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I. INTRODUCTION

Aeronautical safety critical systems are subject to certification, meaning that a certification authority assesses the compliance of the product with a set of adequate standards.

a) Certification of multi-core COTS -CAST 32A: The CAST32-A position paper [START_REF]Multi-core Processors -Position Paper[END_REF] provides a set of guidance for software planning and verification on multi-corebased systems. Indeed, multi-core chips, i.e., chips integrating several cores interconnected by a shared bus, face important challenges for their integration in safety critical environment. There are two main types of analysis to perform: worst case real-time analysis and safety analysis.

Real-time and interference As a matter of fact, it is very difficult to ensure time predictability [START_REF] Wilhelm | The worst-case execution-time problem -overview of methods and survey of tools[END_REF], [START_REF] Wilhelm | Embedded systems: Many cores -many problems[END_REF] for multi-core COTS, one of the key elements requested by certification. Time predictability is the capability to compute a safe and tight upper bound of the number of cycles required to execute a piece of software in the worst case. For multi-core COTS, the problems come from the intensive resource sharing, the lack of documentation and the complex internal behaviour (e.g. cache coherence) to increase the average performance. For mastering the worst case behaviour, the CAST32-A promotes the computation of interferences -situation where several applications execute in parallel and encounter a serious timing delay compared to when executing in isolation -and interference channels -shared resource of the platform.

Internal failures and safety effect The classical approach was to consider the processor as a whole such that any failure leads to the complete failure of the system. Such an approach is considered as a bit naive and pessimistic for multi-core. Indeed, if a core fails, the rest of the platform can still work correctly and the global system can still be safe. Thus, making a sharper analysis decreases the pessimism. On the other hand, modern processor architectures integrate many components and intelligence such that they can be seen as systems themselves. Identifying the failure modes, their effects and their failure rates is rather challenging. Some works, such as [START_REF] Villalta | Seu emulation in industrial socs combining microprocessor and fpga[END_REF], propose to emulate a component failure and observe the reaction of the platform. Others, such as [START_REF] Paun | On the determinism of multi-core processors[END_REF], [START_REF] Mutuel | Assurance of Multicore Processors in Airborne Systems[END_REF], propose to deduce abstract failure modes from the functional services in pragmatic reasoning approach. Some, e.g. [START_REF] Houssany | Microprocessor soft error rate prediction based on cache memory analysis[END_REF], try to quantify the failure rate with real platform experiments. For mastering the failure propagation, the CAST32-A promotes the identification of internal failures and their containment within the equipment (integrating the multi-core) not to polute the avionics.

b) Objectives and contribution.: Practically, the applicant must argue that they have identified the interference and the safety effect for their platform and their specific use. The analyses are applied on the platform which includes the hypervisor or RTOS (real-time operating system) if any. By specific use, the CAST32-A speaks of configuration settings, i.e. the way the processor is used. This includes the description of which components are used and how (with which parameters). Let us consider as an example the KEYSTONE TCI6630K2L [START_REF]TCI6630K2L Multicore DSP+ARM KeyStone II System-on-Chip[END_REF] from Texas Instruments, which is depicted in Figure 1. The configuration settings include which cores are running and with which frequency; the peripherals that are used, how the memory is configured and so on.

Once the configuration settings have been clearly described, the applicant must then identify the interferences, i.e., compute The basic solution is to compute all transactions -accesses from a core to a shared resource -and enumerate all combinations with a solver [START_REF] Mutuel | Assurance of Multicore Processors in Airborne Systems[END_REF].

In parallel, the applicant must also identify the failure modes of each internal component of the platform and determine how these failure modes would impact the transactions. For instance a non acceptable transaction (outside the configuration settings) can occur in the presence of some failure. The basic solution is to make a dysfunctional model and analyze the safety effect [START_REF] Bozzano | Esacs: an integrated methodology for design and safety analysis of complex systems[END_REF] with a safety framework, such as [START_REF]Cecilia Workshop framework[END_REF].

Both perspectives deal with the notion of transaction and how the platform is solicited. However, they are analyzed via independent tools and techniques. Our objective is to unify them as much as possible to factorize the modelling work and reduce the divergence between the perspectives. To do so, we have formalized the notion of transaction, interference and erroneous transaction. We have defined a multi-core-based system description framework to 1) describe thoroughly the platform with the common concepts needed by the analyses; 2) translate the description to each perspective and in a format that is compliant with the analysis tools. This framework was developed within the project PHYLOG 1 .

c) Outline of the paper.: To help illustrate the concept, we have defined a complete use case based on the KEYSTONE in Section II. Section III provides the formalisation of the multi-core transactions and the common description language named PML. Section IV presents the interference analysis and how such an analysis is possible from PML. In a similar way, Section V presents the safety perspective. We then detail the related works in Section VI before concluding.

