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Sébastien Tavenas∗ Srikanth Srinivasan† Nutan Limaye‡

June 24, 2022

Abstract

We make progress on understanding a lower bound technique that was recently used by
the authors to prove the first superpolynomial constant-depth circuit lower bounds against
algebraic circuits.

More specifically, our previous work applied the well-known partial derivative method
in a new setting, that of lopsided set-multilinear polynomials. A set-multilinear polynomial
P P FrX1, . . . , Xds (for disjoint sets of variables X1, . . . , Xd) is a linear combination of
monomials, each of which contains one variable from X1, . . . , Xd. A lopsided space of set-
multilinear polynomials is one where the sets X1, . . . , Xd are allowed to have different sizes
(we use the adjective ‘lopsided’ to stress this feature). By choosing a suitable lopsided space
of polynomials, and using a suitable version of the partial-derivative method for proving
lower bounds, we were able to prove constant-depth superpolynomial set-multilinear formula
lower bounds even for very low-degree polynomials (as long as d is a growing function of
the number of variables N). This in turn implied lower bounds against general formulas of
constant-depth.

A priori, there is nothing stopping these techniques from giving us lower bounds against
algebraic formulas of any depth. We investigate the extent to which this lower bound can
extend to greater depths. We prove the following results.

1. We observe that our choice of the lopsided space and the kind of partial-derivative
method used can be modeled as the choice of a multiset W Ď r´1, 1s of size d. Our first
result completely characterizes, for any product-depth ∆, the best lower bound we can
prove for set-multilinear formulas of product-depth ∆ in terms of some combinatorial
properties of W , that we call the depth-∆ tree bias of W .

2. We show that the maximum depth-3 tree bias, over multisets W of size d, is Θpd1{4q.

This shows a stronger formula lower bound of NΩpd1{4
q for set-multilinear formulas of

product-depth 3, and also puts a non-trivial constraint on the best lower bounds we
can hope to prove at this depth in this framework (a priori, we could have hoped to

prove a lower bound of NΩp∆d1{∆
q at product-depth ∆).

3. Finally, we show that for small ∆, our proof technique cannot hope to prove lower

bounds of the form NΩpd1{ polyp∆q
q. This seems to strongly hint that new ideas will be

required to prove lower bounds for formulas of unbounded depth.
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1 Introduction and Motivation

Basic background. This paper is motivated by questions arising in the area of Algebraic
Circuit complexity, which studies the computational complexity of problems defined by families
of multivariate polynomials. Given an infinite family of polynomials pPN px1, . . . , xN qqNě1 over
a field F, we consider the computational problem of evaluating PN at input point a P FN . Many
natural and important computational problems can be stated in this language, including the
problems of computing the determinant and the permanent, and that of multiplying matrices.

Algebraic circuits are succinct representations of multivariate polynomials that allow us to
solve computational problems of the above form. More precisely, an algebraic circuit is a directed
acyclic graph, where the sources are labelled by variables x1, . . . , xN or field elements and
internal nodes (or gates) by algebraic operations ` and ˆ. Each internal node thus represents a
polynomial in the variables x1, . . . , xN and a designated output gate represents the polynomial
computed by the algebraic circuit. The size of the algebraic circuit is given by the number of
gates. The depth and product-depth of an algebraic circuit denote the maximum number of gates
and ˆ-gates respectively, on a directed path in the circuit.1 Finally, we call an algebraic circuit
an Algebraic formula if the underlying directed graph is a tree. (Equivalently, an Algebraic
formula is just a nested algebraic expression made up of additions and multiplications, as one
might write down on paper, represented in the form of a tree.)

An algebraic circuit for a polynomial P allows us to evaluate the polynomial P on a given
input in time polynomially related to the size of the circuit. Thus, algebraic circuits are a
restricted, but natural, model of computation for computational problems of this form. The
study of this model of computation is one of the principal topics of study in Algebraic circuit
complexity, and has received much attention over the past four decades (see e.g. [BCS97, SY10,
Sap15] for nice introductions). Many central questions in Boolean circuit complexity have
analogous and closely-related versions in the algebraic setting. For instance, the VP vs. VNP
question [Val79], which is the problem of proving explicit lower bounds against algebraic circuits,
is formally easier than the (non-uniform) P vs. NP question [B0̈0]. The problem of proving
lower bounds against algebraic formulas is similarly closely related to the problem of proving
lower bounds against the Boolean complexity class NC1.

A recent result [LST22]. While circuit lower bounds in the algebraic setting are formally
easier than the Boolean setting, they still have been hard to come by. For example, a famous
line of research in the 1980s [Ajt83, FSS84, H̊86, Raz86, Smo87] showed exponential lower
bounds against Boolean circuits of constant-depth, but did not yield such results for algebraic
circuits.2 This situation was somewhat rectified recently by the authors [LST22], building
on some important earlier results in the area [NW97, Raz09]. In particular, we were able
to prove superpolynomial lower bounds against constant-depth algebraic circuits over fields of
characteristic zero.

This paper is motivated by the problem of extending this lower bound to stronger models
of computation. At a high level, our results are as follows.

• We show that our previous result [LST22] can be formulated purely in terms of a combi-
natorial property of the space of polynomials under consideration.

1W.l.o.g., we may assume that the product-depth and depth of a circuit are related to each other by a
multiplicative factor of 2. However, some results are easier to state in terms of product-depth.

2Note that algebraic circuit lower bounds are not necessarily easier than Boolean circuit lower bounds in the
constant-depth setting. However, some of these ideas did translate in the setting of constant-sized fields. [GK98,
GR00]
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• We characterize the best lower bound that can be achieved in this framework at product-
depth 3. It is better than the analogous lower bound from [LST22], but not as good as
one might hope at first sight (as explained below).

• We place limitations on how well the bound extends to higher depths.

To describe these results in more detail, we first need to recall the outline of the proof
of [LST22].

The proof of [LST22]. The proof of [LST22] proceeds in two steps. In the first step, we
reduce the problem of proving lower bounds for general circuits of depth ∆ to proving lower
bounds for product-depth-p∆´ 1q circuits that have a special structure. In the second step, we
prove lower bounds for the structured circuits. We describe these steps in some more detail
next.

Step 1: Set Multilinearization. We work throughout with a partition of the vari-
able set X “ tx1, . . . , xNu into X1 Y X2 Y ¨ ¨ ¨ Y Xd. Given such a partition, a set-multilinear
monomial w.r.t. this variable partition is a monomial of degree d that contains exactly one
variable from each of X1, X2, . . . , Xd. A set-multilinear polynomial P is a linear combina-
tion of set-multilinear monomials. We denote the space of set-multilinear polynomials w.r.t.
X1, . . . , Xd by FsmrX1, . . . , Xds. A set-multilinear circuit or formula is one where each gate
computes a set-multilinear polynomial w.r.t. a subset of tX1, . . . , Xdu. An important exam-
ple of a set-multilinear polynomial is the Iterated Matrix Multiplication polynomial IMMn,d,
where X1, . . . , Xd are square matrices of dimension nˆn with distinct indeterminates, and the
polynomial represents, say, the p1, 1qth entry of the product of these matrices.

In the first step of the proof, we show that if a polynomial P P FsmrX1, . . . , Xds has a circuit
C of depth ∆ and size s, then it also has a set-multilinear circuit C 1 of product-depth ∆´1 and
size s1 “ polypsq ¨ dOpdq. Note that while the blow-up in size in going from C to C 1 is large as a
function of d, it can be made small (say polypNq) assuming that d is a slow-growing function
of N (say, d “ OplogN{ log logNq). So, to prove superpolynomial constant-depth circuit lower
bounds, it suffices to prove superpolynomial lower bounds for constant-depth set-multilinear
circuits in this low-degree setting.

Step 2: Set-multilinear lower bounds for low-degree polynomials. Lower bounds
for constant-depth set-multilinear circuits have been known since the work of Nisan and Wigder-
son [NW97] from the 1990s. However, such lower bounds were typically of the form exppdΩp1qq ¨

polypNq, which are not good enough for our purposes in the low-degree setting. The main
contribution of [LST22] was to prove a lower bound of the form Nωdp1q, which yields a super-
polynomial lower bound for any degree d “ dpNq which is a growing function of N .

Somewhat surprisingly, the proof of this latter lower bound used just the lower bound
technique of Nisan and Wigderson [NW97], which goes by the name of the partial derivative
method. The key observation was to apply this technique to a suitable space of set-multilinear
polynomials. Specifically, it is crucial in the proof to allow for the sets X1, . . . , Xd to have fairly
different sizes. To stress this feature, we refer to such a space of set-multilinear polynomials as
lopsided.

For such polynomials that have efficient small-depth set-multilinear formulas, we argue that
certain matrices associated to these polynomials have low rank. This is the basic recipe sug-
gested by the partial derivative method, and is described in more detail later.

To complete the argument, we need to find explicit polynomials for which the associated
matrices have high (ideally maximal) rank. We do this by considering suitable restrictions
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of IMMn,d where n “ maxiPrds |Xi|. Using this idea, we showed [LST22] a lower bound of

Ndexpp´Op∆qq
for set-multilinear circuits of product-depth ∆. In conjunction with Step 1, this

implies a superpolynomial lower bound for constant-depth algebraic circuits, and in fact for
circuits of depth oplog log dq.

The potential of this lower bound technique. Can the above proof strategy be used to
prove lower bounds for stronger models of computation, such as algebraic formulas of unbounded
depth or, optimistically, even algebraic circuits? It turns out that Step 1 of the strategy still
works, as shown in previous work of Nisan and Wigderson [NW97] and Raz [Raz13]. Con-
sequently, proving superpolynomial set-multilinear lower bounds against these models in the
low-degree setting imply general circuit or formula lower bounds.

However, a problem arises because of the technique used in Step 2. As IMMn,d (or more
precisely, its restrictions) is a polynomial of ‘maximal complexity’ for the partial derivative
method, we cannot use it to prove lower bounds for computational models that can compute
this polynomial efficiently. In particular, this suggests a new idea is required to prove lower
bounds for, say, set-multilinear circuits of depth Oplog dq, which can compute IMMn,d efficiently.

Nevertheless, this does not seem to rule out lower bounds for circuits of depth oplog dq, or for
formulas (of any depth). A simple, folklore divide-and-conquer strategy shows that IMMn,d has

set-multilinear circuits of product-depth ∆ and size nOpd
1{∆q, and also set-multilinear formulas

of product-depth ∆ and size nOp∆d
1{∆q. Given the fact that this basic bound has not been

improved upon significantly3 for a long time, it is tempting to conjecture that it is tight, at
least in the set-multilinear setting. If so, it seems that we could hope to prove lower bounds
for set-multilinear circuits of depth oplog dq and formulas of any depth. Doing this would yield
at least lower bounds for general algebraic formulas, which would be a very interesting result.
This brings us to our main motivating question.

Question 1. Can we hope to use the partial derivative method (as applied to lopsided spaces
of set-multilinear polynomials) to prove set-multilinear lower bounds that match the standard
divide and conquer algorithms for IMMn,d?

Our results in this paper indicate that the answer to this question is probably ‘No’, and
that, alone, the proof technique from [LST22] is not powerfull enough to handle formulas of
depth plog dqop1q. In the process of proving these results, we also introduce what we believe is a
clean framework for studying the power of this technique.

We start with a more formal description of the partial derivative method and then state our
results.

The partial derivative method for lopsided set-multilinear polynomials. We prove
lower bounds for set-multilinear polynomials P pX1, . . . , Xdq where each |Xi| “ nαi for some
αi P p0, 1s. Given such a polynomial P , we associate with it a matrix as follows. We partition
rds into sets P and N . The rows of the matrix are associated with set-multilinear monomials
over the variable sets tXi : i P Pu, and the columns symmetrically with the set-multilinear
monomials over tXj : j P N u. Given a row labelled by monomial m1 and a column labelled
by monomial m2, the corresponding entry in the matrix is the coefficient of the set-multilinear
monomial m1m2 in the polynomial P . We use the rank of this matrix (or, more precisely, how
close it is to full-rank) to prove lower bounds on the algebraic circuit complexity of P .

3A famous result of Gupta, Kamath, Kayal and Saptharishi [GKKS16] does improve this bound, but gives up
on set-multilinearity. Moreover, the basic form of the bound is still preserved. More precisely, their work implies

circuits of product-depth ∆ and size nOpd
1{2∆q.
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We define this more precisely now. Note that the matrix is completely specified by the
choice of the numbers α1, . . . , αd and the partition rds “ PYN . We can describe these together
by the multiset W Ď r´1, 1s, defined by W “ tαi : i P Pu Y t´αj : j P N u. Finally, we use
MW pP q to denote the above matrix.

