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ABSTRACT: Collisions, resulting in aggregation of ice crystals in clouds, is an important step in the formation of snow aggregates.
Here, we study the collision process by simulating spheroid-shaped particles settling in turbulent flows, and by determining the probability
of collision. We focus on plate-like ice crystals (oblate ellipsoids), subject to gravity, to the Stokes force and torque generated by the
surrounding fluid. We also take into account the contributions to the drag and torque due to fluid inertia, which are essential to understand
the tendency of crystals to settle with their largest dimension oriented horizontally. We determine the collision rate between identical
crystals, of diameter 300`𝑚, with aspect ratios in the range 0.005 ≤ 𝛽 ≤ 0.05, and over a range of energy dissipation per unit mass,
Y, 1cm2/s3 ≤ Y ≤ 250cm2/s3. For all values of 𝛽 studied, the collision rate increases with the turbulence intensity. The dependence
on 𝛽 is more subtle. Increasing 𝛽 at low turbulence intensity (Y ≲ 16cm2/s3) diminishes the collision rate, but increases it at higher
Y ≈ 250cm2/s3. The observed behaviors can be understood as resulting from three main physical effects. First, the velocity gradients in a
turbulent flow tend to bring particles together. In addition, differential settling plays a role at small Y when the particles are thin enough
(𝛽 small), whereas the prevalence of particle inertia at higher Y leads to a strong enhancement of the collision rate.

1. Introduction

As ice crystals collide in a turbulent cloud, they may
stick to each other and coalesce to form larger aggre-
gates (Pruppacher and Klett 1997). This process is an
important ingredient in the growth of ice crystals and the
formation of snow aggregates (Lo and Passarelli 1982;
Mitchell 1988). Detailed field measurements have shown
that the resulting aggregates have a characteristic expo-
nential size distribution (Field and Heymsfield 2003), and
are shaped approximately as prolate ellipsoids (Jiang et al.
2019). The determination of the probability of collision of
ice-crystals appears as a crucial element in the quantitative
description of this process (Khain and Pinsky 2018; Gavze
and Khain 2022).
Among the collision processes involving hydrometeors,

those between ice crytals appear to be the least under-
stood (Wang 2013). Collisions between small droplets
have been extensively studied theoretically and numeri-
cally over the past decades (Shaw 2003; Franklin et al.
2005; Falkovich and Pumir 2007; Ayala et al. 2008b,a;
Grabowski and Wang 2013; Voßkuhle et al. 2014; Saito
and Gotoh 2019). In the case of ice crystals, the com-
plexity due to the particle anisotropy and to the possibil-
ity of crystals to settle with different orientations leads to
fundamental difficulties. The settling of ice crystals was
studied experimentally from field observations (Nakaya
and Terada 1935; Matrosov et al. 2005) or tank measure-
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ments of idealized objects settling in a fluid (Willmarth
et al. 1964). The first numerical investigations of set-
tling ice crystals assumed a fixed horizontal orientation
(major axis perpendicular to the gravity direction) (Pitter
et al. 1973; Wang and Ji 1997). Hashino et al. (2014) im-
posed a steady flow around columns and plates with a fixed
(but non-horizontal) orientation. More recently, it became
possible to study numerically freely falling hexagonal ice
plates (Cheng et al. 2015) and planar crystals of more
complex shapes (Nettesheim and Wang 2018). All these
studies were carried out in laminar flows (fixed uniform
flow around a fixed particle, or particle settling in a fluid at
rest). It also became possible to simulate numerically the
settling of ice crystals in turbulence (Siewert et al. 2014a,b;
Jucha et al. 2018; Naso et al. 2018; Gustavsson et al. 2021),
and also to investigate numerically the collision of crystals
in a turbulent flow (Siewert et al. 2014b; Gustavsson et al.
2017; Jucha et al. 2018; Gavze and Khain 2022). Experi-
mentally, crystal-crystal collisions were mainly studied by
considering small ice crystals colliding with a fixed ice
or artificial target (Hosler and Hallgren 1960; Keith and
Saunders 1989). More recent experiments focus on the
aggregation efficiency (Connolly et al. 2012).
The goal of the present work is to provide an estimate of

the collision kernel between settling ice crystals in turbu-
lent flows. Notoriously, the turbulence intensity in clouds,
as measured by the rate of dissipation of kinetic energy per
unit mass, Y, varies over a wide range: from Y ∼ 1cm2/s3
in weakly turbulent clouds up to ≳ 103 cm2/s3 in cumulon-
umbi (Grabowski and Vaillancourt 1999).
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We focus here on plate-like ice crystals. The convenient
simplification, used here as well as in earlier works (Pit-
ter et al. 1973), consists in approximating the crystal as
a thin oblate spheroid. The density of the crystals, 𝜌𝑝 is
much larger than that of the surrounding fluid, 𝜌 𝑓 . We
took here the same values as in Jucha et al. (2018), namely
𝜌𝑝 = 0.9194g/cm3 and 𝜌 𝑓 = 1.413× 10−3 g/cm3. The
description of anisotropic crystals requires an additional
rotational degree of freedom, which affects the way the
crystals sample the fluid. In particular, the settling veloc-
ity depends on the orientation of the crystal. This pro-
vides a mechanism that potentially enhances collision rate
between crystals (Siewert et al. 2014b; Gustavsson et al.
2017; Jucha et al. 2018). Models that correctly capture
the orientation dynamics of the settling crystals are there-
fore essential to reliably describe the collision processes.
Determining the orientation dynamics and the settling ve-
locity of ice crystals is also a crucial ingredient for the
development of accurate numerical methods of cloud mi-
crophysics simulation (Shima et al. 2020).
Here, we consider very small crystals, with a semi-major
axis 𝑎 = 150`m. This size is smaller than the size of the
smallest eddies in the flows considered. The modeling
of the force and torque acting on such crystals is crucial
for the present study. Recent experimental work (Lopez
and Guazzelli 2017) has shown the importance of fluid
inertia in determining the torque acting on crystals. This
aspect can be understood by estimating the various con-
tributions to the torque acting on a crystal (Sheikh et al.
2020), which leads to the conclusion that under a broad
range of conditions, particles settle preferentially with their
largest dimension oriented perpendicular to their direction
of fall (Kramel 2017; Menon et al. 2017; Gustavsson et al.
2019). Gustavsson et al. (2019) undertook a complete
study to describe the statistics of crystals orientation in
turbulent flow by taking into account fluid inertia in the ex-
pressions of the force and torque acting on a spheroid (Cox
1965; Khayat and Cox 1989; Dabade et al. 2015). This
led to a full description of the statistics of orientations in
the overdamped regime, i.e., when particle inertia can be
neglected (Gustavsson et al. 2019), also derived by Anand
et al. (2020). A description of the statistics of orientation
appropriate for a wide range of cloud conditions, con-
sistent with measured orientation distributions, has been
more recently derived (Gustavsson et al. 2021), extending
the earlier work of Klett (1995).
In this work, we perform direct numerical simulations of
homogeneous isotropic turbulent flows, and follow the mo-
tion of spheroids, using the set of equations described
in Dabade et al. (2015); Sheikh et al. (2020), and recently
used in a cloud microphysics context by Gustavsson et al.
(2021). We vary the energy dissipation range over the
realistic range 1cm2/s3 ≤ Y ≤ 250cm2/s3, as well as the
aspect ratio of the crystals, keeping the diameter fixed and
equal to 300`m, and we determine the collision kernels