II. USE CASE

To help present the contribution, we will rely on a real use case that consists in executing a simplified longitudinal flight control system (see Figure 2) on the KEYSTONE. a) KEYSTONE.: The platform, shown in Figure 1, runs in bare-metal (i.e. without any RTOS and hypervisor) and is composed of: 1) an eight C66 DSP pack, in which each core comes with dedicated L1 and L2 caches, and a memory extension and protection unit (MPAX); 2) a four ARM pack, in which each core comes with dedicated L1 caches, and a memory management unit (MMU); 3) a central memory system that gives access to the platform's SRAM (MSMC SRAM), and an external DDR. Each of the these two memory systems is composed of 8 Banks, which are denoted B x in the sequel. The memory access management is performed by the Multicore Shared Memory Controller (MSMC); 4) a set of IO peripherals (e.g. GPIO, UART), and utility peripherals (e.g. Boot, Semaphores); 5) a memory transfer peripheral (EDMA); 6) an ultra speed bus (TERANET) connecting the peripherals, the memory systems, and the cores.

b) Applications: We consider a COM/MON longitudinal flight controller which is an adaptation of RROSACE (for redundant ROSACE) [START_REF] Deschamps | Coincidence Problem in CPS Simulations: the R-ROSACE Case Study[END_REF], [START_REF] Deschamps | Scheduling of a Cyber-Physical System Simulation[END_REF]. The purpose is to execute two parallel ROSACE-an open source longitudinal flight controller -and to perform regular verification that both copies, named COM/MON for COMmand and MONitoring, agree on the computed orders. To do so, the orders are usually compared in the MON duplicate. Our purpose is slightly different from [START_REF] Deschamps | Coincidence Problem in CPS Simulations: the R-ROSACE Case Study[END_REF], which goal was to offer a safe COM/MON strategy. Instead, we want to implement a representative use case that will stress several hardware components of the multi-core. Moreover, we have embedded the aircraft models to increase the size of the footprint and to be close to the real behaviour.

The overall use case is described in Figure 2. To allow the communication with the cockpit to receive pilots orders (required altitude h c and required Va c), we implemented a communication with the SPI (Serial Port Interface). We use the same medium to display the results. This results in implementing 5 functions: 1) ROSACE COM which has been allocated on several cores. The environment is on DSP 0 which is configured with a L2SRAM such that the execution is contained locally, except for the data that is exchanged with the controller. Those global variables are stored in MSMC SRAM B 0 . The controller has been split in two parts: one executing on ARM 0 and the second on ARM 1 . All the private sections are stored in DDR B 0 . The ARM caches are activated. The controller receives orders (h c0, Va c0) from the pilot and computes the orders δ ec0 and δ thc0.

2) ROSACE MON works in the same way except that the aircraft model is on DSP 1 , the controller is on ARM 2 and ARM 3 , the private sections are on DDR B 1 and the global variables are in MSMC SRAM B 1 . The controller receives the same orders as COM and they are stored as h c1 and Va c1; and computes the actions δ ec1 and δ thc1.

3) CheckA executes on DSP 2 . Its L2 is configured as L2SRAM and contains all the sections and data. CheckA reads several data in the MSMC SRAM B0 (δ ec0, δ thc0, h0, Va c0) and MSMC SRAM B1 (δ ec1, δ thc1, h1, Va c1). It then checks whether the orders computed by COM and MON are close, e.g. by verifying whether |δ ec0 -δ ec1| and |δ thc0 -δ thc1| are small, and CheckA stores the result in the Boolean variable r A (which is true if COM and MON agree, and false otherwise). 4) CheckB works as CheckA and computes r B. 5) IO server executes on DSP 4 . Its L2 is configured as L2SRAM and contains all the sections and data. The IO server is in charge of communicating with the outside of the multi-core via the SPI. More precisely, it configures the EDMA to receive the pilot orders from the SPI and copy them on MSMC SRAM B0 and MSMC SRAM B1. It also periodically reads the outputs of CheckA and CheckB directly in their L2SRAM and copy them locally in its L2SRAM. It configures the EDMA to send those to the SPI.

III. MODELLING MULTI-CORE ARCHITECTURE: PML

To prepare the certification documentation required by the CAST32-A, the applicants must analyze the platform from the two perspectives, real-time and safety. Even if they differ in terms of framework, they both rely on an accurate representation of the platform itself. Such a representation is derived from hardware documents and expert knowledge.

A. Components

The software are hosted by hardware components. When a software requests some resource, it initiates a transaction within the platform. This transaction consists of a path of physically connected components. According to their role in a transaction, components are classified as follows, taking inspiration from the initiator-target model introduced in [START_REF] Brindejonc | Avoidance of dysfunctional behaviour of complex cots used in an aeronautical context[END_REF], [START_REF] Jean | Assurance methods for cots multi-cores in avionics[END_REF], [START_REF] Mutuel | Investigation of error types associated with failures in multicore processors[END_REF], [START_REF] Mutuel | Assurance of Multicore Processors in Airborne Systems[END_REF].