Note that MW pP q is a matrix with R “ n
ř

αPWXp0,1s α rows and C “ n
ř

αPWXr´1,0q |α| columns.
In particular, the rank of the matrix MW pP q is bounded by the minimum of these quantities.
We consider the relative rank of P , defined as follows.

relrkW pP q “
rankpMW pP qq

?
RC

“
rankpMW pP qq

n
1
2

ř

αPW |α|
. (1)

Observe that the quantity in the denominator is the geometric mean of the number of rows and
the number of columns of MW pP q and hence relrkW pP q P r0, 1s. In fact, more generally, it is
not hard to see that as rankpMW pP qq ď mintR,Cu, we have relrkW pP q ď n´|

ř

αPW α|{2.
Further, it was shown by the authors [LST22] that for any W , there is a polynomial P0

such that relrkW pP0q “ n´|
ř

αPW α|{2 and P0 can be obtained by starting with an instance
of IMMpolypnq,d and setting some variables to 0 and identifying variables within certain sub-
matrices, i.e. by a set-multilinear projection.

High-level description of the results. Our results give a better understanding of what
lower bounds the partial derivative method can hope to show in this setting.

• Our first main result is a transformation of our problem to a combinatorial problem
about labelled trees. More precisely, we show that understanding the best lower bound
our techniques can hope to prove in the low-degree setting is perfectly captured by the
best-possible “tree-like decomposition” of the set W .4

While this transformation is simple, it is conceptually clean, and simplifies the problem
in multiple ways. Firstly, it eliminates the parameter n (which is roughly the number of
variables in the underlying polynomial) and makes completely clear the dependence of the
lower bound on properties of the multiset W . Secondly, this reformulation of the problem
completely eliminates any mention of polynomials or algebra from the problem. It is now
purely a problem about the ‘additive structure’ of W .

• Our second result uses the above characterization of the problem to give a near-perfect un-
derstanding of the best lower bounds we can prove for set-multilinear formulas of product-
depth 3 (i.e. ΣΠΣΠΣΠΣ formulas). More precisely, we show that the best product-depth-3

lower bound we can prove via our proof technique is nΘpd1{4q. This is interesting for the
following two different reasons.

For one, this is a stronger lower bound than known previously for set-multilinear formulas
of product-depth 3 in the low-degree regime: Nisan and Wigderson [NW97] showed a
lower bound of exppΩpd1{3qq ¨ polypNq (which does not yield anything for d “ OplogNq),

while in our earlier work [LST22], we showed lower bounds of nΩpd1{7q.

On the other hand, the result also implies that this technique does not go as far as we
would like. Recall from above that the (suspected) optimal lower bound for IMMn,d at

product-depth 3 is nΩpd1{3q. So, our result implies that this technique cannot be used to
obtain this bound at product-depth 3.

4This is not to be confused with standard tree decompositions of graphs, which have no connection with
objects studied here.
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• The above results already indicate that we are not able to prove the best possible lower
bound we could hope for product-depth-3 set-multilinear formulas. However, it is still
conceivable that we can hope to prove a lower bound which stays ‘close’ to the right
expected bound for IMMn,d (say a bound of the form n∆dΩp1{∆q

), which could as yet lead
to superpolynomial formula lower bounds.

In our third result, we give strong indication that this is not the case, by showing that this
technique cannot prove lower bounds of the form nd

1{Γp∆q
for a quasipolynomial function

Γp¨q, and small enough ∆.

1.1 Formal description of the results.

To describe the results formally, we introduce a combinatorial measure of the complexity of the
multiset W Ď r´1, 1s. In the low-degree setting, this will characterize the best lower bound we
can prove via our lower bound technique.

Notation. Let W Ď R be a multiset. Throughout |W | denotes the size of the multiset (i.e.
counted with multiplicity) and SumpW q denote the sum of its elements. Finally, }W }1 denotes
the L1-norm of W (i.e. the sum of the absolute values of the elements of W ).

Definition 2 (W -trees, path bias, tree bias). Let W “ tα1, . . . , αdu be a multiset contained in
r´1, 1s. A W -tree T , or equivalently a tree T for W , is a rooted, directed tree5 with d “ |W |
leaves which are labelled by distinct elements of the form pi, αiq (i P rds).6 Any vertex v of T
thus corresponds to a subset Wv of W (corresponding to the leaves of the subtree induced by v)
and we define Sumpvq to be SumpWvq.

An internal path π in T is a path from the root to an internal (i.e. non-leaf) node. Given
such an internal path π, we define the set of Off-path nodes of π, denoted Offpathpπq to be the
set of nodes v of the tree T that are not on the path π, but have a parent on the path π. We

define the bias of the path π, denoted biaspπq “
´

ř

vPOffpathpπq |Sumpvq|
¯

´ |Sumprq| where r is

the root of T .
(It is easy to check that if π is any internal path, then W “Wr is the disjoint union of Wv

(v P Offpathpπq). Hence, by the triangle inequality, we have |Sumprq| ď
ř

vPOffpathpπq |Sumpvq|.
Thus, biaspπq ě 0 for any internal path π.)

Finally, we define the path bias of T w.r.t. W , denoted PathbiasW pT q, to be the maximum
bias of any internal path of T . If the tree T has depth 0 (i.e. it consists of just the root node),
then we define the path bias of T w.r.t. W to be 0.

With the above notation in place, we can define the combinatorial measure mentioned above.
We define the depth-∆ tree bias of W to be the minimum path bias of any depth-∆ W -tree T .
We denote this quantity by Treebias∆pW q.

Our first theorem relates the depth-∆ tree bias of W “ tα1, . . . , αdu Ď r´1, 1s with the best
lower bound we can prove using the complexity measure relrkW p¨q.

Theorem 3 (Connecting tree bias with relative rank). Let n, d be positive integer parameters.7

Let ∆ ě 1 be any integer. Assume W Ď r´1, 1s is a multiset of size d such that Treebias∆pW q “
t. Then, for any set-multilinear formula F of product-depth at most ∆ and size at most s, we
have

relrkW pF q ď pd
3d ¨ s ¨ n´t{2q ¨ n´|SumpW q|{2.

5The edges are directed away from the root.
6We require the label to be a pair here as W is a multiset where elements may repeat. If the elements of W

are all distinct, then we can think of the labels as simply elements of W .
7We think of d as a slow-growing function of n.
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Conversely, for any n and d, there is a set-multilinear formula F with at most 3dnt{2 leaves and
of product-depth ∆ such that relrkW pF q ě 2´d ¨ n´|SumpW q|{2.

This theorem is the consequence of Lemmas 13 and 14 and will be proved in Section 3.
As already noted above, for any polynomial P P FsmrX1, . . . , Xds (with |Xi| “ n|αi| for each
i P rds), we have relrkW pP q ď n´|SumpW q|{2. Theorem 3 shows that this maximum possible
relative rank can be achieved by product-depth-∆ formulas of size nOptq, but not those of size
noptq, where t “ Treebias∆pT q. This means that the best lower bound we can hope to prove via
this technique is nΘptq.

The next couple of theorems give an understanding of the maximum possible tree bias for
various depths ∆. The first result gives tight bounds on the maximum possible tree bias of a
given multiset W for depth 3 (Section 4 will be dedicated to this result).

Theorem 4 (Tight bounds on tree bias for depth 3). Let d be a growing integer parameter.
Then,

max
W

Treebias3pW q “ Θpd1{4q

where W ranges over multisets from r´1, 1s of size d in the expression above.

The second result (proved in Section 5) gives an asymptotic bound for larger depths (as long
as ∆ is bounded by a small function of d).

Theorem 5 (Bounds on tree bias for larger depths). Let d,∆ be growing integer parameters
with ∆ “ 2op

?
log log dq. Then, we have

max
W

Treebias∆pW q ď d1{∆Ωplog ∆q
,

where W ranges over multisets from r´1, 1s of size d.

1.2 Proof Outline

Throughout this section, we work with a multiset W “ tα1, . . . , αdu Ď r´1, 1s and a space of
lopsided set-multilinear polynomials FsmrX1, . . . , Xds where |Xi| “ n|αi|. Recall also that we are
working in the low-degree setting, i.e. d is a slow-growing function of n. All formulas in this
section should be assumed to be set-multilinear.

Motivation for tree bias. We start by motivating the notion of tree bias which, at first
sight, might appear mysterious to the reader. In fact, this notion comes up quite naturally in
the course of constructing small set-multilinear formulas that have large relative rank. These
constructions, in turn, are motivated by the following basic properties of relative rank which
are all slight modifications of standard facts used in the literature. In this form they can be
found in our earlier work [LST].8

Lemma 6 (Properties of Relative Rank).

1. (Imbalance) Say P P FsmrX1, . . . , Xds. Then, relrkW pP q ď n´|SumpW q|{2.

2. (Sub-additivity) Say P,Q P FsmrX1, . . . , Xds. Then relrkW pP`Qq ď relrkW pP q`relrkW pQq.

8The paper deals with a related notion of relative rank w.r.t. ordered W (or equivalently, W is replaced by a
tuple pα1, . . . , αdq). However, the proof works in the same way for multisets.
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3. (Multiplicativity) Say P “ P1 ¨ P2 ¨ . . . ¨ Pt and assume that for each i P rts, Pi P FsmrXj :
j P Sis, where tS1, . . . , Stu is a partition of rds. Then

relrkW pP q “ relrkW pP1 ¨ P2 ¨ . . . ¨ Ptq “
ź

iPrts

relrkWipPiq

where Wi “ tαj | j P Siu.

With these properties in mind, we try to construct small set-multilinear formulas with
optimally large relative rank. We do not lose much generality in assuming that SumpW q « 0,
which we will do in the rest of this proof outline. So, the optimal relative rank is 1.

It is instructive to consider the example of W such that α1 “ ¨ ¨ ¨ “ αd{2 “ 1 and αd{2`1 “

¨ ¨ ¨ “ αd “ ´1. We start with a trivial formula F that consists of a single variable x1 P

X1, which has relative rank n´1{2. Does it make sense to take linear combinations of such
formulas? From the perspective of relative rank, the answer is No, because that increases the
size without increasing the relative rank at all, by the Imbalance criterion in Lemma 6. So we
can only multiply variables (from different sets, as we are dealing with set-multilinear formulas).
Moreover, it makes sense to multiply variables such that the corresponding αis have different
signs, as multiplying variables from X1 and X2 (say) would only make the imbalance worse. So
we multiply x1 P X1 and xd{2`1 P Xd{2`1. This creates a formula of relative rank 1{n, by the
property of Multiplicativity. By Sub-additivity, we need to sum at least n such formulas to get
a formula of relative rank 1 (which is optimal). And indeed, this can be done, say, with an inner
product between the variables of X1 and Xd{2`1. Multiplying d{2 such formulas together (for
a partition of α1, . . . , αd into positive and negative pairs) gives us a formula of product-depth
2, size Odpnq, and relative rank 1.9 One can see that the underlying multiplicative structure
of the formula thus constructed naturally suggests a W -tree T of the form shown in Figure 1.
This is a W -tree of depth-2 and bias 2 (which is the best possible for this W ).

p1, 1q p d
2
` 1,´1q p2, 1q p d

2
` 2,´1q p d

2
, 1q pd,´1q

. . . . . . . . .

Figure 1: The W -tree of depth 2 and bias 2 arising from the formula construction above.

The above indicates a general technique for constructing formulas of large relative rank.
Start by finding a W 1 Ď W such that |SumpW 1q| is small. Construct a formula of plausibly
optimal relative rank (i.e. n´|SumpW 1qq|{2) over the variable sets corresponding to W 1 by adding
enough set-multilinear monomials so that sub-additivity no longer indicates that the rank of
the formula is small. In doing this, we end up taking a sum of size nb where

b :“
1

2

ÿ

iPW 1

|αi| ´
|SumpW 1q|

2
. (2)

This indicates that it helps to take W 1 to be a small set, since otherwise this formula would be
too large (if there were no such constraint, we could simply have taken W 1 “W ). We partition
W into small sets W 1

1, . . . ,W
1
r this way, and construct formulas for each. Then, applying again

the same principle to the multiset tSumpW 1
1q, . . . ,SumpW 1

rqu, we get a high-rank set-multilinear

9This is an example of Nisan and Wigderson [NW97], aptly called the Product of Inner Products polynomial.
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formula over all of X1, . . . , Xd. As in the simple example above, this gives rise to a multiplicative
structure that can be described by means of a W -tree T . The set W 1 constructed above
corresponds to one of the nodes at height 1 in T and the quantity b in (2) is (almost) something
we will define later to be the bias of the corresponding node, and nb{2 lower bounds the size
of the constructed formula. However, a careful analysis of the construction shows that the size
of the formula is actually larger: at each node of the tree T , the formula uses a sum governed
by the bias of the corresponding node. This naturally ends up yielding a formula whose size is
governed by the path bias of T . Minimizing this over the choice of all trees yields the tree bias
of W , as defined above.