for these cases. We show that collisions may result from
several possible effects. One mechanism, originally pro-
posed by Saffman and Turner (1956), is due to the fact that
the erratic turbulent motions may bring particles together.
The possibility of a broad distribution of orientation fa-
vors collisions due to the different settling velocities of
particles. Finally, at high turbulence intensity, the particle
inertia becomes important, and makes it possible for parti-
cles not following the flow to collide. This effect, denoted
as the ‘sling effect’ (Falkovich et al. 2001; Falkovich and
Pumir 2007) or alternatively as a manifestation of ‘caus-
tics’ (Wilkinson and Mehlig 2005; Wilkinson et al. 2006),
enhances the probability of collisions in the suspension.
The problem studied here is complex, with a large num-

ber of mechanisms and non-dimensional parameters at
play. In this paper we focus on the effect of particle
and fluid inertia on ice-crystal collisions, using a highly
idealised model that does not take into account interac-
tions, which may become important when the crystals
are close: hydrodynamic interactions (Shaqfeh and Koch
1990), Coulomb interactions (Magnusson et al. 2021), and
the breakdown of hydrodynamics (the fact that the discrete
molecular nature of the gas becomes important) when the
gap between the particles is of the order of the mean free
path of the ambient air (Sundararajakumar andKoch 1996).
The model describes how the crystals approach, but can-
not predict collision outcomes. When counting collisions
we use a simplified approach, the ghost-collision scheme
(Wang et al. 1998; Gustavsson et al. 2008; Gustavsson and
Mehlig 2016), which simply counts how frequently crystals
approach each other, disregarding any change in boundary
conditions e.g. due to fragmentation or coalescence.
Our work is organized as follows. The simplifying as-

sumptions made to treat the problem, as well as the numer-
ical methodology are presented in section. 2. In section 3
we show results of our numerical simulations for the orien-
tation, settling velocity and collisions of the crystals. The
collision statistics are then discussed in section 4. Section 5
finally contains our conclusions.

2. Problem setup

The way we set up the problem here closely follows
Jucha et al. (2018); Naso et al. (2018).

Turbulent flow simulations. Although turbulence in
clouds is affected by various parameters, particularly by the
flow stratification, we simplify the problem by restricting
ourselves to homogeneous isotropic turbulence. Our work
is based on direct numerical simulations of the Navier-
Stokes equations:

𝜕𝑡u+ (u · ∇)u = −∇𝑝
𝜌 𝑓

+ a∇2u+ f, (1)

∇ ·u = 0, (2)
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where u is the velocity of the fluid, 𝑝 its pressure, 𝜌 𝑓 and a
are the mass density and kinematic viscosity, respectively.
We take the values of 𝜌 𝑓 = 1.413× 10−3 g/cm3, and a =
0.1132cm2/s.
We use a triply periodic box, of size 𝐿 = 8×𝜋cm≈ 25cm

in each spatial direction. The number of grid points, 𝑁 , or
equivalently of Fourier modes in each direction is varied
to maintain sufficient accuracy to allow us to reliably inter-
polate the velocity field and its derivatives at the particle
positions, as necessary to solve the equations of motion
for the particles. We insisted in our simulations that the
largest wavenumber resolved, 𝑘𝑚𝑎𝑥 , satisfies [𝑘𝑚𝑎𝑥 ≳ 3,
where [ = (a3/Y)1/4 is the size of the smallest eddies in the
flow ([ is known as the Kolmogorov scale). Further details
about the code can be found in Jucha et al. (2018); Naso
et al. (2018). We picked three values of Y, Y ≈ 1cm2/s3
(flow I, runs 1-3), Y ≈ 16cm2/s3 (flow II, runs 4-7) and
Y ≈ 250cm2/s3 (flow III, runs 8-10), further details are
given in Table 1.

Ice crystals: elementary simplifications. We focus
here on small planar ice-crystals, whose shape we approx-
imate as oblate spheroids. More precisely, we consider
an ellipsoid of revolution, with a semi-major axis 𝑎 and
a semi-minor axis 𝑐, the aspect ratio 𝛽 = 𝑐/𝑎 being taken
very small, 𝛽 = 0.005, 0.01, 0.02 and 0.05. We added the
smallest value, 𝛽 = 0.005, compared to the set of values
considered in Jucha et al. (2018), to better illustrate the
interplay between different physical effects, as discussed
in Section 4.
As the volume fraction of particles in clouds is very

small, it is justified to ignore the feedback of the particles
on the flow, and to use the one-way coupling approxima-
tion (Elgobashi 1994).
The motion of the crystals is obtained by solving New-

ton’s equations in the inertial reference frame for the center
of mass of the particle, x, and for its velocity, v, as well
as for the orientation, n̂, defined as the unit vector parallel

Table 1. Properties of the three turbulent flows used in this study. We
simulated homogeneous isotropic flows in triply periodic boxes of size
𝐿 = 8𝜋 cm ≈ 25cm, with a fixed viscosity a = 0.1132cm2/s, injecting a
fixed amount of energy Y in the system. We took three different values
of Y, resulting in three different flows, as listed in the table. The Taylor-
scale Reynolds number 𝑅𝑒_, the Kolmogorov time 𝜏𝐾 , the integral time
𝑇𝐿 , and the rms velocity fluctuation 𝑢𝑟𝑚𝑠 are listed for the three flows.
The resolution for each run is 𝑁3.

Flow I II III

Y (cm2/s3) 0.976 15.62 246.4
𝑅𝑒_ 55.8 94.6 151.2
𝜏𝐾 (s) 0.341 0.085 0.021
𝑇𝐿 (s) 1.96 0.70 0.26
𝑢𝑟𝑚𝑠 (cm/s) 2.18 5.72 14.4
𝑁 384 768 1536

to the axis of symmetry of the spheroid, as illustrated in
Fig. 1, and for its angular velocity, ω:

𝑑x
𝑑𝑡

= v , 𝑚
𝑑v
𝑑𝑡

= fℎ +𝑚g, (3)

where fℎ is the hydrodynamic force acting on the particle,
and

𝑑n̂
𝑑𝑡

= ω× n̂ , 𝑚
𝑑

𝑑𝑡

[
I(n̂)ω

]
= τℎ, (4)

where τℎ is the hydrodynamic torque acting on it. In
Eqs. (3) and (4), 𝑚 denotes the mass of the particles, and
I(n̂) the moment of inertia tensor, whose expression is
given in Appendix A. The modeling challenge consists in
providing the correct expressions for the force fℎ and for
the torque τℎ exerted by the fluid on the particles.
Our approach rests on the assumption that the particle

Reynolds number 𝑅𝑒𝑝 = 𝑎 |u−v|/a, based on the difference
between the flow velocity u and the particle velocity v, is
small. Under this condition, it is often assumed that the hy-
drodynamic force and torque acting on the ice crystals can
be derived in the Stokes limit, i.e. when all the nonlinear
terms in theNavier-Stokes equations can be neglected (Kim
andKarrila 1991; Jeffery 1922). In this approach, the effect
of fluid inertia is therefore completely neglected (Siewert
et al. 2014b; Jucha et al. 2018; Gavze and Khain 2022).
When the carrying flow is turbulent, such an assumption
leads to the qualitatively incorrect conclusion that parti-
cles tend to settle with their major axis oriented parallel to
gravity (Siewert et al. 2014a; Gustavsson et al. 2017).
In fact, the Reynolds number happens to be of order

unity in the realistic parameter regime considered here,
see also Jucha et al. (2018). For these reasons, the first
correction induced by fluid inertia must be accounted for
in the expressions of fℎ and τℎ, in a systematic expansion
in powers of 𝑅𝑒𝑝 . Whereas the correction to the force
has been known for some time (Brenner 1961; Khayat and
Cox 1989), the expression for the torque in the small 𝑅𝑒𝑝
limit has been derived more recently (Dabade et al. 2015).
The explicit forms of the force fℎ and of the torque τℎ
including both the Stokes contribution and the first effect
of fluid inertia are provided in Appendix A. They have
been validated numerically by directly solving the Navier-
Stokes equations around a spheroid (Jiang et al. 2021), and
confronted to experimental measurements of cylindrical
fibers settling in a viscous fluid (Cabrera et al. 2022). A
systematic analysis of the resulting equations (Sheikh et al.
2020; Gustavsson et al. 2021) (see also Kramel (2017);
Anand et al. (2020)) shows that when the settling velocity
𝑈𝑠 is large compared to the velocity of the smallest eddies
in the flows, 𝑢𝐾 = (aY)1/4, then the torque induced by fluid
inertia prevails over the Stokes torque, which can lead to a
preferential orientation of the spheroids with their largest
dimension perpendicular to gravity. We stress that the
novel aspect of the present work compared to the study
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Fig. 1. Representation of a planar ice crystal by an oblate spheroid.
The vector n̂ characterizing the orientation of the crystal is parallel to
the axis of symmetry, and points downward. The angle 𝜑 is the angle
between g and n̂.

