
HAL Id: hal-03761946
https://hal.science/hal-03761946

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward the certification of safety-related systems using
ML techniques: the ACAS-Xu experience

Christophe Gabreau, Adrien Gauffriau, Florence De Grancey, Jean-Brice
Ginestet, Claire Pagetti

To cite this version:
Christophe Gabreau, Adrien Gauffriau, Florence De Grancey, Jean-Brice Ginestet, Claire Pagetti.
Toward the certification of safety-related systems using ML techniques: the ACAS-Xu experience.
11th European Congress on Embedded Real Time Software and Systems (ERTS 2022), Jun 2022,
Toulouse, France. �hal-03761946�

https://hal.science/hal-03761946
https://hal.archives-ouvertes.fr


Toward the certification of safety-related systems
using ML techniques: the ACAS-Xu experience
Christophe Gabreau∗†, Adrien Gauffriau†, Florence de Grancey∗‡, Jean-Brice Ginestet§, Claire Pagetti¶

∗ IRT Saint Exupéry, † Airbus, ‡ Thales, § DGA, ¶ ONERA

Abstract—In the context of the use of Machine Learning (ML)
techniques in the development of safety-critical applications
for both airborne and ground aeronautical products, this
paper proposes elements of reasoning for a conformity to the
future industrial standard. Indeed, this contribution is based
on the EUROCAE WG-114/SAE G-34 ongoing standardization
work that will produce the guidance to support the future
certification/approval objectives. The proposed argumentation
is structured using assurance case patterns that will support
the demonstration of compliance with assurance objectives
of the new standard. At last, these patterns are applied to
the ACAS-Xu use case to contribute to a future conformity
demonstration using evidences from ML development process
outputs.

Disclaimer: This paper is based on the EUROCAE WG-
114/SAE G-34 standardization results at the time of the writing.
Though some of the authors are active members of the working
group, it is a free interpretation of the current draft work and
only reflects the authors’ view. As the working group has not
published any released outcomes yet, some parts of the described
argumentation may have to be modified in the future to conform
to the final standard objectives.

I. INTRODUCTION

A. Context

In the avionics context, the certification of aircraft sys-
tems is ruled by the regulation authorities, e.g. EASA for
Europe and FAA for the United States. EASA developed
Certification Specifications (CS 2x.1301/1309) defining the
requirements that rule systems airworthiness. In addition to
this, Authorities published AMC/AC (Acceptable Means of
Compliance/Advisory Circular) to recognize that developing
systems using industrial standards (ED-79A/ARP4754A for
complex systems, ED-12C/DO-178C for software item and
ED-80/DO-254 for hardware item) are acceptable means to
show evidence that a system behavior, operating functions
implemented by software and/or hardware items, is compliant
with the regulation requirements.

Among the methodologies used for certification purposes,
the assurance case concept is not new. The safety domain was
one of the first to elaborate the safety cases concept. Safety
cases were originally theorized by Tim Kelly [KBMB97] and
then generalized by John Rushby [Rus15]. In particular, in
[Rus15], Rushby claims that the introduction of this kind of
methodology in the industries are a significant contribution to
system and software assurance and certification.

B. Objectives of the paper

The first objective of the paper is to present the guidelines
drafted by the EUROCAE WG-114/SAE G-34 joint working
group (WG-114 subsequently) on the certification of ML-
based systems. The draft guideline [EUR21] is called AS6983
in the rest of the document. Those guidelines cover 3 levels
of engineering:

1) System/Subsystem: Classical system and safety assess-
ment processes are used to capture the requirements al-
located to the ML-based function and identify the items
that will be used to implement the system. Among these
requirements is the DAL (Design Assurance Level) that
modulates the fulfillment of the assurance objectives.
The modulation is not used in the paper because the
levelling of objectives has not been discussed yet in WG-
114.

2) ML Constituent: This level has been introduced by the
WG-114 between subsystem and item in order to support
the design of one ML-based subsystem function that can
be deployed on several items. This level encompasses
the data management process (design the datasets that
will be used to train, test and validate the ML part of
the ML constituent) and the ML model design process
(train/validate the model to fit the intended function
and verify that its properties are compliant with its ML
model requirements).

3) Item: Both classical and ML specific process will be
used to transform the designed model into an imple-
mentation model that will be hosted in a SW or and
HW item.

These 3 levels of engineering are described in an end-to-end
ML-based system development workflow (see Fig. 1). The
semantics of the arrows is as follows: plain thick arrows mean
is an input, plain arrows mean produces and dashed arrows
mean uses.

The second objective is to structure those guidelines with a
set of assurance cases patterns that will reflect the learning
assurance objectives developed by WG-114 and support a
possibly future demonstration of conformity for certification
purposes.

The third objective is to apply the assurance cases patterns
on a detailed use case. Indeed, we will apply them on the
hybrid architecture promoted by [DDGG+21] to implement an
Airborne Collision Avoidance System (ACAS-Xu) for drones.
The purpose of this architecture is to embed several neural



System
architecture

Req
allocated to
ML-based
sub-syst

System
Integration &
Verification

System process

data
manag-
ement

data sets

Data management process

Model
design ML models

ML model design process

HW or SW
implem
entation

Deployed
model

Implementation and
deployment process

ML CONSTITUENT
ITEM(s)

SYSTEM/SUBSYSTEM

Fig. 1. End-to-end ML-based system development workflow

networks (NNs) to replace the ACAS-Xu standardized Look-
Up Tables (LUT) along with a safety net based on extracts
of the LUT. In that former work, we proposed an initial end-
to-end certification strategy already inspired from the WG-
114 works and which was reflecting the progress status of the
standardization approach at this point. The WG-114 approach
has evolved since and we will present an updated version in
line with the current AS6983 guidelines.

II. STANDARDIZATION APPROACH

Today the WG-114 is a worldwide group of more than
500 engineers that draws its expertise from a large variety of
industry fields such as air-framers, Unmanned Aircraft systems
(UAS), Urban Air Mobility (UAM), electric Vertical Take-Off
and Landing (eVTOL) manufacturers, engine manufacturers,
airborne and ground equipment manufacturers, regulators or
air navigation service providers.