Definition 1 (Initiator-target model): A multi-core is composed of three types of components: Initiator: a component which initiates a transaction (e.g. ARM, DSP and EDMA); Target: an end-component which is targeted by initiators (e.g. MSMC SRAM and SPI); Transporter: any intermediate component between initiators and targets (e.g. TERANET and AXI BUS). Example 1: The components of the KEYSTONE illustrated in Figure 1 are colored according to their type, the color code being: red for Initiators, blue for Transporters and green for Targets.

The mapping of the (software) applications to the platform components defines the configuration of the platform and induces which components / transactions are active.

Example 2: The set of RROSACE software components and their allocation are defined in Figure 2. In particular, DSP 5-7 are turned off, several peripherals are disabled, several DDR and MSMC SRAM Banks are unused. Figure 3 shows the final configuration.

B. Transactions and services

The interaction between software and platform is abstracted away through the notion of service. Indeed, when a software initiates a transaction within the platform, e.g. to retrieve data, each component along this transaction plays its role by providing a service. Components offer many services such as execute or address translation. But in the context of this article, we focus on the minimal services that are needed for the interference and safety perspectives, i.e., LOAD and STORE.

Example 3: Let us consider again the KEYSTONE with the configuration described in II. Application az filter 0 may need to read data stored in the MSMC SRAM B 0 memory. This is expressed as a LOAD service call and consists in a transaction propagated through internal components until the DDR is reached. Besides, each of these components provides a LOAD service. Figure 3 shows an extract of the serviceoriented KEYSTONE architecture. Definition 2 (Platform service): A platform offers a set of services that can be called upon by the Initiators and that generate transactions. We have identified the following services:

• LOAD: retrieval of some data from a given target by an initiator.

• STORE: writing of some data to a given target by an initiator. Definition 3 (Component service): We consider that all components offer both services (LOAD and STORE). In particular for a component c, we will use the notation c l (resp. c s) to represent the LOAD (resp. STORE) service offered by the component c. For a component service s, cp(s) is the component that provides s.

Example 4: The component service ARM 0 l is provided by the component cp(ARM 0 l) = ARM 0 .

Definition 4 (Transaction): A transaction is initiated by an initiator and follows a pre-defined path to connect the initiator to the final target. We denote a LOAD (resp. STORE) transaction tr that represents the initiator i reaching the target t as i → l t (resp. i → s t).

Remark 1: We make the distinction between LOAD and STORE transactions for two main reasons: firstly, for some platforms (not for the KEYSTONE), LOAD and STORE may use different paths; secondly they induce different effects on both interference and safety analyses. Indeed, LOAD and STORE transactions induce completely different temporal effects. Moreover, the propagation of a failure along a LOAD transaction goes from the target to the initiator whereas it goes the other way around in the case of a STORE transaction.

Remark 2: Note that the path has no specific direction. Indeed, a transaction actually represents a sequence of interactions, which can go a one way or the other. For instance, a LOAD consists in sending a request from a core to the DDR and then the data is sent back from the DDR to the core.

Remark 3: The KEYSTONE verifies the so-called unique path property. Indeed, any transaction tr = i → X t with X ∈ {l, s} always follows a unique path (both for resquest and data). For other types of platform, making an X from i to t could lead to several paths. In such a situation, the notation i → X t should be enriched. In order to take this into account, we would need to introduce the concept of single transaction, satisfying the unique path property and we would define a transaction as a set of single transactions.

Definition 5 (Copy): DMAs (such as the EDMAs) make copies from one memory area to another one. Thus we denote the copy transaction as DMA → copy [Mem 1 , Mem 2 ]. We can see such a transaction as the pipeline of the two transactions DMA → l Mem 1 and DMA → s Mem 2 .

Definition 6 (Path): A transaction tr = i → X t with X ∈ {l, s} follows a path of components denoted by cp path(tr), which is a chain of Transporters, except the last component, which is a Target. Let p = c 1 ↔ . . . ↔ c k be a component path, then two successive components c j and c j+1 in p are physically connected.

Each component along cp path(tr) contributes to the transaction tr by providing the service X. The resulting path of services is denoted by path(tr). Thus if cp path(i

→ X t) = c 1 ↔ . . . ↔ c k , then path(i → X t) = c 1 X ↔ . . . ↔ c k X.
Example 5 (Path): For instance, the transaction tr 1 = ARM 0 → l MSMC SRAM B 0 shown on the Figure 3 follows:

cp path(tr 1 ) =ARM 0 ↔ ARM 0 L1D ↔ MMU 0 ↔ AXI ↔ MSMC CTRL ↔ MSMC SRAM B 0 and path(tr 1 ) =ARM 0 l ↔ ARM 0 L1D l ↔ MMU 0 l ↔ AXI l ↔ MSMC CTRL l ↔ MSMC SRAM B 0 l.

