
HAL Id: hal-03761935
https://hal.science/hal-03761935

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Systematic dynamic modelling of heat exchanger
network

Bertrand Zitte, Isabelle Pitault, Boussad Hamroun, Françoise Couenne

To cite this version:
Bertrand Zitte, Isabelle Pitault, Boussad Hamroun, Françoise Couenne. Systematic dynamic mod-
elling of heat exchanger network. 32nd European Symposium on Computer Aided Process Engineering
(ESCAPE 32), Jun 2022, Toulouse, France. pp.187-192, �10.1016/B978-0-323-95879-0.50032-1�. �hal-
03761935�

https://hal.science/hal-03761935
https://hal.archives-ouvertes.fr


PROCEEDINGS OF THE 32nd European Symposium on Computer Aided Process Engineering
(ESCAPE 32), June 12-15th, 2022, Toulouse, France.
L. Montastruc, S. Negny (Editors)
c© 2022 Elsevier B.V. All rights reserved.

Systematic dynamic modelling of heat exchanger net-
work
Bertrand Zittea, Isabelle Pitault a,*, Boussad Hamrouna and Françoise Couennea
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Abstract
A systematic way to compute the finite dimensional dynamic model of the counter current heat
exchanger network based on the graph theory is proposed. This contribution focuses to the serial
interconnection of heat exchanger. The proposed models are build from the elementary block com-
posed of two compartments corresponding to the hot and cold streams. The method is based on the
graph based input-output representation of the convective heat flux between the heat exchangers.
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1. Introduction

Modelling and simulation are essential tools for the design of heat exchangers (HE) and Heat
Exchangers Networks (HEN) (Roetzel et al. (2020)). Typical HE and HEN design approaches are
primarily based on steady-state models. They are suitable for HENs retrofitting, upgrades and for
estimating optimal steady-state operating points. However, dynamic performance of HEN has also
to be explored in order to improve flexibility and controllability properties of HEN (Yang et al.
(2021)) as well as their energy efficiency.

Roetzel et al. (Roetzel et al. (2020)) cited several mathematical models for transient analysis
of heat exchangers: (i) the lumped parameter model, (ii) the distributed parameter model and
(iii) the cell model. The first model is a systemic approach wherein the HE is considered as a
single box; each fluid in the whole HE has an uniform temperature which is used to calculated the
heat transfer through the partition wall and the energy balance involves only the inlet and outlet
temperatures. The second model is an infinite dimensional model for which the HE space must be
discretized (Michel and Kugi (2013)). The latter, also called lumped-distributed parameter model,
consists in dividing the HE space into many elements along its length and applying the lumped
method to each element (Correa and Marchetti (1987)). All the models were used for a better
understanding of HE behaviour and the model building methods were discussed for small systems
with simple topology like HE that are not nearly as large as district heating or heat networks.
In addition, energy balances were written based on temperatures as state parameters and do not
separate the convective and heat transfer parts, which makes it impractical to use them for scalable
and extensible HENs.

For this purpose, we propose a systematic way to compute the finite dimensional dynamic model
of a network of counter-current heat exchangers based on graph theory. This method gives the
dynamic model in an iterative way and is well suited for modification of the network topology.
The obtained model is given in a structure form that can be also used for control purposes.
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2. Model formulation

This contribution focuses to the serial interconnection of heat exchangers. The proposed models
are built from the elementary block named i composed of two well stirred compartments cor-
responding to the hot and cold streams as shown in Figure 1. Notations h, h̄ stand for specific
enthalpies and Q, Q̄ for mass flows of the two streams. The indexes in and out stand for inlet
and outlet flows resp. In this paper, we considered these two compartments were separated by
a wall without heat accumulation for pedagogical purpose. However, this assumption could be
overcomed using mean heat capacities including both the fluid and wall properties as described in
Correa’s paper annex (Correa and Marchetti (1987)).
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Figure 1: Elementary block i with enthalpy flows

The method is based on the graphic input-output representation of two heat exchangers in series
with [i] and [ j] elementary blocks, resp. as shown in Figure 2. The arrows are the convective inlet
or outlet flows. They are also the edges of the graphs linked to the matter convection. The nodes of
the matter and energy graphs are (i) the grey circles which represent the connections of the input
and output convective fluxes (grey nodes without matter and energy accumulation) and (ii) each
compartment where energy accumulation occurs. There are two graphs, since there are one hot
and one cold streams by compartment, but they are treated simultaneously in order to implicitly
take into account the heat transfer through the block partition walls (the heat transfer is represented
in the block and the edge does not appear in the graph representation). The general construction
of the model is based on the adjacency matrix of the convective graphs based on the material and
energy balances. With this method, dynamic models of block series can be easily obtained. One
of the main advantage of this approach is its modularity as the network can be extended as much
boxes (representing a single or network heat exchangers) and streams as needed. So it can be used
for network retrofitting or upgrade. Furthermore this modelling method gives structured matrices
for which mathematical network analysis can be easily applied and used for control purposes such
as dynamic energy assessment approach.
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Figure 2: Two heat exchangers or two heat exchanger networks in series

The main assumptions for the modelling of blocks are the following:

(a) The compartments are perfectly stirred.

