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Abstract—To embed multi-core COTS processors in an avionic
product, the platform must be thoroughly analyzed from two
perspectives: the worst case real-time behaviours and the safety
impact of internal failures. Both activities are very complex and
error-prone for large size systems. Moreover, the frameworks for
both perspectives (real-time and safety) are completely decoupled,
leading to independent and possibly incoherent analyses.

Our purpose is to unify both worlds and help designers in their
certification process. To this end, we have formalized and unified
as much as possible the different perspectives of multi-core
analysis. We have also proposed a simple description language
for the platform, which contains the minimal concepts needed by
both perspectives, as well as an automatic translation to the two
analysis frameworks.

I. INTRODUCTION

Aeronautical safety critical systems are subject to certi-
fication, meaning that a certification authority assesses the
compliance of the product with a set of adequate standards.

a) Certification of multi-core COTS – CAST 32A:
The CAST32-A position paper [1] provides a set of guid-
ance for software planning and verification on multi-core-
based systems. Indeed, multi-core chips, i.e., chips integrating
several cores interconnected by a shared bus, face important
challenges for their integration in safety critical environment.
There are two main types of analysis to perform: worst case
real-time analysis and safety analysis.

Real-time and interference As a matter of fact, it is very
difficult to ensure time predictability [2], [3] for multi-core
COTS, one of the key elements requested by certification.
Time predictability is the capability to compute a safe and
tight upper bound of the number of cycles required to execute
a piece of software in the worst case. For multi-core COTS, the
problems come from the intensive resource sharing, the lack
of documentation and the complex internal behaviour (e.g.
cache coherence) to increase the average performance. For
mastering the worst case behaviour, the CAST32-A promotes
the computation of interferences – situation where several
applications execute in parallel and encounter a serious timing
delay compared to when executing in isolation – and interfer-
ence channels – shared resource of the platform.

Internal failures and safety effect The classical approach
was to consider the processor as a whole such that any failure
leads to the complete failure of the system. Such an approach
is considered as a bit naive and pessimistic for multi-core.
Indeed, if a core fails, the rest of the platform can still
work correctly and the global system can still be safe. Thus,

making a sharper analysis decreases the pessimism. On the
other hand, modern processor architectures integrate many
components and intelligence such that they can be seen as
systems themselves. Identifying the failure modes, their effects
and their failure rates is rather challenging. Some works,
such as [4], propose to emulate a component failure and
observe the reaction of the platform. Others, such as [5], [6],
propose to deduce abstract failure modes from the functional
services in pragmatic reasoning approach. Some, e.g. [7], try
to quantify the failure rate with real platform experiments. For
mastering the failure propagation, the CAST32-A promotes the
identification of internal failures and their containment within
the equipment (integrating the multi-core) not to polute the
avionics.

b) Objectives and contribution.: Practically, the appli-
cant must argue that they have identified the interference and
the safety effect for their platform and their specific use. The
analyses are applied on the platform which includes the hyper-
visor or RTOS (real-time operating system) if any. By specific
use, the CAST32-A speaks of configuration settings, i.e. the
way the processor is used. This includes the description of
which components are used and how (with which parameters).
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Fig. 1. KEYSTONE platform

Let us consider as an example the KEYSTONE TCI6630K2L
[8] from Texas Instruments, which is depicted in Figure 1.
The configuration settings include which cores are running
and with which frequency; the peripherals that are used, how
the memory is configured and so on.

Once the configuration settings have been clearly described,
the applicant must then identify the interferences, i.e., compute
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Fig. 2. Adapted RROSACE application

how software could access the different resources in parallel.
The basic solution is to compute all transactions – accesses
from a core to a shared resource – and enumerate all combi-
nations with a solver [6].

In parallel, the applicant must also identify the failure modes
of each internal component of the platform and determine how
these failure modes would impact the transactions. For in-
stance a non acceptable transaction (outside the configuration
settings) can occur in the presence of some failure. The basic
solution is to make a dysfunctional model and analyze the
safety effect [9] with a safety framework, such as [10].

Both perspectives deal with the notion of transaction and
how the platform is solicited. However, they are analyzed via
independent tools and techniques. Our objective is to unify
them as much as possible to factorize the modelling work
and reduce the divergence between the perspectives. To do
so, we have formalized the notion of transaction, interference
and erroneous transaction. We have defined a multi-core-based
system description framework to 1) describe thoroughly the
platform with the common concepts needed by the analyses;
2) translate the description to each perspective and in a format
that is compliant with the analysis tools. This framework was

developed within the project PHYLOG1.
c) Outline of the paper.: To help illustrate the concept,

we have defined a complete use case based on the KEYSTONE
in Section II. Section III provides the formalisation of the
multi-core transactions and the common description language
named PML. Section IV presents the interference analysis and
how such an analysis is possible from PML. In a similar way,
Section V presents the safety perspective. We then detail the
related works in Section VI before concluding.