A. Overview of the guidelines

As mentioned in their ”Statement Of Concerns (SOC)”
[EUR20a], the WG-114 anticipated a growing commercial
pressure for Artificial Intelligence (AI) solutions within the
aerospace industry over the coming few years, there is an
urgent call for regulation and the emergence of norms around
acceptable usage. The role of this joint group will be to
produce a new standard for the development and the certi-
fication of aeronautical products using artificial intelligence
(once recognized as an acceptable means of compliance by
the adhoc authorities). The standard will be multi-domains,
the joint working group will evaluate key applications for
AI usage within aeronautical systems, with a scope encom-
passing ground-based equipment, airborne vehicles and Air
Traffic Management (ATM) systems. In terms of processes,
the full life cycle will be under consideration, from design and
manufacture, to operation and through-life maintenance. In its
first issue, the standard will focus on offline trained Machine
Learning (ML) based systems meaning that the embedded ML
algorithms are only trained on ground and does not keep on
learning during operation.

The SOC document has allowed the whole industry to
align on the main concerns related to the use of AI in the

safety-related systems that make the aeronautical ecosystem.
One of the main challenges raised by the document was to
determine how the future standard was going to interfere with
the other existing standards that currently rule the development
and the certification of the aeronautical systems. This paper
intentionally focuses on avionic systems processes and their
applicable standards: safety assessment (ARP4761 [SAE96]),
system development (ARP4754A/ED-79 [SAE10]), software
development (DO-178C/ED-12C [RTC11]) and hardware de-
velopment (DO-254/ED-80 [RTC00]). In order to propose an
end-to end certification approach, the WG-114 considered all
these processes and has identified the gaps with the existing
standards in the chapter 4 of the SOC document. At this
point of time, there is a collegial consensus around a process-
oriented standardization approach introducing new assurance
objectives (a.k.a. learning assurance objectives) to cover the
development processes and fill the identified gaps. Therefore
this paper considers the ongoing work of the working group
and zooms on the levels of engineering that are impacted so
far.

B. Application to the use case

The airborne anti-collision system ACAS X [KHC12] was
developed to overcome some limitations of TCAS systems
and as a response to flights traffic increase. In the ACAS
Xu standard, the design relies on a set of offline computed
lookup tables to make avoidance decisions. Some works
[KBD+17] proposed to replace those LUT with some surro-
gate neural networks: the purpose was to reduce the memory
footprint and thus to improve the execution time. The former
work [DDGG+21] relies on neural networks as proposed by
[KBD+17] but also on a safety net based on an extract of
the LUT to ensure the compliance with the reference behavior
given by the LUT. This ACAS Xu hybrid architecture allows
the use of ML algorithms while guaranteeing the safety of the
system in all operational domain. At operation (see Figure 2),
when the check module meets a pre-identified zone where the
ML controller predictions are incorrect, the system switches to
the safety net. In the other cases, the ML controller is operated.

NNCoC

NNWL

NNSL

NNWR

NNSR

switchnorm post

ML controller / ML constituent

check module
pre-defined

safe box

safety net
pieces of LUT

Fig. 2. Hybrid Architecture Overview

We will apply the assurance case patterns on the ACAS-
Xu use case and demonstrate the compliance to learning



assurance objectives with supportive evidences. Indeed we will
use evidence artefacts that have been developed during the
design (ML algorithm development, performance measures,
generalization demonstration using formal methods), the im-
plementation artefacts demonstrating that the inference model
is preserving the properties of the design model and the tests
of the hybrid controller performed with simulation means.

C. Overview of the assurance case concept

Assurance Cases are a method to structure an argumen-
tation in order to make a demonstration of conformity. It
has been used for a while for safety demonstration in the
whole industry. This method has been theorized by John
Rushby in [Rus15] with this definition: Assurance cases are
a method for providing assurance for a system by giving
an argument to justify a claim about the system, based on
evidence about its design, development, and tested behavior.
Indeed, John Rushby emphasizes that the argument provides
a context in which to justify and assess the quality and
relevance of the evidence submitted, and the soundness of the
reasoning that relates this to the hierarchy of subclaims that
leads to the top-level claim. When building the argumentation
related to a novel technique of development (such as Machine
Learning), this may help to identify the lacks, weaknesses
of the argumentation tree and thus the places where some
additional research is needed.

In the updated edition of ”The uses of argument” [Tou03],
Toulmin states that the argumentation is mixing logic and
epistemology. Considering the latter, he states that the claim
of knowledge leading to the argument soundness should not
be questionable, a man who puts forward some proposition,
with a claim to know that it is true, implies that the grounds
which he could produce in support of the proposition are of
the highest relevance and cogency: without the assurance of
such grounds, he has no right to make any claim to knowledge.

This being said, Rushby in [Rus15], clearly separates 2
kinds of argumentation strategies:

- Reasoning steps are interpreted logically: we must de-
termine if the conjunction of subclaims in a step deductively
entails its claim. So it may lead to a problem in logic: do the
subclaims truly imply the claim?.

- Evidential steps are interpreted epistemically: they are the
bridge between our concepts (expressed as subclaims) and our
knowledge of the world (recorded as evidence). Therefore it
may lead to a problem in epistemology: does the evidence
amount to knowledge that the claim is true?

Both questions are justified and emphasized in [Lev11]
which highlights the possible misuse of an assurance case due
to the confirmation bias (experts may try to build assurance
cases enforcing the compliance of their own system) and
illustrated in the Nimrod accident report [HC09]. However
as underlined by [Lev11]: the type of evidence required and
assurance arguments used are straightforward with prescrip-
tive regulation. As mentioned earlier in the paper, this is
actually the approach of the WG-114 standardization group.
Indeed the working group is a college of experts challenging

themselves and working on a consensus base to provide
the best process-oriented assurance activities to ensure the
certifiably of aeronautical systems.

Most of the recent papers on assurance cases rely on the
GSN notation developed by Tim Kelly from York university
[KW04] and standardized by [ACW18]. The graphical nota-
tion is really a good format to ease the analysis, favour the
use of patterns, ease the concurrent working and allow for
a global view of the work. However we do think that this
is not enough to fully describe the assurance case content,
permit a fine configuration control and express the changes
between versions that are necessary to control the credit for
the final goal of the process assurance: the demonstration
of conformity. Therefore we prone to mix graphical and
textual notation to provide the interesting aspects of the both
notations as it is done in the certification argumentation of
the SAFEGUARD system in [MSG21]. At last, and to echo
the previous paragraph about the confirmation bias, one can
challenge the reasoning or the fact that evidences may not be
sufficient to fully achieve the demonstration. To help solving
the legitimate interrogation inherent to an assurance case in
[Rus15]: doubting that the subclaims to a reasoning step really
do entail its claim, or that the evidence cited in an evidential
step has adequate weight, Rushby was proposing the useful
concept of defeater. The GSN standard V3 [ACW21], by
introducing dialectic principles now allows for challenging the
reasoning or the evidential steps.

