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Extracellular vesicles (EVs) have been extensively studied in the last two decades. It is now
well documented that they can actively participate in the activation or regulation of immune
system functions through different mechanisms, the most studied of which include
protein–protein interactions and miRNA transfers. The functional diversity of EV-
secreting cells makes EVs potential targets for immunotherapies through immune cell-
derived EV functions. They are also a potential source of biomarkers of graft rejection
through donor cells or graft environment-derived EV content modification. This review
focuses on preclinical studies that describe the role of EVs from different cell types in
immune suppression and graft tolerance and on the search for biomarkers of rejection.
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INTRODUCTION

Communication among cells is an essential event in all living organisms that is achieved through
several mechanisms, among which secretion of soluble elements is an important factor. For the past
two decades, a new method of intercellular communication has been unleashed through secretion of
membrane-bound, nanosized particles known as extracellular vesicles (EVs). Briefly, EVs are lipid
bilayer vesicles with a size range of 50–2,000 nm in diameter that are released by cells into the
extracellular spaces and are recognized as a new method of intracellular communication with a
range of signaling (1, 2). They are considered cargo delivery vesicles because they harbor nucleic
acids, proteins, lipids and metabolites that reflect their cellular origin. EVs are released in
extracellular spaces during physiological and pathological conditions by several types of cells (3,
4). EVs are found in almost every fluid of the body from synovial fluids and breast milk to saliva,
plasma and urine (2) and play fundamental roles in regulating normal physiological processes and
in the progression of disease and reflect the state of parent cells at the time of release (5).

The term “extracellular vesicle” was first used in the literature in 1971 by a study that involved
electron microscopic analysis of the freshwater alga ‘Ochromonas danica’ (6). Stahl and Johnstone
independently investigated and provided insights into the mechanisms involved in the secretion of
EVs from reticulocytes (7, 8). At that time, several names were used to mention EVs, such as
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shedding vesicles, membrane fragments, plasma membrane
vesicles, microvesicles and exosomes. One of the breakthroughs
for EVs was in 1996, when Graca Raposo et al. reported the
participation of EVs in immune responses by their role in
activating the adaptive immune response (9).
THE DIFFERENT TYPES OF EVs

Extracellular vesicles can be classified on the basis of their
biogenesis, origin, biological function or cargo (10). However,
the most acceptable classification for EVs is based on their
genesis. Generally, they are three classes of EVs known as
exosomes, microvesicles and apoptotic bodies. The common
term ectosomes can be used for MVs and apoptotic bodies, as
both are shed through blubbing of the cellular membrane (11). In
all three subtypes of EVs, there is a lipid bilayer membrane that
surrounds their content, e.g., proteins, RNA, or cellular debris.
Their genesis involves different mechanisms and has different
sizes and buoyant densities (12). Apoptotic bodies are generally
the largest in; however, their size ranges from 50 nm to 5000 nm,
and their density ranges from 1.16–1.28. As indicated by their
name, these vesicles are released by apoptotic cells containing
some apoptotic bodies. However, in contrast to what their name
suggests, they are not simple debris of apoptotic cells; these EVs
have important roles in immune regulation and activate
pathways to aid in phagocytosis and removal of dead cells (13).

The other two types of EVs, exosomes and microvesicles, are
regularly secreted by cells to maintain intercellular
communication. They are quite similar in properties and are
very difficult to separate. The two have been characterized based
on their size, morphology, and lipid bilayer composition (14).
One of the major differences between the two is the way they are
produced. Exosomes are formed through the endolysosomal
pathway following invagination of endosomal membranes to
form multivesicular bodies and are released after fusion of
multivesicular bodies with the plasma membrane (15).
Microvesicles are formed by outward budding of the
membrane; they are larger in size ranging from 100 nm to
1000 nm, while exosomes are smaller in size ranging from 50
nm to 150 nm and have a buoyant density from 1.10 to 1.14
gram/ml. As exosomes are formed inside the cellular membrane,
they are more enriched in phosphatidylserine, whereas the
composition of microvesicles is closer to that of the parent cell
(14). The general composition of both EVs is same, i.e., each
contain cytoplasmic proteins, lipids, mRNA, miRNA and
receptors. Some criteria identified in the Minimal information
for studies of extracellular vesicles MISEV 2018 attempt to better
discriminate exosome-specific features. However, considering
the difficulties in determining the precise classification, the
terminology extracellular vesicles is recommended as a more
appropriate designation.

In addition to the abovementioned classification, EVs can be
classified to reflect their tissue origin. Prostasomes are EVs that
originate from the prostate, while epididymosomes are vesicles
secreted by epididymal epithelial cells. However, these terms
Frontiers in Immunology | www.frontiersin.org 2
include all the EVs that have the same origin irrelevant to the
type of EVs present or the way they are produced. Hence, there is
confusion in identifying the true nature of EVs. Other examples
of such classification include cardiosomes (heart), dexosomes
(dendritic cells), oncosomes/texosomes (tumor cells) and
others (16).
THE CARGO COMPONENTS AND
FUNCTIONS OF EVs

EVs are membrane-bound vesicles that reflect the composition
of the cells from which they are derived. Hence, depending on
the origin, EVs contain different types of proteins, mRNAs,
miRNAs, DNA and lipids (including cholesterol and receptors,
cytokines and low molecular weight metabolites, e.g.,
glutathione, amino acids and ATP).