II. USE CASE

To help present the contribution, we will rely on a real use
case that consists in executing a simplified longitudinal flight
control system (see Figure 2) on the KEYSTONE.

a) KEYSTONE.: The platform, shown in Figure 1, runs
in bare-metal (i.e. without any RTOS and hypervisor) and
is composed of: 1) an eight C66 DSP pack, in which each
core comes with dedicated L1 and L2 caches, and a memory
extension and protection unit (MPAX); 2) a four ARM pack,
in which each core comes with dedicated L1 caches, and
a memory management unit (MMU); 3) a central memory

1https://w3.onera.fr/phylog/

https://w3.onera.fr/phylog/


system that gives access to the platform’s SRAM (MSMC
SRAM), and an external DDR. Each of the these two memory
systems is composed of 8 Banks, which are denoted Bx in
the sequel. The memory access management is performed by
the Multicore Shared Memory Controller (MSMC); 4) a set
of IO peripherals (e.g. GPIO, UART), and utility peripherals
(e.g. Boot, Semaphores); 5) a memory transfer peripheral
(EDMA); 6) an ultra speed bus (TERANET) connecting the
peripherals, the memory systems, and the cores.

b) Applications: We consider a COM/MON longitudinal
flight controller which is an adaptation of RROSACE (for
redundant ROSACE) [11], [12]. The purpose is to execute two
parallel ROSACE– an open source longitudinal flight controller
– and to perform regular verification that both copies, named
COM/MON for COMmand and MONitoring, agree on the
computed orders. To do so, the orders are usually compared
in the MON duplicate. Our purpose is slightly different from
[11], which goal was to offer a safe COM/MON strategy.
Instead, we want to implement a representative use case that
will stress several hardware components of the multi-core.
Moreover, we have embedded the aircraft models to increase
the size of the footprint and to be close to the real behaviour.

The overall use case is described in Figure 2. To allow
the communication with the cockpit to receive pilots orders
(required altitude h c and required Va c), we implemented
a communication with the SPI (Serial Port Interface). We
use the same medium to display the results. This results in
implementing 5 functions:
1) ROSACE COM which has been allocated on several cores.
The environment is on DSP0 which is configured with a
L2SRAM such that the execution is contained locally, except
for the data that is exchanged with the controller. Those global
variables are stored in MSMC SRAM B0. The controller has
been split in two parts: one executing on ARM0 and the second
on ARM1. All the private sections are stored in DDR B0.
The ARM caches are activated. The controller receives orders
(h c0, Va c0) from the pilot and computes the orders δ ec0
and δ thc0.
2) ROSACE MON works in the same way except that the
aircraft model is on DSP1, the controller is on ARM2 and
ARM3, the private sections are on DDR B1 and the global
variables are in MSMC SRAM B1. The controller receives the
same orders as COM and they are stored as h c1 and Va c1;
and computes the actions δ ec1 and δ thc1.
3) CheckA executes on DSP2. Its L2 is configured as L2SRAM
and contains all the sections and data. CheckA reads several
data in the MSMC SRAM B0 (δ ec0, δ thc0, h0, Va c0)
and MSMC SRAM B1 (δ ec1, δ thc1, h1, Va c1). It then
checks whether the orders computed by COM and MON
are close, e.g. by verifying whether |δ ec0 − δ ec1| and
|δ thc0 − δ thc1| are small, and CheckA stores the result
in the Boolean variable r A (which is true if COM and MON
agree, and false otherwise).
4) CheckB works as CheckA and computes r B.
5) IO server executes on DSP4. Its L2 is configured as L2SRAM
and contains all the sections and data. The IO server is in

charge of communicating with the outside of the multi-core
via the SPI. More precisely, it configures the EDMA to receive
the pilot orders from the SPI and copy them on MSMC SRAM
B0 and MSMC SRAM B1. It also periodically reads the outputs
of CheckA and CheckB directly in their L2SRAM and copy
them locally in its L2SRAM. It configures the EDMA to send
those to the SPI.

III. MODELLING MULTI-CORE ARCHITECTURE: PML

To prepare the certification documentation required by the
CAST32-A, the applicants must analyze the platform from the
two perspectives, real-time and safety. Even if they differ in
terms of framework, they both rely on an accurate represen-
tation of the platform itself. Such a representation is derived
from hardware documents and expert knowledge.

A. Components

The software are hosted by hardware components. When
a software requests some resource, it initiates a transaction
within the platform. This transaction consists of a path of
physically connected components. According to their role in
a transaction, components are classified as follows, taking
inspiration from the initiator-target model introduced in [13],
[14], [15], [6].

Definition 1 (Initiator-target model): A multi-core is com-
posed of three types of components:
Initiator: a component which initiates a transaction

(e.g. ARM, DSP and EDMA);
Target: an end-component which is targeted by initiators

(e.g. MSMC SRAM and SPI);
Transporter: any intermediate component between initiators

and targets (e.g. TERANET and AXI BUS).
Example 1: The components of the KEYSTONE illustrated

in Figure 1 are colored according to their type, the color code
being: red for Initiators, blue for Transporters and green for
Targets.

The mapping of the (software) applications to the platform
components defines the configuration of the platform and
induces which components / transactions are active.

Example 2: The set of RROSACE software components and
their allocation are defined in Figure 2. In particular, DSP 5-7
are turned off, several peripherals are disabled, several DDR
and MSMC SRAM Banks are unused. Figure 3 shows the final
configuration.