D. Notation

The assurance case extracts are patterns containing AS6983
guidance objectives as proposed by [HG18] for DO-178 and
[DPP20] for the multi-core guidelines formerly detailed in the
CAST-32A. From such patterns, it is up to the applicant to
instantiate them for a given product. In this paper, we illustrate
the instantiation on the ACAS Xu use case. The assurance
case patterns were designed with the GSN V3 [ACW21] (note
that they are standard assurance cases for GSN as we did not
use the GSN pattern notations). The instantiations are mainly
described textually. In addition, we use the following colour
codes all along the paper: the grey boxes indicate that the
goal is supported by classical well-known guidance, the white
boxes are used to structure the argumentation and yellow boxes
contain objectives from the AS6983 draft guidance. Any other
colour is used to link the assurance case extracts to one another
in order to ease the navigation.

III. ML-BASED SUBSYSTEM DEVELOPMENT

The future ML standard will propose an end-to-end guid-
ance to develop and certify a system containing a ML-based
function. However the WG-114 approach will try to stick on
the existing guideline as much as possible. From an airborne
perspective, this means using the ARP4754A [SAE10] guid-
ance whenever possible to integrate the ML-based function at
subsystem level. Most of the processes at system/subsystem
level of engineering (safety assessment, system requirements
capture, architecture, integration, validation and verification



processes) are reused from the ARP4754A. The AS6983
overlaps a bit with the system/subsystem ARP guidance for
the beginning of the ML constituent development.

A. Assurance case pattern

The argumentation is based on the application of the
ARP4754A objectives [SAE10] from table A-1//2.0 Aircraft
and System Development Process and Requirements Capture
and //5.0 Implementation verification process. As this is a pure
ARP4754A pattern, this argumentation is not detailed it in
the paper. It leads to the identification of the ML constituent
development goal: The ML constituent performs its intended
function at acceptable level of safety for allocated DAL.

B. Application to ACAS Xu

The ACAS Xu use case subsystem is composed of:
1) ML controller (or ML constituent): contains all the

ML models approximating the LUTs in every points
of the input space. The models are hosted in the SW
item 3 whereas the traditional functions (normalisation,
selection of the NNs and post processing to compute the
advisory maneuver) are hosted in SW item 2.

2) SW item 1: contains the safety net and the check module.
3) HW item: the Texas Instrument keystone platform hosts

the 3 SW items defined above.
The process flow chart to produce the ACAS-Xu system (see

figure 3) is an application of the ML-based system/subsystem
development process from WG-114.

Subsystem Arch.
NNs

Deployement

Requirements
allocated to the
ML constituent

Subsystem
Requirements

Processes

Requirements
allocated to
other items

ML Constituent
Requirements

Process

ML
Constituent

Requirements

ML Model Design
Process

Training/Valid/
Test datasets

ML Data Management
Process

ML Model
description

Data
processing
description

SW item 3
(NNs)

SW item 2
(Normalisation+switch NNs+Post-pro)

SW item 1 (Check Module + Safety Net +Post-pro)

HW item (TI-Keystone platform)

ML constituent
integration Process

ML
Constituent

Subsystem
Integration
Processes

Subsystem
(ACAS-Xu)

ML constituent
(ML Controller)

Subsystem(ACAS-Xu Hybrid ML-based Controller)

Fig. 3. ACAS-Xu system development workflow

The ARP4754A objectives from table A-1//2.0 Aircraft and
System Development Process and Requirements Capture are
supported by the following evidences:

• ARP4754A-2.3 (System requirements): The hybrid ML-
based controller requirements are defined. The ACAS Xu
function is specified using the RTCA SC-147 /EUROCAE
75 standardized tables.

• ARP4754A-2.4 (Derived requirements): The hybrid ML-
based controller derived requirements are defined and
rationale explained. The subsystem Operational Design

Domain (ODD in the rest of the document) is partitioned
between the ML controller and the safety net.

• ARP4754A-2.5 (System architecture): The strategy for
the architecture definition has been developed earlier in
the section.

• ARP4754A-2.6 (Item allocation): The hybrid ML-based
controller requirements are allocated to items. The strat-
egy to satisfy the objectives is to develop the entities
(actually 2 items and a ML constituent) defined by the
subsystem architecture. The traditional SW items Check-
Module, Safety-Net and Post-pro are developed to DO-
178C guidance and the HW item (the NVIDIA Jetson
Xavier platform) to DO-254 guidance.

The ARP4754A objectives from table A-1//5.0 Implementation
verification process are supported by the following evidences:

• ARP4754A-5.3 (Item implementation): The hybrid ML-
based implementation complies with the subsystem re-
quirements. The ML constituent development and ver-
ification processes are further elaborated to detail the
demonstration of compliance to the future ML standard.

• ARP4754A-5.2 (System verification): The subsystem ver-
ification demonstrates the intended function and the con-
fidence of no unintended function impacts to safety. The
Hybrid ML based controller is tested against its func-
tional, safety and operational requirements in a simulated
environment (including a LUT simulator for comparison).

IV. ML CONSTITUENT DEVELOPMENT

The ML constituent contains a ML model and possibly tra-
ditional items. Its current definition is: a defined and bounded
set of either hardware item(s) and/or software item(s) that
implement ML model(s) and associated ML data processing
which are grouped for integration purpose to support(s) one
subsystem function.

A. Assurance case pattern

The certification argumentation is described through the
fulfillment of the goal previously described at subsystem
level: The ML constituent performs its intended function at
acceptable level of safety for allocated DAL. Considering the
ML constituent may contain both ML model and traditional
items, the argumentation strategy is based on both new and
classical guidance. The upper level goals of the ML constituent
are described in the figure 4.