C. PML metamodel

The purpose of PML (for Multi-Core Meta-Model) is to describe the common description of a multi-core needed for both perspectives. Figure 4 provides a graphical representation of PML.

A platform is composed of several physical connected components, each with a type (Initiator, Transporter, Target). We represent the link between an initiator and the transactions it initiates through the association issued by. Each transaction tr relies on the path of services path(tr) (association along) targeting a specific service among them (association targets). Each service (which can be of type LOAD or STORE) is provided by a component (association provides). Finally, instead of representing the allocation of software to hardware components, we consider an abstraction of it, simply representing the transactions that are made possible by this allocation (association from software to transaction). The API offers a programmatic way to instantiate the physical components and applications of a platform. The description of the transactions used by the applications can be cumbersome and error-prone. Therefore, thanks to the API, one can simply specify software/hardware and data/hardware allocations from which the transactions can be automatically derived.

Validation strategy: The API also contains a set of graphical exporters that can extract specific views of the model. Such exports can be very useful during the design and the validation of the PML model. Among the possible extracts, there are:

• the physical/service connection graph of the platform;

• the physical/service connection graph restricted to the connections used by at least one transaction; • the transactions used by a given application. The API also provides the automatic generation of the interference model and the safety model, as detailed in the next sections.

IV. INTERFERENCE ANALYSIS

One of the analyses required by the CAST32-A is the identification of all interferences and interference channels. An interference happens when two or more transactions occur simultaneously and when they use either a common service or services offered by the same component.

A. Interference calculus overview

Let us first explain what is exactly the interference calculus. The idea is to enumerate all the simultaneous transactions that can lead to a timing alteration on the application execution.

Definition 7 (Simultaneous transactions): tr 1 || . . . ||tr j denotes the situation where the transactions tr i with i ∈ 1..j 2 available at https://w3.onera.fr/phylog/ can occur simultaneously. This is only possible when the initiators are distinct: ∀k, l ∈ 1..j, k = l ⇒ Initiator(tr l ) = Initiator(tr k ).

Example 6 (Simultaneous transactions): For instance, let us consider tr 1 = ARM 0 → l MSMC SRAM B 0 and tr 2 = ARM 2 → s MSMC SRAM B 1 . tr 1 is a LOAD transaction and tr 2 is a STORE one. Initiator(tr 1 ) =ARM 0 and Initiator (tr 2 ) = ARM 2 . Then we can have tr 1 ||tr 2 , i.e. these two transactions can be initiated simultaneously.

PML captures the minimal concepts that are needed by all analyses. When focusing on a given analysis, the corresponding view may have to be enriched. The default semantics of PML assumes that 1) two services belonging to two different components do not share any resource and thus do not interfere (i.e. they can simultaneously serve different transactions); 2) two services offered by the same component cannot execute in parallel since each of them needs all the resources of the component. However, some processors contain components powerful enough to provide several services at the same time. For instance, crossbars allow for parallel communications. To take this knowledge into account, we have to extend the PML model with a new relation specifying the services that can run in parallel without producing an interference.

Definition 8 (Parallel services): Let us introduce the relation parallel, which represents the pairs of services s 1 and s 2 that can run in parallel without conflicting on any resource.

(s 1 , s 2 ) ∈ parallel ⇐⇒ s 1 and s 2 do not interfere This input information must be given by the designer. Such a knowledge could come from a deep analysis of the processor datasheet or from precise benchmarks exploring the behaviour of each component of the plateform.

Example 7 (Parallel services): The documentation of the KEYSTONE processor states that the ultra speed bus (i.e., the TERANET component) enables LOAD and STORE transactions in parallel without any interference. For instance, if two DSPs access the DDR Banks simultaneously, one with a LOAD transaction and the other with a STORE, then they should not interfere on the TERANET. This is encoded as parallel = {(TERANET l, TERANET s)} Note that for the KEYSTONE, the parallel relation does not include any other pair of services. This means that all the components, except the TERANET, are only able to provide one service at a time. For instance, the AXI bus cannot be simultaneously crossed by a LOAD transaction and a STORE one.

Definition 9 (Interference channel): An interference channel is a component c, more precisely a Transporter or a Target, such that there exist two simultaneous transactions conflicting on this component. By conflict, we mean that this will generate an interference and thus a timing effect.

Formally, we say that c is an interference channel iff there are two distinct transactions tr 1 and tr 2 such that:

(a) either ∃s ∈ path(tr 1 ) ∩ path(tr 2 ) such that cp(s) = c, i.e.

the two transactions use the same service s of component c, (b) or ∃s 1 ∈ path(tr 1 ) and ∃s 2 ∈ path(tr 2 ) such that cp(s 1 ) = cp(s 2 ) = c and such that (s 1 , s 2 ) ∈ parallel. If one of the two conditions above holds, we say that tr 1 and tr 2 interfere and they conflict on c.