B. Transactions and services

The interaction between software and platform is abstracted
away through the notion of service. Indeed, when a software
initiates a transaction within the platform, e.g. to retrieve
data, each component along this transaction plays its role by
providing a service. Components offer many services such
as execute or address translation. But in the context of this
article, we focus on the minimal services that are needed for
the interference and safety perspectives, i.e., LOAD and STORE.

Example 3: Let us consider again the KEYSTONE with
the configuration described in II. Application az filter 0 may



need to read data stored in the MSMC SRAM B0 memory.
This is expressed as a LOAD service call and consists in a
transaction propagated through internal components until the
DDR is reached. Besides, each of these components provides
a LOAD service. Figure 3 shows an extract of the service-
oriented KEYSTONE architecture.
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Fig. 3. Example LOAD transaction

Definition 2 (Platform service): A platform offers a set
of services that can be called upon by the Initiators and
that generate transactions. We have identified the following
services:

• LOAD: retrieval of some data from a given target by an
initiator.

• STORE: writing of some data to a given target by an
initiator.

Definition 3 (Component service): We consider that all
components offer both services (LOAD and STORE). In par-
ticular for a component c, we will use the notation c l (resp.
c s) to represent the LOAD (resp. STORE) service offered by
the component c. For a component service s, cp(s) is the
component that provides s.

Example 4: The component service ARM0 l is provided by
the component cp(ARM0 l) = ARM0.

Definition 4 (Transaction): A transaction is initiated by an
initiator and follows a pre-defined path to connect the initiator
to the final target. We denote a LOAD (resp. STORE) transaction
tr that represents the initiator i reaching the target t as i→l t
(resp. i→s t).

Remark 1: We make the distinction between LOAD and
STORE transactions for two main reasons: firstly, for some
platforms (not for the KEYSTONE), LOAD and STORE may
use different paths; secondly they induce different effects
on both interference and safety analyses. Indeed, LOAD and
STORE transactions induce completely different temporal ef-
fects. Moreover, the propagation of a failure along a LOAD
transaction goes from the target to the initiator whereas it goes
the other way around in the case of a STORE transaction.

Remark 2: Note that the path has no specific direction.
Indeed, a transaction actually represents a sequence of inter-
actions, which can go a one way or the other. For instance, a
LOAD consists in sending a request from a core to the DDR
and then the data is sent back from the DDR to the core.

Remark 3: The KEYSTONE verifies the so-called unique
path property. Indeed, any transaction tr = i →X t with
X ∈ {l, s} always follows a unique path (both for resquest
and data). For other types of platform, making an X from i to
t could lead to several paths. In such a situation, the notation
i→X t should be enriched. In order to take this into account,
we would need to introduce the concept of single transaction,
satisfying the unique path property and we would define a
transaction as a set of single transactions.

Definition 5 (Copy): DMAs (such as the EDMAs) make
copies from one memory area to another one. Thus we denote
the copy transaction as DMA →copy [Mem1,Mem2]. We can
see such a transaction as the pipeline of the two transactions
DMA →l Mem1 and DMA →s Mem2.

Definition 6 (Path): A transaction tr = i →X t with X ∈
{l, s} follows a path of components denoted by cp path(tr),
which is a chain of Transporters, except the last component,
which is a Target. Let p = c1 ↔ . . . ↔ ck be a component
path, then two successive components cj and cj+1 in p are
physically connected.

Each component along cp path(tr) contributes to the trans-
action tr by providing the service X . The resulting path of
services is denoted by path(tr). Thus if cp path(i →X t) =
c1 ↔ . . .↔ ck, then path(i→X t) = c1 X ↔ . . .↔ ck X .

Example 5 (Path): For instance, the transaction tr1 =
ARM0 →l MSMC SRAM B0 shown on the Figure 3 follows:
cp path(tr1) =ARM0 ↔ ARM0 L1D ↔ MMU0 ↔ AXI ↔
MSMC CTRL ↔ MSMC SRAM B0 and path(tr1) =ARM0 l ↔
ARM0 L1D l ↔ MMU0 l ↔ AXI l ↔ MSMC CTRL l ↔
MSMC SRAM B0 l.

C. PML metamodel

The purpose of PML (for Multi-Core Meta-Model) is to
describe the common description of a multi-core needed for
both perspectives. Figure 4 provides a graphical representation
of PML.

A platform is composed of several physical connected
components, each with a type (Initiator, Transporter, Target).
We represent the link between an initiator and the transactions
it initiates through the association issued by. Each transac-
tion tr relies on the path of services path(tr) (association
along) targeting a specific service among them (association
targets). Each service (which can be of type LOAD or STORE)
is provided by a component (association provides). Finally,
instead of representing the allocation of software to hardware
components, we consider an abstraction of it, simply represent-
ing the transactions that are made possible by this allocation
(association from software to transaction).
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D. Tooling support

The construction of an PML model is supported through a
Scala API provided in the PML analyser2. The detailed codes
of the experiments presented in this paper are provided as
examples of the API usage.