of Jucha et al. (2018) comes from the use of force and
torque expressions including the effect of fluid inertia. This
modification plays a very significant role in predicting the
distribution of orientations of the crystals, as documented
by Gustavsson et al. (2021) (recall that considering the
Stokes torque only led to a preferential orientation of the
spheroids with their major axis aligned with gravity). We
will show in Sec. 3 and discuss in Sec. 5 the effect of this
correction on the crystal-crystal collisions.
The equations of motion of the particles, Eqs. (3,4),

involve several important dimensional quantities (Gustavs-
son et al. 2021). The first one is 𝜏𝑝 , the characteristic time
of the particle originating from the Stokes drag, and the
second one is 𝑤𝑠 , the typical settling velocity, which we
take, following Jucha et al. (2018), to be respectively equal
to:

𝜏𝑝 =
2
9
𝜌𝑝

𝜌 𝑓

𝛽𝑎2

a
and 𝑤𝑠 = 𝑔𝜏𝑝 . (5)

It is convenient to make the time 𝜏𝑝 and the velocity 𝑤𝑠
dimensionless by dividing them respectively by 𝜏𝐾 and by
the velocity across the smallest eddies in the flow, 𝑢𝐾 ≡
(aY)1/4. This leads to the definitions of the Stokes number
St and of the settling number Sv, which characterizes the
settling velocity (Devenish et al. 2012; Wang and Maxey
1993; Grabowski and Vaillancourt 1999; Gustavsson et al.
2021), as:

St =
4𝛽
9
𝜌𝑝

𝜌 𝑓

( 𝑎
[

)2
and Sv =

4𝛽
9
𝜌𝑝

𝜌 𝑓

𝑎2𝑔

(a5Y)1/4
, (6)

wherewe recall that [ = (a3/Y)1/4 is theKolmogorov scale.
Note that the quantities Sv and St, as defined by Eq. (6),
differ by a factor 2 from the ones used in Gustavsson et al.
(2021).
The approach used to solve the equations of motion

for the crystals, Eq. (3,4), follows the method introduced

by Siewert et al. (2014a) and by Jucha et al. (2018). Equa-
tion (3) has been integrated in time by using a second-
order Heun scheme (two-stage Runge-Kutta method). The
fluid velocity and velocity gradients at the particle location
are estimated from grid values by a tricubic interpolation.
Equation (4) for the angular velocity is integrated in time
in the particle-fixed coordinate system (center of mass and
principal axes) where the moment of inertia tensor is con-
stant and diagonal. The spatial rotation between the inertial
and the particle-fixed frame is conveniently handled by us-
ing quaternions and tracking the orientation of each parti-
cle. Let us note that an additional inertial term arises in the
(transformed) equation due to the non-Galilean nature of
the particle-fixed frame. Equation (4) was also integrated
in time with a second-order Heun scheme. Consistent with
the periodic boundary conditions used, we reinjected parti-
cles leaving the box through one of the sides to the opposite
side. In all the runs considered in this work, the charac-
teristic time taken by a particle to settle through the box is
larger than ≳ 2.5𝑇𝐿 , where 𝑇𝐿 is the large-eddy turnover
time. Therefore, the flow has time to decorrelate between
two passages of the particles.

Collision detection. Numerically, we determine the ge-
ometric collision rate (Wang et al. 2005; Ayala et al. 2008b;
Grabowski and Wang 2013). This approximation neglects
the hydrodynamic interactions, as well as any interaction
between particles as they approach each other (Pruppacher
and Klett 1997; Batchelor and Green 1972; Chun et al.
2005). Furthermore, we simply detect, from a large set
of numerical trajectories of ellipsoids, the instants when
two particles get into contact (“collide”) with each other,
while keeping the two colliding particles thereafter without
any modification. The errors induced by this approxima-
tion, known as the “ghost-collision” approximation (Wang
et al. 1998; Gustavsson et al. 2008; Gustavsson andMehlig
2016), do not exceed ∼ 15% in the case of spherical parti-
cles in a turbulent flow (Voßkuhle et al. 2013).
To determine when a collision occurs, we implemented

the algorithm developed by Choi et al. (2009) to detect
when two ellipsoids, moving in three dimensions, touch
each other. The algorithm has been used successfully
to detect collisions of settling ellipsoids in a turbulent
flow (Siewert et al. 2014b; Jucha et al. 2018).
In practice, we simulated a million trajectories for each

type of particle, for a time of ≥ 50𝑇𝐿 for flow I, ≥ 30𝑇𝐿
for flow II and ≥ 20𝑇𝐿 for flow III. Note that we waited
before recording any property for at least 50𝜏[ , so the
particles could reach a statistically steady state. The data
shown in the following sections correspond to ≳ 25,000
collisions. We also checked the statistical significance of
the numbers discussed below by dividing the total run into
four or five identical sub-runs, and determining the number
of collisions for each of these sub-runs. These comparisons
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Fig. 2. Statistics of orientation: fluctuations of the angle of the
settling spheroids with respect to the equilibrium position (𝜑 = 0 in still
fluid). For each point, the statistical uncertainty has been evaluated by
calculating the deviations between four subsets of the total data. The
resulting deviations are ≲ 5% in most cases; they are ∼ 7% and ∼ 10%
for the (Y ≈ 1, 𝛽 = 0.005) and (Y ≈ 250, 𝛽 = 0.02) cases, respectively.

convinced us that the values of the collision kernel𝐾 shown
below are accurate to within a few percents.

3. Results

In this Section, we discuss the results of our model sim-
ulations. A summary of the runs, on which the following
discussion is based, can be found in Table B1, see Ap-
pendix B.

a. Orientation and settling velocity of the crystals

The orientation of the settling crystals is a crucial as-
pect for the physical effects leading to collision between
crystals, in addition to its importance to explain the re-
flection of light by crystals in clouds (Klett 1995; Bréon
and Dubrulle 2004; Yang et al. 2015). We recall that in
the absence of any flow, oblate spheroids settle with their
major axis oriented perpendicular to gravity. In the case
of plate-like ice crystals, the unit vector parallel to the axis
of symmetry of particle, n̂, is therefore parallel to ĝ, the
vertical direction, parallel to the gravity g ≡ |g| ĝ. We pick
the vector n̂ to point downward, so that n̂ · ĝ ≥ 0, and we
denote the angle between n̂ and ĝ as 𝜑, as illustrated in
Fig. 1. Numerically, we recorded the fluctuations of 𝜑 of
the simulated particles settling through the flow.
Figure 2 shows the rms of the angle fluctuations, ⟨𝜑2⟩1/2,

for all our runs except run 7 (flow II and 𝛽 = 0.05). This
figure shows the dependence of ⟨𝜑2⟩1/2 as a function of the
turbulence intensity Y, for the three values of 𝛽: 𝛽 = 0.005
(rightwards pointing triangle), 𝛽 = 0.01 (leftwards pointing
triangle) and 𝛽 = 0.02 (upwards pointing triangle). The be-
havior shown in Fig. 2 follows the predictions of our earlier