The learning assurance objectives are divided into 4 goals.
The first Goal req concerns the ML constituent requirements
capture. This goal is refined as an assurance case shown figure
5). The ML constituent requirements are a satisfactory re-
finement of the allocated system requirements for the selected
DAL. The strategy to fulfill this goal is supported by 2 levels
of requirements: the ML functional requirements and their
breakdown into ML model requirements and traditional items
identified by the ML constituent architecture:

• ML functional requirements: The ML functional require-
ments are a satisfactory refinement of the allocated sub-
system requirements (functional intent, ODD specifica-



Goal
ML constituent performs its intended
function for the selected DAL

Strategy
Arguments over the ML constituent satisfies the ML
standard and DO-178C standard for traditional
software items

Goal Req
ML constituent reqs
are a satisfactory
refinement of the
allocated subsystem reqs

Goal Dev
ML constituent
is a satisfactory
implementation
of its reqs

Goal Verif
Integrated ML
constituent
complies with
its reqs

Goal Confidence
Evidences that support
demonstration are
adequate (e.g. planning,
conf. management. . . )

Fig. 4. ML constituent pattern

tion, robustness, DAL, system performance and resources
constraints).

• Item requirements: Traditional item requirements are a
satisfactory refinement of the allocated ML functional re-
quirements for the selected DAL. The items are specified
using the DO-178C guidance.

• ML model/data requirements: The ML model and data
requirements are a satisfactory refinement of the allocated
ML functional requirements for the selected DAL.

Goal REQ
ML constituent reqs are
a satisfactory refinement
of the allocated subsystem reqs

Strategy
Argument over 2 layers of requirements

Goal Lvl 1 Reqs
ML functional reqs
are a satisfactory
refinement of the
subsystem reqs

Goal Item Reqs
Item reqs are a
satisfactory refinement
of allocated ML
functional reqs

Goal ML Model Reqs
ML model reqs are a
satisfactory refinement
of allocated ML
functional reqs

Goal ML Data Reqs
ML data reqs are a
satisfactory refinement
of allocated ML
functional reqs

Fig. 5. ML constituent requirement capture pattern

The second goal of figure 4 is Goal Dev and concerns the
ML constituent development. It is further developed as the
assurance case of figure 6. We will detail it later, at the end
of this section, as it is central in the WG114 guideline.

The third goal of figure 4 is Goal Verif and concerns the
ML constituent integration and verification. The ML inference
model and the traditional items are integrated to make the
ML constituent. The goal is then to show evidence that The
integrated ML constituent (ML inference model and traditional
items) complies with the ML constituent requirements. This
goal is not further detailed as it will be evidenced by traditional
process artifacts.

The fourth goal of figure 4 is Goal Confidence. We have
to show confidence that the evidences supporting this argu-
mentation are adequate to the ML constituent development
process. As a consequence, the argumentation will rely on the
fulfillment of transverse objectives (from AS6983) regarding
planning documentation, configuration, change management,

quality assurance process and certification liaison. This latter
part will not be further detailed.

Let us go back to Goal Dev detailed in figure 6. The related
strategy is developed in the context of the ML constituent
architecture (breakdown into the ML model and the traditional
items).

Goal Dev
The ML constituent is a
satisfactory implementation
of its reqs

Strategy
Argument over the entities identified by
the architecture of the ML constituent

Goal Arch
ML constituent
architecture
is validated

Goal Datasets Dev
ML model datasets
are a satisfactory
implementation of
the ML data reqs

Goal Model Dev
ML model inference
model is a satisfactory
implementation of
model reqs

Goal Items Dev
The items are a
satisfactory
implementation of
the item requirements

Strategy
Argument over the ML model elements identified
by the architecture of the ML model

Goal Arch val
The ML model
architecture
is described
and validated

Goal Design
The ML model element
description is a satisfactory
refinement of the ML model
element reqs

Goal Implem.
The ML inference
model element is a
satisfactory implem.
of the ML model
element reqs

Goal Verif
The ML inference
model complies
and is robust
with ML model
requirements

Fig. 6. ML constituent development pattern

It leads to a first level of 4 sub-goals: the Goal Arch validates
the ML constituent architecture. The Goal Items Dev covers
traditional items development to classical guidance. The Goal
Datasets Dev addresses the datasets development, it will be
further developed in section V. Eventually the Goal Model Dev
(”The ML inference model is a satisfactory implementation
of the ML model requirements”) is elaborated taking into
account that the ML model may be decomposed in several ML
model elements. This architecture is identified as an element
of context, so that the argumentation can be based on each
model element identified by the architecture. From this point,
the ML model is designed, implemented and verified:

• Goal Arch Val: The ML model is breakdown into model
elements and the architecture is validated.

• Goal Design: Each ML model element is trained, val-
idated and verified using the datasets. Then the main
goal is to demonstrate that ”the ML model element
description is a satisfactory refinement of the ML model
requirements”. This goal is detailed in section VI.

• Goal Implem.: When the ML model design is terminated
and frozen, each of the ML model element is imple-
mented to make a ML inference model element. This
means that the main goal becomes ”the ML inference
model element is a satisfactory implementation of the ML
model element description”. This goal is detailed in the
section VII.

• Goal Verif : When all the ML model elements are imple-
mented, they are integrated to make the ML inference



model. Then the verification goal becomes: ”the ML
inference model complies and is robust with ML model
requirements”.

B. Application to ACAS Xu

The ML constituent (ML controller) logical architecture is
composed of 4 parts (see figure 2) among which 3 traditional
parts and 1 ML model:

• the 3 traditional parts are:
– the norm normalizes the values of ρ, θ, ψ, vown, vint

in the interval [-1, 1];
– the switch is in charge to select the NNpa,τ that

will compute the advisory. The selection is done
depending on the inputs pa and τ . In effect, the value
of τ is decomposed in 9 possible ranges (e.g. τ = 0
is the first range);

– the post-processing instructions;
• the ML model is composed of 45 elements more pre-

cisely, 45 NNs named NNpa,r with pa ∈ {CoC, SR, SL,
WR, WL} and r ∈ [1, 9].

Provided that the ML controller architecture is an element
of context, the assurance case pattern of figure 4 is applied to
the ACAS-Xu use case.

1) ML controller requirements capture (figure 5 pattern):
• The ML controller requirements are refined from

the requirements of the Hybrid ML-based controller
subsystem (ODD, real-time constraints, anti colli-
sion performance, memory size constraints, DAL).

• The SW item 2 (Normalisation+switchNNs+Post-
pro) is specified using the DO-178C guidance.