The API offers a programmatic way to instantiate the
physical components and applications of a platform. The
description of the transactions used by the applications can be
cumbersome and error-prone. Therefore, thanks to the API,
one can simply specify software/hardware and data/hardware
allocations from which the transactions can be automatically
derived.

Validation strategy: The API also contains a set of graphi-
cal exporters that can extract specific views of the model. Such
exports can be very useful during the design and the validation
of the PML model. Among the possible extracts, there are:
• the physical/service connection graph of the platform;
• the physical/service connection graph restricted to the

connections used by at least one transaction;
• the transactions used by a given application.
The API also provides the automatic generation of the

interference model and the safety model, as detailed in the
next sections.

IV. INTERFERENCE ANALYSIS

One of the analyses required by the CAST32-A is the
identification of all interferences and interference channels.
An interference happens when two or more transactions occur
simultaneously and when they use either a common service or
services offered by the same component.

A. Interference calculus overview

Let us first explain what is exactly the interference calculus.
The idea is to enumerate all the simultaneous transactions that
can lead to a timing alteration on the application execution.

Definition 7 (Simultaneous transactions): tr1|| . . . ||trj de-
notes the situation where the transactions tri with i ∈ 1..j

2available at https://w3.onera.fr/phylog/

can occur simultaneously. This is only possible when the
initiators are distinct: ∀k, l ∈ 1..j, k 6= l ⇒ Initiator(trl) 6=
Initiator(trk).

Example 6 (Simultaneous transactions): For instance, let us
consider tr1 = ARM0 →l MSMC SRAM B0 and tr2 = ARM2

→s MSMC SRAM B1. tr1 is a LOAD transaction and tr2 is
a STORE one. Initiator(tr1) =ARM0 and Initiator (tr2) =
ARM2. Then we can have tr1||tr2, i.e. these two transactions
can be initiated simultaneously.

PML captures the minimal concepts that are needed by all
analyses. When focusing on a given analysis, the correspond-
ing view may have to be enriched. The default semantics of
PML assumes that 1) two services belonging to two different
components do not share any resource and thus do not interfere
(i.e. they can simultaneously serve different transactions); 2)
two services offered by the same component cannot execute
in parallel since each of them needs all the resources of the
component. However, some processors contain components
powerful enough to provide several services at the same time.
For instance, crossbars allow for parallel communications. To
take this knowledge into account, we have to extend the PML
model with a new relation specifying the services that can run
in parallel without producing an interference.

Definition 8 (Parallel services): Let us introduce the relation
parallel, which represents the pairs of services s1 and s2 that
can run in parallel without conflicting on any resource.

(s1, s2) ∈ parallel⇐⇒ s1 and s2 do not interfere

This input information must be given by the designer. Such a
knowledge could come from a deep analysis of the processor
datasheet or from precise benchmarks exploring the behaviour
of each component of the plateform.

Example 7 (Parallel services): The documentation of the
KEYSTONE processor states that the ultra speed bus (i.e., the
TERANET component) enables LOAD and STORE transactions
in parallel without any interference. For instance, if two DSPs
access the DDR Banks simultaneously, one with a LOAD
transaction and the other with a STORE, then they should not
interfere on the TERANET. This is encoded as

parallel = {(TERANET l, TERANET s)}

Note that for the KEYSTONE, the parallel relation does not
include any other pair of services. This means that all the
components, except the TERANET, are only able to provide
one service at a time. For instance, the AXI bus cannot be
simultaneously crossed by a LOAD transaction and a STORE
one.

Definition 9 (Interference channel): An interference channel
is a component c, more precisely a Transporter or a Target,
such that there exist two simultaneous transactions conflicting
on this component. By conflict, we mean that this will generate
an interference and thus a timing effect.

Formally, we say that c is an interference channel iff there
are two distinct transactions tr1 and tr2 such that:

https://w3.onera.fr/phylog/


(a) either ∃s ∈ path(tr1)∩path(tr2) such that cp(s) = c, i.e.
the two transactions use the same service s of component
c,

(b) or ∃s1 ∈ path(tr1) and ∃s2 ∈ path(tr2) such that
cp(s1) = cp(s2) = c and such that (s1, s2) 6∈ parallel.

If one of the two conditions above holds, we say that tr1 and
tr2 interfere and they conflict on c.

Example 8 (Interference channel): Considering tr1||tr2 of
Example 6. As tr1 is a LOAD and tr2 is a STORE, they
do not use any common service: path(tr1) ∩ path(tr2) =
∅. However, they cross two common components: cp path
(tr1) ∩ cp path(tr2) = {AXI, MSMC CTRL}. tr1 uses the
LOAD service of AXI, i.e. AXI l ∈ path(tr1), while AXI s ∈
path(tr2).

According to Example 7, (AXI l,AXI s)6∈parallel. Thus,
condition (b) of Definition 9 holds. tr1 and tr2 conflict on
the AXI and similarly on MSMC CTRL.