Example 8 (Interference channel): Considering tr 1 ||tr 2 of Example 6. As tr 1 is a LOAD and tr 2 is a STORE, they do not use any common service: path(tr 1 ) ∩ path(tr 2 ) = ∅. However, they cross two common components: cp path (tr 1 ) ∩ cp path(tr 2 ) = {AXI, MSMC CTRL}. tr 1 uses the LOAD service of AXI, i.e. AXI l ∈ path(tr 1 ), while AXI s ∈ path(tr 2 ).

According to Example 7, (AXI l,AXI s) ∈parallel. Thus, condition (b) of Definition 9 holds. tr 1 and tr 2 conflict on the AXI and similarly on MSMC CTRL.

Definition 10 (Interference): An interference itf is a situation where several transactions occur simultaneously and conflict on some interference channel(s), i.e. itf = tr 1 || . . . ||tr n such that ∀i, j ∈ 1..n, if i = j then 1) either tr i and tr j interfere, 2) or there exists a subset {tr 1 , . . . , tr k } ⊆ {tr 1 , . . . , tr n } such that tr i and tr 1 interfere and ∀l < k, tr l and tr l+1 interfere and tr k interferes with tr j . We moreover denote by trans(itf)={tr 1 , . . . , tr n } the set of transactions of itf. And we say that tr 1 || . . . ||tr n is an n-ary intererence, or simply an n-ary itf. 3 The conditions above mean that trans(itf) must form a connected graph (where the edges are the pairs of transactions that interfere). In other words, for each pair (tr 1 , tr 2 ) in trans(itf) either tr 1 and tr 2 interfere, or there is a "path" of interfering transactions in trans(itf) from tr 1 to tr 2 .

Example 9 (Interference): Let us consider again the transactions tr 1 and tr 2 of Example 6. tr 1 ||tr 2 is a 2-ary itf that conflicts on AXI and MSMC CTRL.

Example 10 (Interference): Let us now consider the transactions tr 3 = DSP 3 → l MSMC SRAM B 1 and tr 4 =EDMA→ l SPI. As shown in Figure 5, tr 1 , tr 2 interfere; tr 3 interferes with tr 1 and tr 2 on MSMC CTRL; tr 4 , tr 3 interfere on TERANET. Thus {tr 1 , tr 2 , tr 3 , tr 4 } is a connected graph, even if tr 4 does not interfere directly with tr 1 and tr 2 . tr 1 ||tr 2 ||tr 3 ||tr 4 is then a 4-ary itf.

Definition 11 (Interference channel associated with an itf): For a given interference itf = tr 1 || . . . ||tr n , an interference channel associated with itf is an interference channel that appears between at least two transactions of itf. The set chan(itf) of the interference channels associated with itf is defined as follows:

chan(itf) = { c ∈ Transporter ∪ Target|∃tr j = tr k ∈ trans(itf) such that tr j and tr k interfere on c} Example 11 (Interference channel associated with an itf): As a last example, let us consider again the 4-ary itf depicted 3 Note that we use itf either to denote a specific interference or to abbreviate the term "interference". Complementary to definition 10 which defines n-ary itf, i.e., a simultaneous transaction tr 1 || . . . ||tr j which interfere by forming a connected graph, we can now define the set of interference-free simultaneous transactions :

Definition 12 (Interference-free): A simultaneous transaction s = tr 1 || . . . ||tr j is an n-ary interference-free iff ∀i, j ∈ 1..n, if i = j then tr i and tr j do not interfere.

As shown below (paragraph Experiments), identifying all the simultaneous transactions that are supposed to be interference-free is a way to explicit the hypotheses hidden in the model.

B. What is generated from PML?

Method 1 (Interference identification): The CAST32-A asks for the identification of all interferences. This means that we need first to determine the transactions and their path. Then, with n = 2 |initiators| (|initiators| being the number of initiator components), we enumerate all n-ary itf, i.e. all the combination of n simultaneous transactions that may interfere. And finaly we enumarate all the associated interference channels. The way to compute the interference is then left to a solver. In our case, we use IDP [START_REF] De Cat | Predicate logic as a modelling language: The IDP system[END_REF] or MONOSAT [START_REF] Bayless | Sat modulo monotonic theories[END_REF]. The constraints are hard coded and are independent from the platform model. Thus, from PML, we need to generate automatically the transactions and their paths.

Example 12 (Generation of simple transactions): For the use case, the model is composed of 54 transactions, each of them being defined by its path of components. Transactions tr i i = 1 . . . 4 in Figure 5 are examples of these 54 possible transactions. This model is then enriched with the parallel relation as defined in Example 7.

C. Experiments

The interference analyser generates for each n ∈ 2..N (where N is the number of initiators) 1) the set IF n of n-ary interference-free simultaneous transactions; 2) the set I n of n-ary itf. Validation strategy: IF n is interesting to check the correctness of the model. Indeed, as any combination tr 1 || . . . ||tr n ∈ IF n is supposed not to generate any interference, the idea is to measure the behaviour of tr 1 . . . tr n in isolation and to check that it does not change when running them in parallel. The sets I n provide the answer of the CAST32-A certification objective.