As found in most of the fluids in the body, EVs are associated
with regular physiological processes, especially those that involve
communication between cells (17) such as stem cell pluripotency
(18), angiogenesis (19–21), coagulation (22, 23) and either
immune activation or attenuation (14, 24, 25). EVs also impact
various pathological conditions, among which the most
documented is cancer formation through angiogenesis or cell-
cell communication (22, 26). EVs favor HIV-1 infection through
the transfer of chemokine receptor 5, facilitating viral entry, and
neurodegenerative diseases such as Alzheimer’s disease, where
EVs are associated with amyloid b peptides, help in the
deposition of this toxic protein to several parts of the brain
(27, 28). EVs function through the cargo they carry to specific
delivery sites. Either through direct action, such as matrix
degradation by MMP carried by EVs that aid in the formation
of capillary structures (20), or through the activation/inhibition
of “resident” cells, EVs can stimulate the production of ROS that
decrease NO and inhibit the VEGF-induced pathway (21). The
functions of EVs can vary based on the type of components they
carry. They may be immune suppressive or immune stimulatory
depending on the various components present in EVs.

Proteins
The protein composition of EVs has been extensively studied
through different techniques and coined in different databases,
e.g., Urinary Exosomes Protein Database (http://dir.nhlbi.nih.gov/
papers/lkem/exosome/) and ExoCarta (http://exocarta.ludwig.edu.
au/). This component is essentially a characteristic of the origin cells.
Lötvall et al. categorized proteins present in EVs into four distinct
groups. Most EVs contain a common group of proteins that are
involved in vesicle structure, genesis and transport and are known as
vesicular proteins. These proteins are transmembranous or lipid
bound and mainly include tetraspanins (CD9, CD63 and CD81),
integrins that help attachment EVs, and other cell adhesion
molecules (such as PECAM-1, ICAM-1 and VCAM-1). The
second group of proteins is those present in the cytosol that can
bind to themembrane or receptors, e.g., endosome-binding proteins
(annexins) and signal transduction proteins (syntenin). The other
groups of proteins are intracellular proteins that are present in
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different compartments, such as mitochondrial proteins
(cytochrome C) and Golgi components (GM130). Finally, the last
group is composed of extracellular proteins that are membrane
bound, e.g., acetylcholinesterase, ECM (including fibronectin and
collagen type IV) and other soluble proteins, such as cytokines
(bFGF, VEGFR2, TGF-b) and growth factors (29, 30).

Nucleic Acids
EVs contain different nucleic acids, such as mRNA, miRNA, long
noncoding RNAs, rRNA, tRNA mitochondrial DNAs and short
DNA sequences (31), collected in the Exocarta database. mRNA
or miRNAs can be transferred functionally to other cells,
resulting in reprogramming of recipient cells (18, 32, 33).
Different studies have shown that mRNA in EVs is functional
and can be translated to proteins in recipient cells (34, 35).
miRNAs have been extensively studied in the context of cancer,
and several miRNAs have been identified to be linked to immune
suppression that promotes cancer growth or is associated with
other diseases, such as Alzheimer’s disease (36–38). The
treatment of MSCs with high concentrations of RNAse
significantly decreased the protective effect of MSC-derived
EVs in ischemia-reperfusion-induced kidney patients,
suggesting an important role of exosomal RNAs in epigenetic
reprogramming necessary for the regenerative effect of MSC-
derived EVs (39). Additionally, the presence of miRNAs in EVs
has been linked to enhanced engraftment and hematopoietic
stem cell function upon treatment (40).

Lipids
Extracellular vesicles have lipids as an essential component of
their structure that maintain vesicular integrity, rigidity, function
and intercellular fusion of EVs. Some of the lipids are more
enriched in EVs than in their cells of origin. Although the
proportion of different types of lipids varies from cell to cell,
cholesterol is the major form of EV present in all sources,
ranging from 15% (mast cells) to 59% (PC-3 cells; prostate
cancer cell line) (41, 42). Other lipid constituents are
sphingomyelin, phosphatidylcholine, phosphatidylserine,
ganglioside GM3, lysophospholipids and phosphatidylinositol.
EVs also contain prostaglandins such as PGE2, PGF2, PGJ2 and
PGD2 at a concentration that is enough to trigger biological
responses such as PPARg or LxR pathways in target cells, which
can further suppress the transcription of proinflammatory
cytokine and chemokines mRNA (43, 44).
EV-INDUCED IMMUNE MODULATION IN
THE MANAGEMENT OF SOLID ORGAN
TRANSPLANTATION