• The capture of the NNs requirements is described
in section VI.

• The NNs data requirements are specified by the Op-
erational Design Domain (ODD), defined through
the input points of the LUTs from the RTCA SC-
147 Minimum Operational Performance Standards
(MOPS) For ACAS-Xu. The ODD is divided into
sub-ODDs to fit the 45 ML model elements of the
ML model architecture.

• The NNs data requirements are checked for trace-
ability against hybrid ML-based Controller require-
ments, consistency and compatibility with NNs re-
quirements.

2) ML controller development (figure 6 pattern): The ML
controller architecture document is created and vali-
dated. The SW item 2 is developed according to DO-
178C guidance. The datasets are developed and verified
against the ML model data requirements defined previ-
ously. The ML model (NNs) is developed:

• Goal design instantiation: The ML model is break-
down into 45 ML model elements (45 NNs). Specif-
ically, it is verified that the union of the 45 ODDs
makes the ML Controller ODD. The ML Model
Description (MLMD) document is created with the
NNs architecture and validated. Each NN is trained,

validated and verified using the related datasets.
Each NN description is added to the MLMD.

• Goal implem instantiation: The 45 NNs are imple-
mented from their ML model element description.
See section VI for details.

• Goal verif instantiation: The in-sample general-
ization capability of the NNs has been formally
proven in the design phase. In addition, it has been
demonstrated that the implementation process does
not alter the semantics of the NNs. Therefore there
is no need to demonstrate the robustness/stability in
the inference environment. The Requirement-based
verification is covered by the verification activities
performed at ML controller level.

3) ML controller test (figure 4 pattern): The ML con-
troller is verified against its requirements in a simu-
lated environment (including the LUT simulation for
functional/safety testing). These activities are covered
by classical guidance.

V. DATA MANAGEMENT

The objective of the data management process is to deliver
trustworthy training, validation and test datasets which will
be used to design, implement and integrate the ML model,
in order to achieve the delivery of the ML inference model
that meets the functional and operational requirements. The
figure 7 is an overview of the data management process as
per WG-114 current work.

SubSystem
Requirements

Data
Sources

Identification

DataSource
Data

Collection

Data
Preparation

ML
datasets

System
datasets

Data Collected
Data

Allocation

ML development process Implementation process Subsystem
Integration process

Data Management Process

Fig. 7. Data Management Process

A. Assurance case pattern

The data management process refined the Goal Datasets
Dev of figure 6 and is detailed in the full assurance case (but
not in this paper due to lack of space). This process has to
be covered by specific learning assurance objectives in order
to guarantee the training of ML algorithms in the context of
safety-related functions. The argumentation is split in 2 strate-
gies applicable to ML model data: data management (sources
identification, data collection, preparation and allocation) and
verification.

B. Application to ACAS Xu

The ACAS Xu use case has only few activities in terms of
data management as the ML algorithms are trained with the
standardized LUTs from the MOPS [EUR20b]. Thus



dataset = LUTs

VI. ML MODEL DEVELOPMENT

The ML constituent development process has been fully
described in the section IV-A. In particular, the ML constituent
has first been decomposed into ML model and traditional
items. This section describes the AS6983 assurance objec-
tives that cover the ML model (only, that is part of the
ML constituent) development process and its output: the ML
model description. This artefact is essential, it shall contain all
the necessary information for the implementation of the ML
model.

We remind that the ML model itself has been broken down
into ML model elements that have to be trained, validated and
verified. The development of the ML model element is based
on 2 main goals identified in the previous sections:

• Goal Model Reqs (Figure 5): The ML model requirements
are a satisfactory refinement of the allocated ML func-
tional requirements. There is a second level of refinement
to define the ML model element requirements. The strat-
egy is double: capture the requirements that are necessary
for the model element development (e.g. specification,
performances, generalization, robustness, stability) and
validate them. Due to the lack of space, the assurance
case about the ML model element requirements capture
are not detailed in this paper.

• Goal Design (Figure 6): For each model element of
the ML model architecture, the ML model element de-
scription is a satisfactory refinement of the ML model
element requirements. This process is detailed in the next
paragraph.

A. Assurance case pattern

This section focuses on the design assurance process of the
ML model element. As described in figure 8, the argumenta-
tion to fulfill the Goal design is based on 2 strategies:

1) The ML model element is designed.
2) The ML model element is verified.

Goal Design
The ML model element description is a satisfactory
refinement of the ML model element reqs

Strategy 1
Arguments over the design process of
the ML model element satisfies the learning
assurance objectives (AS6983)

Strategy 2
Arguments over the verification process of the
ML model element satisfies the learning
assurance objectives (AS6983)

Goal Train Spec
The training requirements
are developed

Goal Model Build
The ML model element
is developed from
defined hyper-parameters

Goal Model Training
The ML model element
is trained and the training stop
criteria are defined

Goal Model Optimization
The ML model element is optimized
to achieve the expected performance
specified in the ML model reqs

Goal Model Description
The ML model element description is
developed and is sufficiently
described for the needs of implementation

Fig. 8. ML Model design pattern

Sub-assurance case rooted from Strategy 1 (cf figure 8): The
design assurance process of the ML model element is based
on the following goals:

• Goal Train Spec: develops the training requirements. ML
training activity could introduce the use of randomization
that may alter the determinism and the repeatability of
the design process of the ML model design process.
In such cases, additional data (such as seeds values
used to generate random numbers) should be defined as
derived ML training requirements and managed through
configuration management.

• Goal Model Build: selects/optimizes the hyper-
parameters of the ML model element from the ML
model requirements and training requirements. The ML
model element is developed from these hyper-parameters.

• Goal Model Training: determines the ML model element
parameters using the appropriate ML training algorithm
and the training/validation datasets to meet the applicable
requirements of the ML model element and the ML
training. The initial values of the ML model element
parameters, the loss function, the evaluation metrics and
the training stop criteria are defined from the ML training
requirements.

• Goal Model Optimisation: consists in performing changes
in the ML model element after the training phase to
achieve the expected performance specified in the ML
model element requirements. In case the performance is
deemed not satisfactory, derived requirements are devel-
oped to specify the required changes.