Proof of Theorem 3. The above outline already indicates how to construct a set-multilinear
formula of product-depth ∆ and size nOpTreebias∆pW qq that computes a polynomial of optimal
relative rank. The only part that is unclear is how to ensure that the bounds on relative rank
imposed by sub-additivity are actually tight. We do this by a careful inductive definition of the
formulas. In a revision of our earlier paper [LST22], we showed how to do this for a specific
W which contains only the two distinct elements ´1 and 1{

?
2. In this paper, we extend this

construction to all W . This gives the second part of Theorem 3.
In the process, we note that the formulas we construct all have a special property: they

have a unique multiplicative structure, i.e. they build up all their set-multilinear monomials
in the same way, given by a single W -tree T . In principle, a general set-multilinear formula
could contain many different kinds of trees (e.g. by summing formulas corresponding to different
trees). These special formulas that we construct have been studied before: they are called Pure
formulas [NW97] or Unique Parse Tree (UPT) formulas [LMP19, LLS19]. We use the latter
terminology.

For the first part of Theorem 3, we proceed as follows. We first show that UPT formulas of
product-depth ∆ have indeed the claimed upper bound on the relative rank, by using the basic
properties of relative rank from Lemma 6 and a simple inductive argument. To argue about a
general set-multilinear formula F , we show that any set-multilinear formula can be written as a
sum of Odp1q many UPT formulas of the same size and product-depth. Using the sub-additivity
of relative rank and the bound for UPT formulas, we see that F also has small relative rank.

We illustrate the power of the latter theorem with a short proof of one of the main results
of [LST22]: an nΩp

?
dq lower bound for set-multilinear formulas of product-depth 2.10 By Theo-

rem 3, it suffices to construct a multiset W Ď r´1, 1s with |SumpW q| “ 0 and tree bias Ωp
?
dq.

Consider a W with Θpdq copies each of p´1q and α :“ p1´ 1{
?
dq so that SumpW q “ 0. Given

any depth-2 W -tree T , it can be checked that one of the following hold.

• There is a depth-1 vertex u with tu ě
?
d{2 children. In this case, any path through u

has bias Ωp
?
dq.

• Every u at depth-1 has tu ă
?
d{2 children, in which case |Sumpuq| ě tu{p2

?
dq. This

implies that any path in T has bias
ř

u tu{p2
?
dq “

?
d{2.

Proof of Theorem 4 In a similar way, we can also extend the results of [LST22] to show
improved lower bounds for product-depth 3 (i.e. ΣΠΣΠΣΠΣ formulas). More precisely, taking
W as above but redefining α “ 1 ´ p1{d1{4q ´ p1{d3{4q, we are able to prove a tree-bias lower

bound of Ωpd1{4q. This implies a formula lower bound of nΩpd1{4q, which improves upon a lower

bound of nΩpd1{7q from our previous work.

10This is essentially the heart of the argument of [LST22], abstracting away the details about algebraic formulas,
and keeping only the combinatorial core.
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In the second part of the proof, we show that this is the best bound that this technique
can prove, for any choice of W . Equivalently, we can show that every W has depth-3 tree
bias Opd1{4q. We illustrate the idea with a sketch of the special case when W has two distinct
elements (as in the two lower bounds above). In this case, it is not hard to argue that without
loss of generality, the two distinct elements of W are p´1q and α P p0, 1s.

First of all, we observe that any W has a tree of depth ∆ and path bias Op∆}W }
1{∆
1 q, where

}W }1 denotes the sum of the absolute values of the elements of W . This is analogous to the fact

that IMMn,d has set-multilinear formulas of depth-∆ and size nOp∆d
1{∆q. Call this the “basic

construction”.
Now, given W as above, we proceed as follows. By a classical result of Dirichlet (see,

e.g. [Juk11, Theorem 4.9]), for any t, there exist integers q P rts and p P t0, . . . , tu such that
|qα´ p| ď 1{t. Note that this gives a multiset W 1 ĎW of size p` q such that |SumpW 1q| ď 1{t.
We apply this result with t “

?
d and proceed in one of two ways depending on the value of

p` q.

• If p ` q ě d1{4, then we can partition W into at most r ď d3{4 sets W1, . . . ,Wr of size
p` q, each of which has sum at most 1{

?
d. As p` q ď 2

?
d, using the basic construction

of depth 2, we get a tree Ti of bias Opd1{4q for each Wi. Attaching all these to a common
root gives a tree of path-bias Opd1{4q (the root adds at most d3{4 ¨ p1{

?
dq “ d1{4 to the

bias of any path).

• If p ` q ď d1{4, then by using d1{4{pp ` qq many disjoint sets of sum 1{
?
d each, we get

a set W 1 of size d1{4 and sum at most d1{4{ppp ` qq ¨
?
dq ď 1{d1{4. We partition W into

r ď d3{4 sets W 1
1, . . . ,W

1
r of this form. We use a tree Ti of depth-1 for each W 1

i (which
has path bias at most d1{4 trivially) and attach these to the leaves of a depth-2 tree for
the set W̃ “ tSumpW1q, . . . ,SumpWrqu. The latter tree is constructed using the basic
construction of depth 2, and has bias Opd1{4q as }W̃ }1 ď r{d1{4 ď

?
d.

This gives the argument in the case of W with only two distinct elements. For general W ,
we use a similar high-level argument. However, we need a suitable replacement for Dirichlet’s
theorem, which only works for the special W dealt with above. We prove a generalization of this
theorem (see Lemma 9 below) to the setting of arbitrary multisets W . We think the statement
is natural and interesting in its own right, but could not find mention of it in the literature.

In the special case that W contains d copies of α P p0, 1q and d copies of ´1, the above implies
the standard Dirichlet theorem used above. With the above generalized theorem in place, we
can follow the structure of the argument for the special case, with technical modifications. This
yields the depth-3 relative rank upper bound for any W .

Proof of Theorem 5 for depth ∆. While the proof of this theorem employs the same high-
level argument as Theorem 23 described above, it is considerably more technical. We illustrate
the idea again with the case when W contains only two distinct elements, which we can assume
to be ´1 and some α P r0, 1s. Let Biasp∆, dq denote the largest possible bias of a depth-∆
W -tree. We give a constructive bound on this quantity by an inductive construction (based on
∆).

For ∆ “ 1, we have the trivial bound Biasp1, dq ď d. For ∆ ą 1, we use Dirichlet’s theorem
to find integers p, q ď d1´ε such that |q´pα| ď d´p1´εq. This gives us a set W 1 ĎW of size p`q
such that |SumW 1| ď d´p1´εq. There are again two cases to consider based on the magnitude
of q.

• If q ě dε, then this yields that |W 1| ě dε. Partitioning W into t “ d1´ε subsets W 1
1, . . . ,W

1
t

of this form and using a recursive construction for each of W 1
1, . . . ,W

1
t , we get a W -tree
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of bias Biasp∆´ 1, dεq `Op1q. (Here, the last Op1q term accounts for the bias accrued at
the root, which is only a constant.)

• Conversely, if q ď dε, we pick as many sets W 1
1, . . . ,W

1
r as we can to form a set W 2 of size

(roughly) d1´ε. Note that |SumpW 2q| ď d1´ε{d1´ε ď 1. We partition W into s ď dε sets
W 2

1 , . . . ,W
2
s of this form. We can construct a W -tree T of depth ∆ “ ∆1 `∆2 by

– Constructing a W 2
i -tree Ti of depth ∆1 by constructing W 1

j-tree Ti,j of depth ∆1´ 1
for each W 1

j ĎW 2
i and connecting these trees to a common root.

– Constructing a depth-∆2 W̃ -tree T̃ , where W̃ “ tSumpW 2
1 q, . . . ,SumpW 2

s qu
11 and

replacing the leaf labelled i with the tree Ti.

As the sets W̃ and W 1
i have size dε each, it makes sense to take ∆1 “ ∆2 “ ∆{2. This

leads to a bound on the bias of the tree T of 2 ¨ Biasp∆{2, dεq `Op1q.

We choose ε to balance the bias obtained from each of the above two strategies. It is clear
that if ε ă 1{p2∆q (say), then the first strategy yields a bad bound of d1{2 (or worse). This

implies that we must take ε ě 1{2∆, which can yield a best possible upper bound of d1{∆Oplog ∆q

from the second strategy. We show that this upper bound is indeed achievable, by taking
ε “ Θplog2 ∆{∆q.

1.3 Related Work

Barriers for lower bound techniques. The partial derivative method and its variants have
been used to prove several lower bounds in algebraic complexity theory including the recent work
of the authors. While these techniques have been quite useful, it is unclear whether they can be
used to separate VP from VNP. In the last decade, there were many attempts at understanding
the limitations of these lower bound techniques. This has led to a body of work about barrier
results [SA08, Gro15, FSV18, GKSS17, ELSW18, EGdOW18] in algebraic complexity theory.
These results typically consider a large family of lower bound techniques and argue that such
techniques cannot be used to prove strong lower bounds. However, all such results are either
conditional, or hold for relatively weak models of computation (such as set-multilinear formulas
of product-depth 1). In contrast to these results, here we focus on a specific technique, namely
the technique that gave the first super-polynomial lower bound for low-depth circuits. We show
an unconditional limitation on this technique with respect to a reasonably strong model of
computation. Hence, our work is incomparable to this literature.

Our other recent work [LST21]. In a different recent paper, we prove algebraic formula
lower bounds for formulas of larger depths. Specifically, we are able to prove superpolynomial
set-multilinear formula lower bounds for IMMn,n and non-commutative formula12 lower bounds
for formulas of depths up to op

?
log dq. Note that the first of these results is a lower bound in the

high-degree setting. This does not immediately imply a lower bound for general formulas, as we
do not know of an efficient transformation to set-multilinear formulas when the degree is large.
The second result does not imply any lower bounds in the commutative setting, as far as we
know. The results of this paper are thus somewhat orthogonal, as they apply to set-multilinear
(commutative) formulas in the low-degree setting.

11There is a small technical point here, which is that we will be left with a few more elements not covered by
any of the W 2

i s. We ignore this here.
12This means that the operations of the formula are those of the non-commutative polynomial ring

Fxx1, . . . , xNy where variables do not commute.
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Organization. We start with some preliminaries in Section 2. We then prove Thorems 3, 4
and 5 in Sections 3, 4 and 5 respectively.

2 Basic Preliminaries and Results from Previous Work

Fix any multiset W “ tα1, . . . , αdu Ď r´1, 1s and let FsmrX1, . . . , Xds be a lopsided set-
multilinear space of polynomials with |Xi| “ nαi .

The following is a consequence of earlier work of the authors.

Lemma 7 (Lower bounds from relative rank, Implicit in [LST22]). Let d and n be integer
parameters. Assume that W “ tα1, . . . , αdu Ď r´1, 1s is an arbitrary multiset and consider the
space FsmrX1, . . . , Xds where |Xi| “ n|αi|. Assume that we have shown the following: for any set-
multilinear formula F (over variable sets X1, . . . , Xd) of size at most spn, dq and product-depth
at most ∆, we have

relrkW pF q ď Cd ¨ εn ¨ n
´|SumpW q|{2,

where Cd depends only on d and εn Ñ 0 as nÑ8.
Then, for n large enough in comparison to d, any set-multilinear formula F of product-

depth ∆ computing IMMpolypnq,d must have size at least spn, dq. Further, any (possibly non-
set-multilinear) formula of depth at most ∆` 1 computing IMMpolypnq,d must have size at least

spn, dq{dOp∆dq.

The following simple proposition regarding path bias will be useful.

Proposition 8. Let W Ď r´1, 1s be any finite multiset and let T be a W -tree with internal
vertex u. If u has children u1, . . . , ur, then

PathbiasWupTuq “

ˆ

max
iPrrs

PathbiasWui
pTuiq

˙

`

˜

r
ÿ

j“1

|Sumpujq|

¸

´ |Sumpuq|

where Tv denotes the subtree rooted at vertex v (which is, by definition, a Wv-tree in the natural
way).

Proof. Let pv denote PathbiasWvpTvq for any vertex v of T .
For any i P rrs, let πui denote the path of bias pui in Tui . Let πu denote the path in Tu

obtained by adding the vertex u to πui . Note that the off-path nodes of πu are precisely the
off-path nodes of πui along with uj (j ‰ i). Thus, the bias of πu can be written as

biaspπuq “

¨

˝

ÿ

vPOffpathpπuq

|Sumpvq|

˛

‚´ |Sumpuq|

“ biaspπuiq ` |Sumpuiq| `
ÿ

jPrrsztiu

|Sumpujq| ´ |Sumpuq|

“ pui `

˜

r
ÿ

j“1

|Sumpujq|

¸

´ |Sumpuq|.