Organ replacement is the best option for several organ failure
diseases in terms of quality of life and survivability. Through
kidney, heart, lung, liver and pancreas transplantation, 2.3
million life-years were gained in 2017 in the US. Nevertheless,
the risk of rejection is a major concern with a poor long-term
outcome due to chronic rejection even with immunosuppressive
Frontiers in Immunology | www.frontiersin.org 3
treatments. The lack of donors makes transplantation a scarce
resource. Thus, it is important to develop new strategies to
improve graft survival. EVs can either activate or suppress the
immune system depending on the type of cargo and the cells
from which they are produced. For example, EVs produced by T
cells help prime DCs through the transfer of DNA in a feedback
mechanism, while EVs produced by tumor cells are enriched in
several miRNAs, such as miR-21–3-p and miR-181d-5p, that can
reprogram neighboring macrophages to support tumor growth
by suppressing the immune system (45, 46). Whether EVs
stimulate or suppress the immune system depends on EV-
secreting cells. For example, an in vivo study showed that the
administration of exosomes derived from mature or immature
DCs had different protein compositions. Mature DC exosome
administration resulted in induced effector T cells that led to skin
graft rejection, while exosomes derived from immature DCs
resulted in T cell activation but not skin graft rejection. This
was linked to the absence of ICAM-1 and MHC-II molecules on
exosomes derived from immature DCs (47).

The role of EVs in the induction of graft rejection has been
extensively studied. It is now well established that the direct
recognition of donor cells is not the major transplant recognition
pathway. EVs carrying donor MHC molecules and peptides can
initiate the immune response that ultimately results in graft
rejection. Marino et al. showed that although donor dendritic cells
still reside in donor tissue, host APCs in lymph nodes present
vesicles bearing donor MHC I and II molecules and are responsible
for T cell activation after skin and heart transplants (48). This
suggests that host APCs can acquire donor MHCmolecules present
on EVs secreted by donor cells and thereby initiate immune
responses and further determine the fate of the allograft in a
semi-direct pathway (24). In another study, Becker et al.,
described the role of EVs in allograft recognition in an indirect
pathway (49). The semi-direct pathway have been linked with the
cross dressing of donor class I MHC onto host APC that favors the
“three cell model” of alloreactive CD8+ T cell activation (50).
Moreover, in the model of fetal tolerance to maternal antigens
during pregnancy proposed by W.Burlingham in which maternal
(or donor) cells generates MHC-containing exosomes leading to
semi-direct and indirect pathways, the indirect pathway does induce
tolerogenic APC through the co-expression of PD-L1 and CD86
with donor MHC. Whereas in the semi-direct pathway, the APC
side of the immune synapse is exclusively composed of donor
exosomal material where PD-L1 and CD86 are absent and thus,
induces clonal activation of CD4 T cells (51). As a result, EVs are a
major interface between donor and host environment and this
suggest a potential therapeutic use of donor EVs to promote
tolerance. This would require the inhibition of the semi-direct
pathway in those APC to prevent effector T cell activation. This
has not been reported in the literature which focuses on the use of
EVs that have been shown to regulate physiological processes linked
to graft survival improvement such as immunemodulation (52) and
tissue repair (53). There are several studies testing the effects of EVs
in the prevention of allograft rejection (see parts 2.1-2.5). We still
need to know which one to use. Although EVs can be secreted by
virtually all cell types, it is still unclear which cell types can produce
February 2022 | Volume 13 | Article 800018
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the EVs that will efficiently prevent graft rejection or induce graft
tolerance. The outcome will be highly dependent of the producing
cell type and the presence of donorMHCmolecules (54).We herein
review the most studied candidates for EV therapies: Mesenchymal
stromal cells (MSC)-EVs, DC-EVs and Tregs-EVs. Other cell types
produce EVs with immunoregulatory properties: Platelet-EVs or
neutrophils-EVs but for now, no data are available in
transplantation models. Thus, these EVs are only mentioned.

MSC-Derived EVs
MSCs are nonimmune cells with immunoregulatory properties
capable of inhibiting immune effector cell activity (55) and are
thus a suitable candidate for EV therapies. MSC-derived EVs
exert their protective effects on allografts through the modulation
of different biological processes, such as inflammation (56),
apoptosis (57), fibrosis (58), angiogenesis (59) and tissue repair
(60). When cocultured with CD2/CD3/CD28-stimulated T cells
or PHA-stimulated PBMCs, human MSC-derived EVs were able
to decrease the proliferation rate, maturation and migration
ability of T cells, B cells and NK cells (61) and to reduce IFN-g
production by T cells (62). In a chronic GvHD mouse model,
treatment with MSC-derived EVs reduced the percentage of T
follicular helper, germinal center B cells and macrophages as well
as macrophage production of TGFb and SMAD2 in the skin (63).
In a rat model of kidney allografts, adipose tissue-derived MSC-
EVs reduced T and NK cell graft infiltration but did not prolong
graft survival, whereas bone marrow MSC-derived EVs from
donors slightly improved graft survival but did not affect graft
lymphocyte infiltration (54). This study and others suggests that
the origin of EVs may be determinant in the development of EV-
based therapies, as MSC-derived EVs have different
immunoregulatory and regenerative functions depending on
their origin (64). Interestingly, bone marrow MSC-derived EVs
from chronic kidney disease (CKD) patients showed no
differences from those from healthy donors in the capacity to
induce angiogenesis and tissue repair, as measured by in vitro
assays (65), suggesting that bone marrow MSC-derived EVs are
fully functional in CKD patients.

