is observed that the switching effect is negligible for the proposed LPV-YK controller, which is not the case for the switched LPV controller in [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF]. Moreover, as shown in Figs. 7a and7b, the LPV switching controller leads to high control jumps at the switching instants. However, the LPV-YK controller switches smoothly with negligible control variation.

Conclusion

This work has proposed a new YK-based switching LPV method to obtain smooth switching performance. The switching signal can be used to incorporate any adhoc physically-based switching, without adding any constraints or conservatism to the pre-design problem. As a result, a YK control scheme is drawn between multiple gridded LPV controllers. An application to the AMB system is carried out to compare the proposed approach with the approaches proposed by [START_REF] Lu | Switching lpv control designs using multiple parameter-dependent lyapunov functions[END_REF] and [START_REF] He | Smooth switching lpv dynamic output-feedback control[END_REF]. The simulation results show the efficiency of the proposed method to perfectly handle the system with negligible effect on the control input.

As a future work, an interest appears to study the choice of Q dynamics, i.e. how to choose the best design of the state-feedback gains F g and F k,0 , and how they affect the closed-loop performance.
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Fig. 4 .

 4 Fig. 4. Parameter-varying rotor speed ρ (rad/s)

Fig. 6 .

 6 Fig. 5. Interpolating signal γ

Fig. 7 .
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