Definition 10 (Interference): An interference itf is a sit-
uation where several transactions occur simultaneously and
conflict on some interference channel(s), i.e. itf= tr1|| . . . ||trn
such that ∀i, j ∈ 1..n, if i 6= j then

1) either tri and trj interfere,
2) or there exists a subset {tr′1, . . . , tr′k} ⊆ {tr1, . . . , trn}

such that tri and tr′1 interfere and ∀l < k, tr′l and tr′l+1

interfere and tr′k interferes with trj .
We moreover denote by trans(itf)={tr1, . . . , trn} the set of
transactions of itf. And we say that tr1|| . . . ||trn is an n-ary
intererence, or simply an n-ary itf.3

The conditions above mean that trans(itf) must form a
connected graph (where the edges are the pairs of transactions
that interfere). In other words, for each pair (tr1, tr2) in
trans(itf) either tr1 and tr2 interfere, or there is a ”path” of
interfering transactions in trans(itf) from tr1 to tr2.

Example 9 (Interference): Let us consider again the trans-
actions tr1 and tr2 of Example 6. tr1||tr2 is a 2-ary itf that
conflicts on AXI and MSMC CTRL.

Example 10 (Interference): Let us now consider the transac-
tions tr3 = DSP3 →l MSMC SRAM B1 and tr4 =EDMA→l SPI.
As shown in Figure 5, tr1, tr2 interfere; tr3 interferes with tr1
and tr2 on MSMC CTRL; tr4, tr3 interfere on TERANET. Thus
{tr1, tr2, tr3, tr4} is a connected graph, even if tr4 does not
interfere directly with tr1 and tr2. tr1||tr2||tr3||tr4 is then a
4-ary itf.

Definition 11 (Interference channel associated with an itf):
For a given interference itf= tr1|| . . . ||trn, an interference
channel associated with itf is an interference channel that
appears between at least two transactions of itf. The set
chan(itf) of the interference channels associated with itf is
defined as follows:
chan(itf) = { c ∈ Transporter ∪ Target|∃trj 6= trk ∈ trans(itf)

such that trj and trk interfere on c}
Example 11 (Interference channel associated with an itf):

As a last example, let us consider again the 4-ary itf depicted

3Note that we use itf either to denote a specific interference or to abbreviate
the term ”interference”.
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Fig. 5. Example of 4-ary itf: tr1||tr2||tr3||tr4

Figure 5: itf = tr1||tr2||tr3||tr4. The associated set of interfer-
ence channels is chan(itf) = {AXI,MSMC CTRL, MSMC SRAM
B1,TERANET}.

Complementary to definition 10 which defines n-ary itf,
i.e., a simultaneous transaction tr1|| . . . ||trj which interfere
by forming a connected graph, we can now define the set of
interference-free simultaneous transactions :

Definition 12 (Interference-free): A simultaneous transac-
tion s = tr1|| . . . ||trj is an n-ary interference-free iff ∀i, j ∈
1..n, if i 6= j then tri and trj do not interfere.

As shown below (paragraph Experiments), identifying
all the simultaneous transactions that are supposed to be
interference-free is a way to explicit the hypotheses hidden
in the model.

B. What is generated from PML?

Method 1 (Interference identification): The CAST32-A asks
for the identification of all interferences. This means that we
need first to determine the transactions and their path. Then,
with n = 2|initiators| (|initiators| being the number of initiator
components), we enumerate all n-ary itf, i.e. all the combi-
nation of n simultaneous transactions that may interfere. And
finaly we enumarate all the associated interference channels.
The way to compute the interference is then left to a solver. In
our case, we use IDP [16] or MONOSAT [17]. The constraints
are hard coded and are independent from the platform model.
Thus, from PML, we need to generate automatically the
transactions and their paths.

Example 12 (Generation of simple transactions): For the
use case, the model is composed of 54 transactions, each of
them being defined by its path of components. Transactions
tri i = 1 . . . 4 in Figure 5 are examples of these 54 possible
transactions. This model is then enriched with the parallel
relation as defined in Example 7.

C. Experiments

The interference analyser generates for each n ∈ 2..N
(where N is the number of initiators)



1) the set IFn of n-ary interference-free simultaneous trans-
actions;

2) the set In of n-ary itf.
Validation strategy: IFn is interesting to check the correct-

ness of the model. Indeed, as any combination tr1|| . . . ||trn ∈
IFn is supposed not to generate any interference, the idea is
to measure the behaviour of tr1 . . . trn in isolation and to
check that it does not change when running them in parallel.
The sets In provide the answer of the CAST32-A certification
objective.

Example 13 (Interference calculus): For the use case, the
interference analysis provides the following results:

Type Size

2 3 4 5 6

itf 364 2 580 12 384 40 704 92 768
free 928 7 298 30 067 66 796 75 072

Type Size Total

7 8 9 10

itf 144 896 148 480 90 112 24 576 556 864
free 33 024 0 0 0 213 185

The next step after generating IFn and In for all n ∈
2..N is to associate a benchmark m1|| . . . ||mn with each
itf = t1|| . . . ||tn of In and to run it in order to quantify the
interference. In the same way, a similar benchmark should
be associated with each element of IFn in order to check
that there is no interference. The total number of itf and of
interference-free simultaneous transactions seems to be too
large to be tractable. However, let us note that the transactions
tri we are considering are micro-transactions performing only
one type of action (load or store). The corresponding micro-
benchmarks mi are then very small codes only repeating a
same instruction a finit number of times. The typical execution
time of such micro-benchmarks is about 10ms. Running about
600 000 benchmarks would take less than 2 hours.