Example 13 (Interference calculus): For the use case, the interference analysis provides the following results: The next step after generating IF n and I n for all n ∈ 2..N is to associate a benchmark m 1 || . . . ||m n with each itf = t 1 || . . . ||t n of I n and to run it in order to quantify the interference. In the same way, a similar benchmark should be associated with each element of IF n in order to check that there is no interference. The total number of itf and of interference-free simultaneous transactions seems to be too large to be tractable. However, let us note that the transactions tr i we are considering are micro-transactions performing only one type of action (load or store). The corresponding microbenchmarks m i are then very small codes only repeating a same instruction a finit number of times. The typical execution time of such micro-benchmarks is about 10ms. Running about 600 000 benchmarks would take less than 2 hours.

V. SAFETY ANALYSIS

The purpose of the safety analysis is to identify the effect of physical failures on the applications, that is the behaviour of the transactions in the presence of failures. The way to analyze the CAST32-A safety objectives to multi-core was presented at [START_REF] Cuenot | Multi-core processor: Stepping inside the box[END_REF]. We simply sketched here the main ideas and detail the link with PML.

A. PHYLOG safety analysis reminder

The formal concepts of the the safety analysis are presented in details in [START_REF] Cuenot | Multi-core processor: Stepping inside the box[END_REF]. Let us here detail and illustrate how those steps are applied in the context of multi-core-based systems. Note that to the best of our knowledge, there is no contribution to this question in the literature.

a) Identification of failure modes: As a preliminary approach, we consider two kinds of failure modes: Erroneous The component does not properly process a transaction, which results in its corruption (data or address). Lost The component does not process incoming transactions, which results in a deny of service.

The safety effect of these failure modes are described in the table below. Note that, the user could easily define more failure modes.

Type FM Comments STORE err erroneous value or wrong destination is stored lost no value is stored LOAD err erroneous data is loaded lost no data is loaded b) Failure propagation model: The dysfunctional model describes the interconnection of physical components (e.g. cores, MMU) and the transactions that ensure the system's functions. The idea is to abstract the transactions to determine 1) whether a transaction was correctly handled, 2) what are the effects of a failure on a given transaction or 3) what are the effects of an erroneous transaction on the other transactions.

In the safety view, the path associated with a transaction tr is directed. This is due to the propagation of failures, which follows a direction along a transaction (either from the initiator to the target in the case of a STORE transaction, or the other way around, in the case of a LOAD transaction). This direction is ensured by the use of input and output ports in each component. The idea is to represent the data propagation and how their loss or corruption would affect the applications. To do that, each component is modeled as a mode automaton [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF] and the whole system is the connection of all components. The behaviour of a the platform is partially illustrated in Figure 6. Let us consider the transaction tr 1 of Figure 3, translated in a failure propagation view as shown in Figure 6. We observe the local effect of each component failure mode. In this scenario, all components are ok except the MMU 0 which is in the lost mode and the DDR banks that are err.

MSMC SRAM B 0 (ok) MSMC SRAM B 1 (ok) DDR B 0 (err) 
The MSMC CTRL has to merge the inputs of several components (MSMC SRAM banks, DDR banks, TERANET). This merging necessitates a more complex behaviour in the mode automaton that we will not detail here. In effect, it would take, as input for Target t, the output value provided by t.

The outputs of MSMC CTRL are the inputs of AXI. The AXI BUS only considers the transactions of the ARMs.

The outputs of AXI are the inputs of MMU 0 . Here, because of the internal failure of the component, values are not transmitted anymore to the ARM, taking then a lost value.

STORE works similarly with more failure propagation. First, as for the interference view, the model can be enriched with a special type of Transporters, called Virtualizers (such as the MMU or MPAX), which define the authorization for accessing transactions. To better model the effect of Virtualizer failures, we consider that an erroneous Virtualizer may access any target and pollutes these targets with err values. Second, a Target that receives err values with a STORE transaction is considered itself as corrupted from now on. This behaviour is taken into account within the hard-coded library of ALTARICA components. The interested reader can find more information on the formal encoding in [START_REF] Cuenot | Multi-core processor: Stepping inside the box[END_REF]. c) Safety objective: In the context of our case study, the safety objective is to ensure that RROSACE controls correctly the aircraft in the following sense: if the orders sent to the actuators are err, this situation must be detected. The detection is done by CheckA and CheckB, thus the violation of the safety objective arises when ROSACE MON, ROSACE COM, CheckA and CheckB are err at the same time. Thus, the situation that we want to avoid, which is called a failure condition is defined by CheckA=err and CheckB=err and COM=err and MON=err.

We consider that CheckA=err if its L2SRAM is err or DSP 2 is err. Same for CheckB. COM=err if at least one of its LOAD is err. Same for MON.