• Goal Model Description: develops the sufficient docu-
mentation of the ML model element design to permit the
implementation of the ML model element (into a ML
inference model element) including the pre/post process-
ing instructions. The ML model element description is
a part of the ML model description. There are 2 types
of implementation of a ML model element, either an
exact or an approximated replication of the ML model
element semantics. Each ML model element description
contains the design characteristics of the model element
ensuring its exact (or approximated) replication in the
execution environment: hyper parameters and parameters,
analytical/ algorithmic syntax and semantics, replication
criteria, execution environment.

Sub-assurance case rooted from Strategy 2 (from figure 8
and refined in figure 9): The verification assurance process of
the ML model element is based on the following goals:

• Goal Validation: checks the training requirements for cor-
rectness and completeness against the ML model element
requirements. ML training requirements should conform
to the ML design standards and be traceable or justifiable,
verifiable and consistent.

• Goal Performance: ensures that the performance require-
ments, including functional and non-functional aspects
are met.

• Goal Robustness: ensures that the ML model element can



Strategy
Arguments over the verification process of the
ML model element satisfies the learning
assurance objectives (AS6983)

Goal Validation
ML training reqs
are correct
and complete

Goal Performance
ML model element
is compliant with ML
model element reqs

Goal Robustness
ML model element
is robust with ML
model element reqs

Goal Stability
ML model element is
stable for small perturbations
as specified per ML model reqs

Goal Generalization
ML model element
generalization capability
is compliant with
ML model reqs

Goal Consistency
ML model element
is accurate
and consistent

Goal Compatibility
ML model element
is compatible
with the target

Goal Verifiability
ML model element
is verifiable

Goal Std Conformity
ML model element
conforms to standards

Fig. 9. ML Model verification pattern

continue to operate correctly despite abnormal inputs and
conditions.

• Goal Stability: ensures stability of the ML model element,
i.e. that small perturbations in the inputs do not activate
unintended behavior. The expected level of perturbation
that the ML model element should sustain has been
specified in the ML model element requirements.

• Goal Generalization: The verification of the ML model
element generalization capability is to ensure that the
model element will show the same performance with
unknown inputs as the one measured during the ML
model element training. This argumentation (cf figure 10)
is further detailed in the next paragraph.

• Goal Accuracy and consistency: determines the correct-
ness and consistency of the ML model element (e.g. stack
usage, memory usage, fixed point arithmetic overflow).

• Goal Compatibility: ensures that no conflict exist between
the ML model element and the hardware/software fea-
tures of the target platform, especially for the system
response time and the input/output hardware.

• Goal Verifiability: ensures that the ML model element
does not contain elements or structures that cannot be ver-
ified, for example neurons which can never be activated
during ML Model element testing or random functions
which cannot be reproduced during testing.

• Goal Std Conformity: ensures that the ML design stan-
dards are followed during the design process of the ML
model element and that deviations from these standards
are justified.

B. Application to ACAS Xu

Requirement considerations - each of the 45 ML model
elements (NN) is specified and validated.

• Behaviour: each NN shall replicate the LUT prediction
in its allocated ODD (LUT property).

• Performances: memory footprint, timing and accuracy
• Generalization capability: the LUT property shall be

preserved whatever the position of the ownship and the
intruder in the input space of the ODD allocated for the
ML model element.

Design considerations - the strategy 1 is detailed:
• Goal train spec instantiation: Training is defined to per-

form a regression task. The training metrics is defined as
the mean square error between truth costs and predicted
costs.

• Goal model build instantiation: The identified hyperpa-
rameters consist in a set of model architecture parameters
(numbers of neurons, number or layers, activation func-
tion) and training parameters (size of batches, learning
rate). Hyperparameters are defined after an optimization
search phase performed with Bayesian optimization.

• Goal model training instantiation: The NN is trained until
a fixed and large number of epochs is attained. An early
stopping criteria is added to avoid overfitting behaviour.

• Goal model optimization instantiation: Pruning methods
are used to optimize the NNs memory footprint. Per-
formances are measured and the best model element is
retained.

• Goal model description instantiation: The ML controller
contains the architecture description of 45 ML model
elements (NN). Each NN description contains the de-
sign characteristics of the network: hyperparameters and
parameters, analytical/algorithmic syntax and semantics,
replication criteria, execution environment. The exact
replication is selected so that the inference model can
inherit from the model performances attained during the
design phase if the model semantics is preserved during
implementation.

The strategy 2 is substantiated regarding the verification of
the performance (each NN accuracy and memory footprint
are verified against the NN requirements). There are no
verification needs for the robustness and the stability because
there are no such requirements.

The generalization aspect is fundamental to the certification
demonstration. The NN generalization property is demon-
strated by proving that the LUT property is preserved for each
NN whatever the ownship/intruder situation in the input space
(cf figure 10). The argumentation is split in 2 parts:

1) Identification - All the input situations where the NN
and the LUT predictions are different, are considered as
incorrect (the NN does not preserve the LUT property).

2) Mitigation - This part is already addressed per the
subsystem architecture design: the ACAS-Xu hybrid
ML-based controller switches from the ML model (NNs)
to the LUTs (Safety Net) when incorrect situations are
detected (this is already described in the ACAS-Xu
subsystem architecture document).

Therefore only the identification is at stake. Indeed, all
the inputs where the NN predictions are incorrect should be
identified, i.e. wherever the LUT property is not true in the



input space. The method is to partition the input space (ODD)
into into p-boxes (where corners are the points of the LUTs).
Then the LUT property is checked in all p-boxes: for each
p-box, it is verified that the NN prediction is the same as
the true prediction of one of the p-box corner points. As per
the paper [DDGG+21], the verification is performed using 3D
boxes. Formal methods are used to make the demonstration.
The argumentation is decomposed into 3 goals:

• The LUT property is correctly defined. Actually this
proof is already available in the ML model requirements
validation report.

• The input space (ODD) is correctly decomposed into 3D-
boxes (proof: Generalization analysis report).