(b) The two streams remain in liquid phase.

(c) The pressure P, P̄ in the compartments as well as the mass densities (ρ ,ρ̄), the heat capacities
(cp, c̄p) and the mass flow rates (Q,Q̄) are constant.

(d) There is no heat accumulation in the block partition wall and no heat exchange with the
environment.

(e) The global heat transfer coefficient λ and the volumes V , V̄ are constant and equal for all
the compartments.
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With the previous assumptions, the mass balances in each block are reduced to the equalities of
the inlet and outlet mass flow rates, that for brevity we denote as Q̄ et Q:

0 = Q̄i
in− Q̄i

out 0 = Qi
in−Qi

out

and the enthalpies are defined as H = ρV h(T ), H̄ = ρ̄V̄ h̄(T̄ )

Proposition 1 With assumptions (a) to (e), the energy balances in an elementary block 1 write as:
d
dtH

1 = −λ (I1⊗At)T1− Q
ρV A1H1− Q̄

ρ̄V̄
Ā1H1 +B1V

[
Q 0
0 Q̄

][
H1

in
H̄1

in

]
F1

out = V
[

Q 0
0 Q̄

]
C1H1

(1)

where H1 =

[
H1

H̄1

]
, T1 =

[
T 1

T̄ 1

]
and

[
H1

in
H̄1

in

]
are the enthalpy state, temperature and input enthalpy

vectors resp. F1
out is the ouptut enthalpy flow vector. ⊗ stands for the Kronecker product. Matrices

are as follow: At =

[
1 −1
−1 1

]
, A1 =

(
(I1−S1)⊗Ac

)
, Ā1 =

(
(I1−ST

1 )⊗ Āc
)

with I1 = 1, S1 =

0, Ac =

[
1 0
0 0

]
and Āc =

[
0 0
0 1

]
, V =

[
(ρV )−1 0

0 (ρ̄V̄ )−1

]
, B1 =

[
B B̄

]
with B =

[
1
0

]
,

B̄ =

[
0
1

]
, C1 =

[
C
C̄

]
with C =

[
1 0

]
, C̄ =

[
0 1

]
,

The indexes t and c stand for heat transfer through the partition wall and for convection, resp. The
matrices Bc et B̄c are null in this case but not for several blocks in series. The proof is trivial in
this case. It suffices to write the energy balances and identify the matrices.

3. Model of two interconnected blocks
The objective of this section is to show on a simple case how the systematic modelling is con-
structed. For this purpose, we consider two elementary HEs composed of one block each as
shown in Figure 3.
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Figure 3: Two elementary HEs composed of one block each in series

Proposition 2 With assumptions (a) to (e), the system of energy balances for 2 blocks in series
writes as:

d
dtH

[2] = −λ (I2⊗At)T[2]− Q
ρV A2H[2]− Q̄

ρ̄V̄ Ā2H[2]+B2V
[

Q 0
0 Q̄

][
H [2]

in

H̄ [2]
in

]

F [2]
out = V

[
Q 0
0 Q̄

]
C2H[2] =

[
Qh[2]out

Q̄h̄[2]out

] (2)

with H[2]T =
[
H1 H̄1 H2 H̄2

]
, T[2]T =

[
T 1 T̄ 1 T 2 T̄ 2

]
. The matrices are given by:

A2 =
(
(I2− S2)⊗Ac

)
, Ā2 =

(
(I2− ST

2 )⊗ Āc

)
with I2 the 2× 2 identity matrix, S2 =

[
0 1
0 0

]
,

B2 =

[
02 B̄
B 02

]
, C2 =

[
C 0T

2
0T

2 C̄

]
with 0T

2 =
[
0 0

]
.
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Proof First let us consider two systems of energy balances as written in Proposition 1, the first for
the block 1 and the second for the block 2. After vector and matrix concatenations, considering
the global state vector H[2] and the temperature vector T[2] as written in Proposition 2 and denoting
by O the zeros matrices when the size is not specified, we can immediately write:

dH[2]

dt = −λ

[
(I1⊗At) O

O (I1⊗At)