In a mouse model of renal ischemia/reperfusion Injury (IRI),
administration of bone marrow-derived MSC-EVs reduced renal
epithelial cell apoptosis and improved kidney function (66). These
results are in accordance with the results from other teams working
on other types of MSC-EVs, including Wharton’s jelly MSC-EVs
(67), human induced pluripotent stem cells derived MSC-EVs (68),
and BM MSC-EVs (39) using different models such as in hepatic
(69, 70) lung (71, 72), islets (73), BM (63) or heart (67)
transplantation models.

MSC-EV injection also has a protective role when perfused ex
vivo in lungs from deceased donors that did not match the
criteria for transplantation. This was associated with an elevation
in the rate of alveolar fluid clearance. These data suggest that EV
injections before surgery could be part of the treatments and
could increase the potential donor pool (74). Interestingly,
administration of bone marrow MSC-derived EVs to a patient
with GVHD decreased proinflammatory cytokine responses and
improved clinical symptoms (75).
Frontiers in Immunology | www.frontiersin.org 4
DC-Derived EVs
Exosomes derived from mature DCs or immature DCs have
different protein compositions. In vivo, mature DC exosome
administration resulted in induced effector T cells that led to skin
graft rejection. However, exosomes derived from immature DCs
resulted in T cell activation without rejection (47).

Immature DC exosomes (imDEX) express low levels of
ICAM-I, MHC-II, CD80 and CD86, which characterize
suppressive functions (47). Four studies described the role of
donor-derived imDEX in mouse and rat transplantation models
(76–79) in kidney, liver, heart and intestinal transplantation. Li
et al. showed in a cardiac transplant model in BALB-C mice that
donor-derived imDEX prolong graft survival. These EVs induce
IL-10, inhibit IFN-g and IL-17 mRNA production by T-cells and
favor FoxP3 expression in the T-cell compartment. Together,
these data corroborate the induction of tolerance by imDEX. In
these studies, EVs promoted short-term graft survival. The best
results were obtained when EVs were injected in combination
with either rapamycin or Tregs. However, imDEX has not been
studied in chronic allograft models.

Treg-Derived EVs
In a rat kidney transplantation model, EVs secreted by regulatory
T-cells are immunosuppressive in nature and inhibit T-cell
proliferation (52). Murine Tregs secrete more EVs than other
murine T cells, such as CD4+, CD8+ and Th1 cells (80).
Moreover, in a mouse model, EVs secreted by allo-Tregs are
known to have specific miRNAs. miR-150–5p and miR-142–3p
suppress IFN-g secretion by T helper cells (81) and IL-6 secretion
by DCs while increasing anti-inflammatory IL-10 production by
DCs (82). miR-Let7d reduces Th1 cell proliferation and cytokine
production (TNF, IFN-g) (83). EVs derived from Tregs reduce
CD4+ T cell proliferation and decrease proinflammatory
cytokine release, e.g., IL-2 and IFN-g. This has been attributed
to the presence of the ectoenzyme NT5E or CD73, which plays a
role in the immunosuppressive function of Tregs by binding to
the adenosine receptor A2aR (84–87). This tolerogenic profile
prolongs renal allograft survival in a model of acute rejection in
rats and inhibits effector T-cell proliferation (88). Treg-EVs also
decrease CD8+ cytotoxic T lymphocyte (CTL) proliferation and
viability. Interestingly, the proportion of CTLs in G0/G1 was
higher when cocultured with Treg-EVs than when cocultured
with Tregs alone. Alongside CTL proliferation, Treg-EVs
decrease perforin and IFN-g production. When treated with
Treg-EVs, liver-transplanted rats had better short-term
survival (89).

Macrophage-Derived EVs
Macrophages, which are mainly part of innate immunity but also
contribute to adaptive immunity (90), release EVs that carry
pathogen-associated molecular pattern (PAMP) or invader (e.g.,
mycobacteria) components that result in increased cytokine
production by macrophages via Toll-like receptors (TLRs) and
by memory CD4+ and CD8+ T cells (91, 92). Macrophage-
derived EVs contain miR-223, which helps differentiate
myeloid cells and plays a role in graft rejection (93, 94).
February 2022 | Volume 13 | Article 800018
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Macrophage-derived EVs present enzymes for leukotriene
biosynthesis, suggesting the ability to induce in vitro
neutrophil chemotaxis (95, 96). The stimulation of
macrophages with LPS causes secretion of EVs enriched in
cytokines and miRNA, which promote inflammation through
activation of NF-kB pathways in naive immune cells (97).
Furthermore, EVs can be identified as M1 or M2-like
depending on the type of macrophages that secrete the EVs
(98), with EVs from M2 macrophages that help promote gastric
cancer cell migration. This suggests a role of these EVs either in
supporting cancer cells or in immune suppression (99).

Modified EVs
In vitro modifications of EVs may improve their therapeutic
potential, either to increase their suppressive function or to
deliver drugs. Engineering the parent cell is an interesting way
to modify EVs without in vitro manipulation of the EVs
themselves. However, Tapparo et al. reported that EVs enriched
with different miRNAs, known to be pro-regenerative, were
ineffective in ameliorating graft fate compared to naive EVs
(100). In their study, they only tested 3 miRNAs, miR-127 and
miR-10a miR-486. Further studies may highlight other miRNAs
or proteins whose enrichment would be beneficial.