• The LUT property is formally checked in each 3D-box
of the input space (proof: Generalization analysis report)

Goal Generalization
The ML model element generalization
capability is compliant with the
ML model requirements

Strategy
Argument over the LUT property is
preserved whatever the ownship/
intruder situation in the input space

Goal Identification
All the inputs where the ML
model element predictions
are incorrect are identified

Goal Mitigation
All the incorrect situations where
ML model element predictions
are incorrect are mitigated

Strategy
Argument over the verification
of the LUT property in
the whole input space

Solution
Refer to the architecture design
description of the hybrid ML-based
controller which contains a safety net

Goal Property
The LUT property is
correctly defined

Goal Partitioning
The input space (ODD)
is correctly decomposed
into p-boxes

Goal Formal verif
The LUT property is
formally checked in each p-box
of the input space

Solution Mitigation
Refer to ML model
requirements
validation report

Solution Mitigation
Generalization analysis
report

Solution Mitigation
Generalization analysis
report

Fig. 10. ML Model Generalization demonstration for ACAS-Xu

VII. IMPLEMENTATION AND DEPLOYMENT

The input for the implementation phase should be a trained
ML model element that has a complete ML model element
description. The implementation process (see figure 11) pro-
duces a ML inference model element that is capable to infer
on a HW or SW item. It may also optimize the ML model
element (without possible retraining) in order to increase
the computation performance or better fit the targeted hard-
ware resources, however it must ensure that any optimization
preserves the semantics of the input ML model element or
at least leads to an acceptable deviation (e.g. merging of
convolution/batchnorm/ReLu layers or Winograd algorithms).

ML Model
Description Optimizations

Optimized
Model

Code Gen
Compilation ML binary

ML Item

MLDL
process

Requirements
non ML

Traditionnal Implementation
Process

Traditionnal
HW/SW

Integ.

ML Implementation Process

Verification

Fig. 11. Implementation process

A. Assurance case pattern

The main goals for the implementation process are the
following (the assurance case extract is not provided due to
the lack of space):

• The description of the ML inference model element is a
satisfactory refinement of the ML model element descrip-
tion - The sub-goals are:

– Semantics preservation: Any modification of the
model element semantics due to the transformations
(optimizations, conversion to the target environment)
should be analysed for their impact on the model
element performance and behavior with respect to
the model element requirements.

– Training and target environment differences: Differ-
ences between the 2 environments are identified to
assess the impact on behavior and performance of the
ML model element, and to evaluate to what extent
the activities performed in the design environment
can be used as verification credit for the demonstra-
tion that the inference model element complies with
the model element requirements.

• The SW or HW item is a satisfactory implementation
of the ML model element description allocated to the
item and meets the target constraints: According to the
AS6983 current guidance, this objective can be fulfilled
using the current standard practices.

• The integrated HW/SW items (host of the ML inference
model element) comply with the ML model element de-
scription - The sub-goals are:

– Compatibility with the target: Timing, memory, la-
tency, throughput and other non-functional require-
ments should be satisfied by the ML inference model
element running on the target environment.

– Unintended behavior detection: The ML inference
model element does not introduce unintended behav-
ior relative to the ML Model element.

– Design performances preservation: the performance
of the HW/SW item(s) implementing the ML infer-
ence Model on the test data set should be verified
and documented. Any deviation should be measured
and reported to the safety assessment process.



• The verification of the verification is achieved: The
verification procedures are correct and complete against
the ML model requirements. Functional and structural
coverage are verified.

B. Application to ACAS Xu

The ML controller is implemented on a TI Keystone plat-
form. The 45 NNs are hosted in a SW item (SW item 3 on
a ARM unit). In this context, the ML element description
document is updated and validated.

Hereunder the substantiated goals:
• ML inference model element:

– Semantics preservation: No post-training optimiza-
tion is performed. The 45 models are converted to a
format that is compatible with the inference platform.
The models semantics is described in the ML model
description and is preserved during the implementa-
tion. This should be detailed in a dedicated dossier
for certification purposes.

– Training and target environment differences: The
inference environment is different from the devel-
opment environment, however the execution on the
ARM processor is expected to be identical provided
that the numerical representation and resolution are
the same on both platforms. Then, credit that can be
sought for the formal verification of the generaliza-
tion capability performed during the design phase.
A representativeness dossier should be provided for
certification purposes.

• SW or HW item implementation: The NNs are coded in
C language using specific libraries for target integration.

• Integrated HW/SW items:
– Compatibility with the target: OTAWA tool is used

to compute the memory footprint and consolidate
the theoretical memory footprint evaluated during the
design phase.

– unintended behavior: As the exact replication of the
ML model element is demonstrated then a verifica-
tion credit can be sought for the formal verification
activities of the design phase. This covers the objec-
tive.

– Design performances preservation: Test dataset
should be used to verify that the 100% accuracy
objective is met in the target environment and that
timing requirements is attained. This is not yet done.

• Verification of the verification: Not performed.

VIII. RELATED WORK

In parallel to WG-114, research field groups work on deter-
mining and solving the challenges to certify AI-based systems.
For instance, the ANITI1/DEEL2 research project released a
comprehensive list of certification issues in their white paper
”Machine Learning in certified systems” [DCW21]. The main

1https://aniti.univ-toulouse.fr/en/
2https://www.deel.ai

challenges and the way the WG-114 is tackling them are
synthesized in the article [FK21].

There are a lot of recent works fostering the use of assurance
cases. In [Rus15], John Rushby explains the fundamentals
of the theory for the use and the evaluation of the assur-
ance cases. Michael Holloway [HG18], on behalf of FAA,
translates the EUROCAE/RTCA ED-12C/DO-178C standard
[RTC11] in an assurance case and expresses the underlying
arguments which justify the assumption that the document
meets its stated purpose of providing guidelines for avionic
embedded software. [CPH20] presents patterns that can be
used to develop assurance arguments for demonstrating the
safety of the ML components. The argument patterns provide
reusable templates for the types of claims that must be made
in a compelling argument. [MSG21] is the first complete
and published demonstration that a system (SAFEGUARD
system enforces geofencing restrictions on unmanned aerial
vehicles) possesses the overarching properties for certification
approval purposes. At last, the work [DPP20] is proposing a
domain-agnostic method to design and evaluate patterns (the
design pattern approach is a way of describing a recurring
problem and its associated solution based on best practices)
of assurance cases. This will be very useful when time comes
for constructing and releasing patterns from the collection of
assurance cases available on the field. At last the safety group
of university of York, with their ”Guidance on the Assurance
of Machine Learning in Autonomous Systems (AMLAS)”
[RHH21], defines a safety argument pattern that can be used
to explain how and the extent to which the generated evidence
supports the relevant ML safety claims, explicitly highlighting
key assumptions, tradeoffs and uncertainties. They suggest
an end-to-end process, from system safety requirements to
ML component safety case, providing guidance for both the
applicant and the certification authority.