V. SAFETY ANALYSIS

The purpose of the safety analysis is to identify the effect of
physical failures on the applications, that is the behaviour of
the transactions in the presence of failures. The way to analyze
the CAST32-A safety objectives to multi-core was presented
at [18]. We simply sketched here the main ideas and detail the
link with PML.

A. PHYLOG safety analysis reminder

The formal concepts of the the safety analysis are presented
in details in [18]. Let us here detail and illustrate how those
steps are applied in the context of multi-core-based systems.
Note that to the best of our knowledge, there is no contribution
to this question in the literature.

a) Identification of failure modes: As a preliminary
approach, we consider two kinds of failure modes:
Erroneous The component does not properly process a trans-

action, which results in its corruption (data or address).
Lost The component does not process incoming transactions,

which results in a deny of service.

The safety effect of these failure modes are described in the
table below. Note that, the user could easily define more failure
modes.

Type FM Comments

STORE err erroneous value or wrong destination is stored
lost no value is stored

LOAD err erroneous data is loaded
lost no data is loaded

b) Failure propagation model: The dysfunctional model
describes the interconnection of physical components (e.g.
cores, MMU) and the transactions that ensure the system’s
functions. The idea is to abstract the transactions to determine
1) whether a transaction was correctly handled, 2) what are
the effects of a failure on a given transaction or 3) what are the
effects of an erroneous transaction on the other transactions.

In the safety view, the path associated with a transaction
tr is directed. This is due to the propagation of failures,
which follows a direction along a transaction (either from the
initiator to the target in the case of a STORE transaction, or
the other way around, in the case of a LOAD transaction). This
direction is ensured by the use of input and output ports in each
component. The idea is to represent the data propagation and
how their loss or corruption would affect the applications. To
do that, each component is modeled as a mode automaton [19]
and the whole system is the connection of all components. The
behaviour of a the platform is partially illustrated in Figure 6.
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Fig. 6. LOAD transaction with some failures

Let us consider the transaction tr1 of Figure 3, translated
in a failure propagation view as shown in Figure 6. We
observe the local effect of each component failure mode. In



this scenario, all components are ok except the MMU0 which
is in the lost mode and the DDR banks that are err.

The MSMC CTRL has to merge the inputs of several com-
ponents (MSMC SRAM banks, DDR banks, TERANET). This
merging necessitates a more complex behaviour in the mode
automaton that we will not detail here. In effect, it would take,
as input for Target t, the output value provided by t.

The outputs of MSMC CTRL are the inputs of AXI. The AXI
BUS only considers the transactions of the ARMs.

The outputs of AXI are the inputs of MMU0. Here, because
of the internal failure of the component, values are not
transmitted anymore to the ARM, taking then a lost value.

STORE works similarly with more failure propagation. First,
as for the interference view, the model can be enriched with
a special type of Transporters, called Virtualizers (such as the
MMU or MPAX), which define the authorization for accessing
transactions. To better model the effect of Virtualizer failures,
we consider that an erroneous Virtualizer may access any
target and pollutes these targets with err values. Second, a
Target that receives err values with a STORE transaction is
considered itself as corrupted from now on. This behaviour is
taken into account within the hard-coded library of ALTARICA
components. The interested reader can find more information
on the formal encoding in [18].

c) Safety objective: In the context of our case study, the
safety objective is to ensure that RROSACE controls correctly
the aircraft in the following sense: if the orders sent to the
actuators are err, this situation must be detected. The detection
is done by CheckA and CheckB, thus the violation of the
safety objective arises when ROSACE MON, ROSACE COM,
CheckA and CheckB are err at the same time. Thus, the
situation that we want to avoid, which is called a failure
condition is defined by CheckA=err and CheckB=err and
COM=err and MON=err.

We consider that CheckA=err if its L2SRAM is err or DSP2
is err. Same for CheckB. COM=err if at least one of its LOAD
is err. Same for MON.

B. What is generated from PML?

As for the interference view, some parts are hard coded
in ALTARICA. We have developed a generic library for each
type of components (Initiator, Target, Transporter). What is
specific is the number of Target and which Target are visible
in the set Tc (coming directly from the transactions). The
global system, i.e. the interconnection of components, is also
completely generated. Finally, the user must add its failure
conditions. Those are then translated as an observer, which
is the typical way to observe the output of the system. An
external analyzer (CECILIA WORKSHOP [10]) is then used
to perform the safety assessment out of the comprehensive
ALTARICA model extracted from PML.

Validation strategy: Since the exported ALTARICA model
can be imported in the CECILIA WORKSHOP, the user can
benefit from:
Step-wise simulator that unfolds a failure scenario graphi-

cally to observe the error propagation encoded by the

model. Such a simulator can be used to validate some
well-chosen test-cases through expert consultation or fault
injection if the application and the platform (or a detailed
model) are available.

Sequence generator that computes all the failure scenarios
up to a given size. This tool can be used to build
a validation test base by computing all the scenarios
containing one single failure where the feared event is
observed (positive test) or where the feared event is
not observed (negative test). One can then conduct a
fault injection campaign based on these tests to validate
both the vulnerability (with positive test) and tolerance
(negative tests) of the architecture.