]
T[2]− Q

ρV

[
A1 O
O A1

]
H[2]− Q̄

ρ̄V̄

[
Ā1 O
O Ā1

]
H[2]

+

[
B1

02×2

]
V
[

Q 0
0 Q̄

][
H1

in
H̄1

in

]
+

[
02×2
B1

]
V
[

Q 0
0 Q̄

][
H2

in
H̄2

in

]
F1

out = V
[

Q 0
0 Q̄

][
C1 02×2

]
H[2], F2

out = V
[

Q 0
0 Q̄

][
02×2 C1

]
H[2]

(3)

Clearly the first right hand side term of (3) is equal to first right hand side term of (2). In order
to write the other terms, let us consider the interconnection matrix Ad for the enthalpy flows. The
matrix elements are 1 if a grey node links two enthalpy flows, 0 else. By premultiplying on both
sides the flow equality equations by ρV , ρ̄V̄ for flow related to Q, Q̄ respectively, we obtain:



QH1
in

Q̄H̄1
in

QH2
in

Q̄H̄2
in

QH [2]
out

Q̄H̄ [2]
out


=

Ad︷ ︸︸ ︷
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0





QH1
out

Q̄H̄1
out

QH2
out

Q̄H̄2
out

QH [2]
in

Q̄H̄2]
in


=

[
Adlu Adru

Adld 02×2

]


QH1
out

Q̄H̄1
out

QH2
out

Q̄H̄2
out

QH [2]
in

Q̄H̄2]
in


(4)

Ad is intrinsic to the series of two HEs independently on their sizes.

• Computation of the inputs of the 2 subsystems that become global input variables. We have:

[
QH [2]

in

Q̄H̄ [2]
in

]
= AT

dru


QH1

in
Q̄H̄1

in
QH2

in
Q̄H̄2

in

=

[
QH2

in
Q̄H̄1

in

]
(5)

• Computation of the internal inputs: They are given by:

QH1
in =Adlu1

[
QH1

out Q̄H̄1
out QH2

out Q̄H̄2
out
]T (6)

Q̄H̄2
in =Adlu4

[
QH1

out Q̄H̄1
out QH2

out Q̄H̄2
out
]T (7)

where Adlu1 and Adlu4 are the first and fourth line of Adlu respectively.

Inserting the expressions of the internal outputs with respect to global state vector, we obtain
the following relations for the internal inputs:

H1
out

H̄1
out

H2
out

H̄2
out

=

C2︷ ︸︸ ︷[
C1 02×2

02×2 C1

][
H1

H2

]
=⇒

{
QH1

in = QAdlu1C2H[2]

Q̄H̄2
in = Q̄Adlu4C2H[2] (8)

Let us rewrite the following terms in (3) :
[
B1

02×2

]
V
[

Q 0
0 Q̄

][
H1

in
H̄1

in

]
+

[
02×2
B1

]
V
[

Q 0
0 Q̄

][
H2

in
H̄2

in

]
in order to recompose with respect to internal and global inputs. We have :[

B11 02
02 B12

]
V
[

Q 0
0 Q̄

][
H1

in
H̄2

in

]
+

[
02 B12
B11 02

]
V
[

Q 0
0 Q̄

][
H2

in
H̄1

in

]
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where B11, B12 are the first and second column of B1, that are respectively B and B̄.

So for the global inputs, the last right hand side term of (2), we can identify that

B2 =

[
02 B12
B11 02

]
=

[
02 B̄
B 02

]
.

Finally, for stream Q, let us add the convective term in (3) and the term on internal inputs
and replace H1

in by the formula given in (8), we obtain:

− Q
ρV

[
A1 O
O A1

]
H[2]+

Q
ρV

[
B11
02

]
H1

in =−
Q

ρV

[
A1 O
O A1

]
H[2]+

Q
ρV

[
B11
02

]
Adlu1C2H[2].

It remains to show that
[
A1 O
O A1

]
−
[
B11
02

]
Adlu1C2 = A2. It can be checked that Adlu1C2

is equal to the third line of C2. So
[
B11
02

][
0 0 1 0

]
=

[
02×2 Ac
02×2 02×2

]
. So

[
A1 O
O A1

]
−[

B11
02

]
Adlu1C2 =

(
(I2−S2)⊗Ac

)
.

The same computation can be made for stream Q̄.