10
0

10
2

1

1.2

1.4

1.6

0.005

0.01

0.02

Fig. 3. Dependence of the averaged settling velocity of crystals
as a function of 𝛽 and Y. The three curves show the ratio between
the averaged settling velocity 𝑈𝑠 and the settling velocity of the same
crystals in still fluid, 𝑈0, as a function of the energy dissipation. Each
curve corresponds to a value of 𝛽 (𝛽 = 0.005: rightwards pointing
triangles; 𝛽 = 0.01: leftwards pointing triangles, and 𝛽 = 0.02: upwards
pointing triangles). The settling velocity increases with the intensity
of turbulence. The statistical uncertainty has been evaluated using the
same method as in Fig. 2. The deviations are always ≲ 3%, except for
the (Y ≈ 1, 𝛽 = 0.005) case, for which it is ∼ 7%.

studies (Gustavsson et al. 2021). Specifically, we find that
the orientation distribution of the crystals is very narrowly
peaked around 𝜑 = 0 at low values of Y, and becomes
broader as the turbulence intensity increases. Figure 2
also shows that the distribution of particle orientation is
more peaked when 𝛽 is large, and becomes broader when
𝛽 decreases. In quantitative terms, we observe that the
fluctuation of the particle orientation does not exceed 4◦
for Y ≈ 1cm2/s3 and 𝛽 ≥ 0.01, and for Y ≈ 16cm2/s3 and
𝛽 ≥ 0.02, see Table B1.

Settling velocity. We begin by stressing that, as shown
by Gustavsson et al. (2021), the model used here predicts
settling velocities in still air in good agreement with those
observed experimentally (Pruppacher andKlett 1997). The
first effect of the orientation fluctuations is to affect the set-
tling velocity of the crystals. This is illustrated in Fig. 3,
which shows the averaged settling velocity, 𝑈𝑠 = −𝑣𝑧 ,
where 𝑣𝑧 is the vertical component of velocity (see Fig. 1).
In Fig. 3, 𝑈𝑠 is normalized by the velocity of particles
settling in still fluid, 𝑈0. The ratios are very close to
1 at low values of Y, and gradually increase with Y. A
first explanation for this is provided by the finding sum-
marized above, that the orientation distribution broadens
due to the increase of the turbulence intensity. In fact,
the largest drag in the direction of gravity is obtained when
𝜑 = 0; so increasing 𝜑 leads to a smaller drag, and therefore
to a larger settling velocity. A larger rms of the orienta-
tion fluctuation therefore increases the settling velocity𝑈𝑠 ,
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compared to the reference value 𝑈0 in the absence of any
fluid motion. The effect of turbulence on the settling of
particles has been widely investigated for spherical objects
(Good et al. 2014; Ireland et al. 2016; Rosa et al. 2016):
turbulence most often increases their settling velocity, as
observed herein for spheroidal particles, and more rarely
decreases it. Several physical mechanisms were proposed
to explain these results: the preferential sweeping (Maxey
1987), according to which heavy particles should sample
preferentially downflow regions, is expected to increase the
settling, whereas the loitering effect (falling particles spend
more time in the regions with upward flow) (Nielsen 1993)
and vortex trapping should decrease the settling velocity.
The increase in the settling velocity when the orienta-

tion of the crystal differs from 𝜑 = 0 is further illustrated
in Fig. 4, which shows the average of the settling velocity
of crystals conditioned on the cosine of the angle 𝜑, or
equivalently, on the 𝑧-component of the vector n̂ aligned
with the axis of symmetry of the spheroid, see Fig.1. The
orientation 𝜑 = 0 corresponds here to 𝑛𝑧 = 1. The condi-
tional averages shown in Fig. 4 correspond to the thinnest
crystals, with the value of 𝛽 = 0.005, at the different values
of Y. For the three turbulence intensities, the numeri-
cal results reveal a clear increase of the settling velocity
when 𝑛𝑧 decreases towards 0. For the lowest turbulence
intensity, the settling velocity at 𝑛𝑧 ≈ 0, corresponding to
a particle oriented with its major axis parallel to gravity,
is roughly equal to 3/2 times the velocity of the particle
settling with 𝑛𝑧 = 1 (major axis perpendicular to gravity),
which corresponds to the ratio between the drag of the
particles settling with the two orientations in a quiescent
fluid. As seen in a previous study, where the effect of
fluid inertia on the dynamics of crystals was (incorrectly)
neglected (Siewert et al. 2014b; Jucha et al. 2018), the
systematic difference of the settling velocity on the crystal
orientation plays an important role and tends to enhance
collisions. Interestingly, we notice that the value of the
settling velocity conditioned on 𝑛𝑧 ≈ 1 is lower than the
expected value in a quiescent fluid for the highest turbu-
lence intensity. This result suggests that ice crystals with
their major axis oriented perpendicular to gravity may be
more sensitive to the loitering effect and vortex trapping,
and/or less sensitive to preferential sweeping.

b. The collision kernel

In a dilute solution of volume𝑉 , containing 𝑁 particles,
the average number of collisions, 𝑁𝑐, occurring over a du-
ration 𝑇 , is proportional to 𝑇 , to the inverse of the volume,
𝑉−1, and to 𝑁2, and can therefore be written as (Voßkuhle
et al. 2013; Jucha et al. 2018):

𝑁𝑐 =
1
2
𝐾 × 𝑁

2

𝑉
×𝑇 (7)
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1

1.5
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2.5

3

3.5

0.976

15.62

246.6

Fig. 4. Averaged settling velocity conditioned on the orientation of
the crystal, represented by 𝑛𝑧 , the vertical component of n̂. The three
curves correspond to 𝛽 = 0.005 and to the three values of Y, as indicated
by the legend. The horizontal gray dot-dashed line shows the settling
velocity in a fluid at rest, with 𝑛𝑧 = 1, which is the only steady and stable
regime in this case.

where 𝐾 is the collision kernel. The dimension of 𝐾 is a
volume divided by a time.
Figure 5 shows the collision kernels 𝐾 determined nu-

merically for our model system. Figure 5(a) shows the
dependence of 𝐾 on Y, at the values 𝛽 = 0.005, 0.01 and
0.02. Our results are consistentwith the expectation that in-
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Fig. 5. Dependence of the collision kernel on: (a) the energy dissi-
pation for 𝛽 = 0.005 (right-pointing triangles), 0.01 (left-pointing trian-
gles) and 0.02 (upper-pointing triangles), and on (b): 𝛽 at Y ≈ 1cm2/s3
(+ symbols), Y ≈ 16cm2/s3 (diamond symbols) and Y ≈ 250cm2/s3
(square symbols). The statistical uncertainty has been evaluated using
the same method as in Fig. 2. The deviations are always between 2 and
7%, except for the (Y ≈ 250, 𝛽 = 0.02) case, for which it is ∼ 9%.
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creasing the turbulence intensity enhances the probability
of collision. As a reference, we indicate as a dashed line the
Y1/2 dependence, expected when collisions are due to the
velocity gradients bringing particles together (Saffman and
Turner 1956; Jucha et al. 2018). Whereas the dependence
of 𝐾 on Y is qualitatively close to this expectation when Y
varies from ≈ 1cm2/s3 (flow I) to ≈ 16cm2/s3 (flow II),
the evolution at higher values of Y shows a strong deviation
from this behavior. The collision rate 𝐾 for the thickest
particles, 𝛽 = 0.02, which was smaller for Y ≤ 16cm2/s3,
grows far more rapidly than Y1/2. On the other hand, for
the thinnest crystals, with 𝛽 = 0.005, the value of 𝐾 , which
was the largest at Y ≤ 16cm2/s3, grows slower than Y1/2
between Y ≈ 16cm2/s3 and Y ≈ 256cm2/s3. Remarkably,
whereas the collision rate decreases at increasing 𝛽 for
Y ≲ 16cm2/s3, it increases at the largest value of Y simu-
lated, as shown on Fig. 5(b). This complex dependence on
the parameters of the problem can only be interpreted as the
result of a competition between several different physical
mechanisms in the dynamics of collisions. The following
section is devoted to a closer analysis of these mechanisms.