C. Experiments

Part of the results when assessing the failure condition is
given in the Table I. Instead of directly looking at the safety
objective, we just show two sub-failure conditions.

failure cut set
conditions

COM.err {ARMx.err (x ∈ {0, 1}), MMUx.err (x ∈ {0−4}),
MSMC SRAM B0.err, AXI.err, DDR B0.err, DSP0.err,
MPAXX .err (x ∈ {0− 4}), EDMA.err }

CheckA.err {DSP2.err, L2SRAM2.err, EDMA.err, MPAXX .err
(x ∈ {0− 4}) }

TABLE I
SAFETY ASSESSMENT RESULTS FOR ROSACE

We observe that ROSACE COM.err is reached when one
of the transaction has failed (ARM0,1 →l DDR B0, MSMC
SRAM B0) or one of the virtualizer has failed (MMU or MPAX)
or the EDMA has failed (as it could write in any target,
thus in particular DDR B0 and MSMC SRAM B0). CheckA has
failed if CheckA execution resources have failed (DSP2.err and
L2SRAM2.err) or one of the virtualizers has failed (MPAX) or
the EDMA has failed because the latter can write erroneous
values in the L2SRAM2.

Table II shows the timing of the framework applied on the
RROSACE use case. Even if applied on a unique use case,
with a quite realistic size, it shows promising scalability.

Task Interference ALTARICA

IDP MonoSat

Model generation 4s < 1s 11s
Analysis 4h45 127s 14s

TABLE II
TIMING PERFORMANCE OF THE FRAMEWORK

VI. RELATED WORK

Abstracting components by the services they offered is
not new to analyze platform behaviour. For instance, CPA
(Compositional Performance Analysis) has been widely used
to compute worst case traversal time on embedded networks
(such as AFDX or TSN) and the methodology considers that
abstract resources provide network services [20] such as Qbv.



More recent work [21] computes memory access timing on
multi-core processor with PYCPA. The multi-core itself is
abstracted with its event arrival curves as a sequence of LOAD
or STORE transactions (not the combination of both) and only
the interaction with the memory is considered.

a) Support to design: Some works follow a different
approach, without modelling the platform. This is the case for
instance, of the timing analyses proposed in [22], [23], which
take into account possible faults of hardware components.

For automotive system engineering, the authors of [24] have
modelled the concepts that are important to the whole design
process, from system engineering to software engineering. The
obtained metamodel is used to ease the interaction between
the different tools that are used during the development of
automotive software. Although the hardware architectures are
multi-core, interaction between cores is not the focus of this
study.

AMALTHEA4 is another framework proposed in the au-
tomotive domain for multi-core software development. This
framework, based on the Eclipse technology, provides a meta-
model for multi-core software and hardware modelling. The
objective of this model-driven approach is to centralize all the
information necessary for the complete development process.
From this central model, it is possible to call different tools
for partitioning, mapping, code generation, and trace analysis.
AMALTHEA focuses on the development process and aims
at reducing data exchanges between the tools involved in the
process. Our approach is different since we only focus on the
data necessary to the certification issues, allowing us to use a
simpler metamodel for multi-core processors.

In the avionics and space fields, the DREAMS project [25]
followed a similar approach by generalizing it to embedded
distributed platforms, including multi-core processors. The aim
of this project was to define a framework and a methodology
for designing mixed-criticality systems (MCS). This frame-
work is based on a metamodel of MCS capturing all the
relevant design, implementation and configuration artefacts,
and on a model-driven engineering process supported by tools
focusing on design-space exploration, real-time scheduling,
and reconfiguration synthesis. Thus the DREAMS framework
focuses on the left branch of the V-cycle, and ranges from
design model to derivation of platform configuration. Our
contribution is different since we focus on the right branch of
the V-cycle, and particularly on the certification activities in
this branch. Our objective is not to support the design process,
but to ease the generation of certification artefacts compliant
with the MCP-CRI standard.

In the avionics fields, some work tried to adapt the MCP-
CRI standard to COST multi-core architectures [26]. To ease
design and certification stages, they propose to group the
MCP-CRI objectives into three high level principles: (1)
determining the final configuration, (2) managing interference
channels, and (3) verifying the use of shared resources.
However, they showed that predicting interference on a COTS

4http://www.amalthea-project.org/

multi-core architecture is a very challenging task because of
the amount of possible scenarios. A way to overcome this
difficulty is to use a formal model of the architecture and
a formal analysis method to explore the set of interference
channels. Such is the aim of our contribution.

Some other works have studied how to support the design
of multi-core systems with the language AADL [27], [28].
The purpose it to take into account the shared resources
and the software-to-hardware allocation for the analyses that
come with the AADL toolset, in particular timing analyses.
Comparing to our work, again, there are more details about
the architecture than in an PML model, which is certification-
oriented. Thus, it would be worth studying the generation of
an PML model from such an AADL model. However, the
information related to the load/store services that are needed
by the software would need to be added to get an PML model.

b) Support to code generation: In [29], [30] the authors
propose a metamodel of GPU architectures with the aim of
supporting the development of application on such hardware
platforms for non specialists in parallel programming. They
extend the MARTE UML profile with a description of the
allocation of data to memory elements. In [31], the authors ex-
tended an existing development framework dedicated to space
application with the ability to handle multi-core platforms and
time and space partitioning systems. This framework eases the
development process by generating part of the code.