As this holds for each i P rrs, we have shown that

pu ě

ˆ

max
iPrrs

pui

˙

`

˜

r
ÿ

j“1

|Sumpujq|

¸

´ |Sumpuq|. (3)
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For the reverse inequality, we proceed in the same way. Let πu be a path in Tu of bias pu. If πu
has length 0, then we have

pu “ biaspπuq “

˜

r
ÿ

j“1

|Sumpujq|

¸

´ |Sumpuq| ď

ˆ

max
iPrrs

pui

˙

`

˜

r
ÿ

j“1

|Sumpujq|

¸

´ |Sumpuq|

and hence we are trivially done. Otherwise, the path πu passes through some child ui of u. Let
πui be the path in Tui obtained by removing u from πu. Then, through the same sequence of
equalities proved above, we get

pu “ pui `

˜

r
ÿ

j“1

|Sumpujq|

¸

´ |Sumpuq| ď

ˆ

max
iPrrs

pui

˙

`

˜

r
ÿ

j“1

|Sumpujq|

¸

´ |Sumpuq|.

Hence, we have proved the reverse inequality to (3) and we are done.

2.1 A Generalized form of Dirichlet’s theorem

Here we prove a generalized form of the standard Dirichlet Principle (see, e.g. [Juk11, Theorem
4.9]), which we will use in Sections 4 and 5.

Lemma 9 (A Generalized Form of the Dirichlet Principle). Assume d ě 2. Let W Ď r´1, 1s be
any multiset with at least d non-negative and d non-positive elements. Then, for each positive
integer t ď 2d, there is a multiset T ĎW of size at most t such that |SumpT q| ď 4{pt´ 1q.

Proof. The proof is via the Pigeonhole principle. Fix a t as above and let ` “ tt{2u. If W
contains an element x such that |x| ď 2{`, then we are done trivially, so we assume that this is
not the case.

Let tx1, . . . , x`u and t´y1, . . . ,´y`u be any ` positive and negative elements ofW respectively
(here, xi, yi P p2{`, 1s for each i).

For i P t0, . . . , `u, define ui “
ři
j“1 xj and vi “

ři
j“1 yj . For i, j P t0, . . . , `u, let wi,j “ ui`vj .

Note that as xi, yi P r0, 1s for each i P r`s, we have ui, vj P r0, `s and wi,j P r0, 2`s for each
i, j P t0, . . . , `u. Also note that u0, . . . , u` and v0, . . . , v` are increasing sequences in which the
difference between any pair of elements is strictly more than 2{`.

Divide the interval r0, 2`s into `2 sub-intervals of length 2{` each. By the pigeonhole principle,
there exist distinct pi, jq and pi1, j1q from t0, . . . , `u ˆ t0, . . . , `u such that wi,j and wi1,j1 lie in
the same interval. In particular, we have

|wi,j ´ wi1,j1 | “ |pui ´ ui1q ´ pvj1 ´ vjq| ď
2

`
. (4)

Fix such pi, jq and pi1, j1q. Since these pairs are distinct, they must differ in some coordinate.
We assume that they differ in the first coordinate (the other case is similar).

Without loss of generality, assume that i ą i1. We note that it cannot be the case that j ě j1.
This is because we would then have

|wi,j ´ wi1,j1 | “ pui ` vjq ´ pui1 ` vj1q ě ui ´ ui1 ą
2

`

where for the inequalities we use the fact that u0, . . . , u` and v0, . . . , v` are increasing sequences
in which the difference between any pair of elements is strictly more than 2{`. This contradicts
(4) above. In particular, this implies that j ă j1. By (4), this yields

|pui ´ ui1q ´ pvj1 ´ vjq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i
ÿ

p“i1`1

xk ´

j1
ÿ

q“j`1

yj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

`
.
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This implies that to get a set T satisfying the requirements of the lemma, it is sufficient to take
T “ txi1`1, . . . , xi,´yj`1, . . . ,´yj1u. Note that |T | ď 2` ď t, and by the above computation
|SumpT q| ď 2{` ď 4{pt´ 1q.

3 The Lower Bound technique and Tree bias

In this section we will show that tight bounds on the tree bias yield the best possible bound on
the relative-rank of set-multilinear low-depth formulas. Specifically, we prove Theorem 3.

3.1 Set-multilinear formulas and Unique Parse Trees

First, it will be helpful to make some structural changes to the formula. We will write a set-
multilinear formula as a small sum of set-multilinear formulas such that each formula has a
unique parse tree. In order to describe this we introduce some definitions.

Definition 10 (Parse Formula). Let F be a set-multilinear formula. A parse formula F 1 is
obtained from F as follows.

• The root ` gate is added to F 1.

• For every ` gate added to F 1, one of its children is added to F 1.

• For every ˆ gate added to F 1, all its children are added to F 1.

Note that, such a parse formula computes a set-multilinear monomial. The polynomial
computed by F is the sum of monomials computed by its parse formulas.

Parse trees and W -trees. Let F 1 be a parse formula from a set-multilinear formula F . We
define the parse trees of F as follows. Let g be a ` gate with the parent u and child v. We
draw a direct edge between u and v and remove the ` gate from F 1. We do this short-circuiting
step for each ` gate of the parse formula. Similarly, we remove the ` root of F 1. Let T be the
tree thus obtained. We call this the shape of F 1.

Let ` be a leaf of T. It corresponds to a gate g in F which is either a ` gate in F 1 or a
leaf in F 1. The polynomial computed by g is a linear polynomial on variable set Xi for some
i P rds. We label ` with pi, αiq. This way, we label each leaf of T with elements of W . We call
the W -tree T thus obtained a parse tree of F . Note that the depth of T is the same as the
product-depth of F .

Definition 11 (UPT formula). We say that a set-multilinear formula F is a Unique Parse
Tree formula (or UPT) if all the parse trees of F are identical.

Lemma 12. Let F be a set-multilinear formula of size s and depth ∆. Then F can be written
as a sum of at most d3d many set-multilinear UPT formulas such that each formula has size at
most s and depth ∆.

Proof. For the set-multilinear formula F as above, we will show that there are at most d3d many
different parse trees. This will prove the lemma.

As F is a set-multilinear formula computing a polynomial of degree d, any parse tree of F
has d leaves. We can also assume without loss of generality that each internal node of the tree
has at least two children. If this is not the case, then in the formula there is a ˆ gate with only
1 child. Any such gate can be merged with its child before we create a parse tree.
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Any tree with d leaves in which each internal node has at least two children has at most
d internal nodes. For a tree T , let LT denote a sequence pxv,parentpvqy : v P T q. Here, we
assume that parentprootq is defined as K. This sequence LT completely specifies the shape of
the tree. There are at most d2d distinct sequences of this form. Moreover to define a parse tree
one has to label also the leaves. Each one of the d leaves is associated to a distinct element
from tpi, αiq | i P r1, dsu. So there are at most d! ď dd such labelings. Thus, we conclude that
there are at most d3d many parse tree for any set-multilinear formula computing a polynomial
of degree d.

3.2 Tree bias lower bounds imply formula lower bounds

In this section, we show how lower bounds on Treebias∆pW q imply set-multilinear formula lower
bounds in the low-degree setting. By Lemma 7, this implies lower bounds for general formulas
as well.

We first show this connection for a UPT formula and then use the lemma from the previous
section to conclude the same for general set-multilinear formulas. Specifically, we prove the
following statement.

Lemma 13. Let n, d be positive integers. Let ∆ ě 1. Let W be a multiset of r´1, 1s of size d.
Let F be a set-multilinear UPT formula of size s, product-depth ∆, and parse tree T . Assume,
moreover, that PathbiasW pT q “ p. Then,

relrkW pF q ď ps ¨ n
´p{2q ¨ n´|SumpW q|{2.

We first use this lemma to prove part (1) of Theorem 3.

Proof of Part (1) of Theorem 3. Let W and t be as in the statement of Theorem 3. Let F be a
set-multilinear formula of product depth ∆ and size at most s. From Lemma 12 we know that
F can be written as a sum of UPT formulas, say Ψ1,Ψ2, . . . ,Ψr, where r ď d3d. We also know
that the size of each Ψi is at most s and their depth is ∆. Let Γ1, . . . ,Γr be the parse trees of
these formulas and let pi “ PathbiasW pΓiq for i P rrs.

By Lemma 13, for each i P rrs, relrkW pΨiq ď ps¨n
´pi{2q¨n´|SumpW q|{2. As Treebias∆pW q “ t,

we have pi ě t for each i P rrs. Therefore, we get

i P rrs, relrkW pΨiq ď ps ¨ n
´t{2q ¨ n´|SumpW q|{2.

As F “
řr
i“1 Ψi, r ď d3d and by sub-additivity of relrk, we get the claimed bound on the

relrk of F , i.e.
relrkW pF q ď pd

3d ¨ s ¨ n´t{2q ¨ n´|SumpW q|{2.

We now prove Lemma 13.

Proof of Lemma 13. We prove the statement by induction on the depth of T (which is also the
product depth of F ).
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Base case. Let F “
ř

i

ś

j Fi,j be a set-multilinear UPT formula of product-depth ∆ “ 1.
Let T be the W -tree corresponding to F . Let u0 be the root of T and let u1, . . . , ud be the
children of u0 with labels p1, α1q, . . . , pd, αdq, respectively.

By sub-additivity and sub-multiplicativity (Lemma 6, Items 2 and 3) of relrk, we can say
that relrkW pF q ď

ř

i

ś

j relrktαjupFi,jq. By using the Imbalance bound (Lemma 6 Item 1) on
the relative rank of each Fi,j we get that

relrkW pF q ď
ÿ

i

n´
ř

j |αj |{2 “ s ¨ n´
ř

j |αj |{2 “ sn´p{2n´|SumpW q|{2

where the last equality follows from Proposition 8. We get the desired bound.

Induction step. Let F “
ř

i

ś

j Fi,j be a set-multilinear UPT formula of depth ∆ ą 1. Let
T be the W -tree corresponding to F . Let u0 be the root of T and let u1, . . . , uk be the children
of u0. Let T1, . . . , Tk be the trees rooted at u1, . . . , uk respectively.

As F is a UPT formula, we have that for each i ‰ i1 and for any j P rks, the parse tree of
Fi,j is the same as the parse tree of Fi1,j . Without loss of generality let us say the parse tree of
Fi,j is Tj for every i.

Also, for T , let us assume without loss of generality that the path bias of T is realised by a
path π, where π “ u0¨u1¨π

1, i.e. specifically it passes through u1. Let p1 denote PathbiasWu1
pT1q.

Finally, let si,j denote the size of the subformula Fi,j . Note that
ř

i,j si,j ď s.

relrkW pF q ď
ÿ

i

relrkWu1
pFi,1q ¨

ź

jě2

relrkWuj
pFi,jq Properties of relrk

ď
ÿ

i

relrkWu1
pFi,1q ¨

ź

jě2

n´|Sumpujq|{2 Trivial bound on relrk

ď
ÿ

i

´

psi,1 ¨ n
´p1{2q ¨ n´|Sumpu1q|{2

¯

¨
ź

jě2

n´|Sumpujq|{2 Induction Hypothesis

ď
ÿ

i

si,1 ¨ n
´pp1`

řk
j“1 Sumpujqq{2

“
ÿ

i

si,1 ¨ n
´pp`|SumpW q|q{2 Proposition 8

ď s ¨ n´p{2 ¨ n´|SumpW q|{2.

3.3 Tree bias upper bounds imply formula upper bounds

We now prove the second part of Theorem 3. The main idea is an abstraction of a proof from
our earlier result [LST22]13 where we constructed polynomials to show that our lower bound
technique was ‘tight’ for certain concrete spaces of lopsided set-multilinear polynomials. In this
section, we essentially show that the lower bound proved via tree-bias is tight for all lopsided
spaces.

The main technical result (which generalizes [LST22, Lemma 26]) is the following, which
handles the case where each |Xi| is a power of 2.

13More specifically, this result appeared in a later version of the paper that can be found on ECCC.
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Lemma 14. Let n, d be growing parameters and ∆ any positive integer. Let W “ tα1, . . . , αdu Ď
r´1, 1s be a multiset. Assume that FsmrX1, . . . , Xds be a lopsided space of set-multilinear poly-
nomials with |Xi| “ n|αi| “ 2ki for non-negative integers k1, . . . , kd.

Let T be any W -tree of depth ∆ with PathbiasW pT q “ p. Then, there is a UPT formula F
of parse tree T (and hence product-depth ∆) with at most d ¨np{2 leaves such that rankpMW pF qq
is as large as possible (i.e. equal to either the number of its rows or columns).