• Computation of the global outputs. From the equations (4) and (8), we have:

F [2]
out =

[
QH [2]

out

Q̄H̄ [2]
out

]
= Adld


QH1

out
Q̄H̄1

out
QH2

out
Q̄H̄2

out

 =

[
Q 0
0 Q̄

] C2︷ ︸︸ ︷
Adld C2 H[2]. It is easy to check that C2 =

Adld C2 =

[
C 0T

2
0T

2 C̄

]
This ends the proof. �

This method can be iteratively used in order to obtain models for HE with i blocks.

4. Model of Heat Exchanger Network interconnection in series

The objective of this section is to give the model of two series interconnected HENs as shown in
Figure 2. The results are given without proof.

As in the previous section, we do not present the graphic representation of matter flows since the
graph is trivial and leads to equality of matter flows with two flows only: Q and Q̄. However, as
soon as mixer or splitter units will be consider this matter graph representation will be important
to analyse.

First the model of a HE composed of i blocks in series is given by:

Proposition 3 With assumptions (a) to (e), the system of energy balances for a heat exchanger
composed of i blocks in series writes as:

d
dtH

[i] = −λ (Ii⊗At)T[i]− Q
ρV AiH[i]− Q̄

ρ̄V̄ ĀiH[i]+BiV
[

Q 0
0 Q̄

][
H [i]

in

H̄ [i]
in

]

F [i]
out = V

[
Q 0
0 Q̄

]
CiH[i] =

[
Qh[i]out

Q̄h̄[i]out

] (9)

with H[i], T[i] are the enthalpy and temperature 2i vectors of the i-blocks HE resp. The matrices
are given by: Ai =

(
(Ii−Si)⊗Ac

)
, Āi =

(
(Ii−ST

i )⊗ Āc

)
with Si the upper shift i× i matrix and
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Ii the i× i identity matrix, Bi =

[
02i−2 B̄

B 02i−2

]
, Ci =

[
C 0T

2i−2
0T

2i−2 C̄

]
with 02i−2 the 2i− 2 zero

vector.

Now let us consider the series of the i-blocks HE with a j-blocks HE or HEN. We have for the
representation of the system of energy balances:

Proposition 4 With assumptions (a) to (e), the system of energy balances for the global system
composed of two systems of the form (9) in series (the first of size i and the second of size j) writes:

dH[i+ j]

dt = −λ (Ii+ j⊗At)T[i+ j]− Q
ρV Ai+ jH[i+ j]− Q̄

ρ̄V̄ Āi+ jH[i+ j]+Bi+ jV
[

Q 0
0 Q̄

][
H [i+ j]

in

H̄ [i+ j]
in

]
F [i+ j]

out = V
[

Q 0
0 Q̄

]
Ci+ jH[i+ j]

(10)

with H[i+ j]T =
[
H[i]T H[ j]T

]
, T[i+ j]T =

[
T[i]T T[ j]T

]
and the notations are the same as previ-

ously using i+ j instead of i.

The generalization of this approach when heteregeneous blocks parameters are considered can be
easily deduced. Consider the i× i heat transfer parameter diagonal matrices Λi with notations λi,k
for the kth element. Since volume of compartment can be different for the blocks, the previous
(2× 2) matrix V has to be indexed by the number of the block: Vn for the nth block. Let us
consider the block diagonal matrix Wi with Vn on the diagonal for the nth block and the matrix
W T

i =
[
V1 V2 . . . Vi

]
= 1T

2iWi with 12i the 2i vector of 1. The matrix Wi is a (2i×2i) matrix
while the matrices Wi and W T

i have the same dimensions as Bi and Ci, resp. Finally let us denote
the Hadamard product as �.

Corollary 4.1 With assumptions (a) to (d), the system of energy balances for a heat exchanger
composed of i blocks in series writes as:

d
dtH

[i] = −
(

Λi⊗At

)
T[i]−QWiAiH[i]− Q̄WiĀiH[i]+

(
Bi�Wi

)[
Q 0
0 Q̄

][
H [i]

in

H̄ [i]
in

]

F [i]
out =

[
Q 0
0 Q̄

](
W T

i �Ci

)
H[i] =

[
Qh[i]out

Q̄h̄[i]out

]
(11)

5. Conclusion
The proposed systematic way of modelling series coupling of heat exchangers or heat exchanger
networks has the advantage to have intrinsic matrices (with only 1 and 0 as elements) such Ai,
Bi and Ci. The perspective is to extend this method to parallel interconnections in order to model
collectors or distributors. The genericity of the proposed structured dynamical model can be easily
implemented as a computer aided process engineering.
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