4. Discussion

a. Collision mechanisms

The original Saffman-Turner theory (Saffman andTurner
1956), valid for particles following exactly the flow, pro-
vides a convenient starting point to discuss the collision
mechanisms at play in the present problem. We recall that
the physics is based on expressing the collision kernel 𝐾
in a turbulent suspension of spheres, of radius 𝑎, as a flux
of particles through a sphere centered at the position of a
given particle in the suspension, of radius 2𝑎, the particles
being brought together by the velocity gradient. Consid-
ering two colliding particles at positions x1 and x2, with r̂
defined as r̂ = (x2−x1)/| |x2−x1 | |, and moving with veloc-
ity v1 and v2, the relative velocity of the particles is then
expected to scale as:

Δ𝑣𝑟 ≡ (v2−v1) · r̂ ∼ 𝑎/𝜏𝐾 . (8)

The quantity Δ𝑣𝑟 (see Fig. 6(d)) is the relative velocity
between the centers of mass of two colliding particles. A
negative value of Δ𝑣𝑟 means that these centers of mass are
approaching each other, whereas a positive value reflects
the fact that they are moving away from each other. For
spherical particles, a collision is only possible when Δ𝑣𝑟 <
0, but the rotational motion of spheroidal objects allows
them to collide with Δ𝑣𝑟 > 0.
We postulate here that the rotational degrees of freedom,

i.e. the fluctuations in the orientation of the crystals, will
not affect the estimate provided by Eq. (8) for spheres. In
this spirit, Fig. 6(a-c) show the distribution of the relative
velocity Δ𝑣𝑟 between colliding crystals. To make Δ𝑣𝑟
dimensionless, we divide it by the characteristic velocity

induced by the velocity gradientswhen two spheroids come
close to each other. We estimate this velocity as the ratio
𝑎/𝜏𝐾 , where we recall that 𝑎 is the semi-major axis of the
spheroid. The three different panels present our results at
three different values of Y, in increasing order of Y from
(a) to (c).
Remarkably, at the lowest turbulence intensity, Y ≈

1cm2/s3, the PDFs of Δ𝑣𝑟 almost perfectly superpose for
𝛽 = 0.01 (dashed black line) and 𝛽 = 0.02 (dashed-dotted
red line). In fact, the center of the PDF of Δ𝑣𝑟 at 𝛽 = 0.005
(continuous blue line) is also very similar to those at higher
values of 𝛽. However, a difference can be seen by the ap-
pearance of a broad tail biased towards very negative values
of Δ𝑣𝑟𝜏𝐾/𝑎, with a probability of ≈ 2 10−3 times the max-
imum probability. To understand the origin of this broad
tail for 𝛽 = 0.005, it is useful to recall that at this low tur-
bulence intensity and for 𝛽 = 0.01 and 𝛽 = 0.02, the rms
of the orientation fluctuations are extremely small (of the
order of ∼ 3◦ or less); they are slightly larger for 𝛽 = 0.005
(∼ 13◦). This increased value of ⟨𝜑2⟩1/2 implies a distri-
bution of orientation that is not as sharply peaked around
𝜑 ≈ 0. As shown in Fig.4, the settling velocity of crystals
with a sufficiently small value of 𝑛𝑧 ≡ | cos(𝜑) | (say for
𝑛𝑧 ≲ 0.6) can exceed the averaged settling velocity by ap-
proximately 1cm/s. This corresponds to Δ𝑣𝑟𝜏𝐾/𝑎 ≈ 22,
which is close to the horizontal extent of the broad tail
towards negative values of Δ𝑣𝑟 . This horizontal extent of
the blue curve in Fig. 6(a) is therefore close to the excess
of settling velocity of the fastest ice crystals (those ori-
ented with their major axis close to vertical) with respect
to the averaged settling velocity. As a consequence, we
interpret the broad negative tails of the PDFs as a signa-
ture of the differential settling effect: faster ice crystals,
oriented predominantly "vertically", catch up with slower
ones underneath, oriented "horizontally".
Further evidence for the role of differential settling can

be obtained by comparing the collision kernel𝐾 to its value
𝐾0 in the same flow but turning off gravity (see the two
last columns of Table B1). Whereas the values of 𝐾 and
𝐾0 are very close when 𝛽 ≥ 0.01, the ratio between 𝐾 and
𝐾0 becomes ≈ 3 for 𝛽 = 0.005, an effect that we attribute
to the differential settling between crystals. We note that
the values of 𝐾0 are very close to the values of 𝐾0 found in
Jucha et al. (2018), implying that the dynamics of orienta-
tion does not matter much to estimate the collision kernel
if gravity was absent. On the contrary, in the realistic sys-
tem, the much stronger alignment of the crystals with the
direction of gravity in the present study leads to a strong
reduction of differential settling, resulting in much lower
values of 𝐾 compared to Jucha et al. (2018).
The structure of the PDFs of Δ𝑣𝑟 at the intermediate

value of Y ≈ 16cm2/s3, shown in Fig. 6(b), points to an
increased importance of the differential settling between
crystals, compared to the situation at Y ≈ 1cm2/s3. Once
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Fig. 6. (a-c) Probability density function of the velocity difference
between two colliding particles, defined by Eq. (8), andmade dimension-
less by dividing by 𝑎/𝜏𝐾 . Increasing turbulence intensity from (a) to
(c). The cores of the distributions closely superposewith each other. The
broad tails reflect the effect of differential settling at low (Y ≈ 1cm2/s3,
top) or at intermediate (Y ≈ 16cm2/s3, middle) turbulence intensity,
or the sling effect, at the highest turbulence intensity (Y ≈ 250cm2/s3,
bottom). (d) Illustration of the definition of the relative velocity Δ𝑣𝑟
[Eq. (8)].

again, the cores of the distributions for the three differ-
ent values of 𝛽 superpose very well, which indicates that
the vast majority of collisions between crystals at this in-
termediate turbulence intensity are due to particles being
brought together by the action of the velocity gradients. In
the cases 𝛽 = 0.005 (full blue line), and 𝛽 = 0.01 (dashed
black line), one observes broader tails corresponding to
very negative values of Δ𝑣𝑟 . Compared to the lower turbu-
lence intensity, Y ≈ 1cm2/s3, the value of the probability
where the broad tail develops at 𝛽 = 0.005 is much higher

when Y ≈ 16cm2/s3. This reflects the much broader dis-
tribution of crystal orientation, and in particular the larger
probability of having particles with 𝑛𝑧 < 0.6. A quantita-
tive comparison shows that the broader tails observed for
𝛽 = 0.005 and 𝛽 = 0.01 in the distributions of Δ𝑣𝑟 × 𝜏𝐾/𝑎
can be attributed to the fluctuations of orientation, with
𝑛𝑧 ≲ 0.6. In comparison, for 𝛽 = 0.02, the distribution
of Δ𝑣𝑟 × 𝜏𝐾/𝑎 remains peaked around the center, without
any visible deviation. The role of differential settling as
a collision mechanism, clearly demonstrated for 𝛽 = 0.005
and 𝛽 = 0.01 by Fig. 6(b), can be further evidenced by
comparing the collision kernel values in the presence and
in the absence of gravity (Table B1): 𝐾 > 𝐾0 for 𝛽 ≤ 0.01,
whereas 𝐾 ≲ 𝐾0 for 𝛽 ≥ 0.02.
Before discussing the last panel of Fig. 6, it is useful to