Proof. The high-level idea of the proof is quite simple. As each |Xi| “ 2ki , we identify the
variables of Xi with elements of the set t0, 1uki . Similarly, each monomial labeling a row or
column of the matrix MW pP q (for some polynomial P P FsmrX1, . . . , Xds) can be identified with
a Boolean string of the appropriate length k` “

ř

iPP ki or k´ “
ř

iPN ki respectively. Any
set-multilinear monomial m P FsmrX1, . . . , Xds can thus be identified with a pair of strings σ` P
t0, 1uk` and σ´ P t0, 1u

k´ . Assume for now that k` ě k´. We will construct a formula F such
that the polynomial computed by F has 0-1 coefficients, and only contains monomials m such
that the corresponding string σ´ is an initial segment of σ`, after some (known) permutation
of the coordinates. It is easy to see that for any such formula F , the underlying matrix MW pF q
has the maximum possible rank, and this will complete the proof.

To make this idea precise, we will need to be able to make precise the inductive structure
of the polynomials computed by the various sub-formulas of F . This requires quite a bit of
notation, which makes the proof cumbersome. The notation and proof below follow the proof
of [LST22, Lemma 26] closely.

Notation.

• We identify each Xi with elements of t0, 1uki . Given a variable x P Xi, we use σpxq to
denote the corresponding string in t0, 1uki .

• For a set S Ď rds, we use kpSq to denote
ř

iPS ki. We also use W pSq to denote the multiset
tαi | i P Su and MS to denote the set of all set-multilinear monomials w.r.t. the variable
sets tXi | i P Su.

• Given S Ď rds, we define S` “ ti P S | αi ě 0u and S´ “ ti P S | αi ă 0u. If S is clear
from context, we use k` and k´ instead of kpS`q and kpS´q. We say S is P-heavy if
k` ě k´ and N -heavy otherwise.

Fix an S Ď rds. Given a polynomial P P FsmrXi : i P Ss, the corresponding partial
derivative matrix is MW pSqpP q. The number of rows in this matrix is

ś

iPS`
nαi , which

we denote by RpSq. Similarly, we denote the number of columns, which is
ś

iPS´
n´αi ,

by CpSq. Note that the maximum possible rank of MW pSqpP q is mintRpSq, CpSqu. This
quantity is RpSq if S is N -heavy and CpSq if S is P-heavy.

• Let I “ rKs where K “
řd
i“1 ki. We partition I “ I1 Y ¨ ¨ ¨ Y Id where each Ij is the

interval of length kj starting at
ř

iăj ki ` 1. Given any S Ď rds, we let IpSq “
Ť

jPS Ij .

• Say S “ ti1 ă i2 ă ¨ ¨ ¨ ă iru Ď rds. Consider a monomial m P MS , say m “ x1 ¨ ¨ ¨xr
where xj P Xij . We define the string σpmq to be the string obtained by concatenating
σpx1q ¨ ¨ ¨σpxrq. We will think of σpmq as a function mapping IpSq to t0, 1u, such that its
restriction to any Iij (for j P rrs) is exactly σpxjq.

• Any monomial m P MS can be written uniquely as a product of a ‘positive monomial’
m` PMS` and a ‘negative monomial’ m´ PMS´ .
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We now define the kinds of polynomials that will be computed by sub-formulas of the UPT
formula F that we construct.

Fix any S Ď rds.

• Let J` Ď IpS`q and J´ Ď IpS´q be such that |J`| “ |J´| “ mintkpS`q, kpS´qu. Equiva-
lently, J` “ IpS`q if S is N -heavy, and J´ “ IpS´q if S is P-heavy, and both J` and J´
have the same size.

• Let π denote a bijection from J` to J´.

We call such a tuple pS, J`, J´, πq valid.
Fix a valid pS, J`, J´, πq. Now, given a τ P t0, 1u|kpS`q´kpS´q|, we interpret τ as a function

mapping IpS`qzJ` to t0, 1u if S is P-heavy and as a function mapping IpS´qzJ´ to t0, 1u if
S is N -heavy. We define the polynomial PpS,J`,J´,π,τq to be the sum of all monomials m that
have the following two properties.

1. π-Consistency : σpm`qpjq “ σpm´qpπpjqq for each j P J`, and

2. τ -Agreement : σpm`qpjq “ τpjq for all j P IpS`qzJ` if S is P-heavy or σpm´qpjq “ τpjq
for all j P IpS´qzJ´ if S is N -heavy.

It is an easy observation that for any valid pS, J`, J´, πq and any τ P t0, 1u|kpS`q´kpS´q|, the
matrix MW pSqpPpS,J`,J´,π,τqq has a square sub-matrix of order mintRpSq, CpSqu that is a per-
mutation matrix. Hence, this matrix has rank mintRpSq, CpSqu for any pS, J`, J´, π, τq as
above.

The main technical claim is the following.

Claim 15. For any vertex u of T , let Su denote the set of i P rds that appear in the labels of
leaves of the sub-tree Tu rooted at u. There exist some Ju,`, Ju,´ Ď rds and πu such that

1. pSu, Ju,`, Ju,´, πuq is valid.

2. For every τ P t0, 1u|kpSu,`q´kpSu,´q|, the polynomial PpSu,Ju,`,Ju,´,πu,τq has a set-multilinear
formula FpSu,Ju,`,Ju,´,πu,τq over the variable sets tXi : i P Suu that satisfies the following
properties.

• FpSu,Ju,`,Ju,´,πu,τq is UPT of parse tree Tu,

• FpSu,Ju,`,Ju,´,πu,τq has at most |Su| ¨ n
pu{2 leaves, where pu “ PathbiasWupTuq.

The statement of Lemma 14 immediately follows from the above claim in the case that u is
the root of T . It suffices therefore to prove the claim.

Proof of Claim 15. The proof is by induction on the height of u in T .

Base case: u has height 0. In this case, Su is a singleton and hence, Su “ tiu and one of
kpSu,`q or kpSu,´q is 0. Hence, both Ju,` and Ju,´ must be empty and πu is a trivial (empty)
bijection. Given any τ P t0, 1u|kpSu,`q´kpSu,´q| “ t0, 1uki , it can be checked the polynomial
PpSu,Ju,`,Ju,´,πu,τq is just a single variable x from Xi and hence has a trivial formula consisting
of just a single leaf labelled by x. This formula FpSu,Ju,`,Ju,´,πu,τq has all the required properties.
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Induction. Now, we consider a u of height h ą 1. Say u has children u1, . . . , ur. W.l.o.g.,
we assume that u1, . . . , ut are P-heavy and ut`1, . . . , ur are N -heavy for some t P t0, . . . , ru.
By induction, we know that for each i P rrs, we have a valid pSui , Jui,`, Jui,´, πuiq so that the
conclusion of the claim holds. We define Ju,`, Ju,´ and πu as follows.

• W.l.o.g. assume that Su is P-heavy (the other case is similar). So we have Ju,´ “ IpSu,´q.

• Let J 1u,` “
Ť

iPrrs Jui,` and similarly J 1u,´ “
Ť

iPrrs Jui,´. Note that we have |J 1u,`| “ |J
1
u,´|.

Let π1u : J 1u,` Ñ J 1u,´ be the bijection obtained by taking the union of the bijections πui
(i P rrs). That is, if j P Jui,`, then π1upjq “ πuipjq.

• Let J2u,` be any subset of IpSu,`qzJ
1
u,` that has the same size as IpSu,´qzJ

1
u,´. Note that

there must exist such a J2u,` as we have assumed that Su is P-heavy. Fix an arbitrary
bijection π2u between J2u,` and IpSu,´qzJ

1
u,´.

• Set Ju,` “ J 1u,` Y J
2
u,`.

• Finally, set πu be the union of the bijections π1u and π2u.

We now see how to construct the claimed formulas for the polynomials PpSu,Ju,`,Ju,´,πu,τq
for any given τ : IpSu,`qzJu,` Ñ t0, 1u. Fix such a τ . The polynomial PpSu,Ju,`,Ju,´,πu,τq is the
sum of all monomials that satisfy πu-consistency and τ -agreement. We further partition this
set of monomials based on their behaviour on J2u,`.

More precisely, given any τ2 : J2u,` Ñ t0, 1u, we say that a monomial m that has πu-
consistency and τ -agreement has type τ2 if σpm`qpjq “ τ2pjq for each j P J2u,` “ Ju,`zJ

1
u,`. If

we factor this monomial as m “ m1m2 ¨ ¨ ¨mr where mi P MWui
, then we have the following

properties.

• For each i P rrs, mi is πui-consistent. This is because m is πu-consistent and πui Ď πu for
each i P rrs.

• For each i P rts, mi is τi-consistent, where τi is the restriction of τ Y τ2 to IpSui,`qzJui,`.

• For each i P tt` 1, . . . , su, mi is τi-consistent, where τi is the restriction of τ2 ˝ pπ2uq
´1 to

IpSui,´qzJui,´.

Conversely, if m1, . . . ,mr have the above properties, then m “ m1 ¨ ¨ ¨mr has πu-consistency,
τ -agreement and type τ2. Algebraically, this implies the sum of all such monomials m is
precisely the product

śr
i“1 PpSui ,Jui,`,Jui,´,πui ,τiq. Summing over all τ2 gives us the polynomial

PpSu,Ju,`,Ju,´,πu,τq.
Using the inductive construction of the formulas for u1, . . . , ur, we can define

FpSu,Ju,`,Ju,´,πu,τq “
ÿ

τ2:J2u,`Ñt0,1u

r
ź

i“1

FpSui ,Jui,`,Jui,´,πui ,τiq. (5)

(Note that the dependence of each summand on τ2 is implicit: the string τi is defined using τ2.)
By construction, the formula FpSu,Ju,`,Ju,´,πu,τq computes PpSu,Ju,`,Ju,´,πu,τq.

Any parse tree of the constructed formula is a root attached to r subtrees, each of which
is a parse-tree of FpSui ,Jui,`,Jui,´,πui ,τiq (i P rrs). Inductively, therefore, each parse tree of
FpSu,Ju,`,Ju,´,πu,τq is equal to Tu as required.

Finally, we need to analyze the size of FpSu,Ju,`,Ju,´,πu,τq. Using the induction hypothesis,
each summand of (5) defines a formula with at most

r
ÿ

i“1

|Sui | ¨ n
pui{2 ď n

1
2
¨maxiPrrs pui ¨ |Su|
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many leaves. Since the sum in (5) has size 2|J
2
u,`|, the number of leaves in the formula constructed

is at most
2|J

2
u,`| ¨ |Su|n

1
2
¨maxiPrrs pui .

We claim that
2|J

2
u,`| “ n

1
2

řr
i“1 |Sumpuiq|´

1
2
|Sumpuq|. (6)

This implies that the number of leaves in the formula FpSu,Ju,`,Ju,´,πu,τq is at most

|Su| ¨ n
1
2
¨maxiPrrs pui`

1
2

řr
j“1 |Sumpujq|´

1
2
|Sumpuq|

“ |Su| ¨ n
pu{2

where the latter inequality follows from Proposition 8. This finishes the induction assuming
(6).

It remains to prove (6). To show this, define Ai “ SuizpJui,` Y Jui,´q for i P rrs, and let
A “

Ť

iPrrsAi. We count the size of A in two different ways. On the one hand, by definition,
we have

|A| “
r
ÿ

i“1

|Ai| “
t
ÿ

i“1

p|IpSui,`q| ´ |Jui,`|q `
r
ÿ

i“t`1

p|IpSui,´| ´ |Jui,´|q

“

t
ÿ

i“1

pkpSui,`q ´ kpSui,´qq `
r
ÿ

i“t`1

pkpSui,´q ´ kpSui,`qq

“

r
ÿ

i“1

|kpSui,`q ´ kpSui,´q| (7)

where the second and last equalities use the fact that Su1 , . . . , Sut are P-heavy while Sut`1 , . . . , Sur
are N -heavy. On the other hand, we also have A “ B1YB2YB3 where B1 “ pSuzpJu,`YJu,´qq,
B2 “ pJu,`zJ

1
u,`q, and B3 “ pJu,´zJ

1
u,´q. Note that B2 is exactly J2u,` and B3 is in bijective

correspondence with B2 via the bijection π2u. Hence, |B2| “ |B3| “ |J
2
u,`|. Secondly, we have

|B1| “ |IpSu,`q| ´ |Ju,`| “ kpSu,`q ´ kpSu,´q “ |kpSu,`q ´ kpSu,´q|

where for the last equality we used our assumption that Su is P-heavy. We have thus shown
that

|A| “ 2|J2u,`| ` |kpSu,`q ´ kpSu,´q|.