Focusing on multi- and manycore architectures, SHIM5

(for Software-Hardware Interface for Multi-Many Core) is
another framework dedicated to software design for multi- and
many-core processors [32]. Its objective is to standardize the
interface between the multi-core hardware and the software
tools. It supports a precise description of the hardware com-
ponents of the processor and its internal topology, including
the processor cores, the inter-core communication channels,
the routing protocols, the memory sub-system, hardware vir-
tualization features, etc. The aim of SHIM is to provide a
common metamodel enabling the use of many types of tools,
including performance analysis, system configuration, auto-
parallelizing compilers, and code generation. The approach
of SHIM and AMALTHEA are very close in the sense they
both provide a centralized model to support software design
and code generation. They mainly differ by their respective
application domain. AMALTHEA is promoted by automotive
manufacturers for automotive systems. SHIM is developed by
a consortium of multi- and manycore manufacturer for more
general purpose software.

The approach of PML is similar in the way that the idea
is to define a central model to be exploited in external views.
However contrary to SHIM and AMALTHEA, which provide
a detailed view of the architecture components, our model
concentrates on an abstract definition only considering three
types of component: initiator, transporter and target. Our
claim is that such an abstraction is sufficient for interference
and safety analyses.

5https://www.multicore-association.org/workgroup/shim.php

http://www.amalthea-project.org/
https://www.multicore-association.org/workgroup/shim.php


VII. CONCLUSION AND FUTURE WORKS

We have defined a unified framework to analyze multi-
core platform and partially answer the CAST32-A position
paper. More specifically, we have abstracted a platform as
the services it offers and modelled the interactions between
software and complex hardware components via this service-
based approach. The purpose was to propose a common model
that covers the minimal concepts needed for both interference
and safety analyses, which are required by the position paper.
Thanks to this formalization, we have defined PML a metal-
model dedicated to the description of any multi-core.

From such a description, we have implemented a tool that
automatically generates the inputs needed for the analysis
tools. For both perspectives, the approach consisted in hard-
coded generic parts that can be reused for any platform and
an automatic generation from the specific description of a
platform. As PML encodes the minimal concepts, it is possible
in each view to add more information (such as complex failure
modes or failure propagation). We have run the framework on
a realistic case study that was also used along the paper to
illustrate the contributions.

In the future, we would like to extend PML (and the associ-
ated analyses) to consider cache coherence related behaviours.
In our framework, a transaction is quite simple: it is repre-
sented by a simple sequence of connected components. With
cache coherence, things become more complicated: requests
can be broadcast, some transporters can initiate a transaction
to send a data to another cache, etc. We also would like to
better model the notion of parallel transactions: indeed, some
components have some capacities, i.e. the ability to deal with
several transactions in parallel to some extent.

Among the analyses required by the CAST32-A, there is a
need to quantify the effects of interference. Thus, the applicant
should define intensive benchmarking strategies [33], [34] in
adequation with the interference. Thus, PML tooling should
also propose an automatic translator to stressing benchmark
for a given platform.

REFERENCES

[1] Certification Authorities Software Team, “Multi-core Processors - Posi-
tion Paper,” Tech. Rep. CAST 32-A, Nov. 2016.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Transactions Embedded Computing Systems, vol. 7, no. 3, pp.
36:1–36:53, May 2008.

[3] R. Wilhelm and J. Reineke, “Embedded systems: Many cores - many
problems,” in 7th IEEE International Symposium on Industrial Embed-
ded Systems (SIES’12), 2012, pp. 176–180.

[4] I. Villalta, U. Bidarte, J. Gómez-Cornejo, J. Jiménez, and J. Lázaro,
“Seu emulation in industrial socs combining microprocessor and fpga,”
Reliability Engineering & System Safety, vol. 170, pp. 53–63, 2018.

[5] V.-A. Paun, B. Monsuez, and P. Baufreton, “On the determinism of
multi-core processors,” in French Singaporean Workshop on Formal
Methods and Applications, 2013.

[6] L. Mutuel, X. Jean, V. Brindejonc, A. Roger, T. Megel, and E. Alepins,
“Assurance of Multicore Processors in Airborne Systems,” 2017.

[7] S. Houssany, N. Guibbaud, A. Bougerol, R. Leveugle, F. Miller, and
N. Buard, “Microprocessor soft error rate prediction based on cache
memory analysis,” in 12th European Conference on Radiation Effects
on Components and Systems (RADECS’11), 2011, pp. 412–419.

[8] Texas Instruments, “TCI6630K2L Multicore DSP+ARM KeyStone
II System-on-Chip,” Texas Instruments Incorporated, Tech. Rep.
SPRS893E, 2013.

[9] M. Bozzano, A. Villafiorita, O. Åkerlund, P. Bieber, C. Bougnol,
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