notice that the particle Stokes numbers for Y ≲ 16cm2/s3
are small. The largest value, for 𝛽 = 0.02 and Y ≈ 16cm2/s3
is St ≈ 0.14. These values, which are multiplied by ≈ 4
at Y ≈ 250cm2/s3, become 0.13 for 𝛽 = 0.005, 0.27 for
𝛽 = 0.01 and 0.54 for 𝛽 = 0.02. In this context, we recall
that when the Stokes number is no longer small (∼ 0.3),
the effect of particle inertia becomes prevalent, and as a
consequence particles do not follow very closely the fluid
velocity. This is the origin of the ‘sling-effect’ (Falkovich
et al. 2002; Falkovich and Pumir 2007) (see also Wilkin-
son and Mehlig (2005); Wilkinson et al. (2006)), caused
by particles colliding at a velocity Δ𝑣𝑟 much larger than
predicted by Eq. (8), therefore greatly enhancing the col-
lision rates (Gustavsson and Mehlig 2011; Voßkuhle et al.
2014; Pumir and Wilkinson 2016). Consistent with the
notion that the relative velocity between colliding parti-
cles can be greatly enhanced by the ‘sling effect’, the third
panel of Fig. 6, corresponding to Y ≈ 250cm2/s3, reveals
in fact a broad widening of the tails of the distribution of
Δ𝑣𝑟 × 𝜏𝐾/𝑎 for 𝛽 = 0.01 and 𝛽 = 0.02.
At the smallest value 𝛽 = 0.005, the PDF of Δ𝑣𝑟 × 𝜏𝐾/𝑎

appears as very similar to that obtained at lower turbulence
intensity, in the absence of any marked effect of differential
settling. In fact, the PDF of Δ𝑣𝑟𝜏𝐾/𝑎 superposes very well
with those at Y ≈ 1cm2/s3 and 𝛽 ≥ 0.01, and Y ≈ 16cm2/s3
and 𝛽 = 0.02. The differential settling effect induces a very
slight shoulder in the distribution at 𝛽 = 0.005 and Y ≈
250cm2/s3, which is to be expected since the contribution
to Δ𝑣𝑟𝜏𝐾/𝑎 due to differential settling in this configuration
is of order ∼ 3, and does not appear as major contribution
to the distribution of relative velocity.
In comparison, the broadening of the distribution of

Δ𝑣𝑟𝜏𝐾/𝑎 at 𝛽 = 0.01 and 𝛽 = 0.02 exceeds by far what is
expected from differential settling. In fact, the values of
𝑈𝑠𝜏𝐾/𝑎 are of the order of 5− 6, much smaller than the
extent of the PDFs shown in Fig. 6(c). This leads us to the
conclusion that the mechanism leading to enhancement of
the collision rate, much stronger than differential settling,
is related to the generation of very large velocity differ-
ences, which we attribute to the above-mentioned effects
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of particle inertia (Falkovich et al. 2001; Wilkinson and
Mehlig 2005).
Further evidence for the importance of such inertial ef-

fects can be obtained by studying the collision rate in the
absence of gravity. The numerical results presented in Ap-
pendixC indicate that the collision rate for 𝑔 = 0,𝐾0, scales
as ∼ Y1/2 for all cases where the Stokes number St < 0.1.
This scaling corresponds to the Saffman-Turner predic-
tion, valid for weakly inertial particles. We recall that in
the related problem of colliding spherical particles, inertial
effects are found to be immaterial for St ≲ 0.1 (Voßkuhle
et al. 2014). Consistent with the results of Jucha et al.
(2018), obtained from a model that ignores the fluid in-
ertia, the present results indicate that the same criterion
applies in the case of spheroids. Namely, as shown in
Table B1, inertia is found to be weak (St ≤ 0.1) in all simu-
lations with Y ≈ 1cm2/s3, and in those with Y ≤ 16cm2/s3
for 𝛽 ≤ 0.01. At 𝛽 = 0.02 and Y ≈ 16cm2s3, deviations
from the Y1/2 scaling are visible, see Fig. C1. The de-
viation from the ∼ Y1/2 is very clear at Y = 256cm2/s3
and 𝛽 ≥ 0.01, for which the Stokes numbers vary between
St = 0.134 (𝛽 = 0.005) and 0.536 (𝛽 = 0.02). We observe
that at Y ≈ 250cm2/s3, the values of 𝐾 are close to the
values of 𝐾0 in the absence of gravity, providing further
evidence that differential settling does not play a major role
when the turbulence intensity is large. We stress that the
discussion about the role of inertial effects in determining
the collision rate in the absence of gravity is qualitatively
completely consistent with the observations of Fig. 6.
It is worth stressing the role of fluid inertia in the prob-

lem. Comparing the results in Siewert et al. (2014b); Jucha
et al. (2018) with those of the present study clearly shows
the role of fluid inertia. These effects, which are partic-
ularly significant in our study for Y ≲ 16cm2/s3, can be
traced back to the properties of preferential orientation.
Taking into account the effect of fluid inertia on the orien-
tation dynamics drastically changes the nature of the ori-
entation bias. In particular, the distributions of orientation
are extremely peaked at the smallest value of the energy
dissipation, Y ≈ 1cm2/s3. As a result, the strong dispersion
of settling velocity observed in Jucha et al. (2018) almost
completely disappears when taking into account the effect
of fluid inertia, except for the lightest crystals considered
here (𝛽 = 0.005).

b. Representation of the different regimes in the parameter
space.

The approach proposed by Gustavsson et al. (2021) pre-
dicts a parametrization of the distribution of orientation,
in particular of the variance of the angle 𝜑, as a function
of two parameters, namely the Stokes number, St, and the
settling number, Sv, defined by Eq. (6). In this subsection,

we compare the prediction of that model with our own re-
sults, and discuss the implications for the various collision
mechanisms introduced in Subsection 4a.
We begin by noticing that the parametrization in Gus-

tavsson et al. (2021) actually involves the ratios St/𝐴⊥ and
and Sv/𝐴⊥, where 𝐴⊥ is one of the quantities defining
the translational resistance tensor, defined in Appendix A.
This coefficient 𝐴⊥ is essentially constant for the very small
values of 𝛽 considered here. Quantitatively, the agreement
between the fluctuations of orientation calculated in our
simulations, and the predictions of the model used in Gus-
tavsson et al. (2021), is generally quite good, see Table B1.