Putting this together with (7), we get

|J2u,`| “
1

2

r
ÿ

i“1

|kpSui,`q ´ kpSui,´q| ´
1

2
|kpSu,`q ´ kpSu,´q|

“
1

2

r
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPSui,`

kj ´
ÿ

jPSui,´

kj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPSu,`

kj ´
ÿ

jPSu,´

kj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
log n

2

r
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPSui

αj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´
log n

2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPSu

αj

ˇ

ˇ

ˇ

ˇ

ˇ

“
log n

2

r
ÿ

i“1

|Sumpuiq| ´
log n

2
|Sumpuq|

where for the second-to-last equality, we used the fact that kj “ αj log n if i P Suj ,` and
kj “ ´αj log n otherwise. Exponentiating both sides of the above equality yields (6). This
completes the proof.
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Finishing the proof of Theorem 3. We now use Lemma 14 to prove the second part of
Theorem 3.

Assume W “ tα1, . . . , αdu and say X1, . . . , Xd are such that |Xi| “ n|αi| are as given in
the statement of the theorem. For each i P rds, fix a set X 1i Ď Xi of size 2ki where 2ki is the
largest power of 2 upper bounded by n|αi|. Fix α1i of the same sign as αi with 2ki “ n|α

1
i|. Let

W 1 “ tα11, . . . , α
1
du.

Note that we have |αi´α1i| P r0, 1{ log nq. In particular, if T is a depth-∆ W -tree such that
PathbiasW pT q “ Treebias∆pW q “ t, then the corresponding W 1-tree T 1 (just replace each leaf
labelled αi by one labelled α1i) has roughly the same path bias. More precisely, it follows easily
from the definition of path bias that

p :“ PathbiasW 1pT 1q ď PathbiasW pT q `
d
ÿ

i“1

|αi ´ α
1
i| ď t`

d

log n
.

Applying Lemma 14 to the lopsided space FsmrX
1
1, . . . , X

1
ds and the W 1-tree T 1, we see that

there is a set-multilinear formula F 1 with at most d ¨np{2 leaves and relrkW 1pF 1q “ n´|SumpW 1q|{2.
Plugging in the bound on p from the above display, we see that the number of leaves of F 1 is
at most

d ¨ np{2 ď d ¨ n
t{2` d

2 logn “ d2d{2 ¨ nt{2 ď 3d ¨ nt{2.

We claim that the set-multilinear formula F 1 satisfies the requirements of the theorem.
Firstly, we note that as X 1i Ď Xi for each i, the formula F 1 is also set-multilinear w.r.t. the
partition tX1, . . . , Xdu. Secondly, it satisfies the required size and depth constraints. Finally,
we claim that its relative rank is as large as claimed. To see this, note that the matrix MW 1pF 1q
is a submatrix of MW pF

1q. Say that MW 1pF 1q has R1 rows and C 1 columns, and MW pF
1q has

R rows and C columns. Then we have

R1

R
“

ź

i:αiě0

n|α
1
i|

n|αi|
ě

1

2d
.

A similar bound holds for C1

C as well. By construction MW 1pF 1q has the maximum possible
rank, i.e. mintR1, C 1u. In particular, this quantity is at least 1

2d
¨mintR,Cu. As MW 1pF 1q is a

submatrix of MW pF
1q, this also lower bounds the rank of the latter matrix. Thus, we have

relrkW pF
1q ě

1

2d
¨

mintR,Cu
?
RC

“
1

2d
¨ n´|SumpW q|{2.

This concludes the proof of the theorem.

4 Optimal bounds for depth 3 via our technique

This section is devoted to the proof of Theorem 4, which characterizes (up to constant factors)
the maximum possible tree bias of a tree of depth 3.

In proving this theorem, it will be useful to consider a variant on the notion of tree bias
defined above, that we will call node bias. The node bias of W (at any given depth ∆) is equal
to the tree bias of W up to a factor of Op∆q. By Theorem 3, for constant-depths ∆, the node
bias also captures the best lower bound that we can hope to prove via our technique.

Definition 16 (Node bias). Fix a W -tree T . For an internal node v of T , we define the bias
of v, denoted biaspvq, to be

ř

u |Sumpuq| where the sum runs over the children u of v. The node
bias of T , denoted NodebiasW pT q, is the largest bias of any internal node v of T . Further, the
depth-∆ node bias of W , is the minimum node bias of any depth-∆, W -tree T . This quantity
is denoted Nodebias∆pW q.
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The following basic proposition relates the node bias of W and the tree bias of W .

Proposition 17. For any depth-∆ W -tree T , we have

NodebiasW pT q ď PathbiasW pT q ` |SumpW q| ď ∆ ¨NodebiasW pT q.

In particular, for any multiset W Ď r´1, 1s and any depth ∆, we have Nodebias∆pW q ď
Treebias∆pW q ` |SumpW q| ď ∆ ¨Nodebias∆pW q.

Proof. Let us start with the first inequality. Let u be an internal node of bias equal to
NodebiasW pT q. Let us consider the internal path π from the root to u. Then, all the children of
u belong to Offpathpπq. In particular the bias of this path is at least NodebiasW pT q´|SumpW q|.
For the second inequality, let us consider a path π of bias PathbiasW pT q. By definition, any node
from Offpathpπq lies in

Ť

u node of π childrenpuq. So biaspπq ` |SumpW q| ď
ř

u node of π biaspuq ď
∆NodebiasW pT q since any internal path has at most ∆ nodes.

4.1 Some simple claims

Groupings of W . Given a partition14 P of the elements of W , we define the grouping W 1 of
W to be the multiset obtained by taking the sums of elements of P. Formally,

W 1 “ tSumpAq | A P P u.

The following basic lemma shows how to construct a W -tree from trees of its groupings and
subsets.

Lemma 18. Assume that P “ tW1, . . . ,Wtu is a partition of W and let W 1 be the corresponding
grouping. Say we have a W 1-tree T 1 of node bias b1 and depth ∆1 and for each i P rts, a Wi-
tree Ti of depth ∆i and node bias at most bi. Then, there is a W -tree T of node bias at most
maxtb1, biu and depth at most ∆1 `maxiPrts∆i.

Moreover, if each Wi is sign-monochromatic (i.e., all elements of Wi have the same sign)15,
then there is a W -tree T of depth ∆1 and bias b1.

Proof. In the first case, let us construct the W -tree in the most straightforward way. Start with
T 1 and replace the leaf labelled γi “ SumpWiq P W

1 by the tree Ti. The depth is bounded by
∆1 `maxiPrts∆i. Let u be an internal node of T . If u comes from an internal node in Ti (with
1 ď i ď t), then we still have that biaspuq ď bi. So, let us consider a node u coming from an
internal node of T 1. Let v be a child of u, and γi1 , . . . , γip be the leaves of the subtree of T 1

rooted in v. So, in T , Sumpvq “
řp
j“1 SumpWij q which equals Sumpvq in T 1. In particular u

has the same node bias in T as in T 1, and so it is bounded by b1.
In the second case, let us replace the leaf of T 1 labelled SumpWiq by |Wi| many singleton

leaves labelled by the distinct elements of Wi. Clearly the new tree has depth ∆1. Since, we
only replace each leaf by some number of leaves of the same sum, the quantity Sumpvq has the
same value in T and in T 1 for any internal node v of T ; in particular, any node u that has only
internal nodes as children has the same node bias in T and T 1. Now consider a node u that has
some leaf children. If v is a child of u in T which is also a leaf, then v is labelled by SumpWiq

(for some i P rts); in T 1, v is replaced by nodes v1, . . . , vr where
řr
j“1 |Sumpvjq| “ |Sumpvq|.

Consequently, u has the same node bias in T as in T 1.

14We follow the usual convention that H R P .
15Here, we think of 0 as having the same sign as any other number.
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Lemma 19 (Preprocessing Lemma). Let W Ď r´1, 1s be any multiset. Then, there is a partition
P “ tW1, . . . ,Wtu of W such that each Wi is sign-monochromatic (as in Lemma 18), SumpWiq P

r´1, 1s for all i P rts and SumpWiq P r´1,´1{2s Y r1{2, 1s for each i P t3, . . . , tu.
In particular, there is a grouping W 1 Ď r´1, 1s of W such that |W 1z pr´1,´1{2s Y r1{2, 1sq| ď

2 and for each W 1-tree T 1, there is a W -tree T of same depth and node bias.

Proof. The ‘in particular’ part of the lemma follows directly from the first statement and
Lemma 18. So it suffices to prove the first statement.

To see this, we construct the partition iteratively. We start with the trivial partition P
where each element of W is a singleton. Now, as long as there are two elements A and B in P
such that the elements of A and B have the same sign (recall that 0 has the same sign as any
other number) and |SumpAq ` SumpBq| ď 1, we replace A and B by the set A Y B in P and
continue.

When the above process terminates, we are left with at most one A P P with SumpAq P
r´1{2, 0s and at most one B P P with SumpBq P r0, 1{2s. Note also that at each step, we
preserve the fact that each A P P is sign-monochromatic and satisfies SumpAq P r´1, 1s.

This partition thus has the required properties.

The next lemma shows, in particular, how to construct W -trees of depth ∆ and node bias
Opd1{∆q for any multiset W Ď r´1, 1s of size d and of sum at most 1.

Lemma 20. Let W Ď r´1, 1s such that }W }1 ď L and |SumpW q| ď 1. Then, for any ∆ ě 1,
there is a W -tree of depth at most ∆ and node bias at most 5L1{∆.

Proof. We claim the result by induction on ∆.
The base case ∆ “ 1 is trivial. Consider ∆ ě 2. If L ď 5L1{∆, we can use a trivial tree of

depth 1 and we are done. So we assume L1´1{∆ ě 5.
Assume wlog that SumpW q ě 0. Order the elements W as pw1, . . . , wdq (where |W | “ d)

in the following way. Having fixed pw1, . . . , wi´1q for i P rds, we choose wi by the following
strategy.

• If
ř

jăiwj ă 0, then we set wi to be some non-negative element of W ztw1, . . . , wi´1u (such
an element exists because SumW ě 0).

• If
ř

jăiwj ě 0, then we set wi to be some non-positive element of W ztw1, . . . , wi´1u, if
such an element exists (otherwise, wi is set arbitrarily).

It is easy to check that with this ordering of the elements of W , we have |
ř

jďiwi| ď 1 for each
i ď d.

Let c “ 2L1{∆.
Define a sequence of indices i0, . . . , ir as follows. Set i0 “ 0 and given i0, . . . , it, define it`1

to be the least i ą it with i ă d such that

ÿ

jďi

wj ě 0 and
ÿ

ităjďi

|wj | ě c.

The sequence ends when we cannot continue the process any longer and we define ir`1 “ d.
Now define a partition P “ tW1, . . . ,Wr`1u of W by Wt “ twi | it´1 ă i ď itu. Note that

for each t ď r ` 1, |SumpWtq| ď 1 as we have

SumpWtq “
ÿ

iďit`1

wi ´
ÿ

iďit

wi
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which is a difference between two non-negative numbers of absolute value at most 1 and hence
at most 1 in absolute value. Also note that each }Wt}1 ě c for t ď r. So in particular, we have
r ď L{c. Finally, we also have }Wt}1 ď c ` 3 for each t P rr ` 1s. Hence, for each t P rr ` 1s,
there is a Wt-tree Tt of depth 1 and node bias at most }Wt}1 ď c` 3 ď 5L1{∆.

Let W 1 be the grouping of W given by P . Then, we have |SumpW 1q| “ |SumpW q| ď 1. As
each |SumpWtq| ď 1, we have W 1 Ď r´1, 1s and also

}W 1}1 ď r ` 1 ď
L

2L1{∆
` 1 ď L1´1{∆ “: L1

where the final inequality follows from L1´1{∆ ą 2. Thus, by induction, there is a W 1-tree T 1 of

depth at most ∆´ 1 and node bias at most 5L
1{p∆´1q
1 “ 5L1{∆. Now, using Lemma 18, we are

done.

We also have the following simple ‘pasting’ lemma.

Lemma 21. Let P “ tW1, . . . ,Wru be a partition of W and assume that for all i there is a
Wi-tree Ti of depth at most ∆, node bias at most bi and such that the root node of each Ti
has bias at most b1i. Then, there is a W -tree T of depth at most ∆ and of node bias at most
maxtb1, . . . , br,

ř

i b
1
iu.

Proof. We construct T by simply identifying the root nodes of all the Ti.

Finally, the following claim will allow us to balance a given subset of W so that removing
this subset results in two sets of absolute sum at most 1.

Lemma 22 (Balancing lemma). Say W Ď r´1, 1s is such that |SumpW q| ď 1. Let W 1 ĎW be
arbitrary. Then there exists W 2 ĎW such that W 2 ĚW 1 and }W 2zW 1}1 ď |SumpW 1q| ` 1 and
|SumpW 2q|, |SumpW zW 2q| ď 1.