EV modifications are not necessarily directed toward the
immunosuppressive activity of EVs. To be effective, EVs delivery
needs to be directed toward the graft environment, and EVs
elimination may be reduced. In this aim, scaffolds were
engineered to promote EVs deposition in the graft. For example,
a MMP2-sensitive self-assembling antigen (KMP2) hydrogel
releases EVs only in the presence of metalloproteases and other
endogenous proteases and peptidases. KMP2-EVs were shown to
have greater bioactivity in a renal IRI model than EVs alone (101).
In another example, to increase EV bioavailability, EVs may be
coated with the hydrophobic polymer PEG to reduce liver uptake
(102) and then functionalized with cell-specific nanobodies (103).
Modified EVs may also be synthetized in vitro, out of the cell, to
provide continuous delivery of pro-tolerogenic factors (104). Such
microparticles delivering cytokines (TGFb1 and IL-2) or drugs
(rapamycin) were reported to induce Tregs and promote allograft
survival in animal models (105).
EVS AS A SOURCE OF BIOMARKERS OF
GRAFT REJECTION

In addition to expectancies as therapeutics, EVs carry a fraction
of their parent cell intracellular and membrane proteins. Making
it one more source of biomarkers. The advantage of EVs as
biomarkers compared to engrafted cells is their circulating ability
through different fluids, the most obvious being serum, which
makes EV harvesting less invasive than biopsies. There is no
consensus method for EV isolation and the duration of the
procedures as well as their cost are variable. EVs purity and
integrity after the procedure is also an important point that has
to be considered. Differential ultracentrifugation is the most used
method for EVs purification. It is easy-to-use but the procedure
Frontiers in Immunology | www.frontiersin.org 5
is long and require specific equipment. Ultrafiltration and
PolyEthyleneGlycol-Based precipitation are fast, low-cost and
easy-to-use protocols counterbalanced by relatively important
contaminations with low- mRNA/miRNA quality. Other
methods, based on immunoaffinity of tetraspanin detection
such as CD9 expression allow better purity, yet may exclude
CD9neg EVs. Moreover, the removal of antibodies uses harsh
protocols that may alter membrane-bound proteins. Finally, the
size exclusion chromatography has demonstrated good
purification performances. Yet, better purifications require
more expensive columns. All these methods strengths and
weaknesses are more extensively discussed here (106).

Biomarkers of Renal Transplant Rejection
in Blood and Urine
Kidney rejection is associatedwith different pathological conditions
that induce changes in the urinary compartment that may also
contain EVs. In humans, urine EVs are thus increased after
transplantation and in chronic kidney diseases (107) and are a
potential source of biomarkers (108). Ultracentrifugation isolated-
EVs from blood of kidney transplant recipients with
glomerulopathy have higher levels (up to 2-fold) of fibronectin
and type IVcollagen thanEVs frompatientswitha stable transplant
(109). These two molecules act as self-antigens and activate
autoimmunity. Proteomics by mass spectrometry techniques on
EVs isolated by differential centrifugations can discriminate cell-
mediated rejection (CMR), antibody-mediated rejection (ABMR)
and tubular injury (TI). Each of these pathways can be associated
with biological processes: tubular injury is associated with elevated
sodium ion transport, CMR with cytoskeletal organization and
epithelial cell differentiation and ABMR with protein trafficking,
inflammatory and complement pathways. The GO term “immune
response” was enriched in the ABMR and CMR groups but not in
the TI group (110). Urinary EVs from a long-term graft survival
(LGS) group were compared with EVs from a chronic antibody-
mediated rejection (CAMR) group through another proteomic
analysis using nano-UPLC–MS/MS (Nanoscale liquid
chromatography coupled to tandem mass spectrometry). Six
proteins (known to be present in EVs and mentioned in the
literature to be related to graft rejection) were upregulated in the
CAMR group (APOA1, PIGR, TTR, AZGP1, HPX and CP).
APOA1 was the most efficient biomarker in the list to predict
graft outcome (111). The same analysis in urine from kidney
transplanted patients with stable function and acute T cell-
mediated rejection highlighted HPX and TSPAN1, and the
combination of these markers can discriminate stable and acute
TCMR (112). In another study, by usingmass spectrometry of EVs
content after differential centrifugations Sigdel et al. identified 11
proteins upregulated in EVs in urine from patients with acute
rejection (A2M, APOA2, APOM, CD5L, CLCA1, FGA, FGB,
IGHM, DEFA5, PROS1 and KIAA0753) (113).