B. What is generated from PML?

As for the interference view, some parts are hard coded in ALTARICA. We have developed a generic library for each type of components (Initiator, Target, Transporter). What is specific is the number of Target and which Target are visible in the set T c (coming directly from the transactions). The global system, i.e. the interconnection of components, is also completely generated. Finally, the user must add its failure conditions. Those are then translated as an observer, which is the typical way to observe the output of the system. An external analyzer (CECILIA WORKSHOP [START_REF]Cecilia Workshop framework[END_REF]) is then used to perform the safety assessment out of the comprehensive ALTARICA model extracted from PML.

Validation strategy: Since the exported ALTARICA model can be imported in the CECILIA WORKSHOP, the user can benefit from:

Step-wise simulator that unfolds a failure scenario graphically to observe the error propagation encoded by the model. Such a simulator can be used to validate some well-chosen test-cases through expert consultation or fault injection if the application and the platform (or a detailed model) are available. Sequence generator that computes all the failure scenarios up to a given size. This tool can be used to build a validation test base by computing all the scenarios containing one single failure where the feared event is observed (positive test) or where the feared event is not observed (negative test). One can then conduct a fault injection campaign based on these tests to validate both the vulnerability (with positive test) and tolerance (negative tests) of the architecture.

C. Experiments

Part of the results when assessing the failure condition is given in the Table I We observe that ROSACE COM.err is reached when one of the transaction has failed (ARM 0,1 → l DDR B 0 , MSMC SRAM B 0 ) or one of the virtualizer has failed (MMU or MPAX) or the EDMA has failed (as it could write in any target, thus in particular DDR B 0 and MSMC SRAM B 0 ). CheckA has failed if CheckA execution resources have failed (DSP 2 .err and L2SRAM 2 .err) or one of the virtualizers has failed (MPAX) or the EDMA has failed because the latter can write erroneous values in the L2SRAM 2 .

Table II shows the timing of the framework applied on the RROSACE use case. Even if applied on a unique use case, with a quite realistic size, it shows promising scalability. 

VI. RELATED WORK

Abstracting components by the services they offered is not new to analyze platform behaviour. For instance, CPA (Compositional Performance Analysis) has been widely used to compute worst case traversal time on embedded networks (such as AFDX or TSN) and the methodology considers that abstract resources provide network services [START_REF] Thiele | Formal worst-case timing analysis of ethernet tsn's burst-limiting shaper[END_REF] such as Qbv.

More recent work [START_REF] Saidi | Exploiting Locality for the Performance Analysis of Shared Memory Systems in MPSoCs[END_REF] computes memory access timing on multi-core processor with PYCPA. The multi-core itself is abstracted with its event arrival curves as a sequence of LOAD or STORE transactions (not the combination of both) and only the interaction with the memory is considered.

a) Support to design: Some works follow a different approach, without modelling the platform. This is the case for instance, of the timing analyses proposed in [START_REF] Abella | Rvcbased time-predictable faulty caches for safety-critical systems[END_REF], [START_REF] Hardy | Probabilistic wcet estimation in presence of hardware for mitigating the impact of permanent faults[END_REF], which take into account possible faults of hardware components.

For automotive system engineering, the authors of [START_REF] Macher | A Lightweight Meta-Model to Support Automotive Systems and Software Engineering[END_REF] have modelled the concepts that are important to the whole design process, from system engineering to software engineering. The obtained metamodel is used to ease the interaction between the different tools that are used during the development of automotive software. Although the hardware architectures are multi-core, interaction between cores is not the focus of this study.

AMALTHEA 4 is another framework proposed in the automotive domain for multi-core software development. This framework, based on the Eclipse technology, provides a metamodel for multi-core software and hardware modelling. The objective of this model-driven approach is to centralize all the information necessary for the complete development process. From this central model, it possible to call different tools for partitioning, mapping, code generation, and trace analysis. AMALTHEA focuses on the development process and aims at reducing data exchanges between the tools involved in the process. Our approach is different since we only focus on the data necessary to the certification issues, allowing us to use a simpler metamodel for multi-core processors.

In the avionics and space fields, the DREAMS project [25] followed a similar approach by generalizing it to embedded distributed platforms, including multi-core processors. The aim of this project was to define a framework and a methodology for designing mixed-criticality systems (MCS). This framework is based on a metamodel of MCS capturing all the relevant design, implementation and configuration artefacts, and on a model-driven engineering process supported by tools focusing on design-space exploration, real-time scheduling, and reconfiguration synthesis. Thus the DREAMS framework focuses on the left branch of the V-cycle, and ranges from design model to derivation of platform configuration. Our contribution is different since we focus on the right branch of the V-cycle, and particularly on the certification activities in this branch. Our objective is not to support the design process, but to ease the generation of certification artefacts compliant with the MCP-CRI standard.