Proof. Assume wlog that SumpW q ě 0.
If 0 ď SumpW 1q ď 1, then we can take W 2 “W 1.
If SumpW 1q ą 1, we construct W 2 by adding to W 1 the minimum number of negative

elements of W zW 1 such that SumpW 2q ď 1 (this is possible as the overall sum is at most 1).
Note that the total L1-weight of all the elements added is at most |SumpW 1q|. We also have
SumpW 2q P r0, 1s. Hence, SumpW zW 2q “ SumpW q ´ SumpW 2q, which is at most 1 in absolute
value.

If SumpW 1q ă 0, then we construct W 2 by adding to W 1 the minimum number of positive
elements of W zW 1 such that SumpW 2q ě 0 (possible as the overall sum is positive). The total
L1-weight of all the elements added is at most |SumpW 1q| ` 1. We also have SumpW 2q P r0, 1s
as in the previous case. So we are done similarly.

4.2 Depth-3 trees of small bias

The main theorem of this section is the following.

Theorem 23. Let W Ď r´1, 1s be any multiset such that |W | ď d and |SumpW q| ď 1. Then,
there is a W -tree T of depth 3 and node bias Opd1{4q.

The rest of the section is devoted to the proof of the above theorem. To construct the
required W -tree T , we use the following procedure.

1. Preprocessing: By the Preprocessing lemma (Lemma 19), it suffices to consider multisets
W such that |W zpr´1,´1{2s Y r1{2, 1sq| ď 2.
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2. We apply the following procedure to our multiset W .

Algorithm ApW q:

Assignment d :“ |W |.
Initialization If d ď 25 then return the trivial depth-1 W -tree of node bias at most 25.

Phase 1: As long as it is possible, pick pairwise disjoint sets A such that |A| ď d1{4 and

|SumpAq|

|A|
ď

12

d1{2
.

When this is no longer possible, let A1, . . . , Ae1 be the sequence of sets picked and let
W 1

1 “ A1YA2 ¨ ¨ ¨YAe1 . Using the Balancing lemma, let W1 “W 1
1Yta1, . . . , af1u ĎW

be such that
ř

iďf1
|ai| ď |SumpW 1

1q| ` 1 and |SumpW1q|, |SumpW zW1q| ď 1.

Construct a W1-tree T1 in the following way. Fix the grouping W̃1 corresponding
to the partition P1 “ tA1, . . . , Ae1 , ta1u, . . . , taf1uu of W1. For each element of P1,
construct a trivial tree of depth-1 and for the grouping W̃1, construct a depth-2 tree

T̃1 of node bias at most 5
b

}W̃1}1 (using Lemma 20). Combine these using Lemma 18
to get a tree T1 of depth 3 for W1.

Set W 1 “W zW1 and continue.

Phase 2: As long as it is possible, pick pairwise disjoint sets B ĎW 1 such that |B| ď d1{2

and
|SumpBq|

|B|
ď

12

d3{4
.

When this is no longer possible, let B1, . . . , Be2 be the sequence of sets picked and let
W 1

2 “ B1YB2 ¨ ¨ ¨YBe2 . Using the balancing lemma, let W2 “W 1
2Ytb1, . . . , bf2u ĎW 1

be such that
ř

iďf1
|bi| ď |SumpW 1

2q| ` 1 and |SumpW2q|, |SumpW 1zW2q| ď 1.

Construct a W2-tree T2 in the following way. Fix the grouping W̃2 corresponding to
the partition P2 “ tB1, . . . , Be2 , tb1u, . . . , tbf2uu of W2. Construct a trivial depth-1
W̃2-tree T̃2 of node bias }W̃2}1. For each element B of P2, construct a depth-2 tree
of node bias at most 5

a

}B}1 (using Lemma 20). Combine these using Lemma 18 to
get a tree T2 of depth 3 for W2.

Set W 2 “W 1zW2 and continue.

Recursive call Compute T3 “ ApW 2q.

Return The W -tree T of node bias at most b1 ` b2 ` b3, where bi “ NodebiaspTiq (for
i P r3s) given by T1, T2, T3 and Lemma 21.

We now analyze the above construction. We first state a technical lemma.

Lemma 24. If d ą 25, then after Phases 1 and 2, we have |W 2| ď d{2.

Let us assume the above lemma for now and prove the theorem.
Let bipdq denote the node bias of the tree Ti (i P r3s) assuming that the word W has size at

most d. Then, the node bias of the tree is b1pdq ` b2pdq ` b3pdq. By Lemma 24, we can bound
b3pdq by b1pd{2q` b2pd{2q` b3pd{2q. Continuing recursively in this way (until d becomes smaller
than 25) we have

NodebiaspT q ď

˜

ÿ

iě0

b1pd{2
iq ` b2pd{2

iq

¸

` 25.
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So to prove Theorem 23, it suffices to show that b1pdq, b2pdq ď Opd1{4q. From now on, we fix d
and let bi “ bipdq for i P r2s.

We first bound b1. By construction each element of the partition P1 is a set A of size at
most d1{4 and hence has a depth-1 tree of node bias at most d1{4. Moreover, we have

}W̃1}1 “
ÿ

iďe1

|SumpAiq| `
ÿ

jďf1

|aj |

ď
ÿ

iďe1

|SumpAiq| ` |SumpW 1
1q| ` 1 ď 2

ÿ

iďe1

|SumpAiq| ` 1

ď 2
ÿ

iďe1

12|Ai|

d1{2
` 1 ď Opd1{2q.

Hence, the tree T̃1 has node bias b̃1 “ Opd1{4q. Hence, by Lemma 18, we see that b1 ď Opd1{4q.
We can bound b2 similarly. By construction, each element of P2 is a set B of size at most

d1{2 and hence by Lemma 20 has a depth-2 tree of node bias at most 5d1{4. Moreover, we have

}W̃2}1 “
ÿ

iďe2

|SumpBiq| `
ÿ

jďf1

|bj |

ď
ÿ

iďe2

|SumpBiq| ` |SumpW 1
2q| ` 1 ď 2

ÿ

iďe2

|SumpBiq| ` 1

ď 2
ÿ

iďe1

12|Bi|

d3{4
` 1 ď Opd1{4q.

In particular, this implies that the tree T̃2 has node bias b̃2 “ Opd1{4q. In particular, by
Lemma 18, we see that b2 ď Opd1{4q.

Thus, we have shown that b1, b2 “ Opd1{4q and we are done.
It remains only to prove Lemma 24, which we do now.

Proof of Lemma 24. Let d2 “ |W 2|. Assuming that d ą 25 and d2 ą d{2, we will show that
Phases 1 and 2 of the algorithm could not have concluded, and hence derive a contradiction.

Let W 2
` and W 2

´ denote the positive and negative elements of W 2 respectively. Recall that
W 2 Ď W and the latter set contains at most two elements of absolute value less than 1{2 (by
the preprocessing in Step 1). Further using the fact that |SumpW 2q| ď 1, it is easy to see that
|W 2

`|, |W
2
´| ě d3 where d3 “ pd2 ´ 4q{3 ą 2.

By Lemma 9, it follows that there is a non-empty set T ĎW 2 of size t ď
?
d3` 1 such that

|SumT | ď 4{
?
d3. Since d ě 24, this set T has size at most

?
d and satisfies |SumT | ď 12{

?
d.

Now, we do a short case analysis. Assume |T | ď d1{4. Then, T is the kind of set that the
algorithm tries to find in Phase 1. Hence, the existence of such a T tells us that Phase 1 could
not have concluded.

Otherwise, we have |T | ą d1{4. In this case, we have |SumT |{|T | ď 12d´3{4 and is hence the
kind of set that the algorithm tries to find in Phase 2. Hence, the existence of such a T tells us
that Phase 2 could not have concluded.

In either case, we are done.

4.3 Optimality of the quartic bound

We will show here that the bound of Theorem 23 is optimal.

Proposition 25. Let d be a growing integer parameter. There exists a multiset W Ď r´1, 1s
such that |W | ď d, |SumW | ď 1, and for all W -tree T of depth 3, T has node bias at least
Ωpd1{4q.
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Proof. If d ă 16 the result follows immediately (just adapt the constant in the Ωpq to deal with
these cases). So let us assume that d ě 16. Let d1 be the largest integer such that d1 ď d and
d1 is a fourth power of an integer. So d11{4 ě 2 and d1 ě d{16.

Let q be the closest integer to d1

2´1{d11{4`1{p2d13{4q
. So

ˇ

ˇ

ˇ
q ´ d1

2´1{d11{4`1{p2d13{4q

ˇ

ˇ

ˇ
ď 1

2 . Let us

construct W with q copies of 1´1{d11{4`1{p2d13{4q and p “ d1´q copies of ´1. So |W | ď d1 ď d
and

|SumpW q| “
ˇ

ˇ

ˇ
´p` qp1´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
´d1 ` qp2´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

ď
ˇ

ˇp´d1 ` d1q
ˇ

ˇ`
1

2

ˇ

ˇ

ˇ
p2´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ
ď 1.

It is sufficient to prove that any W -tree has large enough node bias.
Let T be any W -tree. Let us assume that NodebiasW pT q ă d11{4{4.
Since every internal node α at distance two of the roots with k children (in particular the

children of α are leaves of T ) has bias at least biaspαq ě kminvPW |v| ě k{2, it implies that
k ă d11{4{2.

Assume then that there is an internal node α at distance one of the root such that the subtree
rooted in α has at least d11{2 leaves. Notice that for any children β of α with pβ negative children
and qβ positive ones we have

|Sumβ| “
ˇ

ˇ

ˇ
´pβ ` qβp1´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
p´pβ ` qβq ´ qβp1´ 1{2d11{2q{d11{4

ˇ

ˇ

ˇ
.

Since qβ ď pβ ` qβ ă d11{4{2 and pβ, qβ are integers, it implies that the fractional part of
|Sumβ| is at least qβp1´ 1{2d11{2q{d11{4. Moreover, if |Sumpβq| ă 1, it means that qβ ě pβ, i.e.,
qβ ě ppβ ` qβq{2. Hence in all cases,

|Sumpβq| ě
qβ ` pβ

2
¨

1

2
¨

1

d11{4
.

Consequently,

biaspαq “
ÿ

β child of α

|Sumpβq| ě
d11{2

4d11{4
“
d11{4

4

which contradicts the hypothesis. So any node at depth 1 of the tree has less than d11{2 leaves
in its subtree.

Let us show that finally the root ρ of T has large bias. Let β one of its children. Say that
in the tree rooted in β, there are pβ negative leaves and qβ positive ones. So,

|Sumβ| “
ˇ

ˇ

ˇ
´pβ ` qβp1´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

p´pβd
11{4 ` qβd

11{4 ´ qβq
1

d11{4
` qβ

1

2d13{4

ˇ

ˇ

ˇ

ˇ

.

Since qβ{p2d
13{4q ă 1{p2d11{4q, it implies that the distance of |Sumpβq| to the set N{d11{4 is at

lest qβ{p2d
13{4q. Again, if |Sumpβq| ă 1, it ensures that qβ ě ppβ ` qβq{2. So in all cases,

|Sumpβq| ě
pβ ` qβ

2
.

1

2d13{4
.
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Consequently,

biaspρq “
ÿ

β child of ρ

|Sumpβq| ě
1

4d13{4

ÿ

β child of ρ

pβ ` qβ “
d11{4

4

which again contradicts the hypothesis.
In conclusion, we have that for any W -tree T

NodebiasW pT q ě
d11{4

4
ě
d1{4

8
.

Remark 26. We can generalize the previous proof to larger depths by defining q to be the closest

integer to d1{p2`
ř∆´1
i“1 p´1qi{d1p2

i´1q{2∆´1

q. It implies that for all ∆, there exists a multiset W

such that any W -tree of depth ∆ has node bias at least Ωpd1{2∆´1
q. It improves the constant in

the exponent slightly in the lower bound from [LST22].

5 Limitations on the technique for higher depths

We also claim a limitation for higher depths.

Theorem 27. For any constant ∆ ě 2, let Γ “ Γp∆q “ ∆plog ∆q{10. Let W Ď r´1, 1s be any
multiset such that |W | ď d and |SumpW q| ď 1. Then, there is a W -tree T of depth ∆ and node
bias Opd1{Γq. (Here the constant implicit in the Op¨q notation depends on ∆.)

We follow the high-level outline of the depth-3 case, but with a slightly different recursion.
For any ∆ ě 2, let ε∆ “ log2 ∆{∆. When ∆ is clear from context, we will simply say ε instead
of ε∆.

Let Nodebiasp∆, dq be defined as follows.

Nodebiasp∆, dq “ max
WĎr´1,1s:|W |ďd,|SumpW q|ď1

min
W -trees T

NodebiasW pT q.