Biomarkers of Lung Rejection in Blood
and Bronchoalveolar Lavages
EVs derived from the sera and bronchoalveolar lavage (BAL)
fluids of patients with bronchiolitis obliterans syndrome (BOS),
February 2022 | Volume 13 | Article 800018
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acute rejection (AR) and purified with ultracentrifugation have
been described to contain the self-antigens Collagen-V and
Ka1T. In the patients tested, an increase in collagen-V in EVs
was visible as early as 1-month post transplantation, whereas the
clinical diagnosis of acute rejection was at 1.5, 1.9 and 2.8
months. In contrast, collagen-V expression in EVs remained
stable at 1 month and was undetectable at 3 and 6 months in
stable patients. miRNA profiling in EVs from a cohort of 30
patients showed high expression of miR-92a and miR-182
involved in endothelial activation and inflammation in AR and
BOS. miR-155 (inflammation) and miR-142–5p (antibody-
mediated rejection) were linked to EVs from patients with BOS
(114). In the same patients, these markers of rejection were also
differentially expressed in EVs from BAL. Interestingly,
Gunasekaran et al. showed that only EVs from patients
rejecting their graft expressed the costimulatory molecules
CD40, CD80 and CD86 (115). In another study, EVs in BAL
fluids from patients with acute rejection overexpressed olfactory
receptors, complement, surfactants, defensins, TLR2, MYD88,
and nitric oxide synthase pathways and downregulated CXCL16,
IL-33 and EEA-1 compared with EVs from BAL of patients with
stable graft function (116).
Biomarkers of Heart Rejection
Heart rejection has also been associated with changes in
EVs content compared to patients stable patients. Acute
Cellular Rejection (ACR) and ABMR were associated with
significantly higher expression of the immune and nonimmune
markers HLA-I, CD41b, ROR1, and SSEA-4 in EVs isolated by
ultracentrifugation. ACR was specifically associated with the T-
cell markers CD2 and CD3, and ABMR was associated with the
B-cell markers CD19, CD20, HLA-II, CD25, and the epithelial
cell adhesion molecule CD326 (117). Together, these markers
have good potential for rejection diagnosis. When comparing
composition of EVs isolated with a commercially available
kit based on EV precipitation in heart transplanted patients,
heart failure patients and healthy controls, there are greater
similarities between healthy controls and heart failure patients
than with transplanted patients with no rejection (118). This
indicates the ability of EVs to describe the immune and
nonimmune changes following transplantation independently
of the rejection.
Biomarkers of Islets Rejection
In islet transplantation, there were changes as early as day 1 in
islet-derived EVs and T cell-derived EVs, where glucose kinetic
changes were observed at day 6. Serum EV modifications are
visible both in quantification (relative decrease in total serum
EVs) and composition with the downregulation of heat shock
cognate protein 70 (HSC70) and angiopoietin-1 and the
upregulation of hemopexin, complement C3 and 39 miRNAs
(2-fold increase or more). In a clinical cohort of islet-
transplanted diabetic patients, the drop in islet-derived
exosomes correlated with the rise in donor-specific antibodies,
while clinical markers of rejection were still unchanged (119).
Frontiers in Immunology | www.frontiersin.org 6
Clinical Applications: Benefits and
Limitations
EVs are a source of therapeutic and diagnostic tools that have not
yet been fully explored and offer promising perspectives in the
field of solid organ transplantation. Their use, like cellular
therapies and other synthetic delivery vehicles (liposomes,
nanoparticles), has many advantages. Due to their natural
origin, EVs present better biocompatibility and biodistribution
(120). Their membrane composed of a lipidic bilayer protects
their molecular content and ensures their transport within fluids
by protecting them from degradation (18, 121, 122). Moreover,
their size has proven to be a major asset, allowing better
accessibility in highly vascularized organs. Indeed, cell
therapies, based for example on the use of MSCs, have shown
that their invasive size (20-30µm) leads to their accumulation in
pulmonary capillaries (5-10µm) when administered systemically
(123). Finally, compared to liposomal or cellular therapies, EVs
present a reduced toxicity and immunogenicity (124–126). In
addition to the advantages linked to their intrinsic properties,
EVs present a reduced and more adapted production time in
comparison of cells therapy, as well as a capacity to be stored
(127, 128). The production and use of EVs in an allogeneic
production and administration model is of great interest,
especially in the context of pathologies with a reduced window
of therapeutic action (129).

Nevertheless, the use of EVs, whether for therapeutic or
diagnostic purposes, also has a number of limitations. The
absence of a consensus method for the isolation, purification
and characterization of EVs makes their use in the clinic
complex at the present time (130). Indeed, the current
isolation methods do not allow a complete purification of
EVs with a practically systematic co-isolation of proteins and
contaminating particles of the same size/density or a yield in
EVs that is too low (131). Moreover, the absence of markers
results in a heterogeneous suspension of EVs, whose different
subtypes and functionality remain difficult to determine (132).
Furthermore, comparative studies agree that the use of
different isolation and characterization techniques leads to
heterogeneity of results obtained for the same samples (133).
The development of diagnostic tools would then be subject to a
material investment with a consequent cost, making the use
and generalization of EVs as biomarkers complex. Finally, the
content and properties of EVs remain dependent on the cell
culture conditions. Hypoxia (134), serum deprivation (135),
etc. are some of the factors that can modify the secretome of
candidate cells, and consequently, their potential therapeutic
activity. Obtaining stable batches of EVs of acceptable quality
for clinical use will require further development to ensure the
quality and safety of the EVs produced.