IX. CONCLUSIONS

This paper has proposed an interpretation of the current
WG-114 work (future standard for offline machine learning
development) through the development of assurance case
patterns. These patterns have been applied to the ACAS-Xu
use case, in order to structure a possible argumentation for
demonstrating the conformity to the objectives of the standard.
The demonstration is obviously not complete, however the
main learning assurance objectives have been tackled to show
evidence that the proposed process for ACAS-Xu development
is certifiable. Beyond this use case, this is paving the way
towards the certification of the safety-critical aeronautical
products based on surrogate models. The way forward will
be to complete the assurance activities on the implementation
process and adjust the argumentation to the final guidance
when the WG-114 standard (AS6983) is released.

REFERENCES

[ACW18] Assurance Case Working Group ACWG. The goal structuring
notation community standard version 2, 2018. Safety-Critical
Systems Club, York, UK.

https://aniti.univ-toulouse.fr/en/
https://www.deel.ai


[ACW21] Assurance Case Working Group ACWG. The goal structuring
notation community standard version 3, 2021. Safety-Critical
Systems Club, York, UK.

[CPH20] Richard Hawkins Radu Calinescu Chiara Picardi, Colin Pater-
son and Ibrahim Habli. Argument patterns and processes for
machine learning in safety-related systems. 2020. University
of York, York, U.K.

[DCW21] IRT StExupery DEEL Certification Workgroup. White paper -
machine learning in certified systems, 2021.

[DDGG+21] Mathieu Damour, Florence De Grancey, Christophe Gabreau,
Adrien Gauffriau, Jean-Brice Ginestet, Alexandre Hervieu,
Thomas Huraux, Claire Pagetti, Ludovic Ponsolle, and Arthur
Clavière. How to certify a reduced footprint acas-xu system:
A hybrid ml-based solution. In International Conference on
Computer Safety, Reliability, and Security (SAFECOMP), 2021.

[DPP20] Kevin Delmas, Claire Pagetti, and Thomas Polacsek. Pat-
terns for certification standards. In Proceedings of the 32nd
International Conference on Advanced Information Systems
Engineering (CAiSE’20), pages 417–432, 2020.

[EUR20a] EUROCAE / SAE. ER-022/AIR6988 - AI in Aeronautical
Safety-Related Systems: Statement of Concerns, 2020.

[EUR20b] EUROCAE WG 75.1/RTCA SC-147. Minimum Operational
Performance Standards For Airborne Collision Avoidance Sys-
tem Xu (ACAS Xu), 2020.

[EUR21] EUROCAE WG-114/SAE joint group. Certification/approval
of aeronautical systems based on AI, 2021. on going standard-
ization.

[FK21] Christophe Gabreau Baptiste Lefevre Fateh Kaakai, Béatrice
Pesquet-Popescu. Ai for future skies: On-going standardization
activities to build the next certification/approval framework for
airborne and ground aeronautical products, 2021. AISafety
2021.

[HC09] C. Haddon-Cave. The nimrod review: an independent review
into the broader issues surrounding the loss of the raf nimrod
mr2 aircraft xv230 in afghanistan in 2006, 2009. report, vol.
1025. DERECHO INTERNACIONAL.

[HG18] Holloway and Graydon. Explicate ’78: Assurance case appli-
cability to digital systems, 2018. FAA report DOT/FAA/TC-
17/67.

[KBD+17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and
Mykel J Kochenderfer. Reluplex: An efficient smt solver for
verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97–117. Springer, 2017.

[KBMB97] Tim Kelly, Iain Bate, John McDermid, and Alan Burns. Build-
ing a preliminary safety case: An example from aerospace. In
1997 Australian Workshop on Industrial Experience with Safety
Critical Systems and Software, Australian Computer Society,
Sydney, Australia, 1997.

[KHC12] Mykel Kochenderfer, Jessica Holland, and James Chryssantha-
copoulos. Next generation airborne collision avoidance system.
Lincoln Laboratory Journal, 19:17–33, 2012.

[KW04] Tim Kelly and Rob Weaver. The goal structuring notation /-
a safety argument notation. In Workshop on Assurance Cases,
2004.

[Lev11] Nancy Leveson. The use of safety cases in certification and
regulation, 2011. Aeronautics and Astronautics/Engineering
Systems MIT.

[MSG21] Hampton Virginia Mallory S. Graydon, Jared D. Cronin Lang-
ley Research Center. Retrospectively documenting satisfaction
of the overarching properties: An exploratory prototype, 2021.

[RHH21] Chiara Picardi Radu Calinescu Richard Hawkins, Colin Pater-
son and Ibrahim Habli. Guidance on the assurance of machine
learning in autonomous systems - amlas. 2021. University of
York, York, U.K.

[RTC00] RTCA/EUROCAE. DO-254/ED-80 - Design Assurance Guid-
ance For Airborne Electronic Hardware, 2000.

[RTC11] RTCA/EUROCAE. DO-178C/ED-12C - Software Considera-
tions in Airborne Systems and Equipment Certification, 2011.

[Rus15] John Rushby. The interpretation and evaluation of
assurance cases. Technical report, 2015. Technical
Report SRI-CSL-15-01 Computer Science Laboratory,
SRI International, Menlo Park, CA, July 2015.
URL=”http://www.csl.sri.com/users/rushby/papers/sri-csl-
15-1-assurancecases.pdf”.

[SAE96] SAE. Aerospace Recommended Practices ARP4761- guidelines
and methods for conducting the safety assessment process on
civil airborne systems and equipment is an aerospace, 1996.

[SAE10] SAE/EUROCAE. Aerospace Recommended Practices
ARP4754a/ed-79a- development of civil aircraft and systems,
2010.

[Tou03] Stephen Toulmin. The uses of argument, updated edition, 2003.
Original edition 1958.


	Introduction
	Context
	Objectives of the paper

	Standardization approach
	Overview of the guidelines
	Application to the use case
	Overview of the assurance case concept
	Notation

	ML-based subsystem development
	Assurance case pattern
	Application to ACAS Xu

	ML constituent development
	Assurance case pattern
	Application to ACAS Xu

	Data management
	Assurance case pattern
	Application to ACAS Xu

	ML model development
	Assurance case pattern
	Application to ACAS Xu

	Implementation and deployment
	Assurance case pattern
	Application to ACAS Xu

	Related work
	Conclusions
	References