We will show, by induction on ∆ that for all d,∆ ě 2, Nodebiasp∆, dq ď C∆d
1{Γp∆q where

C∆ “ 2 ¨ 2∆Γp∆q ě 8 is a constant that only depends on ∆. By Lemma 20, this is clear for ∆
such that Γp∆q ď ∆ (and hence log ∆ ď 10).

Now consider a ∆ such that log ∆ ą 10 (i.e. ∆ ě 1025). Consider the following procedure.

1. Preprocessing: By the Preprocessing lemma (Lemma 19), it suffices to consider multisets
W such that |W zpr´1,´1{2s Y r1{2, 1sq| ď 2.

2. Apply the following recursive algorithm on the input W .

Algorithm A∆pW q:

Assignment d :“ |W |.
Initialization: If d ď C∆ then return the depth-1 W -tree of node bias at most C∆.

Phase 1: For as long as possible, find pairwise disjoint subsets A Ď W such that |A| ď
2d1´ε and

|SumpAq|

|A|
ď

1

d
.
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When this is no longer possible, let A1, . . . , Ae1 be the sequence of sets picked
and let W 1

1 “ A1 Y A2 ¨ ¨ ¨ Y Ae1 . Using the balancing lemma (Lemma 22), let
W1 “ W 1

1 Y ta1, . . . , af1u Ď W be such that
ř

iďf1
|ai| ď |SumpW 1

1q| ` 1 and
|SumpW1q|, |SumpW zW1q| ď 1.

Let T1 be a W1-tree constructed as follows.

For each i P re1s, let T 1i be an Ai-tree of depth at most ∆´ 1, and node bias at most
Nodebiasp∆´ 1, 2d1´εq. The tree T1 has depth ∆, where the root has as children the
roots of T 11, . . . , T

1
e1 , and f1 leaves labelled a1, . . . , af1 .

Set W 1 “W zW1 and continue.

Phase 2: As long as it is possible, find pairwise disjoint sets B ĎW 1 such that 1 ď |B| ď
4dε and

|SumpBq| ď
4

d1´ε
.

When this is no longer possible, let B1, . . . , Be2 be the sequence of sets picked
and let W 1

2 “ B1 Y B2 ¨ ¨ ¨ Y Be2 . Using the balancing lemma (Lemma 22), let
W2 “ W 1

2 Y tb1, . . . , bf2u Ď W 1 be such that
ř

iďf2
|bi| ď |SumpW 1

2q| ` 1 and
|SumpW2q|, |SumpW 1zW2q| ď 1.

Construct a W2-tree T2 in the following way.

Repeatedly pick t “ td1´ε{4u many Bis. Their union B1 satisfies |SumpB1q| ď 1. Do
this as many times as possible (the last time we pick at most t many Bi to form such
a B1). Let tB11, . . . , B

1
e12
u be the set of B1s obtained this way. For each B1i (i P re12s),

we obtain a B1i-tree T 2i as follows. Say B1i “
Ť

jPSi
Bj where |Si| ď t. We have

e12 ď
Y

d
td1´ε{4u

]

` 1 ď 6dε. For each j P Si, we construct a Bj-tree T 1i,j of depth at

most tp∆´ 1q{2u and node bias at most Nodebiasptp∆´ 1q{2u, 4dεq. The tree T 2i is a
tree of depth at most 1` tp∆´ 1q{2u where the root is connected to various subtrees
T 1i,j .

Now construct the grouping W̃ 1 according to the partition P2 “ tB
1
1, . . . , B

1
e12
, b1, . . . , bf2u

of W2. We know that
ř

|bi| ď 1`
ře2
i“1|SumpBiq| ď 1`4dε. So, since at most two bis

have norm lower than 1{2, it implies f2 ď 4` 8dε and e12 ` f2 ď 15dε (since dε ě 4).
Let T̃ 1 denote a W̃ 1-tree of node bias at most Nodebiasptp∆´ 1q{2u, 15dεq. Using the
tree T̃ 1 for W̃ 1 and the tree T 2i for each B1i from the last paragraph, we construct a
W2-tree T2 of depth at most ∆ as given by Lemma 18.

Set W 2 “W 1zW2 and continue.

Recursive call: Compute T3 = A∆pW
2q.

Return The W -tree T of node bias at most β1 ` β2 ` β3 where βi “ NodebiaspTiq (for
i P r3s) given by T1, T2, T3 and Lemma 21.

We now analyze the bias of the tree T output by the above procedure. The main observation
is the following.

Lemma 28. Fix any positive integer ∆ ě 2. For d ą C∆, after Phases 1 and 2 of the algorithm
A∆pW q, we have |W 2| ď d{2.

We assume the above lemma and finish our analysis of NodebiaspT q. We need to show that

NodebiaspT q ď C∆d
1{Γp∆q (8)
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for each input W to A∆ of size at most d. We prove this by induction on d “ |W |. The claim
is trivial for d ď C∆ (as NodebiaspT q ď d for any W -tree T ). So we assume that d ą C∆. In

particular, as Γp∆q ą ∆ ě 1025, we have d ą
`

21025
˘∆

.
For i P t1, 2, 3u, let βi denote the node bias of tree Ti constructed by the algorithm. By

Lemma 21 (the pasting lemma), we know that NodebiaspT q ď β1 ` β2 ` β3. By Lemma 28 and
induction, we have

β3 ď C∆

ˆ

d

2

˙1{Γp∆q

. (9)

We now bound β1 and β2. To bound β1, we note that

• each internal non-root node of T1 has node bias at most Nodebiasp∆´ 1, 2d1´εq, and

• the root node of T1 has node bias at most 3, as we can bound the node bias of the root
node by

e1
ÿ

i“1

|SumpAiq| `

f1
ÿ

j“1

|aj | ď 2
e1
ÿ

i“1

|SumpAiq| ` 1 ď 2
e1
ÿ

i“1

|Ai|

d
` 1 ď 3,

where for the first inequality we have used the fact that
ř

iďf1
|ai| ď |SumpW 1

1q| ` 1 ď
ře1
i“1 |SumpAiq| ` 1; for the second inequality we have used the fact that |SumpAiq| ď

|Ai|{d; and for the third inequality we have used the fact that
ře1
i“1 |Ai| ď d as these sets

are pairwise disjoint.

We have thus shown that β1 ď maxtNodebiasp∆ ´ 1, 2d1´εq, 3u. By induction on ∆, we know
therefore that

β1 ď C∆´121{Γp∆´1qdp1´εq{Γp∆´1q ď C∆d
p1´εq{Γp∆´1q. (10)

To bound β2, observe that by Lemma 18, we have β2 ď maxtNodebiaspT̃ 1quYtNodebiaspT 2i q | i P
re12su. By definition, we have NodebiaspT̃ 1q ď β1 :“ Nodebiaspt∆ ´ 1{2u, 15dεq. To bound
NodebiaspT 2i q, we note that

• each internal non-root vertex of T 2i is a vertex of some T 1i,j (for some j P rts) and hence
has node bias at most β1,

• the root node has at most d1´ε{4 children, and the sum of each child is at most 4{d1´ε,
hence the root node has node bias at most 1 ď β1.

Hence, we see that NodebiaspT 1i q ď β1 as well. Finally, β2 ď β1 and so by the induction
hypothesis, we see that β2 ď C∆{2151{Γpt∆´1{2uqdε{Γptp∆´1q{2uq ď C∆d

ε{Γptp∆´1q{2uq. Putting this
together with (9) and (10), we get

NodebiaspT q ď β1 ` β2 ` β3

ď C∆d
p1´εq{Γp∆´1q ` C∆d

ε{Γptp∆´1q{2uq ` C∆

ˆ

d

2

˙1{Γp∆q

.

Thus, to prove the inductive statement (8), it suffices to show

dp1´εq{Γp∆´1q ` dε{Γptp∆´1q{2uq `

ˆ

d

2

˙1{Γp∆q

ď d1{Γp∆q. (11)
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The above in turn is implied by the following sequence of inequalities.

d1{Γp∆q ´

ˆ

d

2

˙1{Γp∆q

ě
d1{Γp∆q

2Γp∆q
(12)

dp1´εq{Γp∆´1q ď
d1{Γp∆q

4Γp∆q
(13)

dε{Γptp∆´1q{2uq ď
d1{Γp∆q

4Γp∆q
(14)

We now prove each of (12), (13) and (14) in turn.

Proof of (12).

d1{Γp∆q ´

ˆ

d

2

˙1{Γp∆q

“ d1{Γp∆q ¨

ˆ

1´
1

21{Γp∆q

˙

ě d1{Γp∆q ¨
1

2Γp∆q

where for the final inequality we have used the standard fact that 1´2´x ě x{2 for x P r0, 1{2s.

Proof of (13). We note that

Γp∆´ 1q

Γp∆q
“ expplog e ¨ pln2p∆´ 1q ´ ln2 ∆q{10q.

The derivative of the function fpxq “ ln2 x is at most 2 lnp∆´ 1q{p∆´ 1q as x ranges over the
interval r∆´ 1,∆s. Thus by the Mean Value theorem, we can lower bound the final term in the
above computation by expp´2 logpeq lnp∆´1q{10p∆´1qq “ expp´ logp∆´1q{5p∆´1qq. Using
the standard inequality ex ě 1` x for all x P R, we get

Γp∆´ 1q

Γp∆q
ě 1´

logp∆´ 1q

5p∆´ 1q
ě 1´

ε

2
.

where the final inequality uses the fact that ε “ log2 ∆
∆ ě

p4{5q logp∆´1q
2p∆´1q “

2 logp∆´1q
5p∆´1q .

In particular, we get

1´ ε

Γp∆´ 1q
“

1´ ε{2

Γp∆´ 1q
´

ε

2Γp∆´ 1q
ď

1

Γp∆q
´

logp4Γp∆qq

log d
, (15)

where the final inequality follows from the following computation

log d ě Γp∆q∆ ě Γp∆´ 1q∆ ¨
4` 2 log2p∆q{10

log2 ∆
“ Γp∆´ 1q ¨ logp4Γp∆qq ¨

2

ε

implying the claimed inequality.
Exponentiating both sides of (15) with base d yields (13).

Proof of (14). Similarly, some elementary calculus as above give

Γptp∆´ 1q{2uq

Γp∆q
ě
p7∆{15qlogp7∆{15q{10

∆plog ∆q{10
“ exp

ˆ

´
ln 2

10
plog2p∆q ´ log2p7∆{15qq

˙

ě exp

ˆ

´
ln 2

10
¨

2

ln 2

logp7∆{15q

7∆{15
¨

8∆

15

˙

ě

ˆ

15

7∆

˙8{35 ln 2

ě
5

4∆1{3
ě p5{4qε.
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We therefore have

ε

Γptp∆´ 1q{2uq
“

p5{4qε

Γptp∆´ 1q{2uq
´

p1{4qε

Γptp∆´ 1q{2uq
ď

1

Γp∆q
´

ε

4Γptp∆´ 1q{2uq
ď

1

Γp∆q
´

logp4Γp∆qq

log d
,

where the last inequality follows from

log d ě Γp∆q∆ ě Γpt∆´ 1{2uq∆ ¨
8` 4 log2p∆q{10

log2 ∆
“ Γpt∆´ 1{2uq ¨ logp4Γp∆qq ¨

4

ε
.

Exponentiating both sides of the above inequality with base d yields (14).
We have thus proved (12), (13) and (14), which implies (11). This in turn implies the claimed

bound on NodebiaspT q in (8), which proves the inductive statement and hence the theorem.
We now prove Lemma 28.

Proof of Lemma 28. Again, we will show that if d2 “ |W 2| ě d{2 (and the other hypotheses of
the lemma), Phases 1 and 2 of the algorithm A∆ could not have concluded, hence deriving a
contradiction.

Let W 2
` and W 2

´ denote the positive and negative elements of W 2 respectively. As W 2 Ď

W where the latter set contains at most 2 elements of absolute value less than 1{2 (by the
preprocessing step), and |SumpW 2q| ď 1, it is easy to see that |W 2

`|, |W
2
´| ě d3 for some

d3 ě pd2 ´ 4q{3. Note that d3 ě d{10 ě d1´ε, where we have used the facts that d ě C∆ ě

maxp10∆, 20q and our assumption that d2 ě d{2.
By Lemma 9, we know that there is a set T Ď W 2 such that |T | ď 2d1´ε and |SumpT q| ď

4{p2d1´ε ´ 1q ď 4{d1´ε.
We now apply a simple case analysis. If |T | ą 4dε, we have a set of the form that we look

for in Phase 1. Finding such a T implies that Phase 1 could not have concluded. On the other
hand, if |T | ď 4dε, we see that Phase 2 could not have concluded. In either case, we have the
required contradiction, and hence we are done.
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