In the spirit of Figs. 3 and 5 of Gustavsson et al. (2021),
Fig. 7 shows the variance of the orientation fluctuations,
⟨𝜑2⟩, as a function of St and Sv. The figure also shows
the points corresponding to the particles considered in the
present work, color coded to stress the collisional mech-
anism involved for the corresponding runs, as discussed
in Section 4a. The red points correspond to the purely
Saffman-Turner mechanism. This collisional mechanism
dominates when the angle fluctuations ⟨𝜑2⟩ are very weak,
for ⟨𝜑2⟩ ≲ 10−2, and when St is low enough (St ≲ 0.1).
The points for which the dominant collisional mechanism
is provided by differential settling are marked in green. As
the difference in the settling velocity is ultimately related to
fluctuations in the orientation between crystals, this effect
is only possible when the fluctuations of the angle 𝜑 are
large enough. Judging from our numerical results, this oc-
curs when ⟨𝜑2⟩ ≳ 10−2 (this value corresponds to an r.m.s
fluctuation of slightly less than 6◦). The case 𝛽 = 0.005
and Y ≈ 246cm2/s3, shown by the full curve in Fig. 6(c),
provides an example where the velocity differences due to
differential settling were effectively immaterial, compared
to ∼ 𝑎(Y/a)1/2, the typical velocity differences due to tur-
bulence. The critical value of Sv below which differential
settling does not lead to appreciable velocity differences
with respect to the typical velocity differences induced by
turbulence can be estimated by comparing the difference
in the settling velocity, and the fluctuations of the relative
velocities of the colliding crystals, shown in Fig. 6. Judg-
ing from this Figure, we estimate the value of Sv where
the effect of differential settling becomes immaterial to
Sv ≲ 1.5. This transition region (like the two other ones)
is indicated by a gray rectangle. For Sv < 1.5, we expect
the Saffman-Turner mechanism to prevail.
Last, the crystals for which the dominant collisional mech-
anism is due to inertial effects are indicated in blue, and
all correspond to Stokes number St ≳ 0.1 − 0.2. We
have also added the point corresponding to 𝛽 = 0.05 and
Y ≈ 16cm2/s3 (run 7 in Table B1), which appears as the
point with the highest value of Sv. For the corresponding
crystals, the Stokes number is St = 0.338, and the dominant
collision mechanism is due to inertia.
We notice that two of the crystals considered have a Stokes
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Fig. 7. Summary of the various regimes as a function of the twomain
parameters of the problem, namely the settling number, Sv (horizontal)
and the Stokes number, St (vertical). The yellow dashed lines indicate
the constant 𝛽-lines, and the orange dashed-dotted lines the constant Y-
lines. The color code on the right corresponds to the fluctuations of the
angle of orientation as a function of (Sv,St) , as discussed in Gustavsson
et al. (2021). The points used in the simulation are color coded according
to the prevalent physical effect determining the collision: the dominant
collision mechanisms is the Saffman-Turner mechanism (red points),
the differential settling (green points), and the sling effect (blue points).
The two magenta points correspond to transition regimes between sev-
eral dominant collision mechanisms, which occur in the domains of
parameters in transparent gray.

number St ≈ 0.13, right in the transition region when in-
ertial effects become dominant. The two corresponding
points have been marked by a magenta dot.

5. Conclusion

We have estimated numerically the rate of collisions be-
tween identical plate-like ice crystals in a turbulent flow.
Our model involves a number of approximations, and is
comparable with the study of Jucha et al. (2018) with the
major difference that we considered here the effect of fluid
inertia. Earlier studies had demonstrated the crucial role
of this physical effect in the dynamics of orientation of
crystals settling in a turbulent flow, leading to the tendency
for crystals to settle with their maximal dimension oriented
perpendicular to gravity (Lopez and Guazzelli 2017; Gus-
tavsson et al. 2019; Sheikh et al. 2020; Gustavsson et al.
2021), contrary to what was observed in Siewert et al.
(2014a); Gustavsson et al. (2017); Jucha et al. (2018).
Our numerical results concerning the collision statistics

can be interpreted in terms of three main physical effects.
The first one, as understood by Saffman and Turner (1956),
is due to the effects of velocity gradients, which can bring
particles together. At very large turbulence intensity, when

the particle response time is larger than the characteristic
times of the smallest eddies, the Kolmogorov time, par-
ticles do not exactly follow the flow, and can be "slung"
out of eddies. The resulting sling effect tends to strongly
increase the collision kernel of colliding particles. At low
turbulence intensity, differential settling between particles
of different orientations had been suggested to play a dom-
inant role in studies that were not taking into account fluid
inertia in the crystal dynamics (Siewert et al. 2014b; Jucha
et al. 2018).
Remarkably, Fig. 7 suggests that the physical effects in-

volved can be described by two parameters, St and Sv. This
allows us to predict the main physical effects involved in
the collision process in terms of these two parameters only.
For this reason, we expect that the results of the present
study can be expanded to describe plate-like crystals of
various sizes (𝑎 and 𝛽 ≪ 1), over a broad distribution of
turbulence intensity, provided the main hypotheses of the
model are satisfied (size of the crystals 𝑎 smaller than the
Kolmogorov scale, and small enough particle Reynolds
number). On the other hand, our results leave open the
question of the collision rate between objects with a very
different shape, such as elongated crystals, describable in
terms of prolate ellipsoids.
As demonstrated here, the three mechanisms play a role

in determining the collision kernel when using the more
realistic model of crystal dynamics. The main difference
with earlier studies not taking into account the fluid inertia
comes from the very different role of differential settling in
the dynamics leading to collisions. At weak turbulence in-
tensities, the collision rates observed in Jucha et al. (2018)
were larger by approximately a factor of 10 compared to the
collision rates observed here. This is due to the very peaked
distribution of orientation dynamics at large values of Sv,
which effectively reduces the dispersion of orientation, and
therefore of settling velocity, as soon as the settling number
is ≳ 5− 10. Using the definition of Sv, Eq. (6), and the
values reported in Appendix B, we deduce that differential
settling plays a role for Y ≳ 𝛽4×1.6 108 cm2/s3.
The very strong bias in the orientation of crystals settling

in turbulent flows is likely to also strongly affect the riming
process, whereby small ice crystals collide in mixed-phase
clouds with small droplets (Naso et al. 2018; Jost et al.
2019). Further studies devoted to this problem will be
reported separately.
As mentioned in the Introduction, our model is highly

idealised. In particular, it disregards crystal-crystal inter-
actions that may become important at small separations,
and does not model collision outcomes. Nevertheless, we
expect that the model describes at least qualitatively how
particle and fluid inertia change the way in which the crys-
tals approach (and collide). In the future we intend to test
the relevance of the ghost collision approach and to formu-
late amore detailed collisionmodel that can reliably predict
collision outcomes. Developing such an approach, which
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is a necessary step to determine in quantitative terms the
influence of the approximations used in the present work,
is beyond the scope of this paper.
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APPENDIX A

Equations of motion

Weprovide here explicit expressions for the force, fℎ, and for the torque, τℎ, acting on an oblate spheroid of semi-major
axis 𝑎, semi-major axis 𝑐 and aspect ratio 𝛽 = 𝑐/𝑎 < 1.
As explained in the text, we express fℎ and τℎ as the sum of the force and torque, f (0)ℎ and τ (0)

ℎ
, obtained in the Stokes

limit, by neglecting all the nonlinear terms in the Navier-Stokes equations Eq. (1) and valid when the particle Reynolds
number 𝑅𝑒𝑝 is ≪ 1, plus a correction induced by taking into account the fluid inertia in a perturbative expansion in
powers of 𝑅𝑒𝑝 , f (1)ℎ and τ (1)

ℎ
.

a. Force and torque in the Stokes limit

The expression for the force f (0)
ℎ
reads:

f (0) = 6𝜋𝑎`A
(
u−v

)
, (A1)

where ` = 𝜌 𝑓 a is the dynamic viscosity of the fluid, A is the resistance tensor, and u is the fluid velocity at the particle
location. For a spheroid, the expression of the resistance tensor is known exactly, see e.g. Kim and Karrila (1991), and
is recalled here for convenience. Namely, the translational resistance tensor A is equal to:

𝐴𝑖 𝑗 ≡ 𝐴⊥ (𝛿𝑖 𝑗 −𝑛𝑖𝑛 𝑗 ) + 𝐴∥𝑛𝑖𝑛 𝑗 , (A2)

where we recall that n̂ is a unit vector parallel to the axis of symmetry of the spheroid, and with coefficients

𝐴⊥ =
8(𝛽2−1)

3𝛽[(2𝛽2−3)𝛾 +1]
, 𝐴∥ =

4(𝛽2−1)
3𝛽[(2𝛽2−1)𝛾−1]

, where 𝛾 =
ln[𝛽+

√︁
𝛽2−1]

𝛽
√︁
𝛽2−1

.