In addition to the technical aspects, the use of EVs is also
subject to their biological source. Indeed, the production of EVs is
conditioned by the availability of a sufficient quantity of cells, and
the capacity to produce them in large quantities without altering
their phenotype, morphology and content. In order to overcome
this problem, several teams try to increase the secretion of EVs,
not without consequences. The processes used generate cellular
February 2022 | Volume 13 | Article 800018
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TABLE 1 | Markers of graft rejection in the EV compartment.
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stress and impact the phenotype of the exposed cells. This leads to
a modificat ion of the i r secre tory profi l e and the
immunoregulatory properties of the generated EVs (136, 137).

It is undeniable that research is still required for the use of
EVs in the clinic. Nevertheless, EVs could represent a new, more
efficient and reliable therapeutic approach in solid organ
transplantation, to complement and perhaps one day replace
current treatments, whose side effects remain heavy and which
are no longer sufficient for long-term graft stability.
CONCLUSION

The acquisition of tolerance toward the graft is the final step to
improve patient’s quality of life after transplantation. However,
understanding the mechanisms of tolerance may require years/
decades of research. Therefore, the management of transplantation
is still dependent on two conditions: an adequate immune
suppression to delay graft rejection and a continuous monitoring
of graft rejection through different biomarkers. The use of EVs is a
promising method for transplantation management. On the one
hand, they have shown their ability to reflect the transplanted
environment and to discriminate rejection events from stable
patients through a rapid increase in immune-associated proteins
and miRNA (summarized in Table 1). These changes are certainly
linked to a function of the EV compartment in the process of graft
rejection. EVs are a potent intermediate that promotes contact
between donor antigens and the host immune system, as they are
enriched in MHC and costimulatory molecules for most types of
transplant rejection (139, 141–143).

On the other hand, EVs are extensively studied for their
utilization as therapeutics in transplantation. EVs derived from
regulatory cells have shown immunosuppressive abilities that are
not identical but complementary to their parental functions. EV
therapies are based on the same principles as cellular therapies and
mostly involve common pathways. However, EV therapies are free
of any cellular context and EVs have no replicative properties.
Frontiers in Immunology | www.frontiersin.org 8
There is no risk of engrafting in vitro engineered cells in patients.
However, no data on the long-term impact of EV-induced
immune suppression are available yet in transplanted patients.
We reviewed in vivo studies that have demonstrated the efficacy of
such treatments in delaying graft rejection in preclinical models.
The results from one patient suffering from GvHD and treated
with MSC EVs were encouraging (75), but we are still far from
clinical trials for solid organ transplantation or GvHD as we still
need GMP suitable protocols for EVs preparation (e.g. EVs origin,
isolation method, monitoring). Initiatives emerge to propose
precise recommendations about EVs handling (144) and are
taken to grow. As far as we know, the choice of the isolation
methods depends from the attempted perspectives since different
protocols may alter different EV cargo compartment. Among the 3
main components of EVs, namely lipids, proteins and RNA, the
researches in the field of transplantation mainly focuses on
miRNA-induced gene inhibition and protein interactions with
relatively important knowledge in the search of biomarkers or
immunomodulators, whereas the impact of lipids has not been
extensively studied, whilst they have demonstrated their role in
immune functions (39, 40, 43, 44, 48).
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4. Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, Biogenesis and
Function. Nat Rev Immunol (2002) 2:569–79. doi: 10.1038/nri855

5. Meldolesi J. Extracellular Vesicles, News About Their Role in Immune Cells:
Physiology, Pathology and Diseases. Clin Exp Immunol (2019) 196:318–27.
doi: 10.1111/cei.13274

6. Aaronson S. The Synthesis of Extracellular Macromolecules and
Membranes by A Population of the Phytoflagellate Ochromonas Danica 1:
Extracellular Secretion by Ochromonas. Limnol Oceanogr (1971) 16:1–9.
doi: 10.4319/lo.1971.16.1.0001

7. Harding C, Heuser J, Stahl P. Endocytosis and Intracellular Processing of
Transferrin and Colloidal Gold-Transferrin in Rat Reticulocytes:
Demonstration of a Pathway for Receptor Shedding. Eur J Cell Biol (1984)
35:256–63.

8. Pan B-T, Johnstone RM. Fate of the Transferrin Receptor During
Maturation of Sheep Reticulocytes In Vitro: Selective Externalization
of the Receptor. Cell (1983) 33:967–78. doi: 10.1016/0092-8674(83)
90040-5

9. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief
CJ, et al. B Lymphocytes Secrete Antigen-Presenting Vesicles. J Exp Med
(1996) 183:1161–72. doi: 10.1084/jem.183.3.1161

10. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: Current
Knowledge of Their Composition, Biological Functions, and Diagnostic and
Therapeutic Potentials. Biochim Biophys Acta (BBA) - Gen Subj (2012)
1820:940–8. doi: 10.1016/j.bbagen.2012.03.017