In the avionics fields, some work tried to adapt the MCP-CRI standard to COST multi-core architectures [START_REF] Agirre | On the Tailoring of CAST-32A Certification Guidance to Real COTS Multicore Architectures[END_REF]. To ease design and certification stages, they propose to group the MCP-CRI objectives into three high level principles: (1) determining the final configuration, (2) managing interference channels, and (3) verifying the use of shared resources. However, they showed that predicting interference on a COTS 4 http://www.amalthea-project.org/ multi-core architecture is a very challenging task because of the amount of possible scenarios. A way to overcome this difficulty is to use a formal model of the architecture and a formal analysis method to explore the set of interference channels. Such is the aim of our contribution. Some other works have studied how to support the design of multi-core systems with the language AADL [START_REF] Delange | Design and Analysis of Multi-Core Architecture for Cyber-Physical Systems[END_REF], [START_REF] Rubini | Modeling shared-memory multiprocessor systems with AADL[END_REF]. The purpose it to take into account the shared resources and the software-to-hardware allocation for the analyses that come with the AADL toolset, in particular timing analyses. Comparing to our work, again, there are more details about the architecture than in an PML model, which is certificationoriented. Thus, it would be worth studying the generation of an PML model from such an AADL model. However, the information related to the load/store services that are needed by the software would need to be added to get an PML model.

b) Support to code generation: In [START_REF] De Oliveira Rodrigues | An mde approach for automatic code generation from uml/marte to opencl[END_REF], [START_REF]A Modeling Approach based on UML/MARTE for GPU Architecture[END_REF] the authors propose a metamodel of GPU architectures with the aim of supporting the development of application on such hardware platforms for non specialists in parallel programming. They extend the MARTE UML profile with a description of the allocation of data to memory elements. In [START_REF] Honvault | Model-Based Design, Analysis and Synthesis for TSP Multi-Core Space systems[END_REF], the authors extended an existing development framework dedicated to space application with the ability to handle multi-core platforms and time and space partitioning systems. This framework eases the development process by generating part of the code.

Focusing on multi-and manycore architectures, SHIM5 (for Software-Hardware Interface for Multi-Many Core) is another framework dedicated to software design for multi-and many-core processors [START_REF] Kondo | Establishing a standard interface between multi-manycore and software tools -shim[END_REF]. Its objective is to standardize the interface between the multi-core hardware and the software tools. It supports a precise description of the hardware components of the processor and its internal topology, including the processor cores, the inter-core communication channels, the routing protocols, the memory sub-system, hardware virtualization features, etc. The aim of SHIM is to provide a common metamodel enabling the use of many types of tools, including performance analysis, system configuration, autoparallelizing compilers, and code generation. The approach of SHIM and AMALTHEA are very close in the sense they both provide a centralized model to support software design and code generation. They mainly differ by their respective application domain. AMALTHEA is promoted by automotive manufacturers for automotive systems. SHIM is developed by a consortium of multi-and manycore manufacturer for more general purpose software.

The approach of PML is similar in the way that the idea is to define a central model to be exploited in external views. However contrary to SHIM and AMALTHEA, which provide a detailed view of the architecture components, our model concentrates on an abstract definition only considering three types of component: initiator, transporter and target. Our claim is that such an abstraction is sufficient for interference and safety analyses.

VII. CONCLUSION AND FUTURE WORKS

We have defined a unified framework to analyze multicore platform and partially answer the CAST32-A position paper. More specifically, we have abstracted a platform as the services it offers and modelled the interactions between software and complex hardware components via this servicebased approach. The purpose was to propose a common model that covers the minimal concepts needed for both interference and safety analyses, which are required by the position paper. Thanks to this formalization, we have defined PML a metalmodel dedicated to the description of any multi-core.

From such a description, we have implemented a tool that automatically generates the inputs needed for the analysis tools. For both perspectives, the approach consisted in hardcoded generic parts that can be reused for any platform and an automatic generation from the specific description of a platform. As PML encodes the minimal concepts, it is possible in each view to add more information (such as complex failure modes or failure propagation). We have run the framework on a realistic case study that was also used along the paper to illustrate the contributions.

In the future, we would like to extend PML (and the associated analyses) to consider cache coherence related behaviours. In our framework, a transaction is quite simple: it is represented by a simple sequence of connected components. With cache coherence, things become more complicated: requests can be broadcast, some transporters can initiate a transaction to send a data to another cache, etc. We also would like to better model the notion of parallel transactions: indeed, some components have some capacities, i.e. the ability to deal with several transactions in parallel to some extent.

Among the analyses required by the CAST32-A, there is a need to quantify the effects of interference. Thus, the applicant should define intensive benchmarking strategies [START_REF] Bin | Studying co-running avionic real-time applications on multi-core cots architectures[END_REF], [START_REF] Girbal | METrICS: a measurement environment for multi-core time critical systems[END_REF] in adequation with the interference. Thus, PML tooling should also propose an automatic translator to stressing benchmark for a given platform.
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