These expressions are consistent with those given in Tables 3.4 and 3.6 in Kim and Karrila (1991). In the case of
interest here, the aspect ratio 𝛽 is ≪ 1, so 𝛾 ≈ 𝜋/(2𝛽), 𝐴⊥ ≈ 16/(9𝜋) and 𝐴∥ ≈ 8/(3𝜋). This implies that in a still
fluid, crystals settling with their maximal dimension oriented vertically are 3/2 faster than crystals with their major axis
oriented horizontally. Note that in a fluid at rest, only the horizontal configuration is stable.

The expression for the torque τ (0)
ℎ
, named after Jeffery (Jeffery 1922), is:

τ (0) = 6𝜋𝑎⊥`
[
C(𝛀−ω) +H ..S

]
. (A3)

Here ω−𝛀 is the angular slip velocity, and 𝛀 = 12∇×u is half the fluid vorticity at the particle position. It is related
to the asymmetric part O of the matrix of fluid-velocity gradients by the relation Or = 𝛀×r. The symmetric part of
the matrix of fluid-velocity gradients is denoted by S. The resistance tensors C and H in Eq.(A3) have the following
explicit expressions:

𝐶𝑖 𝑗 ≡ 𝐶⊥ (𝛿𝑖 𝑗 −𝑛𝑖𝑛 𝑗 ) +𝐶∥𝑛𝑖𝑛 𝑗 , 𝐻𝑖 𝑗𝑘 = 𝐻0Y𝑖 𝑗𝑙𝑛𝑘𝑛𝑙 , (A4)

with

𝐶⊥ =
8𝑎2 (𝛽4−1)

9𝛽[(2𝛽2−1)𝛾−1]
, 𝐶∥ = −8𝑎

2𝛽(𝛽2−1)
9(𝛾−1)𝛽2

, 𝐻0 = −𝐶⊥
𝛽2−1
𝛽2 +1

.

Here Y𝑖 𝑗𝑙 is the antisymmetric tensor, and repeated indices are summed over.

b. Force and torque due to fluid inertia

The expressions of the contributions due to fluid inertia are estimated by considering a particle falling through
a quiescent fluid with a steady settling velocity. The slip generates fluid accelerations, and acts as a homogeneous
background flow. To leading order in the particle Reynolds number, the resulting steady convective-inertia corrections
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to the force and torque in a quiescent fluid are (Brenner 1961; Cox 1965; Khayat and Cox 1989; Dabade et al. 2015):

f (1) =−(6𝜋𝑎⊥`)
3
16
𝑎𝑊

a

[
3A−Id(Ŵ ·AŴ )

]
AW , (A5a)

τ (1) = 𝐹 (𝛽)` 𝑎
3𝑊2

a
(n̂ ·Ŵ ) (n̂×Ŵ ) . (A5b)

Here𝑊 = |W | is the modulus of the slip velocityW = v−u, Ŵ =W /𝑊 is its direction, Id is the identity matrix, and
𝐹 (𝛽) is a shape factor computed by Dabade et al. (2015). For oblate spheroids with 𝛽 ≪ 1, the shape factor 𝐹 (𝛽) is
positive, and tends to a finite limit of order ≈ 2.2 when 𝛽→ 0.

c. Moment of inertia tensor

The moment of inertia tensor of spheroids per unit mass, I, is given by:

𝐼𝑖 𝑗 = 𝐼⊥ (𝛿𝑖 𝑗 −𝑛𝑖𝑛 𝑗 ) + 𝐼∥𝑛𝑖𝑛 𝑗 , with 𝐼⊥ =
1+ 𝛽2
5

𝑎2⊥ and 𝐼∥ =
2
5
𝑎2⊥ . (A6)

APPENDIX B

List of the runs

Table B1. Runs used to determine the collision properties between crystals. The flow properties are listed in Table 1. The number of crystals
followed is 𝑁𝑐 , 𝑇𝑟𝑢𝑛 is the duration of the runs. The value of the averaged settling velocity is 𝑈𝑠 . The table also lists the values of the Stokes
number, 𝑆𝑡 , and of the settling number, Sv, defined by Eq. (6). The rms of the fluctuations of orientation, ⟨𝜑2 ⟩1/2DNS, can be compared to the
predictions from Gustavsson et al. (2021), ⟨𝜑2 ⟩1/2stoch. We note that this model neglects the corrections of the crystal velocity due to fluid inertia,
which explains much of the difference between the values reported here. The collision kernel 𝐾 , defined by Eq. (7), and the collision kernel 𝐾0 in
the hypothetical case in the absence of gravity, are listed in the last two columns.

Runs Flows 𝛽 𝑁𝑐 𝑇𝑟𝑢𝑛 (𝑠) 𝑈𝑠 (cm/s) 𝑆𝑡 Sv ⟨𝜑2 ⟩1/2DNS (deg). ⟨𝜑2 ⟩1/2stoch (deg). 𝐾 (cm3/s) 𝐾0 (cm3/s)

1 I 0.005 1003 98 1.84 8.410−3 4.89 12.7 14.9 1.210−4 4.310−5

2 I 0.01 1003 112 3.08 1.710−2 9.78 3.13 3.21 5.910−5 4.210−5

3 I 0.02 703 126 5.48 3.410−2 19.6 0.99 1.07 4.910−5 4.110−5

4 II 0.005 1003 24 2.12 3.410−2 2.44 39.7 39.8 6.710−4 1.610−4

5 II 0.01 703 30 3.50 6.810−2 4.89 13.7 14.3 4.210−4 2.010−4

6 II 0.02 703 36 5.78 0.135 9.78 4.05 4.33 2.710−4 3.010−4

7 II 0.05 703 31.5 11.5 0.338 24.5 4.05 5.05 2.410−4 8.610−4

8 III 0.005 1003 5.28 2.4 0.134 1.23 54.3 55.4 1.410−3 1.010−3

9 III 0.01 1003 5.28 4.5 0.268 2.45 38.0 41.5 2.410−3 1.910−3

10 III 0.02 1003 5.28 7.4 0.536 4.91 19.8 21.1 3.610−3 4.710−3

APPENDIX C

Collision rate in the absence of gravity

Studying collisions in the absence of gravity is a very simplified problem, not obviously appropriate in an atmospheric
science context, as it completely misses the differential settling mechanism, which was shown to play an important
role in Section 3b. On the other hand, the simplification is helpful in elucidating the physical mechanisms responsible
for collisions. Figure C1 shows the collision kernel, as defined in a particle suspension by Eq. (7), in the absence of
gravitational settling (the values are listed as 𝐾0 in Table B1). The dashed line in the figure shows the Y1/2 behavior,
corresponding to the Saffman-Turner prediction (Saffman and Turner 1956). The data indicates a 𝐾0 ≈ Y1/2 behavior
provided the Stokes number satisfies St ≲ 0.1, which is the case for all particles for Y ≈ 1cm2/s3, and for particles with
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𝛽 ≤ 0.01 at Y ≈ 16cm2/s3. When St ≳ 0.1, clear deviations are visible. A similar picture was found in the case of
colliding particles of spherical shapes (Voßkuhle et al. 2014).
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Fig. C1. Dependence of the collision kernel, in the absence of gravitational settling, on the energy dissipation, for 𝛽 = 0.005 (right-pointing
triangles), 0.01 (left-pointing triangles) and 0.02 (upper-pointing triangles). The dashed line corresponds to the dependence predicted in Saffman
and Turner (1956), and provides a good description of the data when St ≲ 0.1.
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