11. Lee Y, Andaloussi EL. S. & Wood, M. J. A. Exosomes and Microvesicles:
Extracellular Vesicles for Genetic Information Transfer and Gene Therapy.
Hum Mol Genet (2012) 21:R125–34. doi: 10.1093/hmg/dds317
February 2022 | Volume 13 | Article 800018

https://doi.org/10.1093/biosci/biv084
https://doi.org/10.3402/jev.v4.27066
https://doi.org/10.1016/j.molcel.2014.08.020
https://doi.org/10.1038/nri855
https://doi.org/10.1111/cei.13274
https://doi.org/10.4319/lo.1971.16.1.0001
https://doi.org/10.1016/0092-8674(83)90040-5
https://doi.org/10.1016/0092-8674(83)90040-5
https://doi.org/10.1084/jem.183.3.1161
https://doi.org/10.1016/j.bbagen.2012.03.017
https://doi.org/10.1093/hmg/dds317
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sailliet et al. Extracellular Vesicles in Transplantation
12. Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular Organelles
Important in Intercellular Communication. J Proteomics (2010) 73:1907–
20. doi: 10.1016/j.jprot.2010.06.006

13. Caruso S, Poon IKH. Apoptotic Cell-Derived Extracellular Vesicles: More
Than Just Debris. Front Immunol (2018) 9:1486. doi: 10.3389/
fimmu.2018.01486

14. Andaloussi EL, Mäger I, Breakefield XO, Wood MJA. Extracellular Vesicles:
Biology and Emerging Therapeutic Opportunities. Nat Rev Drug Discovery
(2013) 12:347–57. doi: 10.1038/nrd3978

15. Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large
Extracellular Vesicles: Have We Found the Holy Grail of Inflammation?
Front Immunol (2018) 9:2723. doi: 10.3389/fimmu.2018.02723

16. Aalberts M, Stout TAE, Stoorvogel W. Prostasomes: Extracellular Vesicles
From the Prostate. REPRODUCTION (2014) 147:R1–R14. doi: 10.1530/
REP-13-0358

17. Yuana Y, Sturk A, Nieuwland R. Extracellular Vesicles in Physiological and
Pathological Conditions. Blood Rev (2013) 27:31–9. doi: 10.1016/
j.blre.2012.12.002

18. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic
Stem Cell-Derived Microvesicles Reprogram Hematopoietic Progenitors:
Evidence for Horizontal Transfer of mRNA and Protein Delivery.
Leukemia (2006) 20:847–56. doi: 10.1038/sj.leu.2404132

19. Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V.
Shedding of the Matrix Metalloproteinases MMP-2, MMP-9, and MT1-
MMP as Membrane Vesicle-Associated Components by Endothelial Cells.
Am J Pathol (2002) 160:673–80. doi: 10.1016/S0002-9440(10)64887-0

20. Kim HK, Song KS, Chung J-H, Lee KR, Lee S-N. Platelet Microparticles
Induce Angiogenesis In Vitro. Br J Haematol (2004) 124:376–84. doi:
10.1046/j.1365-2141.2003.04773.x

21. Yang C, Mwaikambo BR, Zhu T, Gagnon C, Lafleur J, Seshadri S, et al.
Lymphocytic Microparticles Inhibit Angiogenesis by Stimulating Oxidative
Stress and Negatively Regulating VEGF-Induced Pathways. Am J Physiology-
Regulatory Integr Comp Physiol (2008) 294:R467–76. doi: 10.1152/
ajpregu.00432.2007

22. Berckmans RJ, Sturk A, van Tienen LM, Schaap MCL, Nieuwland R. Cell-
Derived Vesicles Exposing Coagulant Tissue Factor in Saliva. Blood (2011)
117:3172–80. doi: 10.1182/blood-2010-06-290460

23. Davila M, Amirkhosravi A, Coll E, Desai H, Robles L, Colon J, et al. Tissue
Factor-Bearing Microparticles Derived From Tumor Cells: Impact on
Coagulation Activation. J Thromb Haemostasis (2008) 6:1517–24. doi:
10.1111/j.1538-7836.2008.02987.x

24. Gasser O, Schifferli JA. Activated Polymorphonuclear Neutrophils
Disseminate Anti-Inflammatory Microparticles by Ectocytosis. Blood
(2004) 104:2543–8. doi: 10.1182/blood-2004-01-0361

25. Benichou G, Wang M, Ahrens K, Madsen JC. Extracellular Vesicles in
Allograft Rejection and Tolerance. Cell Immunol (2020) 349:104063. doi:
10.1016/j.cellimm.2020.104063

26. Nilsson RJA, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, et al.
Blood Platelets Contain Tumor-Derived RNA Biomarkers. Blood (2011)
118:3680–3. doi: 10.1182/blood-2011-03-344408

27. Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, et al.
Transfer of the Chemokine Receptor CCR5 Between Cells by Membrane-
Derived Micropart ic les : A Mechanism for Cel lular Human
Immunodeficiency Virus 1 Infection. Nat Med (2000) 6:769–75. doi:
10.1038/77498

28. Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: Vehicles for the
Transfer of Toxic Proteins Associated With Neurodegenerative Diseases?
Front Physio (2012) 3. doi: 10.3389/fphys.2012.00124

29. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al.
Minimal Experimental Requirements for Definition of Extracellular Vesicles
and Their Functions: A Position Statement From the International Society
for Extracellular Vesicles. J Extracellular Vesicles (2014) 3:26913. doi:
10.3402/jev.v3.26913
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